
INTERNET-DRAFT Adam M. Costello
draft-ietf-idn-amc-ace-m-00.txt 2001-Feb-12
Expires 2001-Aug-14

 AMC-ACE-M version 0.1.0

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note
 that other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 Distribution of this document is unlimited. Please send comments
 to the author at amc@cs.berkeley.edu, or to the idn working
 group at idn@ops.ietf.org. A non-paginated (and possibly
 newer) version of this specification may be available at

http://www.cs.berkeley.edu/~amc/charset/amc-ace-m

Abstract

 AMC-ACE-M is a reversible map from a sequence of Unicode [UNICODE]
 characters to a sequence of letters (A-Z, a-z), digits (0-9), and
 hyphen-minus (-), henceforth called LDH characters. Such a map
 (called an "ASCII-Compatible Encoding", or ACE) might be useful for
 internationalized domain names [IDN], because host name labels are
 currently restricted to LDH characters by [RFC952] and [RFC1123].

 AMC-ACE-M is a cross between BRACE [BRACE00] (which is efficient
 but complex) and DUDE [DUDE00] (which is simple and provides case
 preservation). AMC-ACE-M is much simpler than BRACE but similarly
 efficient, and provides case preservation like DUDE.

 Besides domain names, there might also be other contexts where it is
 useful to transform Unicode characters into "safe" (delimiter-free)
 ASCII characters. (If other contexts consider hyphen-minus to be
 unsafe, a different character could be used to play its role, like
 underscore.)

https://datatracker.ietf.org/doc/html/draft-ietf-idn-amc-ace-m-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.cs.berkeley.edu/~amc/charset/amc-ace-m
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123

Contents

 Features
 Name
 Overview
 Base-32 characters
 Encoding procedure
 Decoding procedure
 Signature
 Case sensitivity models
 Comparison with RACE, BRACE, LACE, and DUDE
 Example strings
 Security considerations
 References
 Author
 Example implementation

Features

 Uniqueness: Every Unicode string maps to at most one LDH string.

 Completeness: Every Unicode string maps to an LDH string.
 Restrictions on which Unicode strings are allowed, and on length,
 may be imposed by higher layers.

 Efficient encoding: The ratio of encoded size to original size is
 small for all Unicode strings. This is important in the context
 of domain names because [RFC1034] restricts the length of a domain
 label to 63 characters.

 Simplicity: The encoding and decoding algorithms are reasonably
 simple to implement. The goals of efficiency and simplicity are at
 odds; AMC-ACE-M aims at a good balance between them.

 Case-preservation: If the Unicode string has been case-folded prior
 to encoding, it is possible to record the case information in the
 case of the letters in the encoding, allowing a mixed-case Unicode
 string to be recovered if desired, but a case-insensitive comparison
 of two encoded strings is equivalent to a case-insensitive
 comparison of the Unicode strings. This feature is optional; see
 section "Case sensitivity models".

 Readability: The letters A-Z and a-z and the digits 0-9 appearing
 in the Unicode string are represented as themselves in the label.
 This comes for free because it usually the most efficient encoding
 anyway.

Name

 AMC-ACE-M is a working name that should be changed if it is adopted.
 (The M merely indicates that it is the thirteenth ACE devised by

https://datatracker.ietf.org/doc/html/rfc1034

 this author. BRACE was the third. D through L did not deliver
 enough efficiency to justify their complexity.) Rather than waste
 good names on experimental proposals, let's wait until one proposal
 is chosen, then assign it a good name. Suggestions (assuming the
 primary use is in domain names):

 UniHost
 UTF-A ("A" for "ASCII" or "alphanumeric",
 but unfortunately UTF-A sounds like UTF-8)
 UTF-H ("H" for "host names",
 but unfortunately UTF-H sounds like UTF-8)
 UTF-D ("D" for "domain names")
 NUDE (Normal Unicode Domain Encoding)

Overview

 AMC-ACE-M maps characters to characters--it does not consume or
 produce code points, code units, or bytes, although the algorithm
 makes use of code points, and implementations will of course need to
 represent the input and output characters somehow, usually as bytes
 or other code units.

 Each character in the Unicode string is represented by an
 integral number of characters in the encoded string. There is no
 intermediate bit string or octet string.

 The encoded string alternates between two modes: literal mode and
 base-32 mode. LDH characters in the Unicode string are encoded
 literally, except that hyphen-minus is doubled. Non-LDH characters
 in the Unicode string are encoded using base-32, in which each
 character of the encoded string represents five bits (a "quintet").
 A non-paired hyphen-minus in the encoded string indicates a mode
 change.

 In base-32 mode a group of one to five quintets are used to
 represent a number, which is added to an offset to yield a
 Unicode code point, which in turn represents a Unicode character.
 (Surrogates, which are code units used by UTF-16 in pairs to
 refer to code points, are not used and not allowed in AMC-ACE-M.)
 Similarities between the code points are exploited to make the
 encoding more compact.

Base-32 characters

 "a" = 0 = 0x00 = 00000 "s" = 16 = 0x10 = 10000
 "b" = 1 = 0x01 = 00001 "t" = 17 = 0x11 = 10001
 "c" = 2 = 0x02 = 00010 "u" = 18 = 0x12 = 10010
 "d" = 3 = 0x03 = 00011 "v" = 19 = 0x13 = 10011
 "e" = 4 = 0x04 = 00100 "w" = 20 = 0x14 = 10100
 "f" = 5 = 0x05 = 00101 "x" = 21 = 0x15 = 10101
 "g" = 6 = 0x06 = 00110 "y" = 22 = 0x16 = 10110

 "h" = 7 = 0x07 = 00111 "z" = 23 = 0x17 = 10111
 "i" = 8 = 0x08 = 01000 "2" = 24 = 0x18 = 11000
 "j" = 9 = 0x09 = 01001 "3" = 25 = 0x19 = 11001
 "k" = 10 = 0x0A = 01010 "4" = 26 = 0x1A = 11010
 "m" = 11 = 0x0B = 01011 "5" = 27 = 0x1B = 11011
 "n" = 12 = 0x0C = 01100 "6" = 28 = 0x1C = 11100
 "p" = 13 = 0x0D = 01101 "7" = 29 = 0x1D = 11101
 "q" = 14 = 0x0E = 01110 "8" = 30 = 0x1E = 11110
 "r" = 15 = 0x0F = 01111 "9" = 31 = 0x1F = 11111

 The digits "0" and "1" and the letters "o" and "l" are not used, to
 avoid transcription errors.

 All decoders must recognize both the uppercase and lowercase
 forms of the base-32 characters. The case may or may not convey
 information, as described in section "Case sensitivity models".

Encoding procedure

 The encoder first examines the Unicode string and chooses some
 parameters. It writes these parameters into the output string, then
 proceeds to encode each Unicode character, one at a time. The exact
 sequence of steps is given below. All ordering of bits and quintets
 is big-endian (most significant first). The >> and << operators
 used below mean bit shift, as in C. For >> there is no question of
 logical versus arithmetic shift because AMC-ACE-M makes no use of
 negative numbers.

 0) Determine the Unicode code point for each non-LDH character in
 the Unicode string. Since LDH characters are encoded literally,
 their code points are not needed. Depending on how the Unicode
 string is presented to the encoder, this step may be a no-op.

 1) Verify that there are are no invalid code points in the input;
 that is, none exceed 0x10FFFF (the highest code point in the
 Unicode code space) and none are in the range D800..DFFF
 (surrogates).

 2) Determine the most populous row: Row n is defined as the 256
 code points starting with n << 8, except that this definition
 would makes rows D8..DF useless, because they would contain only
 surrogates. Therefore AMC-ACE-M defines rows D8..DF to be the
 following non-aligned blocks of 256 code points:

 row D8 = 0020..001F
 row D9 = 005B..015A
 row DA = 007B..017A
 row DB = 00A0..019F
 row DC = 00C0..01BF
 row DD = 00DF..01DE
 row DE = 0134..0233

 row DF = 0270..036F

 (Rationale: Whereas almost every small script is confined to
 a single row, the Latin script is split across a few rows,
 and the row boundaries are not especially convenient for many
 languages.)

 Determine the row containing the most non-LDH input code points,
 breaking ties in favor of smaller-numbered rows. (If a code
 point appears multiple times in the input, it counts multiple
 times. This applies to steps 3 and 4 also.) Call it row B.
 Let offsetB be the first code point of row B.

 3) Determine the most populous 16-window: For each n in 0..31 let
 offset = ((offsetB >> 3) + n) << 3 and count the number of code
 points in the range offset through offset + 0xF. Let A be the
 value of n that maximizes this count, breaking ties in favor
 of smaller values of n, and let offsetA be the corresponding
 offset.

 4) Determine the most populous 20k-window: If the input is empty,
 then let C = 0. Otherwise, for each input code point, let n =
 code_point >> 11, and count the number of non-LDH input code
 points that are not in row B and are in the range (n << 11)
 through (n << 11) + 0x4FFF. Determine the value of n that
 maximizes the count, breaking ties in favor of smaller values of
 n, and let C be that value.

 5) Choose a style: One of the base-32 codes used in step 7.3 has
 two variants, and so base-32 mode is subdivided into two styles,
 narrow and wide, depending on which variant is used. Compute
 the total number of base-32 characters that would be produced
 if narrow style were used, and the number if wide style were
 used. The easiest way to do this is to mimic the logic of steps
 6 and 7.3. Use whichever style would produce fewer base-32
 characters. In case of a tie, use narrow style.

 6) Encode the parameters. If narrow style is used, then let
 offsetC = (offsetB >> 12) << 12, and encode B and A as three or
 four base-32 characters:

 00bbb bbbbb aaaaa if B <= 0xFF
 01bbb bbbbb bbbbb aaaaa otherwise

 If wide style is used, then let offsetC = C << 11, and encode B
 and C as three or five base-32 characters:

 10bbb bbbbb ccccc if B <= 0xFF and C <= 0x1F
 11bbb bbbbb bbbbb ccccc ccccc otherwise

 7) Encode each input character in turn, using the first of the
 following cases that applies. The mode is initially base-32.

 7.1) The character is a hyphen-minus (U+002D). Encode it as
 two hyphen-minuses.

 7.2) The character is an LDH character. If in base-32 mode
 then output a hyphen-minus and switch to literal mode.
 Copy the character to the output.

 7.3) The character is a non-LDH character. If in literal
 mode then output a hyphen-minus and switch to base-32
 mode. Encode the character's code point using the
 first of the following cases that applies. Square
 brackets enclose quintets that can be used to record
 the upper/lowercase attribute of the Unicode character
 (because the corresponding base-32 characters are
 guaranteed to be letters rather than digits) (see section
 "Case sensitivity models").

 7.3.1) Narrow style was chosen and the code point is in
 the range offsetA through offsetA + 0xF. Subtract
 offsetA and encode the difference as a single
 base-32 character:

 [0xxxx]

 7.3.2) The code point is in the range offsetB through
 offsetB + 0xFF. Subtract offsetB and encode the
 difference as two base-32 characters:

 1xxxx [0xxxx]

 7.3.3) The code point is in the range offsetC through
 offsetC + 0xFFF. Subtract offsetC and encode the
 difference as three base-32 characters:

 1xxxx 1xxxx [0xxxx]

 7.3.4) Wide style was chosen and the code point is in
 the range offsetC + 0x1000 through offsetC +
 0x4FFF. Subtract offsetC + 0x1000 and encode the
 difference as three base-32 characters:

 [0xxxx] xxxxx xxxxx

 7.3.5) The code point is in the range 0 through 0xFFFF.
 Encode it as four base-32 characters:

 1xxxx 1xxxx 1xxxx [0xxxx]

 7.3.6) If we've come this far, the code point must be
 in the range 0x10000 through 0x10FFFF. Subtract
 0x10000 and encode the difference as five base-32

 characters:

 1xxxx 1xxxx 1xxxx 1xxxx [0xxxx]

Decoding procedure

 The details of the decoding procedure are implied by the encoding
 procedure. The overall sequence of steps is as follows.

 1) Undo the encoder's step 6: From the first few base-32
 characters, determine whether narrow or wide style is used, and
 determine the offsets.

 2) Set the mode to base-32. For each remaining input character, use
 the first of the following cases that applies:

 2.1) The character is a hyphen-minus, and the following
 character is also a hyphen-minus. Consume them both and
 output a hyphen-minus.

 2.2) The character is a hyphen-minus. Consume it and toggle
 the mode flag.

 2.3) The current mode is literal. Consume the input character
 and output it.

 2.4) Interpret the input character and up to four of its
 successors as base-32. Consume characters until one is
 found whose value has the form 0xxxx. That is the one
 that carries the upper/lowercase information. Remember
 the length of the code. If the length is one and wide
 style is being used, consume two more characters.
 Decode the base-32 characters into an integer, add the
 appropriate offset (which depends on the remembered code
 length), and output the Unicode character corresponding to
 the resulting code point.

 If the case-flexible or case-preserving model is being
 used (see section "Case sensitivity models"), the decoder
 must either perform the case conversion as it is decoding,
 or construct a separate record of the case information to
 accompany the output string.

 3) Before returning the output (be it a string or a string plus
 case information), the decoder must invoke the encoder on it,
 and compare the result to the input string. The comparison
 must be case-sensitive if the case-sensitive or case-flexible
 model is being used, case-insensitive if the case-insensitive
 or case-preserving model is being used. If the two strings do
 not match, it is an error. This check is necessary to guarantee
 the uniqueness property (there cannot be two distinct encoded
 strings representing the same Unicode string).

 If the decoder at any time encounters an unexpected character, or
 unexpected end of input, then the input is invalid.

Signature

 The issue of how to distinguish ACE strings from unencoded strings
 is largely orthogonal to the encoding scheme itself, and is
 therefore not specified here. In the context of domain name labels,
 a standard prefix and/or suffix (chosen to be unlikely to occur
 naturally) would presumably be attached to ACE labels. (In that
 case, it would probably be good to forbid the encoding of Unicode
 strings that appear to match the signature, to avoid confusing
 humans about whether they are looking at a Unicode string or an ACE
 string.)

 In order to use AMC-ACE-M in domain names, the choice of signature
 must be mindful of the requirement in [RFC952] that labels never
 begin or end with hyphen-minus. The raw encoded string will never
 begin with a hyphen-minus, and will end with a hyphen-minus iff the
 Unicode string ends with a hyphen-minus. The easiest solution is
 to use a suffix as the signature. Alternatively, if the Unicode
 strings were forbidden from ending with a hyphen-minus, a prefix
 could be used.

 It appears that "---" is extremely rare in domain names; among the
 four-character prefixes of all the second-level domains under .com,
 .net, and .org, "---" never appears at all. Therefore, perhaps the
 signature should be of the form ?--- (prefix) or ---? (suffix),
 where ? could be "u" for Unicode, or "i" for internationalized, or
 "a" for ACE, or maybe "q" or "z" because they are rare.

Case sensitivity models

 The higher layer must choose one of the following four models.

 Models suitable for domain names:

 * Case-insensitive: Before a string is encoded, all its non-LDH
 characters must be case-folded so that any strings differing
 only in case become the same string (for example, strings could
 be forced to lowercase). Folding LDH characters is optional.
 The case of base-32 characters and literal-mode characters is
 arbitrary and not significant. Comparisons between encoded
 strings must be case-insensitive. The original case of non-LDH
 characters cannot be recovered from the encoded string.

 * Case-preserving: The case of the Unicode characters is not
 considered significant, but it can be preserved and recovered,
 just like in non-internationalized host names. Before a string
 is encoded, all its non-LDH characters must be case-folded
 as in the previous model. LDH characters are naturally able

https://datatracker.ietf.org/doc/html/rfc952

 to retain their case attributes because they are encoded
 literally. The case attribute of a non-LDH character is
 recorded in one of the base-32 characters that represent
 it (section "Encoding procedure" tells which one). If the
 base-32 character is uppercase, it means the Unicode character
 is caseless or should be forced to uppercase after being
 decoded (which is a no-op if the case folding already forces
 to uppercase). If the base-32 character is lowercase, it
 means the Unicode character is caseless or should be forced to
 lowercase after being decoded (which is a no-op if the case
 folding already forces to lowercase). The case of the other
 base-32 characters in a multi-quintet encoding is arbitrary
 and not significant. Only uppercase and lowercase attributes
 can be recorded, not titlecase. Comparisons between encoded
 strings must be case-insensitive, and are equivalent to
 case-insensitive comparisons between the Unicode strings. The
 intended mixed-case Unicode string can be recovered as long as
 the encoded characters are unaltered, but altering the case of
 the encoded characters is not harmful--it merely alters the case
 of the Unicode characters, and such a change is not considered
 significant.

 In this model, the input to the encoder and the output of the
 decoder can be the unfolded Unicode string (in which case the
 encoder and decoder are responsible for performing the case
 folding and recovery), or can be the folded Unicode string
 accompanied by separate case information (in which case the
 higher layer is responsible for performing the case folding and
 recovery). Whichever layer performs the case recovery must
 first verify that the Unicode string is properly folded, to
 guarantee the uniqueness of the encoding.

 It is easy to extend the nameprep algorithm [NAMEPREP02] to
 remember case information. It merely requires an additional
 bit to be associated with each output code point in the mapping
 table.

 The case-insensitive and case-preserving models are interoperable.
 If a domain name passes from a case-preserving entity to a
 case-insensitive entity, the case information will be lost, but
 the domain name will still be equivalent. This phenomenon already
 occurs with non-internationalized domain names.

 Models unsuitable for domain names, but possibly useful in other
 contexts:

 * Case-sensitive: Unicode strings may contain both uppercase and
 lowercase characters, which are not folded. Base-32 characters
 must be lowercase. Comparisons between encoded strings must be
 case-sensitive.

 * Case-flexible: Like case-preserving, except that the choice
 of whether the case of the Unicode characters is considered
 significant is deferred. Therefore, base-32 characters must
 be lowercase, except for those used to indicate uppercase
 Unicode characters. Comparisons between encoded strings may be
 case-sensitive or case-insensitive, and such comparisons are
 equivalent to the corresponding comparisons between the Unicode
 strings.

Comparison with RACE, BRACE, LACE, and DUDE

 In this section we compare AMC-ACE-M and four other ACEs: RACE
 [RACE03], BRACE [BRACE00], LACE [LACE01], and Extended DUDE
 [DUDE00]. We do not include SACE [SACE], UTF-5 [UTF5], or UTF-6
 [UTF6] in the comparison, because SACE appears obviously too
 complex, UTF-5 appears obviously too inefficient, and UTF-6 can
 never be more efficient than its similarly simple successor, DUDE.

 Case preservation support:

 DUDE, AMC-ACE-M: all characters
 BRACE: only the letters A-Z, a-z
 RACE, LACE: none

 RACE, BRACE, and LACE transform the Unicode string to an
 intermediate bit string, then into a base-32 string, so there is no
 particular alignment between the base-32 characters and the Unicode
 characters. DUDE and AMC-ACE-M do not have this intermediate stage,
 and enforce alignment between the base-32 characters and the Unicode
 characters, which facilitates the case preservation.

 Complexity is hard to measure. This author would subjectively
 describe the complexity of the algorithms as:

 RACE, LACE, DUDE: fairly simple but not trivial
 AMC-ACE-M: moderate
 BRACE: complex

 The complexity of AMC-ACE-M is in the number of rules, but the
 individual rules are not very complex, and they are generally
 non-interacting.

 The relative efficiency of the various algorithms is suggested
 by the sizes of the encodings in section "Example strings". For
 each ACE there is a graph below showing a horizontal bar for
 each example string, representing the ACE length divided by the
 minimum length among all the ACEs for that example string (so the
 ratio is at least 1). Example R is excluded because it violates
 nameprep [NAMEPREP02]. The other example strings all use different
 languages, except that there are several Japanese examples. To
 avoid skewing the results, each graph collapses all the Japanese

 ratios into a single bar representing the median ratio. A ratio r
 is represented by a bar of length r/0.04 characters. Since the bar
 will always be at least 1/0.04 = 25 characters long, we show the
 first 25 characters as "O" and the rest as "@". The bars are sorted
 so that the graph looks like a cummulative distribution. Each bar
 is labeled with the language of the corresponding example string.
 (The difference between the Chinese and Taiwanese strings is that
 the former uses simplified characters.)

 RACE:
 Hindi OOOOOOOOOOOOOOOOOOOOOOOOO@@@
 Korean OOOOOOOOOOOOOOOOOOOOOOOOO@@@
 Arabic OOOOOOOOOOOOOOOOOOOOOOOOO@@@@
 Taiwanese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@
 Hebrew OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@
 Russian OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@
 Japanese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@
 Spanish OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@
 Chinese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@@
 Vietnamese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@@@@@@@@
 Czech OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@@@@@@@@@@@@@@@@@

 LACE:
 Korean OOOOOOOOOOOOOOOOOOOOOOOOO@@@
 Hindi OOOOOOOOOOOOOOOOOOOOOOOOO@@@@
 Taiwanese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@
 Arabic OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@
 Hebrew OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@
 Chinese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@
 Japanese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@
 Russian OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@
 Spanish OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@@
 Vietnamese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@@@@@@
 Czech OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@@@@@@@@@@@

 DUDE:
 Russian OOOOOOOOOOOOOOOOOOOOOOOOO
 Arabic OOOOOOOOOOOOOOOOOOOOOOOOO
 Hebrew OOOOOOOOOOOOOOOOOOOOOOOOO@@
 Vietnamese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@
 Chinese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@
 Japanese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@
 Korean OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@
 Spanish OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@
 Czech OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@
 Hindi OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@
 Taiwanese OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@@@@

 AMC-ACE-M:
 Czech OOOOOOOOOOOOOOOOOOOOOOOOO
 Hebrew OOOOOOOOOOOOOOOOOOOOOOOOO

 Japanese OOOOOOOOOOOOOOOOOOOOOOOOO
 Korean OOOOOOOOOOOOOOOOOOOOOOOOO
 Russian OOOOOOOOOOOOOOOOOOOOOOOOO
 Spanish OOOOOOOOOOOOOOOOOOOOOOOOO
 Taiwanese OOOOOOOOOOOOOOOOOOOOOOOOO
 Vietnamese OOOOOOOOOOOOOOOOOOOOOOOOO
 Chinese OOOOOOOOOOOOOOOOOOOOOOOOO@
 Arabic OOOOOOOOOOOOOOOOOOOOOOOOO@@@
 Hindi OOOOOOOOOOOOOOOOOOOOOOOOO@@@@@

 BRACE:
 Chinese OOOOOOOOOOOOOOOOOOOOOOOOO
 Hindi OOOOOOOOOOOOOOOOOOOOOOOOO
 Japanese OOOOOOOOOOOOOOOOOOOOOOOOO
 Spanish OOOOOOOOOOOOOOOOOOOOOOOOO
 Taiwanese OOOOOOOOOOOOOOOOOOOOOOOOO
 Arabic OOOOOOOOOOOOOOOOOOOOOOOOO@
 Czech OOOOOOOOOOOOOOOOOOOOOOOOO@
 Vietnamese OOOOOOOOOOOOOOOOOOOOOOOOO@
 Hebrew OOOOOOOOOOOOOOOOOOOOOOOOO@@
 Korean OOOOOOOOOOOOOOOOOOOOOOOOO@@
 Russian OOOOOOOOOOOOOOOOOOOOOOOOO@@@

 These results suggest that DUDE is preferrable to RACE and LACE,
 because it has similar simplicity, better support for case
 preservation, and is somewhat more efficient.

 The results also suggest that AMC-ACE-M is preferrable to BRACE,
 because it has similar efficiency, better support for case
 preservation, and is simpler.

 DUDE and AMC-ACE-M have equal support for case preservation, but
 AMC-ACE-M offers significantly better efficiency, at the cost of
 significantly greater complexity, so choosing between them entails a
 value judgement.

Example strings

 In the ACE encodings below, signatures (like "bq--" for RACE) are
 not shown. Non-LDH characters in the Unicode string are forced to
 lowercase before being encoded using BRACE, RACE, and LACE. For
 RACE and LACE, the letters A-Z are likewise forced to lowercase.
 UTF-8 and UTF-16 are included for length comparisons, with non-ASCII
 bytes shown as "?". AMC-ACE-M is abbreviated AMC-M. Backslashes
 show where line breaks have been inserted in ACE strings too long
 for one line. The RACE and LACE encodings are courtesy of Mark
 Davis's online UTF converter [UTFCONV] (slightly modified to remove
 the length restrictions).

 The first several examples are all names of Japanese music artists,
 song titles, and TV programs, just because the author happens to

 have them handy (but Japanese is useful for providing examples
 of single-row text, two-row text, ideographic text, and various
 mixtures thereof).

 (A) 3<nen>B<gumi><kinpachi><sensei> (Japanese TV program title)

 <nen> = U+5E74 (kanji)
 <gumi> = U+7D44 (kanji)
 <kinpachi><sensei> = U+91D1 U+516B U+5148 U+751F (kanji)

 UTF-16: ????????????????
 UTF-8: 3???B???????????????
 AMC-M: utk-3-8ze-B-hkenqtymwifi9
 BRACE: u-3-ygj-b-ynb6gjc7pp4k5p5w
 DUDE: j3le74G062nd44p1d1l16bk8n51f
 RACE: 3aadgxtuabrh2rer2fiwwukioupq
 LACE: 74adgxtuabrh2rer2fiwwukioupq

 (B) <amuro><namie>-with-SUPER-MONKEYS (Japanese music group name)

 <amuro><namie> = U+5B89 U+5BA4 U+5948 U+7F8E U+6075 (kanji)

 UTF-8: ??????????????????-with-SUPER-MONKEYS
 AMC-M: u5m2j4etwif6q2zf---with--SUPER--MONKEYS
 BRACE: uvj7fuaqcahy982xa---with--SUPER--MONKEYS
 DUDE: lb89q4p48nf8em075-g077m9n4m8-N3LGM5N2-MdVURLN9J
 UTF-16: ??
 LACE: ajnytjablfeac74oafqhkeyafv3qm5difvzxk4dfoiww233onnsxs4y
 RACE: 3bnysw5elfeh7dtaouac2adxabuqa5aanaac2adtab2qa4aamuaheab\
 nabwqa3yanyagwadfab4qa4y

 (C) Hello-Another-Way-<sorezore><no><basho> (Japanese song title)

 <sorezore><no> = U+305D U+308C U+305E U+308C U+306E (hiragana)
 <basho> = U+5834 U+6240 (kanji)

 UTF-8: Hello-Another-Way-?????????????????????
 BRACE: ji7-Hello--Another--Way---v3jhaefvd2ufj62
 AMC-M: bsk-Hello--Another--Way---p2nq2nyqx2veyuwa
 DUDE: M8lssv-Huvn4m8ln2-Nm1n9-j05docleocmel834m240
 UTF-16: ??
 LACE: ciagqzlmnrxs2ylon52gqzlsfv3wc6jnauyf3dc6rrxacwbuafrea
 RACE: 3aagqadfabwaa3aan4ac2adbabxaa3yaoqagqadfabzaaliao4agcad\
 zaawtaxjqrqyf4memgbxfqndcia

 (D) <hitotsu><yane><no><shita>2 (Japanese TV program title)

 <hitotsu> = U+3072 U+3068 U+3064 (hiragana)
 <yane> = U+5C4B U+6839 (kanji)
 <no> = U+306E (hiragana)
 <shita> = U+4E0B (kanji)

 UTF-16: ????????????????
 UTF-8: ?????????????????????2
 AMC-M: bsnzciex6wmy2vjqw8sm-2
 BRACE: ji96u56uwbhf2wqxnw4s-2
 DUDE: j072m8klc4bm839j06eke0bg032
 RACE: 3ayhemdigbsfys3iheyg4tqlaaza
 LACE: 74yhemdigbsfys3iheyg4tqlaaza

 (E) Maji<de>Koi<suru>5<byou><mae> (Japanese song title)

 <de> = U+3067 (hiragana)
 <suru> = U+3059 U+308B (hiragana)
 <byou><mae> = U+79D2 U+524D (kanji)

 UTF-8: Maji???Koi??????5??????
 UTF-16: ??????????????????????????
 AMC-M: bsm-Maji-r-Koi-b2m-5-z37cxuwp
 BRACE: ji8-Maji-g-Koi-qe7x-5-wx7p6ma
 DUDE: Mdhqpj067G06bvpj059obg035n9d2l24d
 RACE: 3aag2adbabvaa2jqm4agwadpabutawjqrmadk6oskjgq
 LACE: 74ag2adbabvaa2jqm4agwadpabutawjqrmadk6oskjgq

 (F) <pafii>de<runba> (Japanese song title)

 <pafii> = U+30D1 U+30D5 U+30A3 U+30FC (katakana)
 <runba> = U+30EB U+30F3 U+30D0 (katakana)

 UTF-16: ??????????????
 BRACE: 3iu8pazt-de-pygi
 AMC-M: bs3jp4d9n-de-8m9di
 RACE: gdi5li7475sp6zpl6pia
 DUDE: j0d1lq3vcg064lj0ebv3t0
 UTF-8: ????????????de?????????
 LACE: aqyndvnd7qbaazdfamyox46q

 (G) <sono><supiido><de> (Japanese song title)

 <sono> = U+305D U+306E (hiragana)
 <supiido> = U+30B9 U+30D4 U+30FC U+30C9 (katakana)
 <de> = U+3067 (hiragana)

 RACE: gbow5oou7tewo
 UTF-16: ??????????????
 BRACE: bidprdmp9wt7mi
 LACE: a4yf23vz2t6mszy
 AMC-M: bsmfyq5j7e9n6jr
 DUDE: j05dmer9t4vcs9m7
 UTF-8: ?????????????????????

 The next several examples are all translations of the sentence "Why
 can't they just speak in <language>?" (courtesy of Michael Kaplan's
 "provincial" page [PROVINCIAL]). Word breaks and punctuation have

 been removed, as is often done in domain names.

 (H) Arabic (Egyptian):
 U+0644 U+064A U+0647 U+0645 U+0627 U+0628 U+062A U+0643 U+0644
 U+0645 U+0648 U+0634 U+0639 U+0631 U+0628 U+064A U+061F

 DUDE: m44qnli7oqk3kloj4phi8kahf
 BRACE: 28akcjwcmp3ciwb4t3ngd4nbaz
 AMC-M: agiekhfuhuiukdefivevjvbuiktr
 RACE: azceur2fe4ucuq2eivediojrfbfb6
 LACE: cedeisshiutsqksdircuqnbzgeueuhy
 UTF-16: ??????????????????????????????????
 UTF-8: ??????????????????????????????????

 (I) Chinese (simplified):
 U+4ED6 U+4EEC U+4E3A U+4EC0 U+4E48 U+4E0D U+8BF4 U+4E2D U+6587

 UTF-16: ??????????????????
 BRACE: kgcqqsgp26i5h4zn7req5i
 AMC-M: uqj7g8nvk6awispn9wupdnh
 DUDE: ked6ucjas0k8gdobf4ke2dm587
 UTF-8: ???????????????????????????
 LACE: azhnn3b2ybea2aml6qau4libmwdq
 RACE: 3bhnmtxmjy5e5qcojbha3c7ujywwlby

 (J) Czech: Pro<ccaron>prost<ecaron>nemluv<iacute><ccaron>esky

 <ccaron> = U+010D
 <ecaron> = U+011B
 <iacute> = U+00ED

 UTF-8: Pro??prost??nemluv????esky
 AMC-M: g26-Pro-p-prost-9m-nemluv-6pp-esky
 BRACE: i32-Pro-u-prost-8y-nemluv-29f3n-esky
 DUDE: N0imfh0dg70imfn3kh1bg6eltsn5mudh0dg65n3mbn9
 UTF-16: ??
 LACE: amaha4tpaeaq2biaobzg643uaearwbyanzsw23dvo3wqcainaqagk43\
 lpe
 RACE: ah7xb73s75xq373q75zp6377op7xig77n37wl73n75wp65p7o3762dp\
 7mx7xh73l754q

 (K) Hebrew:
 U+05DC U+05DE U+05D4 U+05D4 U+05DD U+05E4 U+05E9 U+05D5 U+05D8
 U+05DC U+05D0 U+05DE U+05D3 U+05D1 U+05E8 U+05D9 U+05DD U+05E2
 U+05D1 U+05E8 U+05D9 U+05EA

 AMC-M: af4nqeep8e8jfinaqdb8ijp8cb8ij8k
 DUDE: ldcukktu4pt5osgujhu8t9tu2t1u8t9ua
 BRACE: 27vkyp7bgwmbpfjgc4ynx5nd8xsp5nd9c
 RACE: axon5vgu3xsotvoy3tin5u6r5dm53ywr5dm6u
 LACE: cyc5zxwu2to6j2ov3donbxwt2huntxpc2hunt2q

 UTF-8: ??
 UTF-16: ??

 (L) Hindi:
 U+092F U+0939 U+0932 U+094B U+0917 U+0939 U+093F U+0928 U+094D
 U+0926 U+0940 U+0915 U+094D U+092F U+094B U+0902 U+0928 U+0939
 U+0940 U+0902 U+092C U+094B U+0932 U+0938 U+0915 U+0924 U+0947
 U+0939 U+0948 U+0902 (Devanagari)

 BRACE: 2b7xtenqdr7zc6uma2pmcz7ibage237kdemicnk9gei32
 RACE: bextsmslc44t6kcnezabktjpjmbcqokaaiwewmrycuseookiai
 LACE: dyes6ojsjmltspzijuteafknf5fqekbziabcyszshaksirzzjaba
 AMC-M: ajhurbvcwmthbhuiwpugitfwpurwmscuibiscunwmvcatfuerbwisc
 DUDE: p2fj9ikbh7j9vi8kdi6k0h5kdifkbg2i8j9k0g2ickbj2oh5i4k7j9k\
 8g2
 UTF-16: ???\
 ?????
 UTF-8: ???\
 ???????????????????????????????????

 (M) Korean:
 U+C138 U+ACC4 U+C758 U+BAA8 U+B4E0 U+C0AC U+B78C U+B4E4 U+C774
 U+D55C U+AD6D U+C5B4 U+B97C U+C774 U+D574 U+D55C U+B2E4 U+BA74
 U+C5BC U+B9C8 U+B098 U+C88B U+C744 U+AE4C (Hangul syllables)

 UTF-16: ??
 UTF-8: ???\
 ?????????????????
 AMC-M: yhxcj2w6exiaxi68acfn92n68ezehk6xypdpwam6zehmwhk648eavwd\
 p6aqi23ieemweywn
 BRACE: y394qebjusrcndbs82pkvstf96sxufcr7ffr4vbgdwsxufcx8pdktgb\
 gmnsqydmk7im56arju6pt82
 LACE: 77atrlgey5mlvkfu4dakzn4mwtsmo5gvlsww3rnuxf6mo5gvotkvzmx\
 exj2mlpfzzcyjrsely5ck4ta
 RACE: 3datrlgey5mlvkfu4dakzn4mwtsmo5gvlsww3rnuxf6mo5gvotkvzmx\
 exj2mlpfzzcyjrsely5ck4ta
 DUDE: s138qcc4s758raa8ke0s0acr78cke4s774t55cqd6ds5b4r97cs774t\
 574lcr2e4q74s5bcr9c8g98s88bn44qe4c

 (N) Russian:
 U+041F U+043E U+0447 U+0435 U+043C U+0443 U+0436 U+0435 U+043E
 U+043D U+0438 U+043D U+0435 U+0433 U+043E U+0432 U+043E U+0440
 U+044F U+0442 U+043F U+043E U+0440 U+0443 U+0441 U+0441 U+043A
 U+0438 (Cyrillic)

 DUDE: K3fuk7j5sk3j6lutotljuiuk0vijfuk0jhhjao
 AMC-M: aehHgrvfemvgvfgfafvfvdgvcgiwrkhgimjjca
 BRACE: 269xyjvcyafqfdwyr3xfd8z8byi6z39xyi692s7ug2
 RACE: aq7t4rzvhrbtmnj6hu4d2njthyzd4qcpii7t4qcdifatuoa
 LACE: dqcd6pshgu6egnrvhy6tqpjvgm7depsaj5bd6psainaucory
 UTF-16: ???\

 ???
 UTF-8: ???
 ???

 (O) Spanish: Porqu<eacute>nopuedensimplementehablarenEspa<ntilde>ol

 <eacute> = U+00E9
 <ntilde> = U+00F1

 UTF-8: Porqu??nopuedensimplementehablarenEspa??ol
 AMC-M: aa7-Porqu-b-nopuedensimplementehablarenEspa-j-ol
 BRACE: 22x-Porqu-9-nopuedensimplementehablarenEspa-j-ol
 DUDE: N0mfn2hlu9mevn0lm5klun3m9tn0mcltlun4m5ohishn2m5uLn3gm1v\
 1mfs
 RACE: abyg64troxuw433qovswizloonuw24dmmvwwk3tumvugcytmmfzgk3t\
 fonygd4lpnq
 LACE: faaha33sof26s3tpob2wkzdfnzzws3lqnrsw2zloorswqylcnrqxezl\
 omvzxayprn5wa
 UTF-16: ???\
 ?????????????????????????

 (P) Taiwanese:
 U+4ED6 U+5011 U+7232 U+4EC0 U+9EBD U+4E0D U+8AAA U+4E2D U+6587

 UTF-16: ??????????????????
 UTF-8: ???????????????????????????
 AMC-M: uqj7g2tbgtu6a385pspnxkupdnh
 BRACE: kgcqui49gatc2wyrn8y7cndgte9
 RACE: 3bhnmuaroize5qe6xvha3cvkjywwlby
 LACE: 75hnmuaroize5qe6xvha3cvkjywwlby
 DUDE: ked6l011n232kec0pebdke0doaaake2dm587

 (Q) Vietnamese:
 Ta<dotbelow>isaoho<dotbelow>kh<ocirc>ngth<ecirc><hookabove>chi\
 <hookabove>no<acute>iti<ecirc><acute>ngVi<ecirc><dotbelow>t

 <dotbelow> = U+0323
 <ocirc> = U+00F4
 <ecirc> = U+00EA
 <hookabove> = U+0309
 <acute> = U+0301

 UTF-8: Ta??isaoho??kh??ngth????chi??no??iti????ngVi????t
 AMC-M: ada-Ta-ud-isaoho-ud-kh-s9e-ngth-s8kj-chi-j-no-b-iti-s8k\
 b-ngVi-s8kud-t
 BRACE: i54-Ta-8-isaoho-ay-kh-29n-ngth-s2xa6i-chi-k-no-2g-iti-2\
 9c29-ngVi-25p48-t
 UTF-16: ???\
 ?????????????????????
 DUDE: N4m1j23g69n3m1vovj23g6bov4menn4m8uaj09g63opj09g6evj01g6\
 9n4m9uaj01g6enN6m9uaj23g74

 LACE: aiahiyibamrqmadjonqw62dpaebsgcaannupi3thoruouaidbebqay3\
 ineaqgcicabxg6aidaecaa2lunhvacaybauag4z3wnhvacazdaeahi
 RACE: ap7xj73bep7wt73t75q76377nd7w6i77np7wr77u75xp6z77ot7wr77\
 kbh7wh73i75uqt73o75xqd73j752p62p75ia763x7m77xn73j77vch7\
 3u

 The last example is an ASCII string that breaks not only the
 existing rules for host name labels but also the rules proposed in
 [NAMEPREP02] for internationalized domain names.

 (R) -> $1.00 <-

 UTF-8: -> $1.00 <-
 DUDE: -jei0kj1iej0gi0jc-
 RACE: aawt4ibegexdambahqwq
 LACE: bmac2praeqys4mbqea6c2
 UTF-16: ??????????????????????
 AMC-M: aae--vqae-1-q-00-avn--
 BRACE: 229--t2b4-1-w-00-i9i--

Security considerations

 Users expect each domain name in DNS to be controlled by a single
 authority. If a Unicode string intended for use as a domain label
 could map to multiple ACE labels, then an internationalized domain
 name could map to multiple ACE domain names, each controlled by
 a different authority, some of which could be spoofs that hijack
 service requests intended for another. Therefore AMC-ACE-M is
 designed so that each Unicode string has a unique encoding.

 However, there can still be multiple Unicode representations of the
 "same" text, for various definitions of "same". This problem is
 addressed to some extent by the Unicode standard under the topic
 of canonicalization, but some text strings may be misleading or
 ambiguous to humans when used as domain names, such as strings
 containing dots, slashes, at-signs, etc. These issues are being
 further studied under the topic of "nameprep" [NAMEPREP02].

References

 [ACEID01] Yoshiro Yoneya, Naomasa Maruyama, "Proposal for
 a determining process of ACE identifier", 2000-Dec-19,

draft-ietf-idn-aceid-01.

 [BRACE00] Adam Costello, "BRACE: Bi-mode Row-based
 ASCII-Compatible Encoding for IDN version 0.1.2", 2000-Sep-19,

draft-ietf-idn-brace-00.

 [DUDE00] Brian Spolarich, Mark Welter, "DUDE: Differential Unicode
 Domain Encoding", 2000-Nov-21, draft-ietf-idn-dude-00.

 [IDN] Internationalized Domain Names (IETF working group),

https://datatracker.ietf.org/doc/html/draft-ietf-idn-aceid-01
https://datatracker.ietf.org/doc/html/draft-ietf-idn-brace-00
https://datatracker.ietf.org/doc/html/draft-ietf-idn-dude-00

http://www.i-d-n.net/, idn@ops.ietf.org.

 [LACE01] Paul Hoffman, Mark Davis, "LACE: Length-based ASCII
 Compatible Encoding for IDN", 2001-Jan-05, draft-ietf-idn-lace-01.

 [NAMEPREP02] Paul Hoffman, Marc Blanchet, "Preparation
 of Internationalized Host Names", 2001-Jan-17,

draft-ietf-idn-nameprep-02.

 [PROVINCIAL] Michael Kaplan, "The 'anyone can be provincial!' page",
http://www.trigeminal.com/samples/provincial.html.

 [RACE03] Paul Hoffman, "RACE: Row-based ASCII Compatible Encoding
 for IDN", 2000-Nov-28, draft-ietf-idn-race-03.

 [RFC952] K. Harrenstien, M. Stahl, E. Feinler, "DOD Internet Host
 Table Specification", 1985-Oct, RFC 952.

 [RFC1034] P. Mockapetris, "Domain Names - Concepts and Facilities",
 1987-Nov, RFC 1034.

 [RFC1123] Internet Engineering Task Force, R. Braden (editor),
 "Requirements for Internet Hosts -- Application and Support",
 1989-Oct, RFC 1123.

 [SACE] Dan Oscarsson, "Simple ASCII Compatible Encoding (SACE)",
draft-ietf-idn-sace-*.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
http://www.unicode.org/unicode/standard/standard.html.

 [UTF5] James Seng, Martin Duerst, Tin Wee Tan, "UTF-5, a
 Transformation Format of Unicode and ISO 10646", draft-jseng-utf5-*.

 [UTF6] Mark Welter, Brian W. Spolarich, "UTF-6 - Yet Another
 ASCII-Compatible Encoding for IDN", draft-ietf-idn-utf6-*.

 [UTFCONV] Mark Davis, "UTF Converter",
http://www.macchiato.com/unicode/convert.html.

Author

 Adam M. Costello <amc@cs.berkeley.edu>
http://www.cs.berkeley.edu/~amc/

Example implementation

/**/
/* amc-ace-m.c 0.1.0 (2001-Feb-12-Mon) */
/* Adam M. Costello <amc@cs.berkeley.edu> */

http://www.i-d-n.net/
https://datatracker.ietf.org/doc/html/draft-ietf-idn-lace-01
https://datatracker.ietf.org/doc/html/draft-ietf-idn-nameprep-02
http://www.trigeminal.com/samples/provincial.html
https://datatracker.ietf.org/doc/html/draft-ietf-idn-race-03
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/draft-ietf-idn-sace
http://www.unicode.org/unicode/standard/standard.html
https://datatracker.ietf.org/doc/html/draft-jseng-utf5
https://datatracker.ietf.org/doc/html/draft-ietf-idn-utf6
http://www.macchiato.com/unicode/convert.html
http://www.cs.berkeley.edu/~amc/

/**/

/* This is ANSI C code implementing AMC-ACE-M version 0.1.*. */

/**/
/* Public interface (would normally go in its own .h file): */

#include <limits.h>

enum amc_ace_status {
 amc_ace_success,
 amc_ace_invalid_input,
 amc_ace_output_too_big
};

enum case_sensitivity { case_sensitive, case_insensitive };

#if UINT_MAX >= 0x10FFFF
typedef unsigned int u_code_point;
#else
typedef unsigned long u_code_point;
#endif

int amc_ace_m_encode(
 unsigned int input_length,
 const u_code_point *input,
 const unsigned char *uppercase_flags,
 unsigned int *output_size,
 unsigned char *output);

 /* amc_ace_m_encode() converts Unicode to AMC-ACE-M. The input */
 /* must be represented as an array of Unicode code points */
 /* (not code units; surrogate pairs are not allowed), and the */
 /* output will be represented as null-terminated ASCII. The */
 /* input_length is the number of code points in the input. The */
 /* output_size is an in/out argument: the caller must pass */
 /* in the maximum number of characters that may be output */
 /* (including the terminating null), and on successful return */
 /* it will contain the number of characters actually output */
 /* (including the terminating null, so it will be one more than */
 /* strlen() would return, which is why it is called output_size */
 /* rather than output_length). The uppercase_flags array must */
 /* hold input_length boolean values, where nonzero means the */
 /* corresponding Unicode character should be forced to uppercase */
 /* after being decoded, and zero means it is caseless or should */
 /* be forced to lowercase. Alternatively, uppercase_flags may */
 /* be a null pointer, which is equivalent to all zeros. The */
 /* letters a-z and A-Z are always encoded literally, regardless */
 /* of the corresponding flags. The encoder always outputs */
 /* lowercase base-32 characters except when nonzero values */

 /* of uppercase_flags require otherwise, so the encoder is */
 /* compatible with any of the case models. The return value */
 /* may be any of the amc_ace_status values defined above; if */
 /* not amc_ace_success, then output_size and output may contain */
 /* garbage. On success, the encoder will never need to write an */
 /* output_size greater than input_length*5+6, because of how the */
 /* encoding is defined. */

int amc_ace_m_decode(
 enum case_sensitivity case_sensitivity,
 unsigned char *scratch_space,
 const unsigned char *input,
 unsigned int *output_length,
 u_code_point *output,
 unsigned char *uppercase_flags);

 /* amc_ace_m_decode() converts AMC-ACE-M to Unicode. The input */
 /* must be represented as null-terminated ASCII, and the output */
 /* will be represented as an array of Unicode code points. */
 /* The case_sensitivity argument influences the check on the */
 /* well-formedness of the input string; it must be case_sensitive */
 /* if case-sensitive comparisons are allowed on encoded strings, */
 /* case_insensitive otherwise (see also section "Case sensitivity */
 /* models" of the AMC-ACE-M specification). The scratch_space */
 /* must point to space at least as large as the input, which will */
 /* get overwritten (this allows the decoder to avoid calling */
 /* malloc()). The output_length is an in/out argument: the */
 /* caller must pass in the maximum number of code points that */
 /* may be output, and on successful return it will contain the */
 /* actual number of code points output. The uppercase_flags */
 /* array must have room for at least output_length values, or it */
 /* may be a null pointer if the case information is not needed. */
 /* A nonzero flag indicates that the corresponding Unicode */
 /* character should be forced to uppercase by the caller, while */
 /* zero means it is caseless or should be forced to lowercase. */
 /* The letters a-z and A-Z are output already in the proper case, */
 /* but their flags will be set appropriately so that applying the */
 /* flags would be harmless. The return value may be any of the */
 /* amc_ace_status values defined above; if not amc_ace_success, */
 /* then output_length, output, and uppercase_flags may contain */
 /* garbage. On success, the decoder will never need to write */
 /* an output_length greater than the length of the input (not */
 /* counting the null terminator), because of how the encoding is */
 /* defined. */

/**/
/* Implementation (would normally go in its own .c file): */

#include <string.h>

/* Character utilities: */

/* is_ldh(codept) returns 1 if the code point represents an LDH */
/* character (ASCII letter, digit, or hyphen-minus), 0 otherwise. */

static int is_ldh(u_code_point codept)
{
 if (codept == 45) return 1;
 if (codept < 48) return 0;
 if (codept <= 57) return 1;
 if (codept < 65) return 0;
 if (codept <= 90) return 1;
 if (codept < 97) return 0;
 if (codept <= 122) return 1;
 return 0;
}

/* is_AtoZ(c) returns 1 if c is an */
/* uppercase ASCII letter, zero otherwise. */

static unsigned char is_AtoZ(unsigned char c)
{
 return c >= 65 && c <= 90;
}

/* special_row_offset[n] holds the offset of the */
/* bottom of special row 0xD8 + n, where n is in 0..7. */

static u_code_point special_row_offset[] =
 { 0x0020, 0x005B, 0x007B, 0x00A0, 0x00C0, 0x00DF, 0x0134, 0x0270 };

/* base32[n] is the lowercase base-32 character representing */
/* the number n from the range 0 to 31. Note that we cannot */
/* use string literals for ASCII characters because an ANSI C */
/* compiler does not necessarily use ASCII. */

static const unsigned char base32[] = {
 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, /* a-k */
 109, 110, /* m-n */
 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, /* p-z */
 50, 51, 52, 53, 54, 55, 56, 57 /* 2-9 */
};

/* base32_decode(c) returns the value of a base-32 character, in the */
/* range 0 to 31, or the constant base32_invalid if c is not a valid */
/* base-32 character. */

enum { base32_invalid = 32 };

static unsigned int base32_decode(unsigned char c)
{
 if (c < 50) return base32_invalid;

 if (c <= 57) return c - 26;
 if (c < 97) c += 32;
 if (c < 97 || c == 108 || c == 111 || c > 122) return base32_invalid;
 return c - 97 - (c > 108) - (c > 111);
}

/* unequal(case_sensitivity,a1,a2,n) returns 0 if the arrays */
/* a1 and a2 are equal in the first n positions, 1 otherwise. */
/* If case_sensitivity is case_insensitive, then ASCII A-Z are */
/* considered equal to a-z respectively. */

static int unequal(
 enum case_sensitivity case_sensitivity,
 const unsigned char *a1,
 const unsigned char *a2,
 unsigned int n)
{
 const unsigned char *end;
 unsigned char c1, c2;

 if (case_sensitivity != case_insensitive) return memcmp(a1,a2,n);

 for (end = a1 + n; a1 < end; ++a1, ++a2) {
 c1 = *a1;
 c2 = *a2;
 if (c1 >= 65 && c1 <= 90) c1 += 32;
 if (c2 >= 65 && c2 <= 90) c2 += 32;
 if (c1 != c2) return 1;
 }

 return 0;
}

/* Encoder: */

int amc_ace_m_encode(
 unsigned int input_length,
 const u_code_point *input,
 const unsigned char *uppercase_flags,
 unsigned int *output_size,
 unsigned char *output)
{
 unsigned int literal, wide; /* boolean */
 u_code_point codept, n, diff, morebits;
 u_code_point A, B, C, offsetA, offsetB, offsetC, offset;
 const u_code_point *input_end, *p, *pp;
 unsigned int count, max, next_in, next_out, max_out, codelen, i;
 unsigned char c;

 input_end = input + input_length;

 /* 1) Verify that only valid code points appear: */

 for (p = input; p < input_end; ++p) {
 if (*p >> 11 == 0x1B || *p > 0x10FFFF) return amc_ace_invalid_input;
 }

 /* 2) Determine the most populous row: B and offsetB */

 /* first check the special rows: */

 B = 0xD8;
 offsetB = special_row_offset[0];
 max = 0;

 for (n = 0; n < 8; ++n) {
 offset = special_row_offset[n];
 count = 0;

 for (p = input; p < input_end; ++p) {
 if (*p - offset <= 0xFF && !is_ldh(*p)) ++count;
 }

 if (count > max) {
 B = 0xD8 + n;
 offsetB = offset;
 max = count;
 }
 }

 /* now check the regular rows: */

 for (pp = input; pp < input_end; ++pp) {
 n = *pp >> 8;
 count = 0;

 for (p = input; p < input_end; ++p) {
 if (*p >> 8 == n && !is_ldh(*p)) ++count;
 }

 if (count > max || (count == max && n < B)) {
 B = n;
 offsetB = n << 8;
 max = count;
 }
 }

 /* 3) Determine the most populous 16-window: A and offsetA */

 A = 0;
 max = 0;

 for (n = 0; n <= 0x1F; ++n) {

 offset = ((offsetB >> 3) + n) << 3;
 count = 0;

 for (p = input; p < input_end; ++p) {
 if (*p - offset <= 0xF && !is_ldh(*p)) ++count;
 }

 if (count > max) {
 A = n;
 offsetA = offset;
 max = count;
 }
 }

 /* 4) Determine the most populous 20k-window: C */

 C = 0;
 max = 0;

 for (pp = input; pp < input_end; ++pp) {
 count = 0;
 n = *pp >> 11;
 offset = n << 11;

 for (p = input; p < input_end; ++p) {
 if (*p - offset <= 0x4FFF && !is_ldh(*p)) ++count;

 if (count > max || (count == max && n < C)) {
 C = n;
 max = count;
 }
 }
 }

 /* 5) Determine the style to use: wide or narrow */

 /* if narrow style were used: */

 offsetC = (offsetB >> 12) << 12;
 count = 3 + (B > 0xFF);

 for (p = input; p < input_end; ++p) {
 if (is_ldh(*p)) { }
 else if (*p - offsetA <= 0xF) count += 1;
 else if (*p - offsetB <= 0xFF) count += 2;
 else if (*p - offsetC <= 0xFFF) count += 3;
 else if (*p <= 0xFFFF) count += 4;
 else count += 5;
 }

 max = count;

 /* if wide style were used: */

 offsetC = C << 11;
 count = B <= 0xFF && C <= 0x1F ? 3 : 5;

 for (p = input; p < input_end; ++p) {
 if (is_ldh(*p)) { }
 else if (*p - offsetB <= 0xFF) count += 2;
 else if (*p - offsetC <= 0x4FFF) count += 3;
 else if (*p <= 0xFFFF) count += 4;
 else count += 5;
 }

 wide = (count < max);

 /* 6) Initialize offsetC, and encode the style and offsets: */

 max_out = *output_size;
 next_out = 0;

 if (wide) {
 offsetC = C << 11;

 if (B <= 0xFF && C <= 0x1F) {
 if (max_out - next_out < 3) return amc_ace_output_too_big;
 output[next_out++] = base32[0x10 | (B >> 5)];
 output[next_out++] = base32[B & 0x1F];
 output[next_out++] = base32[C];
 }
 else {
 if (max_out - next_out < 5) return amc_ace_output_too_big;
 output[next_out++] = base32[0x18 | (B >> 10)];
 output[next_out++] = base32[(B >> 5) & 0x1F];
 output[next_out++] = base32[B & 0x1F];
 output[next_out++] = base32[C >> 5];
 output[next_out++] = base32[C & 0x1F];
 }
 }
 else {
 offsetC = (offsetB >> 12) << 12;

 if (B <= 0xFF) {
 if (max_out - next_out < 3) return amc_ace_output_too_big;
 output[next_out++] = base32[B >> 5];
 output[next_out++] = base32[B & 0x1F];
 }
 else {
 if (max_out - next_out < 4) return amc_ace_output_too_big;
 output[next_out++] = base32[8 | (B >> 10)];
 output[next_out++] = base32[(B >> 5) & 0x1F];
 output[next_out++] = base32[B & 0x1F];

 }

 output[next_out++] = base32[A];
 }

 /* 7) Main encoding loop: */

 literal = 0;

 for (next_in = 0; next_in < input_length; ++next_in) {
 codept = input[next_in];

 if (codept == 45 /* hyphen-minus */) {
 /* case 7.1 */
 if (max_out - next_out < 2) return amc_ace_output_too_big;
 output[next_out++] = 45;
 output[next_out++] = 45;
 continue;
 }

 if (is_ldh(codept)) {
 /* case 7.2 */
 if (!literal) {
 if (max_out - next_out < 1) return amc_ace_output_too_big;
 output[next_out++] = 45;
 literal = 1;
 }

 if (max_out - next_out < 1) return amc_ace_output_too_big;
 output[next_out++] = codept;
 continue;
 }

 /* case 7.3 */

 if (literal) {
 if (max_out - next_out < 1) return amc_ace_output_too_big;
 output[next_out++] = 45;
 literal = 0;
 }

 if (!wide) {
 diff = codept - offsetA;

 if (diff <= 0xF) {
 /* case 7.3.1 */
 codelen = 1;
 goto encoder_base32_bottom;
 }
 }

 diff = codept - offsetB;

 if (diff <= 0xFF) {
 /* case 7.3.2 */
 codelen = 2;
 goto encoder_base32_bottom;
 }

 diff = codept - offsetC;

 if (diff <= 0xFFF) {
 /* case 7.3.3 */
 codelen = 3;
 goto encoder_base32_bottom;
 }

 if (wide) {
 diff = codept - offsetC - 0x1000;

 if (diff <= 0x3FFF) {
 /* case 7.3.4 */
 codelen = 1;
 morebits = diff & 0x3FF;
 diff >>= 10;
 goto encoder_base32_bottom;
 }
 }

 if (codept <= 0xFFFF) {
 /* case 7.3.5 */
 diff = codept;
 codelen = 4;
 goto encoder_base32_bottom;
 }

 /* case 7.3.6 */
 diff = codept - 0x10000;
 codelen = 5;

 encoder_base32_bottom: /* output diff as n base-32 digits: */
 if (max_out - next_out < codelen) return amc_ace_output_too_big;
 i = codelen - 1;
 c = base32[diff & 0xF];
 if (uppercase_flags && uppercase_flags[next_in]) c -= 32;
 output[next_out + i] = c;

 while (i > 0) {
 diff >>= 4;
 output[next_out + --i] = base32[0x10 | (diff & 0xF)];
 }

 next_out += codelen;

 if (wide && codelen == 1) {
 /* case 7.3.4 */
 if (max_out - next_out < 2) return amc_ace_output_too_big;
 output[next_out++] = base32[morebits >> 5];
 output[next_out++] = base32[morebits & 0x1F];
 }
 }

 /* null terminator: */
 if (max_out - next_out < 1) return amc_ace_output_too_big;
 output[next_out++] = 0;
 *output_size = next_out;
 return amc_ace_success;
}

/* Decoder: */

int amc_ace_m_decode(
 enum case_sensitivity case_sensitivity,
 unsigned char *scratch_space,
 const unsigned char *input,
 unsigned int *output_length,
 u_code_point *output,
 unsigned char *uppercase_flags)
{
 unsigned int literal, wide, large; /* boolean */
 const unsigned char *next_in;
 unsigned char c;
 unsigned int next_out, max_out, codelen, input_size, scratch_size;
 u_code_point q, B, offsets[6], diff, offset;
 enum amc_ace_status status;

 /* 1) Decode the style and offsets: */

 next_in = input;
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;
 wide = q >> 4;
 large = (q >> 3) & 1;
 B = q & 7;
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;
 B = (B << 5) | q;

 if (large) {
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;
 B = (B << 5) | q;
 }

 /* offsets[codelen] is for base-32 codes with codelen characters */
 /* (not counting the extra two in wide-style 0xxxx xxxxx xxxxx) */

 offsets[2] = B >> 3 == 0x1B ? special_row_offset[B & 7] : B << 8;
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;

 if (!wide) {
 offsets[1] = ((offsets[2] >> 3) + q) << 3;
 offsets[3] = (offsets[2] >> 12) << 12;
 }
 else {
 offset = q << 11;

 if (large) {
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;
 offset = (offset << 5) | q;
 }

 offsets[3] = offset;
 offsets[1] = offset + 0x1000;
 }

 offsets[4] = 0;
 offsets[5] = 0x10000;

 /* 2) Main decoding loop: */

 max_out = *output_length;
 next_out = 0;
 literal = 0;

 for (;;) {
 c = *next_in++;
 if (!c) break;

 if (c == 45 /* hyphen-minus */) {
 if (*next_in == 45) {
 /* case 2.1: "--" decodes to "-" */
 ++next_in;
 if (max_out - next_out < 1) return amc_ace_output_too_big;
 if (uppercase_flags) uppercase_flags[next_out] = 0;
 output[next_out++] = 45;
 continue;
 }

 /* case 2.2: unpaired hyphen-minus toggles mode */
 literal = !literal;
 continue;
 }

 if (!is_ldh(c)) return amc_ace_invalid_input;
 if (max_out - next_out < 1) return amc_ace_output_too_big;

 if (literal) {
 /* case 2.3: literal letter/digit */
 if (uppercase_flags) uppercase_flags[next_out] = is_AtoZ(c);
 output[next_out++] = c;
 continue;
 }

 /* case 2.4: base-32 sequence */

 diff = 0;
 codelen = 1;

 for (;;) {
 q = base32_decode(c);
 if (q == base32_invalid) return amc_ace_invalid_input;
 diff = (diff << 4) | (q & 0xF);
 if ((q & 0x10) == 0) break;
 if (++codelen > 5) return amc_ace_invalid_input;
 c = *next_in++;
 }

 /* Now codelen is the number of input characters read, */
 /* and c is the character holding the uppercase flag. */

 if (wide && codelen == 1) {
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;
 diff = (diff << 5) | q;
 q = base32_decode(*next_in++);
 if (q == base32_invalid) return amc_ace_invalid_input;
 diff = (diff << 5) | q;
 }

 offset = offsets[codelen];
 if (uppercase_flags) uppercase_flags[next_out] = is_AtoZ(c);
 output[next_out++] = offset + diff;
 }

 /* 3) Re-encode the output and compare to the input: */

 input_size = next_in - input;
 scratch_size = input_size;
 status = amc_ace_m_encode(next_out, output, uppercase_flags,
 &scratch_size, scratch_space);
 if (status != amc_ace_success ||
 scratch_size != input_size ||
 unequal(case_sensitivity, scratch_space, input, input_size)
) return amc_ace_invalid_input;

 *output_length = next_out;
 return amc_ace_success;
}

/**/
/* Wrapper for testing (would normally go in a separate .c file): */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* For testing, we'll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum {
 unicode_max_length = 256,
 ace_max_size = 256,
 test_case_sensitivity = case_insensitive
};

static void usage(char **argv)
{
 fprintf(stderr,
 "%s -e reads big-endian UTF-32 and writes AMC-ACE-M ASCII.\n"
 "%s -d reads AMC-ACE-M ASCII and writes big-endian UTF-32.\n"
 "UTF-32 is extended: bit 31 is used as force-to-uppercase flag.\n"
 , argv[0], argv[0]);
 exit(EXIT_FAILURE);
}

static void fail(const char *msg)
{
 fputs(msg,stderr);
 exit(EXIT_FAILURE);
}

static const char too_large[] =
 "input or output is too large, recompile with larger limits\n";

static const char invalid_input[] = "invalid input\n";

int main(int argc, char **argv)
{
 enum amc_ace_status status;

 if (argc != 2) usage(argv);
 if (argv[1][0] != '-') usage(argv);

 if (argv[1][2] != '\0') usage(argv);

 if (argv[1][1] == 'e') {
 u_code_point input[unicode_max_length];
 unsigned char uppercase_flags[unicode_max_length];
 unsigned char output[ace_max_size];
 unsigned int input_length, output_size;
 int c0, c1, c2, c3;

 /* Read the UTF-32 input string: */

 input_length = 0;

 for (;;) {
 c0 = getchar();
 c1 = getchar();
 c2 = getchar();
 c3 = getchar();

 if (c1 == EOF || c2 == EOF || c3 == EOF) {
 if (c0 != EOF) fail("input not a multiple of 4 bytes\n");
 break;
 }

 if (input_length == unicode_max_length) fail(too_large);

 if ((c0 != 0 && c0 != 0x80)
 || c1 < 0 || c1 > 0x10
 || c2 < 0 || c2 > 0xFF
 || c3 < 0 || c3 > 0xFF) {
 fail(invalid_input);
 }

 input[input_length] = ((u_code_point) c1 << 16) |
 ((u_code_point) c2 << 8) | (u_code_point) c3;
 uppercase_flags[input_length] = (c0 >> 7);
 ++input_length;
 }

 /* Encode, and output the result: */

 output_size = ace_max_size;
 status = amc_ace_m_encode(input_length, input, uppercase_flags,
 &output_size, output);
 if (status == amc_ace_invalid_input) fail(invalid_input);
 if (status == amc_ace_output_too_big) fail(too_large);
 assert(status == amc_ace_success);
 fputs((char *) output, stdout);
 return EXIT_SUCCESS;
 }

 if (argv[1][1] == 'd') {

 unsigned char input[ace_max_size], scratch[ace_max_size];
 u_code_point output[unicode_max_length], codept;
 unsigned char uppercase_flags[unicode_max_length];
 unsigned int output_length, i;
 size_t n;

 /* Read the AMC-ACE-M ASCII input string: */

 n = fread(input, 1, ace_max_size, stdin);
 if (n == ace_max_size) fail(too_large);
 input[n] = 0;

 /* Decode, and output the result: */

 output_length = unicode_max_length;
 status = amc_ace_m_decode(test_case_sensitivity, scratch, input,
 &output_length, output, uppercase_flags);
 if (status == amc_ace_invalid_input) fail(invalid_input);
 if (status == amc_ace_output_too_big) fail(too_large);
 assert(status == 0);

 for (i = 0; i < output_length; ++i) {
 putchar(uppercase_flags[i] ? 0x80 : 0);
 codept = output[i];
 putchar(codept >> 16);
 putchar((codept >> 8) & 0xFF);
 putchar(codept & 0xFF);
 }

 return EXIT_SUCCESS;
 }

 usage(argv);
 return EXIT_SUCCESS; /* not reached, but quiets a compiler warning */
}

 INTERNET-DRAFT expires 2001-Aug-12

