INTERNET-DRAFT Adam M. Costello
draft-ietf-idn-amc-ace-0-00.txt 2001-Mar-19
Expires 2001-Sep-19

AMC-ACE-O version 0.0.3
Status of this Memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note

that other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other documents
at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts. txt

The 1list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Distribution of this document is unlimited. Please send comments
to the author at amc@cs.berkeley.edu, or to the idn working

group at idn@ops.ietf.org. A non-paginated (and possibly

newer) version of this specification may be available at
http://www.cs.berkeley.edu/~amc/charset/amc-ace-o

Abstract

AMC-ACE-0 is a reversible map from a sequence of Unicode [UNICODE]
characters to a sequence of letters (A-Z, a-z), digits (0-9), and
hyphen-minus (-), henceforth called LDH characters. Such a map
(called an "ASCII-Compatible Encoding", or ACE) might be useful for
internationalized domain names [IDN], because host name labels are
currently restricted to LDH characters by [RFC952] and [RFC1123].

AMC-ACE-0 is similar to AMC-ACE-M [AMCACEMOO] but is simpler and
slightly less efficient.

Besides domain names, there might also be other contexts where it is
useful to transform Unicode characters into "safe" (delimiter-free)
ASCII characters. (If other contexts consider hyphen-minus to be
unsafe, a different character could be used to play its role, like
underscore.)

Contents

https://datatracker.ietf.org/doc/html/draft-ietf-idn-amc-ace-o-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
http://www.cs.berkeley.edu/~amc/charset/amc-ace-o
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1123

Features

Name

Overview

Base-32 characters

Encoding and decoding algorithms
Signature

Case sensitivity models
Comparison with RACE, BRACE, LACE, DUDE, AMC-ACE-M
Example strings

Security considerations

Credits

References

Author

Example implementation

Features
Uniqueness: Every Unicode string maps to at most one LDH string.

Completeness: Every Unicode string maps to an LDH string.
Restrictions on which Unicode strings are allowed, and on length,
may be imposed by higher layers.

Efficient encoding: The ratio of encoded size to original size is
small for all Unicode strings. This is important in the context
of domain names because [RFC1034] restricts the length of a domain
label to 63 characters.

Simplicity: The encoding and decoding algorithms are reasonably
simple to implement. The goals of efficiency and simplicity are at
odds; AMC-ACE-0 aims at a good balance between them.

Case-preservation: If the Unicode string has been case-folded prior
to encoding, it is possible to record the case information in the
case of the letters in the encoding, allowing a mixed-case Unicode
string to be recovered if desired, but a case-insensitive comparison
of two encoded strings is equivalent to a case-insensitive
comparison of the Unicode strings. This feature is optional; see
section "Case sensitivity models".

Readability: The letters A-Z and a-z and the digits 0-9 appearing
in the Unicode string are represented as themselves in the label.
This comes for free because it usually the most efficient encoding
anyway .

Name

AMC-ACE-0 is a working name that should be changed if it is adopted.
(The 0 merely indicates that it is the fifteenth ACE devised by this
author. BRACE was the third. D-L and N did not deliver enough
efficiency to justify their complexity.) Rather than waste good

https://datatracker.ietf.org/doc/html/rfc1034

names on experimental proposals, let's wait until one proposal is
chosen, then assign it a good name. Suggestions (assuming the
primary use is in domain names):

UniHost

UTF-D ("D" for "domain names")

UTF-37 (there are 37 characters in the output repertoire)
NUDE (Normal Unicode Domain Encoding)

Overview

AMC-ACE-0 maps characters to characters--it does not consume or
produce code points, code units, or bytes, although the algorithm
makes use of code points, and implementations will of course need to
represent the input and output characters somehow, usually as bytes
or other code units.

Each character in the Unicode string is represented by an
integral number of characters in the encoded string. There is no
intermediate bit string or octet string.

The encoded string alternates between two modes: literal mode and
base-32 mode. LDH characters in the Unicode string are encoded
literally, except that hyphen-minus is doubled. Non-LDH characters
in the Unicode string are encoded using base-32, in which each
character of the encoded string represents five bits (a "quintet").
A non-paired hyphen-minus in the encoded string indicates a mode
change.

In base-32 mode a variable-length code sequence of one to five
gquintets represents a delta, which is added to a reference point

to yield a Unicode code point, which in turn represents a Unicode
character. (Surrogates, which are code units used by UTF-16 in
pairs to refer to code points, are not used with AMC-ACE-0.) There
is one reference point for each code length; they are chosen by the
encoder based on the input string and declared at the beginning

of the encoded string, and never change. Locality among the code
points is discovered and exploited by the encoder to make the
encoding more compact.

Base-32 characters

"a" = 0 = 0x00 = OO0 "s" = 16 = 0x10 = 10000
"pt = 1 = Ox01 = 00001 "t o= 17 = Ox11 = 10001
"t = 2 = 0x02 = 00010 "yt = 18 = 0x12 = 10010
"d" = 3 = 0x03 = 00011 "y = 19 = 0x13 = 10011
"e" = 4 = 0x04 = 00100 "W = 20 = 0x14 = 10100
"fr o= 5 = Ox05 = 00101 "x" = 21 = Ox15 = 10101
"g" = 6 = 0x06 = 00110 "yt = 22 = 0x16 = 10110
"h' = 7 = Ox07 = 00111 "z" = 23 = Ox17 = 10111
"i" = 8 = 0x08 = 01000 "2" = 24 = 0x18 = 11000

"j" = 9 0x09 = 01001 "3" = 25 0x19 = 11001
"k" = 10 OXOA = 01010 "4" = 26 OX1A = 11010
'm" = 11 0x0B = 01011 "s5" = 27 0x1B = 11011
"n" = 12 Ox0C = 01100 "6" = 28 0x1C = 11100
'p" = 13 Ox0D = 01101 "7" = 29 0x1D = 11101
'q" = 14 OXOE = 01110 "g" = 30 OX1E = 11110
'r'" = 15 = OxOF = 01111 "o" = 31 = Ox1F = 11111
The digits "0" and "1" and the letters "o" and "1" are not used, to

avoid transcription errors.

All decoders must recognize both the uppercase and lowercase
forms of the base-32 characters. The case may or may not convey
information, as described in section "Case sensitivity models".

Encoding and decoding algorithms

The algorithms are given below as commented pseudocode. All
ordering of bits and quintets is big-endian (most significant
first). The >> and << operators used below mean bit shift, as in
C. For >> there is no question of logical versus arithmetic shift
because AMC-ACE-0 makes no use of negative numbers.

primitives:
to_codepoint() # maps a character to a Unicode code point
from_codepoint() # maps a Unicode code point to a character
These are no-ops if the implementation represents characters
using Unicode code points.

subroutine names:
encode
decode

main encoding function
main decoding function

find_refpoint
encode_point
decode_point

choose_refpoints

census

encode_refpoints
decode_refpoints

bootstrap

shared variable

S:

H oHF OH OH OH H H OH OH H

#

scan the reference points for a suitable one
encode one code point as base-32

decode one code point from base-32

choose good reference points for the input
used by choose_refpoints

encode the reference points

decode the reference points

used by en/decode_refpoints

All others are local to each subroutine.

the input/output strings taken/returned by encode() and decode()

array refpoint[1..5]

refpoint[k] is for sequences of length k

The rest are used only by the encoder:
array prefix[1..3]

integers best_count,

constants:

prefix[k] is used to encode refpoint[k]
best_refpoint

array special_refpoint[0..7] =
0x20, 0x50, O0x70, OxAQ, OxCO, OXEO, 0x140, 0x270

Generally, prefix[k] << (4*k) == refpoint[k],

but for prefix[2] == 0xD8..0xDF, refpoint[2] ==

special_refpoint[0..7] respectively. These prefixes would
not otherwise be used because they correspond to surrogates.
These special reference points are used to assist the Latin
script because, unlike almost every other small script,

Latin is split across multiple rows with inconvenient

boundaries, and therefore has a hard time compressing well.

function encode(input string):
if any input character's codepoint is outside 0..10FFFF then fail
Too-large values could cause array bounds errors later.
choose_refpoints()
encode_refpoints()
let literal = false
for each character in the input string (in order) do begin
if the character is hyphen-minus then output two hyphen-minuses
else if the character is an LDH character then begin
if not literal then output hyphen-minus and toggle literal
output the character
end
else begin
if literal then output hyphen-minus and toggle literal
encode_point(to_codepoint(character))
end
end
return the output string

function decode(input string):
decode_refpoints()
let literal = false
while not end-of-input do begin
if the next character is hyphen-minus then begin
consume the character
if the next character is hyphen-minus then consume it
else toggle literal
end
else if literal then consume character and output it
else output from_codepoint(decode_point())
end
let check = encode(the output string)
if check != the input string then fail
This comparison must be case-insensitive if ACEs are always
compared case-insensitively (which is true of domain names),
case-sensitive otherwise. See also section "Case sensitivity
models". This check is necessary to guarantee the uniqueness
property (there cannot be two distinct encoded strings
representing the same Unicode string).
return the output string

H* OH H HF H*

function find_refpoint(start,n):

let i = start

while n < refpoint[k] or (n - refpoint[k]) >> (4*k) !=0
do increment i

return i

procedure encode_point(n):
let k = find_refpoint(1,n)
let delta = n - refpoint[k]
extract the k least significant nybbles of delta
A nybble is 4 bits.
prepend 0 to the last nybble and prepend 1 to the rest
output the base-32 characters corresponding to the quintets

function decode_point():

input characters and convert them to quintets until a quintet
beginning with 0@ is obtained (expect at most four quintets
beginning with 1)

fail upon encountering anything unexpected

let k = the number of quintets obtained

strip the first bit of each quintet

concatenate the resulting nybbles to form delta

return refpoint[k] + delta

procedure encode_refpoints():
refpoint[4..5] always end up as 0 and 0x10000.
refpoint[1..3] are implied by prefix[1..3], which are encoded
in reverse order because that often yields a compact encoding.
let refpoint[1..2] = 0, 0x10
for k = 3 down to 1 do begin
encode_point(prefix[k])
bootstrap(k, prefix[k])
end

procedure decode_refpoints():
let refpoint[1..5] = 0, 0x10, 0, 0, 0x10000
for k = 3 down to 1 do bootstrap(k, decode_point())

procedure bootstrap(k,p):

The prefixes need to be left-shifted to become reference
points. As this happens, the current reference points often
become helpful for encoding/decoding the next prefix.

for j = 4 down to 2 do let refpoint[j] = refpoint[j-1] << 4

if k == 2 and 0xD8 <= p <= OxDF

then let refpoint[1] = special_refpoint[p - OxD8] >> 4

else let refpoint[1] p << 4

procedure choose_refpoints():
First choose refpoint[1] so that it will be used as often as
possible, then choose refpoint[2] similarly, then refpoint[3].
let refpoint[1..5] = 0, 0, 0, 0, 0x10000
let prefix[1..3] = 0, 0, 0, 0O

for k = 1 to 3 do begin
let best_count = 0
let best_refpoint = 0
Try the input code point prefixes, then the special prefixes:
for each input character in order
do census(k, to_codepoint(character) >> (4%*k))
if k == 2 then for 1 = 0 to 7 do census(k, OxD8 + 1)
if k == 3 then census(k,0xD)
let refpoint[k] = best_refpoint
end

function census(k,p):

Determine how many times the reference point corresponding to
prefix p would be used to encode input characters and other
reference points if it were chosen as refpoint[k], and update
best_count, best_refpoint, and prefix[k] accordingly.

if k == 2 and 0xD8 <= p <= OxDF

then let refpoint[k] = special_refpoint[p - 0xD8]

else let refpoint[k] = p << (4%*k)

let count = the number of non-LDH input characters for which
find_refpoint(1, to_codepoint(character)) ==
Don't forget the non-LDH requirement.

increment count once for each i such that 1 <= i <= k and
find_refpoint(i+1l, prefix[i] << (4*1)) ==

if count > best_count then begin
let best_count = count
let best_refpoint = refpoint[k]
let prefix[k] = p

end

Signature

The issue of how to distinguish ACE strings from unencoded strings
is largely orthogonal to the encoding scheme itself, and is
therefore not specified here. 1In the context of domain name labels,
a standard prefix and/or suffix (chosen to be unlikely to occur
naturally) would presumably be attached to ACE labels. (In that
case, it would probably be good to forbid the encoding of Unicode
strings that appear to match the signature, to avoid confusing
humans about whether they are looking at a Unicode string or an ACE
string.)

In order to use AMC-ACE-O in domain names, the choice of signature
must be mindful of the requirement in [RFC952] that labels never
begin or end with hyphen-minus. The raw encoded string will never
begin with a hyphen-minus, and will end with a hyphen-minus iff the
Unicode string ends with a hyphen-minus. If the Unicode strings
are forbidden from ending with hyphen-minus (which seems prudent
anyway), then there is no problem. Otherwise, AMC-ACE-0 would need
to use a suffix as the signature.

https://datatracker.ietf.org/doc/html/rfc952

It appears that "---" is extremely rare in domain names; among the
four-character prefixes of all the second-level domains under .com,
.net, and .org, "---" never appears at all. Therefore, perhaps the
signature should be of the form ?--- (prefix) or ---? (suffix),
where ? could be "u" for Unicode, or "i" for internationalized, or
"a" for ACE, or maybe "q" or "z" because they are rare.

Case sensitivity models
The higher layer must choose one of the following four models.
Models suitable for domain names:

* Case-insensitive: Before a string is encoded, all its non-LDH
characters must be case-folded so that any strings differing
only in case become the same string (for example, strings could
be forced to lowercase). Folding LDH characters is optional.
The case of base-32 characters and literal-mode characters is
arbitrary and not significant. Comparisons between encoded
strings must be case-insensitive. The original case of non-LDH
characters cannot be recovered from the encoded string.

* Case-preserving: The case of the Unicode characters is not
considered significant, but it can be preserved and recovered,
just like in non-internationalized host names. Before a string
is encoded, all its non-LDH characters must be case-folded
as in the previous model. LDH characters are naturally able
to retain their case attributes because they are encoded
literally. The case attribute of a non-LDH character is
recorded in the last of the base-32 characters that represent
it, which is guaranteed to be a letter rather than a digit.

If the base-32 character is uppercase, it means the Unicode
character is caseless or should be forced to uppercase after
being decoded (which is a no-op if the case folding already
forces to uppercase). If the base-32 character is lowercase,
it means the Unicode character is caseless or should be forced
to lowercase after being decoded (which is a no-op if the case
folding already forces to lowercase). The case of the other
base-32 characters in a multi-quintet encoding is arbitrary
and not significant. Only uppercase and lowercase attributes
can be recorded, not titlecase. Comparisons between encoded
strings must be case-insensitive, and are equivalent to
case-insensitive comparisons between the Unicode strings. The
intended mixed-case Unicode string can be recovered as long as
the encoded characters are unaltered, but altering the case of
the encoded characters is not harmful--it merely alters the case
of the Unicode characters, and such a change is not considered
significant.

In this model, the input to the encoder and the output of the
decoder can be the unfolded Unicode string (in which case the

encoder and decoder are responsible for performing the case
folding and recovery), or can be the folded Unicode string
accompanied by separate case information (in which case the
higher layer is responsible for performing the case folding and
recovery). Whichever layer performs the case recovery must
first verify that the Unicode string is properly folded, to
guarantee the uniqueness of the encoding.

It is not very difficult to extend the nameprep algorithm
[NAMEPREPO3] to remember case information.

The case-insensitive and case-preserving models are interoperable.
If a domain name passes from a case-preserving entity to a
case-insensitive entity, the case information will be lost, but
the domain name will still be equivalent. This phenomenon already
occurs with non-internationalized domain names.

Models unsuitable for domain names, but possibly useful in other
contexts:

* Case-sensitive: Unicode strings may contain both uppercase and
lowercase characters, which are not folded. Base-32 characters
must be lowercase. Comparisons between encoded strings must be
case-sensitive.

* Case-flexible: Like case-preserving, except that the choice
of whether the case of the Unicode characters is considered
significant is deferred. Therefore, base-32 characters must
be lowercase, except for those used to indicate uppercase
Unicode characters. Comparisons between encoded strings may be
case-sensitive or case-insensitive, and such comparisons are
equivalent to the corresponding comparisons between the Unicode
strings.

Comparison with RACE, BRACE, LACE, DUDE, AMC-ACE-M

In this section we compare AMC-ACE-O0 and five other ACEs: RACE
[RACE®3], BRACE [BRACE0O], LACE [LACEG1], DUDE [DUDE01], and
AMC-ACE-M [AMCACEMOO]. We do not include SACE [SACE], UTF-5 [UTF5],
or UTF-6 [UTE6] in the comparison, because SACE appears obviously
too complex, UTF-5 appears obviously too inefficient, and UTF-6 can
never be more efficient than its similarly simple successor, DUDE.

Complexity is hard to measure. This author would subjectively
describe the complexity of the algorithms as:

RACE, LACE, DUDE: fairly simple but not trivial
AMC-ACE-0O: moderate
AMC-ACE-M: fairly complex
BRACE: complex

AMC-ACE-O is very similar to AMC-ACE-M, but is simpler because it

discards the "wide" encoding style, and uses a different method for
choosing and encoding the reference points that has fewer special
cases and more reuse of logic already needed for encoding the
Unicode characters.

Implementations can be long and straightforward, or short and
subtle, but for whatever it's worth, here are the code sizes of
three of the algorithms that were implemented by this author in
similar styles:

A1tDUDE: 130 lines @@0QQEQREEEEEEEEQEQ
DUDE: 135 lines @0@@0QRCEECECEEEEEA
AMC-ACE-0: 234 lines (0@@00QCEECEEEECEEECECEECACCACCACEAE
AMC-ACE-M: 324 lines (@@0@QEEQEEQEEQEECEECCEECECCEACEACEACEACEEAAEA

(A1tDUDE [AltDUDEOQ@] is a variant of DUDE that is not worth
including separately in the rest of the comparison because it 1is
practically identical to DUDE. Not counted in the code sizes are
blank lines, lines containing only comments or only a single brace,
and wrapper code for testing. BRACE was also implemented by this
author, but it was a less general implementation, with bounded input
and output sizes.)

If a different implementation style were to alter the code sizes
additively, or multiplicatively, or a combination thereof, AMC-ACE-O
would remain about halfway between DUDE and AMC-ACE-M.

Case preservation support:

DUDE, AMC-ACE-M, AMC-ACE-0: all characters
BRACE: only the letters A-Z, a-z
RACE, LACE: none

RACE, BRACE, and LACE transform the Unicode string to an
intermediate bit string, then into a base-32 string, so there is
no particular alignment between the base-32 characters and the
Unicode characters. DUDE, AMC-ACE-M, and AMC-ACE-0 do not have
this intermediate stage, and enforce alignment between the base-32
characters and the Unicode characters, which facilitates the case
preservation.

The relative efficiency of the various algorithms is suggested

by the sizes of the encodings in section "Example strings". The
lengths of examples A-K (which are the same sentence translated into
a languages from a variety of language families using a variety

of scripts) are shown graphically below for each ACE, scaled by a
factor of 0.4 so they fit on one line, and sorted so they look like
a cummulative distribution. The fictional "Super-ACE" encodes its
input using whichever of the other six ACEs is shortest for that
input.

RACE:

A

AXOOHTMmIOow®

Arabic 29
Chinese 31
Taiwanese 31
Hebrew 37
Russian 47
Hindi 50
Japanese 60
Spanish 66
Czech 68

Korean 79
Vietnamese 112

LACE:

@

AOHOTMITOW>

Chinese 28
Arabic 31
Taiwanese 31
Hebrew 39
Russian 48
Hindi 52

Japanese 52
Czech 58
Spanish 68
Korean 79

Vietnamese 109

DUDE:

A
B
D
J
H
C
F
E
I
K
G

AMC -

B
A
J
D
C
H
F
I
E
K
G

Arabic 25
Chinese 26
Hebrew 33
Taiwanese 36
Russian 38
Czech 43
Japanese 49
Hindi 58
Spanish 59
Vietnamese 81
Korean 89
ACE-O:

Chinese 24
Arabic 28
Taiwanese 30
Hebrew 31
Czech 34
Russian 40
Japanese 41
Spanish 49
Hindi 54
Vietnamese 69
Korean 80

00eeeeeeeeee

@eceeceeeeee

@eeeeeeeeeee

0000eeeeeeeeeee
0@CeEeeeEeeeEEEEEAEEE
0@0eeeeeeeeEeeEeeEeEe
0@00eeeEeEEeEEeECEEEEEEEA
0000eeeEeEEEEEEEEEEEEEREAA
0@0eEeECEEEEEEEAEEECEECEEEEA
0@0eeeeEEEEEEEEEEECAEEACEECEEAREE
0000eEEEEEEEEEECEEEAEEAEEACEAREAECEEEECRECREAEA

0@eeeeeeeee

@eeeeeeeeeee

00eeeeeeeeee

0@eeeeeeeeeeeeee
0@0eeeeEeeEEeEEeEaE
0000eeeeeeEeeeEeeEAeE
00e0eeeeeEeEEEEEEEEARE
0@0eeeeeEeeeeEEEEEEEAEEAa
0@00eeeEeeeeeEeeEEeEEAEEEEEEE
0000eeEeEEeEEEECAEEAEEAREEEEAREEA
0@0eEeeCEEEEEEEAEEACEECEECCECCEACEACEACRECAE

0eeeeeeeee

@eeeeeeeee

@@eeeeeeeeeae

000eeeeEeeeeee

00eeeeeeeeeeeee
0@0eeeeeeeeEeEEea
0@eeeeeeeeeEeeEeeEeEe
0000eeeEEEEEEEEEEEEEEAA
00eeeeeeEeEeEeEEEEAEEARE
0@0eEeeEEEEEEEEEEEACEECEECEEAAEA
0@0eeeEEEEEEEEECEEEEEAEEEAEEAEEACREAE

@eeeeeeeee

0@eeeeeeeee

@eeeeeeeeeee

@eeeeeeeeeea

0@eeeeeeeeeeea
00eeeeeeeeeeeeee
0000eeeeeeeeeeee
0@0eEeeeeeeeeeEAeRAE
0@0eeeeeEEeEeeECeEEeEE
0000eeeEeEEEEEEEEEEEAEEAREARE
00eeeeEEEeEECEeEEEEEEEEAREECERAEE

BRACE:
B Chinese
A Arabic
J Taiwanese
D Hebrew
C Czech
F Japanese
H Russian
E Hindi
I Spanish

K Vietnamese

G Korean

AMC-ACE-M:
B Chinese
J Taiwanese
A Arabic
D Hebrew
C Czech
H Russian
F Japanese
I Spanish
E Hindi

K Vietnamese

G Korean

Super-ACE:

B Chinese
Arabic
Taiwanese
Hebrew
Czech
Russian
Japanese
Hindi
Spanish

O X HMTIOOGWD>

Korean

totals:

RACE:
LACE:
DUDE:
AMC-ACE-O0:
BRACE:
AMC-ACE-M:
Super -ACE:

worst cases:

RACE:

Vietnamese

22
26
27
33
36
40
42
45
48
72
78

23
27
28
31
34
38
42
48
54
69
71

22
25
27
31
34
38
40
45
48
69
71

610
595
537
480
469
465
450

112

@eceeeeee

0eeeeeeeee

00e0eeeeeee

00eeeeeeeeeee

0@eeeeeEeeeeeee
0@eeeeeeeeeeeeae
0000eeeeeeEeEEEeE
0@0eeeeeeeeeeeeeee
0@CeeeeECeEEeEEeEaE
0@00eeeEEEEeECEEEAEEAEEEEEAREA
0000eeEEEEEEEEEEEEEAEEAEEAREARE

@eeeeeeee

00eeeeeeeee

@@eeeeeeeeee

@eeeeeeeeeee

0000eeeeeeEeee
00eeeeeeeeeeeee
0@CeeeeeeeeeeeEea
0@0eeeeEeeEEEEEeeaE
0000eeEeEEeECAEEEAEEARE
0@0eEEEeEEEEEEEAEEACEACRACAE
0@eeEeeeeeeEEEEEEEEAEEECERECAE

@eeeeeeee

@eeeeeeeee

0@eeeeeeeee

@eeeeeeeeeee

0@eeeeeeeeeeea
@@eeeeeeeeeeeee
00eeeeeeeeeeeeee
00e0eeeeeeeeeeeeeee
0@CeeeeEeCeEEeEEEELE
0@eeeeEEEEEEEEEEEEEEEEARECRE
00e0eeEeeEeEEEEEEEEAEEAREARE

0@0eeeeEEEEEEEEEEEEAECAEAACEEACEEACCECEEEEECREAAEA
0000eeEeEEEEEEEEAECAREAREAECEEEEEAEEAREAREAREAE
00@0eeEEEEEECEEREEAEECEEREECEECCRRECAREAA
0@eeEeeEEEEEEEEEEEAACEAACEECRECEECEEAAE
0@0eeEEEEEEEEEEEEEEEEAEEAAEEAREAREAE
0000eeEeEEEEEEEEEEEAEEAEEACEAREAREAE
0@0eEeEEEEECEEECEEACEAAEACEECRECEEAAEE

0000eEEEEEEEEEEEEEEAEEAEEAREAREACEAEEEEREAEREEAEA

LACE: 109 @@0@@00e0eeCAECAECEEEEEEEEEEREAAEAAEEAREARAEEA
DUDE: 89 (0@0@eCEEeCECEECEEREEACECEAREACEEECAER
AMC-ACE-0: 80 (@0@00eECEECEECEECEECEECCEECEECAEA
BRACE: 78 (0@00@00EECECCEECEECEACEACCAAA
AMC-ACE-M: 71 @@00@000e0ECEECEECACCAREARE
Super-ACE: 71 @0QQ0QEEEEEECEECEECEACCECECAEA

The totals and worst cases above give more weight to languages
that produce longer encodings, which arguably yields a good metric
(because being efficient for easy languages is arguably less
important than being efficient for difficult languages). We can
alternatively give each language equal weight by dividing each
output length by the corresponding Super-ACE output length. This
method yields:

totals:
RACE: 14.9 000000000EEECEECEEEECEEECCEECEECECAEECEACECEACEACEA
LACE: 14.5 Q0000@QQ0CEEEECCEEEECCCEEEACCEEEEACECEEEACEEAEAAA

DUDE: 13.0 @@0Q0CEEEEQECEEEECEEEEECACEEEEACACEEEAAEEEEEEA
AMC-ACE-0: 11.7 @@000EQ0EECEEECEEECEEECEECCEECEEACEEAAEA

BRACE: 11.4 @000000000EECEEEEEEECEECEEEECEACEAEAAEA
AMC-ACE-M: 11.4 @00QQQQQQQECCCCCCCCECEEECEEEEEAEAAAAAAA
Super-ACE: 11.0 Q00@@EEQEEEEEEACEEEEECACCEEEACACCECEAQEE

worst cases:

RACE: 2.00 @@000C0CeEEeEEECAECAECCEECCECEECEEAAEAAEARCEECRECAE
LACE: 1.71 @0@@0QECEECEECEEEEEEEEEEAEAAEEAEEAEEEEEAREA
DUDE: 1.33 @@000e0eeeeeeeeeeeeeeeeeeeeeeeeee
AMC-ACE-0: 1.20 @00Q000eEeeCeeCCECCEEEEEEEEAAE
AMC-ACE-M: 1.20 @@0@@CEEEEEECEECAECACEECEEEEEA
BRACE: 1.11 @@0@@0QEEEECEECAECACCECEEEEEA
Super-ACE: 1.00 @@@00@0QECAECACCECCAEEARCE

No matter which way we average, the results suggest that DUDE is
preferrable to RACE and LACE, because it has similar simplicity, is
more efficient, and has better support for case preservation.

The results also suggest that AMC-ACE-M is preferrable to BRACE,
because it has similar efficiency, is a little simpler, and has
better support for case preservation.

DUDE, AMC-ACE-0, and AMC-ACE-M are progressively more complex and
more efficient, and have equal support for case preservation. The
choice depends on how much efficiency is required and how much
complexity is acceptable.

The efficiency gap between AMC-ACE-M and AMC-ACE-O is mostly due

to the Korean (Hangul) string. Of the 15 characters by which the
AMC-ACE-M total beats the AMC-ACE-O0 total, 9 come from that string,
for which AMC-ACE-M had an output length of 71, compared to about 80
for all the other ACEs.

Example strings

In the ACE encodings below, signatures (like "bqg--" for RACE) are
not shown. Non-LDH characters in the Unicode string are forced to
lowercase before being encoded using BRACE, RACE, and LACE. For
RACE and LACE, the letters A-Z are likewise forced to lowercase.
UTF-8 and UTF-16 are included for length comparisons, with non-ASCII
bytes shown as "?". AMC-ACE-M and AMC-ACE-O are abbreviated AMC-M
and AMC-0. Backslashes show where line breaks have been inserted in
ACE strings too long for one line. The RACE and LACE encodings are
courtesy of Mark Davis's online UTF converter [UTFCONV] (slightly
modified to remove the length restrictions).

The first several examples are all translations of the sentence "Why
can't they just speak in <language>?" (courtesy of Michael Kaplan's
"provincial" page [PROVINCIAL]). Word breaks and punctuation have
been removed, as is often done in domain names.

(A) Arabic (Egyptian):
U+0644 U+064A U+0647 U+0645 U+0627 U+0628 U+062A U+0643 U+0644
U+0645 U+0648 U+0634 U+0639 U+0631 U+0628 U+064A U+061F

DUDE: m44qgnli7ogk3kloj4phi8kahf
BRACE: 28akcjwcmp3ciwb4t3ngd4nbaz
AMC-0: ageekhfuhuiukdefivevjvbuiktr
AMC-M: agiekhfuhuiukdefivevjvbuiktr
RACE: azceur2feducuq2eivediojrfbfb6

LACE: cedeisshiutsqgksdircugnbzgeueuhy
UTE-16: 22222227272727272222222227222222222272722?

UTF-8: ?2272272°?2727272°?°?7272727?2?22727°7?27°2727?27?72?2?2?27?7??
(B) Chinese (simplified):
U+4ED6 U+4EEC U+4E3A U+4ECO U+4E48 U+4EOD U+8BF4 U+4E2D U+6587

UTF-16: 27?272227272?722?222?27?7?7?7?7?

BRACE: kgcqqsgp26i5h4zn7req5i
AMC-M: ugj7g8nvk6awispn9wupdnh
AMC-0: eqgpg8nvk6awisp259eupyx2h

DUDE: kedéucjasok8gdobf4ke2dm587
UTFE-8: 22222222227272222222722?22?227?7

LACE: azhnn3b2ybea2aml6gaudlibmwdq
RACE: 3bhnmtxmjy5e5qcojbha3c7ujywwlby

(C) Czech: Pro<ccaron>prost<ecaron>nemluv<iacute><ccaron>esky
<ccaron> = U+016D

<ecaron> = U+011B
<jacute> U+OOED

UTF-8: Pro??prost??nemluv????esky
AMC-0: piqg-Pro-p-prost-9m-nemluv-6pp-esky

(D)

(E)

(F)

AMC-M:
BRACE:
DUDE:
UTF-16:
LACE:

RACE:

Hebrew:
U+05DC
U+05DC
U+05D1

AMC-0:
AMC-M:
DUDE:
BRACE :
RACE:
LACE:
UTF-8:
UTF-16:

Hindi:
U+092F
U+0926
U+0940
U+0939

g26-Pro-p-prost-9m-nemluv-6pp-esky
i32-Pro-u-prost-8y-nemluv-29f3n-esky
NOimfhedg70imfn3khlbg6eltsn5mudh@dg65n3mbn9
DRPVPVVPVPV?PP?P?PP?P?0?P?0??2?2???2?2?7??2???7?7?27

amaha4tpaeaqg2biaobzg643uaearwbyanzsw23dvo3wqcainaqagk43\
1pe
ah7xb73s75xq373q75zp63770p7x1g77n37wl73n75wp65p703762dp\
7mx7xh731754q

U+O05DE U+05D4 U+05D4 U+05DD U+OG5E4 U+O5E9 U+05D5 U+05D8
U+05D0 U+O5DE U+05D3 U+05D1 U+OG5E8 U+05D9 U+O5DD U+O5E2
U+OQ5E8 U+05D9 U+O5EA

afpngeep8e8jfinaqdb8ijp8ch8ij8k
af4anqeep8e8jfinaqdb8ijp8ch8ij8k
ldcukktu4pt5osgujhu8totu2tiu8tua
27vkyp7bgwmbpfjgcdynx5nd8xsp5nd9c
axon5vgu3xsotvoy3tin5u6r5dm53ywr5dméu

cyc5zxwu2to6j2ov3donbxwt2huntxpc2hunt2q
PPV 7?7??????????????7?7?27?7

U+0939 U+0932 U+094B U+0917 U+0939 U+093F U+0928 U+094D
U+0940 U+0915 U+094D U+092F U+094B U+0902 U+0928 U+0939
U+0902 U+092C U+094B U+0932 U+0938 U+0915 U+0924 U+0947
U+0948 U+0902 (Devanagari)

BRACE: 2b7xtenqdr7zc6uma2pmcz7ibage237kdemicnk9gei32

RACE: bextsmslc44t6kcnezabktjpjmbcqokaaiwewmrycuseookiai

LACE: dyes6ojsjmltspzijuteafknf5fgekbziabcyszshaksirzzjaba

AMC-0: ajeurvjvcmthvjvruipugatfpurmscuivjascunmvcvitfuehvjisc

AMC-M: ajhurbvcwmthbhuiwpugitfwpurwmscuibiscunwmvcatfuerbwisc

DUDE: p2fj9ikbh7j9vi8kdi6k0h5kdifkbg2i8j9k0g2ickbj20h5i4k7j9k\
892

UTF-16: ??7?2?272?2272272227222722272227222722222222722272227222722272?22?2?272?2?272?2?\
??72?27?7?

UTF-8: ?22?272727?2727272727272722722227227227222222222222222222222°2222?22?22?2?27?2?\
N S A A A e A A A o ST M o S M o S Y M i Y Y Sl o S ot

Japanese:

U+306A U+305C U+307F U+3093 U+306A U+65E5 U+672C U+8A9E U+3092

U+8A71 U+3057 U+3066 U+304F U+308C U+306A U+3044 U+306E U+304B

(kanji and hiragana)

UTF-16: ?722?2?2°?7272272°?22272°?2?2272°?722227?7?22727?27?72?7?7

BRACE: ji8nr5zj8uqth7v97mjchakwcg7dgemw88nj5gbe

AMC-0: gvagkxnzr3dkx8fzun243g3c24zbxhgwr2nkweqwm

AMC-M: bsnkxnzr3dkyx8fyzun243q3c24zbxhgwr2nkweqwm

DUDE: jo6alcnfp3mam5e5n2coa9ej0920a71j057mekfocmak4mekb

(6)

(H)

(1)

LACE: auyguxd7snvaczpfaftsyamktyatbeqgbrjyqgmcxmzhyy2senzfq
UTF-8: QPP ?0?7??2?2???2????7?2?7?7

RACE: 3aygumc4gb7tbezqnjs6kzzmrkpdbeukoeyfomdggbhtbdbgniyeimd\
ogbfq

Korean:

U+C138 U+ACC4 U+C758 U+BAA8 U+B4EO U+COAC U+B78C U+B4E4 U+C774
uU+D55C U+AD6D U+C5B4 U+B97C U+C774 U+D574 U+D55C U+B2E4 U+BA74
U+C5BC U+B9C8 U+B098 U+C88B U+C744 U+AE4C (Hangul syllables)

UTF-16: 2?27?27?27272727272°2°2°227?27?27?227222727272727?272°?2272°2727272727?27?222222272727?27?27?27?7?

UTF-8: pirdeivivielvivivioloivioliviviiviviriviviolrivivivivivlrivivioivivivirivivloivivioioiriolririelrioirioiodrAN

AMC-M: yhxcj2w6exiaxi68acfn92n68ezehk6xypdpwam6zehmwhk648eavwd\
p6aqi23ieemweywn

BRACE: y394qgebjusrcndbs82pkvstfo6sxufcr7ffr4avbgdwsxufcx8pdktgb\
gmnsqydmk7im56arju6pt82

LACE: 77atrlgeysmlvkfuddakzndmwtsmo5gvlsww3rnuxfemosgvotkvzmx\
exj2mlpfzzcyjrsely5ck4ta

RACE: 3datrlgey5mlvkfuddakzndmwtsmo5gvlsww3rnuxfémo5gvotkvzmx\
exj2mlpfzzcyjrsely5ck4ta

AMC-0: m6hwg6tvi466exiddiabsdnz2neze7xxn47yp6x5e3znze7xze7xxnu\
8e4ze6x5n361s31622mwe48wn

DUDE: s138qcc4s758raa8keds0acr78cke4s774t55cqd6ds5b4r97cs774t\
5741cr2e4q74s5bcr9c8g98s88bn44qedc

Russian:

U+041F U+043E U+0447 U+0435 U+043C U+0443 U+0436 U+0435 U+043E
U+043D U+0438 U+043D U+0435 U+0433 U+043E U+0432 U+043E U+0440
U+044F U+0442 U+043F U+043E U+0440 U+0443 U+0441 U+0441 U+043A
U+0438 (Cyrillic)

DUDE: K3fuk7j5sk3j6lutotljuiuk@vijfuk@jhhjao

AMC-M: aehHgrvfemvgvfgfafvfvdgvcgiwrkhgimjjca

AMC-0: aedRgwhfnwdgfqpipfdgcgwawrwcrgwawdwbwbki

BRACE: 269xyjvcyafqfdwyr3xfd8z8byi6z39xyi692s7ug2
RACE: aq7t4rzvhrbtmnj6éhu4d2njthyzd4qcpii7t4qcdifatuoa

LACE: dgcd6épshguéegnrvhy6tgpjvgm7depsaj5bd6épsainaucory
UTF-16: ?22722°2722°27222°2722°?2722°272227272222?2722°2722°2722227?2227?2227?22??27?2?2?2?27?2?2?\

UTF-8: PArararariririviriririririririririviviririririririririvirirloiririririririririviv il i iriririririririririrard

Spanish: Porqu<eacute>nopuedensimplementehablarenEspa<ntilde>o0l

<eacute> U+00E9
<ntilde> = U+00F1

UTF-8: Porqu??nopuedensimplementehablarenEspa??ol
AMC-M: aa7-Porqu-b-nopuedensimplementehablarenEspa-j-ol
BRACE: 22x-Porqu-9-nopuedensimplementehablarenEspa-j-ol

AMC-0: aaq-Porqu-j-nopuedensimplementehablarenEspa-9b-o0l
DUDE: NOmfn2hlu9mevnOlms5klun3m9tnOmcltlun4m50hishn2m5uLln3gmiv\

imfs

RACE: abyg64troxuw433gqovswizloonuw24dmmvwwk3tumvugcytmmfzgk3t\
fonygd4lpng

LACE: faaha33so0f26s3tpob2wkzdfnzzws31lgnrsw2zloorswqylcnrgxezl\
omvzxayprn5wa

UTF-16: ?2222°2722°272222722°?2722°2727227272?27272?27?22°2722°222?2727?22°27?22?27?22?2?27?2?2?2?27?2?2?\

(J) Taiwanese:
U+4ED6 U+5011 U+7232 U+4ECO U+9EBD U+4EGD U+8AAA U+4E2D U+6587

UTFE-16: 22°?2272?227222722?2727?2727??

UTF-8: QP02 ??????2??27?27?7

AMC-M: uQgj7g92tbgtu6a385pspnxkupdnh

BRACE: kgcquid9gatc2wyrn8y7cndgte9

AMC-0: egpgxstbzuvc6a385psp244kupyx2h

RACE: 3bhnmuaroize5qe6xvha3cvkjywwlby
LACE: 75hnmuaroize5qe6xvha3cvkjywwlby
DUDE: ked61011n232kecOpebdke®@doaaake2dm587

(K) Vietnamese:
Ta<dotbelow>isaoho<dotbelow>kh<ocirc>ngth<ecirc><hookabove>chi\
<hookabove>no<acute>iti<ecirc><acute>ngVi<ecirc><dotbelow>t

<dotbelow> = U+0323
<ocirc> = U+00F4
<ecirc> = U+QOEA
<hookabove> = U+0309
<acute> = U+0301

UTF-8: Ta??isaoho??kh??ngth????chi??no??iti????ngvi????t

AMC-0: aava-Ta-vud-isaoho-vud-kh-9e-ngth-8kj-chi-j-no-b-iti-8k\
b-ngVvi-8kvud-t

AMC-M: ada-Ta-ud-isaoho-ud-kh-s9e-ngth-s8kj-chi-j-no-b-iti-s8k\
b-ngVvi-s8kud-t

BRACE: 154-Ta-8-isaoho-ay-kh-29n-ngth-s2xa6i-chi-k-no-2g-iti-2\
9c29-ngVi-25p48-t

UTFE-16: 2222°2722°27222222°?22222222222222222222222272227?2227?222?2?22?2?2?2?2?\

DUDE: N4m1j23g69n3milvovj23g6bov4menn4m8uaj09g630pj09g6evjoige\
9n4m9uaj0lg6enN6mOuaj23g74

LACE: aiahiyibamrgmadjonqw62dpaebsgcaannupi3thoruouaidbebqgay3\
ineaqgcicabxg6aidaecaa2lunhvacaybauag4z3wnhvacazdaeahi

RACE: ap7xj73bep7wt73t75q76377nd7w6i77np7wr77u75Xp6z770t7wr77\
kbh7wh73i75uqt73075xqd73j752p62p75ia763x7m77xn73j77vch7\
3u

The next several examples are all names of Japanese music artists,
song titles, and TV programs, just because the author happens to

have them handy (but Japanese is useful for providing examples
of single-row text, two-row text, ideographic text, and various
mixtures thereof).

(L) 3<nen>B<gumi><kinpachi><sensei> (Japanese TV program title)

<nen> = U+5E74 (kanji)
<gumi> = U+7D44 (kanji)
<kinpachi><sensei> = U+91D1 U+516B U+5148 U+751F (kanji)

UTE-16: 272222?2222?2222?22772

UTF-8: 3?227B?2?2727?2227272227272?

AMC-M: utk-3-8ze-B-hkenqtymwifi9
BRACE: u-3-ygj-b-ynb6gjc7pp4k5p5w
AMC-0: fb8h-3-e-B-z7we3t7bymwizxtr
DUDE: j31e74G062nd44p1d1116bk8n51f
RACE: 3aadgxtuabrh2rer2fiwwukioupq
LACE: 74adgxtuabrh2rer2fiwwukioupq

(M) <amuro><namie>-with-SUPER-MONKEYS (Japanese music group name)
<amuro><namie> = U+5B89 U+5BA4 U+5948 U+7F8E U+6075 (kanji)

UTF-8: ??2?27??2??2??2?????????-with-SUPER-MONKEYS

AMC-M: ubm2jdetwif6g2zf---with--SUPER--MONKEYS
AMC-0: fmij4e3wiz92qyszf---with--SUPER--MONKEYS
BRACE: wuvj7fuaqcahy982xa---with--SUPER--MONKEYS

DUDE: 1b89g4p48nf8em075-g077m9n4m8-N3LGM5N2-MdVURLN9J
UTE-16: 2°?227?272°2722722722722722722722722722222272222222222222227227277

LACE: ajnytjablfeac74oafqhkeyafv3qm5difvzxk4dfoiww233onnsxs4dy
RACE: 3bnyswselfeh7dtaouac2adxabuga5aanaac2adtab2qa4aamuaheab\
nabwga3yanyagwadfab4qady

(N) Hello-Another-Way-<sorezore><no><basho> (Japanese song title)

<sorezore><no>
<basho>

U+305D U+308C U+305E U+308C U+306E (hiragana)
U+5834 U+6240 (kanji)

UTF-8: Hello-Another-Way-??????2??2???2??2?2?2?2??2??7
BRACE: ji7-Hello--Another--Way---v3jhaefvd2ufj62
AMC-0: daf-Hello--Another--Way---p2ng2nygx2veyuwa
AMC-M: bsk-Hello--Another--Way---p2ng2nygx2veyuwa

DUDE: M81lssv-Huvn4m81ln2-Nm1n9-jo05docleocmel834m240
UTF-16: 27?27222727°27°22°2°272727?7°27?7?22°227?7?7°27?7?2°27227?7?7°27?2?2227°27°?7?7°?7?27?2?222?7?7?7?7?7?

LACE: ciagqzlmnrxs2ylon52gqzlsfv3wc6jnauyf3dc6rrxacwbuafrea
RACE: 3aagqadfabwaa3aand4ac2adbabxaa3yaoqaggadfabzaaliao4agcad\
zaawtaxjqrgyf4memgbxfqgndcia

(0) <hitotsu><yane><no><shita>2 (Japanese TV program title)

<hitotsu> = U+3072 U+3068 U+3064 (hiragana)
<yane> U+5C4B U+6839 (kanji)

(P)

(Q)

(R)

<no> U+306E (hiragana)
<shita> = U+4EOGB (kanji)

UTE-16: 272222227272727272722?

UTF-8: ?2222222?22272°?22272°?7?727?72
AMC-0: dagzciex6wmy2vjgqw8sm-2
AMC-M: bsnzciex6wmy2vjgw8sm-2
BRACE: ji96u56uwbhf2wgxnwi4s-2

DUDE: j072m8k1lc4bm839j06ekedbg032
RACE: 3ayhemdigbsfys3iheyg4tglaaza

LACE: 74yhemdigbsfys3iheyg4tqlaaza

Maji<de>Koi<suru>5<byou><mae> (Japanese song title)

<de> = U+3067 (hiragana)
<suru> = U+3059 U+308B (hiragana)
<byou><mae> = U+79D2 U+524D (kanji)

UTF-8: Maji???K0i???2?2?22522222?

UTF-16: 2722227272222 ?727°?7?27?27?22?2?27?27?7?7?7?

AMC-M: bsm-Maji-r-Koi-b2m-5-z37cxuwp

BRACE: ji8-Maji-g-Koi-ge7x-5-wx7p6éma

AMC-0: dag-Maji-h-Koi-xj2m-5-z37cxuwp

DUDE: Mdhgpj067G06bvpj0590bg035n9d2124d

RACE: 3aagladbabvaa2jqgmd4agwadpabutawjqrmadk6oskjgq
LACE: 74ag2adbabvaa2jqgmd4agwadpabutawjgrmadk6oskjgq

<pafii>de<runba> (Japanese song title)

<pafii> = U+30D1 U+30D5 U+30A3 U+30FC (katakana)
<runba> = U+30EB U+30F3 U+30D0O (katakana)

UTE-16: 22°?2272?2272?227227?7

BRACE: 3iu8pazt-de-pygi

AMC-0: dapbf4d9n-de-8m9da
AMC-M: bs3jp4d9n-de-8m9di
RACE: gdi51i7475sp6zpl6pia
DUDE: j0d11g3vcgo641j0ebv3to
UTF-8: 2???277?°277?2?722de???2?2??27?2??

LACE: agyndvnd7gbaazdfamyox46q

<sono><supiido><de> (Japanese song title)

<sono> = U+305D U+306E (hiragana)
<supiido> = U+30B9 U+30D4 U+30FC U+30C9 (katakana)
<de> = U+3067 (hiragana)

RACE: gbow500u7tewo
UTE-16: 2?2°?2?2222?2?27?27?227?°?

BRACE: bidprdmpowt7mi
LACE: adyf23vz2teémszy
AMC-0: dagxpg5j7e9n6jh

AMC-M: bsmfyq5j7e9n6jr
DUDE: jO5dmer9t4vcsom7
UTE-8: 927222227272727272722222222727

The last example is an ASCII string that breaks not only the
existing rules for host name labels but also the rules proposed in
[NAMEPREPO3] for internationalized domain names.

(S) -> $1.00 <-

UTF-8: -> $1.00 <-
DUDE: -jeidkjliejogifjc-
RACE: aawt4ibegexdambahqwq

LACE: bmac2praeqys4mbgea6c2
UTE-16: 2722222272722727222222222727

AMC-0: aac--vgae-1-q-00-avn--
AMC-M: aae--vgae-1-g-00-avn--
BRACE: 229--t2b4-1-w-00-19i--

Security considerations

Users expect each domain name in DNS to be controlled by a single
authority. 1If a Unicode string intended for use as a domain label
could map to multiple ACE labels, then an internationalized domain
name could map to multiple ACE domain names, each controlled by

a different authority, some of which could be spoofs that hijack
service requests intended for another. Therefore AMC-ACE-O is
designed so that each Unicode string has a unique encoding.

However, there can still be multiple Unicode representations of the
"same" text, for various definitions of "same". This problem is
addressed to some extent by the Unicode standard under the topic

of canonicalization, but some text strings may be misleading or
ambiguous to humans when used as domain names, such as strings
containing dots, slashes, at-signs, etc. These issues are being
further studied under the topic of '"nameprep" [NAMEPREPQ3].

Credits
AMC-ACE-O reuses a number of preexisting techniques.

The basic encoding of integers to nybbles to quintets to base-32
comes from UTF-5 [UTF5], and the particular variant used here comes
from AMC-ACE-M [AMCACEMOO].

The idea of avoiding ©, 1, o, and 1 in base-32 strings was taken
from SFS [SES].

The idea of encoding deltas from reference points declared at the
beginning of the encoded string was taken from RACE (of which

the latest version is [RACEG3]), which may have gotten the idea
from Unicode Technical Standard #6 [UTS6]. The latter also uses

predefined reference points in the Latin range.

From BRACE [BRACEGQO] comes the idea of switching between literal
mode and base-32 mode, and the technique of counting how many code
points fall within a window (as opposed to checking whether all do).

The general idea of using the alphabetic case of base-32 characters
to record the desired case of the Unicode characters was suggested
by this author, and first applied to the UTF-5-style encoding in
DUDE (of which the latest version is [DUDE®©1]).

The bootstrapping method of encoding reference points, which does
not require them to nest but takes advantage of nesting when it
occurs, is new in AMC-ACE-O.

References

[A1tDUDE®O] Adam Costello, "ALltDUDE version 0.0.2", 2001-Mar-19,
draft-ietf-idn-altdude-00.

[AMCACEMOO] Adam Costello, "AMC-ACE-M version 0.1.0", 2001-Feb-12,
draft-jetf-idn-amc-ace-m-00.

[BRACEOO] Adam Costello, "BRACE: Bi-mode Row-based
ASCII-Compatible Encoding for IDN version 0.1.2", 2000-Sep-19,
draft-ietf-idn-brace-00.

[DUDE®1] Mark Welter, Brian Spolarich, "DUDE: Differential Unicode
Domain Encoding", 2001-Mar-02, draft-ietf-idn-dude-01.

[IDN] Internationalized Domain Names (IETF working group),
http://www.i-d-n.net/, idn@ops.ietf.org.

[LACE®1] Paul Hoffman, Mark Davis, "LACE: Length-based ASCII
Compatible Encoding for IDN", 2001-Jan-05, draft-ietf-idn-lace-01.

[NAMEPREPO3] Paul Hoffman, Marc Blanchet, "Preparation
of Internationalized Host Names'", 2001-Feb-24,
draft-ietf-idn-nameprep-03.

[PROVINCIAL] Michael Kaplan, "The 'anyone can be provincial!' page",
http://www.trigeminal.com/samples/provincial.html.

[RACE®3] Paul Hoffman, "RACE: Row-based ASCII Compatible Encoding
for IDN", 2000-Nov-28, draft-ietf-idn-race-03.

[RFC952] K. Harrenstien, M. Stahl, E. Feinler, "DOD Internet Host
Table Specification", 1985-0ct, RFC 952.

[RFC1034] P. Mockapetris, "Domain Names - Concepts and Facilities",
1987-Nov, RFC 1034.

https://datatracker.ietf.org/doc/html/draft-ietf-idn-altdude-00
https://datatracker.ietf.org/doc/html/draft-ietf-idn-amc-ace-m-00
https://datatracker.ietf.org/doc/html/draft-ietf-idn-brace-00
https://datatracker.ietf.org/doc/html/draft-ietf-idn-dude-01
http://www.i-d-n.net/
https://datatracker.ietf.org/doc/html/draft-ietf-idn-lace-01
https://datatracker.ietf.org/doc/html/draft-ietf-idn-nameprep-03
http://www.trigeminal.com/samples/provincial.html
https://datatracker.ietf.org/doc/html/draft-ietf-idn-race-03
https://datatracker.ietf.org/doc/html/rfc952
https://datatracker.ietf.org/doc/html/rfc1034

[RFC1123] Internet Engineering Task Force, R. Braden (editor),
"Requirements for Internet Hosts -- Application and Support",
1989-0ct, REC 1123.

[SACE] Dan Oscarsson, "Simple ASCII Compatible Encoding (SACE)",
draft-ietf-idn-sace-*.

[SFS] David Mazieres et al, "Self-certifying File System",
http://www.fs.net/.

[UNICODE] The Unicode Consortium, "The Unicode Standard",
http://www.unicode.org/unicode/standard/standard.html.

[UTF5] James Seng, Martin Duerst, Tin Wee Tan, "UTF-5, a
Transformation Format of Unicode and ISO 10646", draft-jseng-utf5-*.

[UTF6] Mark Welter, Brian W. Spolarich, "UTF-6 - Yet Another
ASCII-Compatible Encoding for IDN", draft-ietf-idn-utf6-*.

[UTS6] Misha Wolf, Ken Whistler, Charles Wicksteed,
Mark Davis, Asmus Freytag, "Unicode Technical Standard
#6: A Standard Compression Scheme for Unicode",
http://www.unicode.org/unicode/reports/tré6/.

[UTFCONV] Mark Davis, "UTF Converter",
http://www.macchiato.com/unicode/convert.html.

Author

Adam M. Costello <amc@cs.berkeley.edu>
http://www.cs.berkeley.edu/~amc/

Example implementation

/**/

/* amc-ace-o0.c 0.0.0 (2001-Mar-17-Sat) */
/* Adam M. Costello <amc@cs.berkeley.edu> */

/**/

/* This is ANSI C code (C89) implementing AMC-ACE-O version 0.0.*. */
/**/

/* Public interface (would normally go in its own .h file): */
#include <limits.h>

enum amc_ace_status {
amc_ace_success,
amc_ace_invalid_input,

https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/draft-ietf-idn-sace
http://www.fs.net/
http://www.unicode.org/unicode/standard/standard.html
https://datatracker.ietf.org/doc/html/draft-jseng-utf5
https://datatracker.ietf.org/doc/html/draft-ietf-idn-utf6
http://www.unicode.org/unicode/reports/tr6/
http://www.macchiato.com/unicode/convert.html
http://www.cs.berkeley.edu/~amc/

amc_ace_output_too_big

H

enum case_sensitivity { case_sensitive, case_insensitive };

#if UINT_MAX >= Ox10FFFF
typedef unsigned int u_code_point;

#else

typedef unsigned long u_code_point;

#endif

enum amc_ace_status amc_ace_o_encode(
unsigned int input_length,
const u_code_point *input,
const unsigned char *uppercase_flags,
unsigned int *output_size,

char

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

*output);

amc_ace_o_encode() converts Unicode to AMC-ACE-O0. The input
must be represented as an array of Unicode code points

(not code units; surrogate pairs are not allowed), and the
output will be represented as null-terminated ASCII. The
input_length is the number of code points in the input. The
output_size is an in/out argument: the caller must pass

in the maximum number of characters that may be output
(including the terminating null), and on successful return

it will contain the number of characters actually output
(including the terminating null, so it will be one more than
strlen() would return, which is why it is called output_size
rather than output_length). The uppercase_flags array must
hold input_length boolean values, where nonzero means the
corresponding Unicode character should be forced to uppercase
after being decoded, and zero means it is caseless or should
be forced to lowercase. Alternatively, uppercase_flags may
be a null pointer, which is equivalent to all zeros. The
letters a-z and A-Z are always encoded literally, regardless
of the corresponding flags. The encoder always outputs
lowercase base-32 characters except when nonzero values

of uppercase_flags require otherwise, so the encoder is
compatible with any of the case models. The return value

may be any of the amc_ace_status values defined above; if

not amc_ace_success, then output_size and output may contain
garbage. On success, the encoder will never need to write an
output_size greater than input_length*5+10, because of how the
encoding is defined.

enum amc_ace_status amc_ace_o_decode(

enum
char

case_sensitivity case_sensitivity,
*scratch_space,

const char *input,
unsigned int *output_length,

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

u_code_point *output,
unsigned char *uppercase_flags);

/* amc_ace_o_decode() converts AMC-ACE-0 to Unicode. The input */
/* must be represented as null-terminated ASCII, and the output */
/* will be represented as an array of Unicode code points. */
/* The case_sensitivity argument influences the check on the */
/* well-formedness of the input string; it must be case_sensitive */
/* if case-sensitive comparisons are allowed on encoded strings, */
/* case_insensitive otherwise (see also section "Case sensitivity */
/* models" of the AMC-ACE-O specification). The scratch_space */
/* must point to space at least as large as the input, which will */

/* get overwritten (this allows the decoder to avoid calling */
/* malloc()). The output_length is an in/out argument: the */
/* caller must pass in the maximum number of code points that */
/* may be output, and on successful return it will contain the */
/* actual number of code points output. The uppercase_flags */
/* array must have room for at least output_length values, or it */
/* may be a null pointer if the case information is not needed. */
/* A nonzero flag indicates that the corresponding Unicode */
/* character should be forced to uppercase by the caller, while */
/* zero means it is caseless or should be forced to lowercase. */

/* The letters a-z and A-Z are output already in the proper case, */
/* but their flags will be set appropriately so that applying the */
/* flags would be harmless. The return value may be any of the */
/* amc_ace_status values defined above; if not amc_ace_success, */

/* then output_length, output, and uppercase_flags may contain */
/* garbage. On success, the decoder will never need to write */
/* an output_length greater than the length of the input (not */
/* counting the null terminator), because of how the encoding is */
/* defined. */

/**/

/* Implementation (would normally go in its own .c file): */
#include <string.h>

/* is_ldh(codept) returns 1 if the code point represents an LDH */
/* character (ASCII letter, digit, or hyphen-minus), 0 otherwise. */

static int is_ldh(u_code_point codept)

{

return codept > 122 ? 0
codept >= 97 ? 1
codept > 90 ? O
codept >= 65 ? 1
codept > 57 ? ©
codept >= 48 ? 1 :
codept == 45 ;

/* is_AtoZ(c) returns 1 if c is an */
/* uppercase ASCII letter, zero otherwise. */

static unsigned char is_AtoZ(char c)

{

return ¢ >= 65 & & c <= 90;

}

/* unequal(case_sensitivity,s1,s2) returns 0 if the strings s1 and s2 */
/* are equal, 1 otherwise. If case_sensitivity is case_insensitive, */
/* then ASCII A-Z are considered equal to a-z respectively. */

static int unequal(
enum case_sensitivity case_sensitivity, const char *sl1, const char *s2)

{
char c1, c2;
if (case_sensitivity != case_insensitive) return strcmp(si,s2) != 0;
for (;;) {
cl = *si;
c2 = *s2;
if (cl >= 65 && cl1l <= 90) cl += 32;
if (c2 >= 65 && c2 <= 90) c2 += 32;
if (c1 !'= c2) return 1;
if (c1 == 0) return 0;
++s1, ++s2;
}
}

/* base32[q] is the lowercase base-32 character representing */
/* the number g from the range © to 31. Note that we cannot */
/* use string literals for ASCII characters because an ANSI C */
/* compiler does not necessarily use ASCII. */

static const char base32[] = {

97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, /* a-k */
109, 110, /* m-n */
112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, /* p-z */
50, 51, 52, 53, 54, 55, 56, 57 /* 2-9 */

H

/* base32_decode(c) returns the value of a base-32 character, in the */
/* range 0@ to 31, or the constant base32_invalid if c is not a valid */
/* base-32 character. */

enum { base32_invalid = 32 };
static unsigned int base32_decode(char c)

{

if (c < 50) return base32_invalid,;

if (c <= 57) return c - 26;
if (c < 97) ¢ += 32;
if (¢ <97 || ¢ == 108 || ¢ == 111 || ¢ > 122) return base32_invalid;
return ¢ - 97 - (c > 108) - (c > 111);
}

/* The decoder_state and encoder_state structures contains */
/* variables that are shared among several of the functions below. */

struct decoder_state {

const char *in_next; /* unread part of ACE input */
u_code_point refpoint[6]; /* reference points, [0] unused */

3

struct encoder_state {
char *out_next, *out_end; /* unwritten part of ACE output */
const u_code_point *in_start, *in_end; /* entire Unicode input */
u_code_point refpoint[6], prefix[4]; /* reference points and prefixes */
unsigned int best_count; /* max found so far by census() */
u_code_point best_refpoint; /* corresponding reference point */

iy

/* refpoint[k] is for base-32 sequences of length k, and prefix[k] */

/* is used to encode refpoint[k]. Generally, prefix[k] << (4%k) */

/* == refpoint[k], but for prefix[2] == OxD8 + i, where i = 0..7, */

/* refpoint[2] == special_refpoint[i]. These prefixes, which would */

/* otherwise correspond to surrogates, are instead used to encode */

/* special reference points that help the Latin script compress */

/* better, because unlike most other small scripts it is split */

/* across multiple rows with inconvenient boundaries. */

static const u_code_point special_refpoint[] =
{ 0x20, 0x50, 0x70, OXAQ, OxCO, OXEO, 0x140, Ox270 };

/* find_refpoint(refpoint,start,n) scans the refpoint array, starting */
/* at position start, for a reference point suitable for encoding n, */
/* and returns the index of the first match. */

unsigned int find_refpoint(
u_code_point refpoint[6], u_code_point start, u_code_point n)
{
while ((n - refpoint[start]) >> (4*start) != 0) ++start;
return start;

}
/* encode_point(state,n) encodes n as a sequence of base-32 */
/* characters representing a delta from a reference point. The */

/* delta divided into a big-endian sequence of nybbles; each nybble */
/* is expanded to a quintet with a highest bit of © for the last */
/* nybble, 1 for the others; and the quintets are mapped to base-32 */
/* characters. Returns amc_ace_success or amc_ace_output_too_big. */

enum amc_ace_status encode_point(struct encoder_state *state, u_code_point n)

{

unsigned int k, 1i;

k = find_refpoint(state->refpoint, 1, n);

if (state->out_end - state->out_next < k) return amc_ace_output_too_big;
n -= state->refpoint[k];

i=k - 1;

state->out_next[i] = base32[n & OxF];

while (i > 0) {

n >>= 4,

state->out_next[--i] = base32[0x10 | (n & OXF)];
}

state->out_next += Kk;
return amc_ace_success;

/* decode_point(state,n) is the reverse of encode_point(): it */
/* consumes base-32 characters and writes the code point into */
/* *n. Returns amc_ace_success or amc_ace_invalid_input. */

enum amc_ace_status decode_point(struct decoder_state *state, u_code_point *n)
{

u_code_point q, delta = 0;

unsigned int k = 0;

do {
if (k >= 5) return amc_ace_invalid_input;
g = base32_decode(state->in_next[k++]);
if (g == base32_invalid) return amc_ace_invalid_input;
delta = (delta << 4) | (q & OxF);
} while (g > OxF);

state->in_next += k;
*n = state->refpoint[k] + delta;
return amc_ace_success;

/* census(state, k,p) sets refpoint[k] to the reference point */
/* corresponding to prefix p, then calculates how many times */
/* that reference point would get used, and sets prefix[k] to */
/* p if the result exceeds the previous maximum. */

void census(struct encoder_state *state, unsigned int k, u_code_point p)
{
unsigned int count, 1i;
u_code_point *refpoint = state->refpoint, *prefix = state->prefix;
const u_code_point *in;

refpoint[k] =
k == 2 & p - 0xD8 <= 7 ? special refpoint[p - OxD8] : p << (4*k);

/* count times used to encode input code points: */

for (count = O, in = state->in_start; in < state->in_end; ++in) {
if ('is_ldh(*in) && find_refpoint(refpoint, 1, *in) == k) ++count;
}

/* count times used to encode other reference points: */

for (i =1, 1< k; ++i) {
if (find_refpoint(refpoint, i+1, prefix[i] << (4*1i)) == k) ++count;

}

if (count > state->best_count) {
state->best_count = count;
state->best_refpoint = refpoint[k];
prefix[k] = p;
}
}

/* bootstrap(refpoint,k,p) adjusts the existing reference points so */
/* they can be used for encoding/decoding another reference point. */

void bootstrap(u_code_point refpoint[6], unsigned int k, u_code_point p)

{

unsigned int j;

for (j = 4; Jj >=2; --j) refpoint[j] = refpoint[j-1] << 4;
refpoint[1] =
k == 2 & p - 0xD8 <= 7 ? special_refpoint[p - OxD8] >> 4 : p << 4,
}

/* Main encode function: */

enum amc_ace_status amc_ace_o_encode(
unsigned int input_length,
const u_code_point *input,
const unsigned char *uppercase_flags,
unsigned int *output_size,
char *output)

struct encoder_state dummy = {0} /* all zeros */, *state = &dummy;
const u_code_point *in, *in_end;

char *out_end;

unsigned int k, 1i;

u_code_point codept;

enum amc_ace_status status;

unsigned int literal; /* boolean */

/* Initialization: */

state->out_next = output;

state->out_end = out_end = output + *output_size;
state->in_start = input;

state->in_end = in_end = input + input_length;

/* Verify that all code points are in 0..10FFFF: */

for (in = input; 1in < in_end; ++in) {
if (*in > Ox10FFFF) return amc_ace_invalid_input;

}

/* Choose the reference points: Choose refpoint[1] so that it will */
/* be used as often as possible, then choose refpoint[2] similarly, */
/* then refpoint[3]. */

state->refpoint[5] = 0x10000;
/* refpoint[1..4] and prefix[1..3] are already 0 */

for (k = 1; k <= 3; ++k) {
state->best_count = 0;
state->best_refpoint = 0;
/* Try prefixes of the input code points, then the special prefixes: */
for (in = input; 1in < in_end; ++in) census(state, k, *in >> (4*k));
if (k == 2) for (i =0; 1i<=7; ++i) census(state, k, OxD8 + 1i);
if (k == 3) census(state, k, 0xD);
state->refpoint[k] = state->best_refpoint;

}

/* Encode the reference points: */

state->refpoint[1]
state->refpoint[2]

0;
0x10;

for (k = 3; k>1; --k) {
status = encode_point(state, state->prefix[k]);
if (status != amc_ace_success) return status;
bootstrap(state->refpoint, k, state->prefix[k]);

}
/* Main encoding loop: */
literal = 0;

for (1 = 0; 1 < input_length; ++1i) {
codept = input[i];

if (codept == 45) {
/* hyphen-minus is doubled */
if (state->out_end - state->out_next < 2) return amc_ace_output_too_big;
*state->out_next++ = 45;
*state->out_next++ = 45;

}
else if (is_ldh(codept)) {
/* encode LDH character literally */

if (!literal) {
/* switch to literal mode by outputting hyphen-minus */
if (out_end - state->out_next < 1) return amc_ace_output_too_big;
*state->out_next++ = 45;
literal = 1;
}

if (out_end - state->out_next < 1) return amc_ace_output_too_big;
*state->out_next++ = codept;

}

else {
/* encode non-LDH character using base-32 */

if (literal) {
/* switch to base-32 mode by outputting hyphen-minus */
if (out_end - state->out_next < 1) return amc_ace_output_too_big;
*state->out_next++ = 45;
literal = 0O;

}

status = encode_point(state,codept);

if (status != amc_ace_success) return status;

/* the last base-32 character can record the uppercase flag: */

if (uppercase_flags && uppercase_flags[i]) state->out_next[-1] -= 32;

}
3

/* null terminator: */

if (out_end - state->out_next < 1) return amc_ace_output_too_big;
*state->out_next++ = 0O;

*output_size = state->out_next - output;

return amc_ace_success;

}

/* Main decode function: */

enum amc_ace_status amc_ace_o_decode(
enum case_sensitivity case_sensitivity,
char *scratch_space,
const char *input,
unsigned int *output_length,
u_code_point *output,
unsigned char *uppercase_flags)

struct decoder_state dummy = {0} /* all zeros */, *state = &dummy;
unsigned int k, next_out, max_out, input_size, scratch_size;
enum amc_ace_status status;

u_code_point p;
unsigned int literal; /* boolean */
char c;

/* Initialization: */
state->in_next = input;
next_out = 0;

max_out = *output_length;

/* Decode the reference points: */

state->refpoint[2] 0x10;
state->refpoint[5] 0x10000;
/* refpoint[1,3,4] are already 0 */

for (k = 3; k>=1; --k) {
status = decode_point(state, &p);
if (status != amc_ace_success) return status;
bootstrap(state->refpoint, k, p);

}
/* Main decoding loop: */
literal = 0;

for (7) {
c = *state->in_next;
if (c == 0) break;

if (c == 45 /* hyphen-minus */) {
if (*++state->in_next == 45) {
/* double hyphen-minus represents a hyphen-minus */
++state->in_next;
if (max_out - next_out < 1) return amc_ace_output_too_big;
if (uppercase_flags) uppercase_flags[next_out] = 0;
output[next_out++] = 45;

}
else {
/* unpaired hyphen-minus toggles mode */
literal = !literal;
}
¥
else {

if (literal) {
/* copy literal character to the output */
++state->in_next;
if (max_out - next_out < 1) return amc_ace_output_too_big;
output[next_out] = c;

}

else {

/* decode one base-32 code point */
status = decode_point(state, output + next_out);
if (status != amc_ace_success) return status;

}

if (uppercase_flags) {
uppercase_flags[next_out] = is_AtoZ(state->in_next[-1]);

++next_out;

}
b

/* Re-encode the output and compare to the input: */

input_size = state->in_next - input + 1;
scratch_size = input_size;
status = amc_ace_o_encode(next_out, output, uppercase_flags,
&scratch_size, scratch_space);
if (status != amc_ace_success ||
scratch_size !'= input_size ||
unequal(case_sensitivity, scratch_space, input)
) return amc_ace_invalid_input;

*output_length = next_out;
return amc_ace_success;

/**/

/* Wrapper for testing (would normally go in a separate .c file): */

#include <assert.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

/* For testing, we'll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum {
unicode_max_length = 256,
ace_max_size = 256,
test_case_sensitivity = case_insensitive /* suitable for host names */

B

static void usage(char **argv)

{
fprintf(stderr,

"%s -e reads big-endian UTF-32 and writes AMC-ACE-O ASCII.\n"

"%s -d reads AMC-ACE-0 ASCII and writes big-endian UTF-32.\n"
"UTF-32 is extended: bit 31 is used as force-to-uppercase flag.\n"
, argv[e], argv[0e]);
exit (EXIT_FAILURE);
}

static void fail(const char *msg)
{

fputs(msg, stderr);

exit (EXIT_FAILURE);

}

static const char too_big[] =

"input or output is too large, recompile with larger limits\n";
static const char invalid_input[] = "invalid input\n";
static const char io_error[] = "I/0 error\n";

int main(int argc, char **argv)

{
enum amc_ace_status status;
int r;
if (argc != 2) usage(argv);
if (argv[1][@] '= '-'") usage(argv);
if (argv[1][2] '= '\@') usage(argv);
if (argv[1][1] == 'e") {

u_code_point input[unicode_max_length];

unsigned char uppercase_flags[unicode_max_length];
char output[ace_max_size];

unsigned int input_length, output_size;

int c0, c1, c2, cS3;

/* Read the UTF-32 input string: */
input_length = 0;

for (;;) {
cO = getchar();

cl = getchar();
c2 = getchar();
c3 = getchar();

if (ferror(stdin)) fail(io_error);

if (c1 == EOF || c2 == EOF || ¢3 == EOF) {
if (c0 !'= EOF) fail("input not a multiple of 4 bytes\n");
break;

}

if (input_length == unicode_max_length) fail(too_big);

if ((cO !'= 0 & cO !'= 0x80)
|] c1 <0 || c1 > 0x10
|] c2 <0 || c2 > OXFF
|] c3 <0 || c3 > OxFF) {
fail(invalid_input);

}

input[input_length] = ((u_code_point) cl1l << 16) |
((u_code_point) c2 << 8) | (u_code_point) c3;
uppercase_flags[input_length] = (c0 >> 7);
++input_length;
}

/* Encode, and output the result: */

output_size = ace_max_size;
status = amc_ace_o_encode(input_length, input, uppercase_flags,
&output_size, output);

if (status == amc_ace_invalid_input) fail(invalid_input);
if (status == amc_ace_output_too_big) fail(too_big);
assert(status == amc_ace_success);

r = fputs(output, stdout);
if (r == EOF) fail(io_error);
return EXIT_SUCCESS;

}

if (argv[1][1] == 'd") {
char input[ace_max_size], scratch[ace_max_size];
u_code_point output[unicode_max_length], codept;
unsigned char uppercase_flags[unicode_max_length];
unsigned int output_length, 1i;

/* Read the AMC-ACE-O ASCII input string: */
fgets(input, ace_max_size, stdin);

if (ferror(stdin)) fail(io_error);

if (!'feof(stdin)) fail(too_big);

/* Decode, and output the result: */
output_length = unicode_max_length;

status = amc_ace_o_decode(test_case_sensitivity, scratch, input,
&output_length, output, uppercase_flags);

if (status == amc_ace_invalid_input) fail(invalid_input);
if (status == amc_ace_output_too_big) fail(too_big);
assert(status == 0);

for (1 = 0; 1 < output_length; ++i) {
r = putchar(uppercase_flags[i] ? Ox80 : 0);
if (r == EOF) fail(io_error);
codept = output[i];

r = putchar(codept >> 16);

if (r == EOF) fail(io_error);

r = putchar((codept >> 8) & OXFF);
if (r == EOF) fail(io_error);

r = putchar(codept & OXFF);

if (r == EOF) fail(io_error);

return EXIT_SUCCESS;
3

usage(argv);
return EXIT_SUCCESS; /* not reached, but quiets a compiler warning */

INTERNET-DRAFT expires 2001-Sep-19

