
INTERNET-DRAFT Mark Welter
draft-ietf-idn-dude-02.txt Brian W. Spolarich
Expires 2001-Dec-07 Adam M. Costello
 2001-Jun-07

 Differential Unicode Domain Encoding (DUDE)

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note
 that other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html

 Distribution of this document is unlimited. Please send comments to
 the authors or to the idn working group at idn@ops.ietf.org.

Abstract

 DUDE is a reversible transformation from a sequence of nonnegative
 integer values to a sequence of letters, digits, and hyphens (LDH
 characters). DUDE provides a simple and efficient ASCII-Compatible
 Encoding (ACE) of Unicode strings [UNICODE] for use with
 Internationalized Domain Names [IDN] [IDNA].

Contents

 1. Introduction
 2. Terminology
 3. Overview
 4. Base-32 characters
 5. Encoding procedure
 6. Decoding procedure
 7. Example strings
 8. Security considerations
 9. References

https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-dude-02.txt
https://datatracker.ietf.org/doc/pdf/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 A. Acknowledgements
 B. Author contact information
 C. Mixed-case annotation
 D. Differences from draft-ietf-idn-dude-01
 E. Example implementation

1. Introduction

 The IDNA draft [IDNA] describes an architecture for supporting
 internationalized domain names. Each label of a domain name may
 begin with a special prefix, in which case the remainder of the
 label is an ASCII-Compatible Encoding (ACE) of a Unicode string
 satisfying certain constraints. For the details of the constraints,
 see [IDNA] and [NAMEPREP]. The prefix has not yet been specified,
 but see http://www.i-d-n.net/ for prefixes to be used for testing
 and experimentation.

 DUDE is intended to be used as an ACE within IDNA, and has been
 designed to have the following features:

 * Completeness: Every sequence of nonnegative integers maps to an
 LDH string. Restrictions on which integers are allowed, and on
 sequence length, may be imposed by higher layers.

 * Uniqueness: Every sequence of nonnegative integers maps to at
 most one LDH string.

 * Reversibility: Any Unicode string mapped to an LDH string can
 be recovered from that LDH string.

 * Efficient encoding: The ratio of encoded size to original size
 is small. This is important in the context of domain names
 because [RFC1034] restricts the length of a domain label to 63
 characters.

 * Simplicity: The encoding and decoding algorithms are reasonably
 simple to implement. The goals of efficiency and simplicity are
 at odds; DUDE places greater emphasis on simplicity.

 An optional feature is described in appendix C "Mixed-case
 annotation".

2. Terminology

 The key words "must", "shall", "required", "should", "recommended",
 and "may" in this document are to be interpreted as described in
 RFC 2119 [RFC2119].

 LDH characters are the letters A-Z and a-z, the digits 0-9, and
 hyphen-minus.

https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-dude-01
http://www.i-d-n.net/
https://datatracker.ietf.org/doc/pdf/rfc1034
https://datatracker.ietf.org/doc/pdf/rfc2119
https://datatracker.ietf.org/doc/pdf/rfc2119

 A quartet is a sequence of four bits (also known as a nibble or
 nybble).

 A quintet is a sequence of five bits.

 Hexadecimal values are shown preceeded by "0x". For example, 0x60
 is decimal 96.

 As in the Unicode Standard [UNICODE], Unicode code points are
 denoted by "U+" followed by four to six hexadecimal digits, while a
 range of code points is denoted by two hexadecimal numbers separated
 by "..", with no prefixes.

 XOR means bitwise exclusive or. Given two nonnegative integer
 values A and B, A XOR B is the nonnegative integer value whose
 binary representation is 1 in whichever places the binary
 representations of A and B disagree, and 0 wherever they agree.
 For the purpose of applying this rule, recall that an integer's
 representation begins with an infinite number of unwritten zeros.
 In some programming languages, care may need to be taken that A and
 B are stored in variables of the same type and size.

3. Overview

 DUDE encodes a sequence of nonnegative integral values as a sequence
 of LDH characters, although implementations will of course need to
 represent the output characters somehow, typically as ASCII octets.
 When DUDE is used to encode Unicode characters, the input values are
 Unicode code points (integral values in the range 0..10FFFF, but not
 D800..DFFF, which are reserved for use by UTF-16).

 Each value in the input sequence is represented by one or more LDH
 characters in the encoded string. The value 0x2D is represented
 by hyphen-minus (U+002D). Each non-hyphen-minus character in
 the encoded string represents a quintet. A sequence of quintets
 represents the bitwise XOR between each non-0x2D integer and the
 previous one.

4. Base-32 characters

 "a" = 0 = 0x00 = 00000 "s" = 16 = 0x10 = 10000
 "b" = 1 = 0x01 = 00001 "t" = 17 = 0x11 = 10001
 "c" = 2 = 0x02 = 00010 "u" = 18 = 0x12 = 10010
 "d" = 3 = 0x03 = 00011 "v" = 19 = 0x13 = 10011
 "e" = 4 = 0x04 = 00100 "w" = 20 = 0x14 = 10100
 "f" = 5 = 0x05 = 00101 "x" = 21 = 0x15 = 10101
 "g" = 6 = 0x06 = 00110 "y" = 22 = 0x16 = 10110
 "h" = 7 = 0x07 = 00111 "z" = 23 = 0x17 = 10111
 "i" = 8 = 0x08 = 01000 "2" = 24 = 0x18 = 11000
 "j" = 9 = 0x09 = 01001 "3" = 25 = 0x19 = 11001
 "k" = 10 = 0x0A = 01010 "4" = 26 = 0x1A = 11010

 "m" = 11 = 0x0B = 01011 "5" = 27 = 0x1B = 11011
 "n" = 12 = 0x0C = 01100 "6" = 28 = 0x1C = 11100
 "p" = 13 = 0x0D = 01101 "7" = 29 = 0x1D = 11101
 "q" = 14 = 0x0E = 01110 "8" = 30 = 0x1E = 11110
 "r" = 15 = 0x0F = 01111 "9" = 31 = 0x1F = 11111

 The digits "0" and "1" and the letters "o" and "l" are not used, to
 avoid transcription errors.

 A decoder must accept both the uppercase and lowercase forms of
 the base-32 characters (including mixtures of both forms). An
 encoder should output only lowercase forms or only uppercase forms
 (unless it uses the feature described in the appendix C "Mixed-case
 annotation").

5. Encoding procedure

 All ordering of bits, quartets, and quintets is big-endian (most
 significant first).

 let prev = 0x60
 for each input integer n (in order) do begin
 if n == 0x2D then output hyphen-minus
 else begin
 let diff = prev XOR n
 represent diff in base 16 as a sequence of quartets,
 as few as are sufficient (but at least one)
 prepend 0 to the last quartet and 1 to each of the others
 output a base-32 character corresponding to each quintet
 let prev = n
 end
 end

 If an encoder encounters an input value larger than expected (for
 example, the largest Unicode code point is U+10FFFF, and nameprep
 [NAMEPREP03] can never output a code point larger than U+EFFFD),
 the encoder may either encode the value correctly, or may fail, but
 it must not produce incorrect output. The encoder must fail if it
 encounters a negative input value.

6. Decoding procedure

 let prev = 0x60
 while the input string is not exhausted do begin
 if the next character is hyphen-minus
 then consume it and output 0x2D
 else begin
 consume characters and convert them to quintets until
 encountering a quintet whose first bit is 0
 fail upon encountering a non-base-32 character or end-of-input
 strip the first bit of each quintet

 concatenate the resulting quartets to form diff
 let prev = prev XOR diff
 output prev
 end
 end
 encode the output sequence and compare it to the input string
 fail if they do not match (case-insensitively)

 The comparison at the end is necessary to guarantee the uniqueness
 property (there cannot be two distinct encoded strings representing
 the same sequence of integers). This check also frees the decoder
 from having to check for overflow while decoding the base-32
 characters. (If the decoder is one step of a larger decoding
 process, it may be possible to defer the re-encoding and comparison
 to the end of that larger decoding process.)

7. Example strings

 The first several examples are nonsense strings of mostly unassigned
 code points intended to exercise the corner cases of the algorithm.

 (A) u+0061
 DUDE: b

 (B) u+2C7EF u+2C7EF
 DUDE: u6z2ra

 (C) u+1752B u+1752A
 DUDE: tzxwmb

 (D) u+63AB1 u+63ABA
 DUDE: yv47bm

 (E) u+261AF u+261BF
 DUDE: uyt6rta

 (F) u+C3A31 u+C3A8C
 DUDE: 6v4xb5p

 (G) u+09F44 u+0954C
 DUDE: 39ue4si

 (H) u+8D1A3 u+8C8A3
 DUDE: 27t6dt3sa

 (I) u+6C2B6 u+CC266
 DUDE: y6u7g4ss7a

 (J) u+002D u+002D u+002D u+E848F
 DUDE: ---82w8r

 (K) u+BD08E u+002D u+002D u+002D
 DUDE: 57s8q---

 (L) u+A9A24 u+002D u+002D u+002D u+C05B7
 DUDE: 434we---y393d

 (M) u+7FFFFFFF
 DUDE: z999993r or explicit failure

 The next several examples are realistic Unicode strings that could
 be used in domain names. They exhibit single-row text, two-row
 text, ideographic text, and mixtures thereof. These examples are
 names of Japanese television programs, music artists, and songs,
 merely because one of the authors happened to have them handy.

 (N) 3<nen>b<gumi><kinpachi><sensei> (Latin, kanji)
 u+0033 u+5E74 u+0062 u+7D44 u+91D1 u+516B u+5148 u+751F
 DUDE: xdx8whx8tgz7ug863f6s5kuduwxh

 (O) <amuro><namie>-with-super-monkeys (Latin, kanji, hyphens)
 u+5B89 u+5BA4 u+5948 u+7F8E u+6075 u+002D u+0077 u+0069 u+0074
 u+0068 u+002D u+0073 u+0075 u+0070 u+0065 u+0072 u+002D u+006D
 u+006F u+006E u+006B u+0065 u+0079 u+0073
 DUDE: x58jupu8nuy6gt99m-yssctqtptn-tmgftfth-trcbfqtnk

 (P) maji<de>koi<suru>5<byou><mae> (Latin, hiragana, kanji)
 u+006D u+0061 u+006A u+0069 u+3067 u+006B u+006F u+0069 u+3059
 u+308B u+0035 u+79D2 u+524D
 DUDE: pnmdvssqvssnegvsva7cvs5qz38hu53r

 (Q) <pafii>de<runba> (Latin, katakana)
 u+30D1 u+30D5 u+30A3 u+30FC u+0064 u+0065 u+30EB u+30F3 u+30D0
 DUDE: vs5bezgxrvs3ibvs2qtiud

 (R) <sono><supiido><de> (hiragana, katakana)
 u+305D u+306E u+30B9 u+30D4 u+30FC u+30C9 u+3067
 DUDE: vsvpvd7hypuivf4q

8. Security considerations

 Users expect each domain name in DNS to be controlled by a single
 authority. If a Unicode string intended for use as a domain label
 could map to multiple ACE labels, then an internationalized domain
 name could map to multiple ACE domain names, each controlled by
 a different authority, some of which could be spoofs that hijack
 service requests intended for another. Therefore DUDE is designed
 so that each Unicode string has a unique encoding.

 However, there can still be multiple Unicode representations of the
 "same" text, for various definitions of "same". This problem is
 addressed to some extent by the Unicode standard under the topic of

 canonicalization, and this work is leveraged for domain names by
 "nameprep" [NAMEPREP03].

9. References

 [IDN] Internationalized Domain Names (IETF working group),
 http://www.i-d-n.net/, idn@ops.ietf.org.

 [IDNA] Patrik Faltstrom, Paul Hoffman, "Internationalizing Host
 Names In Applications (IDNA)", draft-ietf-idn-idna-01.

 [NAMEPREP03] Paul Hoffman, Marc Blanchet, "Preparation
 of Internationalized Host Names", 2001-Feb-24,
 draft-ietf-idn-nameprep-03.

 [RFC952] K. Harrenstien, M. Stahl, E. Feinler, "DOD Internet Host
 Table Specification", 1985-Oct, RFC 952.

 [RFC1034] P. Mockapetris, "Domain Names - Concepts and Facilities",
 1987-Nov, RFC 1034.

 [RFC1123] Internet Engineering Task Force, R. Braden (editor),
 "Requirements for Internet Hosts -- Application and Support",
 1989-Oct, RFC 1123.

 [RFC2119] Scott Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", 1997-Mar, RFC 2119.

 [SFS] David Mazieres et al, "Self-certifying File System",
 http://www.fs.net/.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 http://www.unicode.org/unicode/standard/standard.html.

A. Acknowledgements

 The basic encoding of integers to quartets to quintets to base-32
 comes from earlier IETF work by Martin Duerst. DUDE uses a slight
 variation on the idea.

 Paul Hoffman provided helpful comments on this document.

 The idea of avoiding 0, 1, o, and l in base-32 strings was taken
 from SFS [SFS].

B. Author contact information

 Mark Welter <mwelter@walid.com>
 Brian W. Spolarich <briansp@walid.com>
 WALID, Inc.
 State Technology Park

http://www.i-d-n.net/
https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-idna-01
https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-nameprep-03
https://datatracker.ietf.org/doc/pdf/rfc952
https://datatracker.ietf.org/doc/pdf/rfc1034
https://datatracker.ietf.org/doc/pdf/rfc1123
https://datatracker.ietf.org/doc/pdf/rfc2119
http://www.fs.net/
http://www.unicode.org/unicode/standard/standard.html

 2245 S. State St.
 Ann Arbor, MI 48104
 +1 734 822 2020

 Adam M. Costello <amc@cs.berkeley.edu>
 University of California, Berkeley
 http://www.cs.berkeley.edu/~amc/

C. Mixed-case annotation

 In order to use DUDE to represent case-insensitive Unicode strings,
 higher layers need to case-fold the Unicode strings prior to DUDE
 encoding. The encoded string can, however, use mixed-case base-32
 (rather than all-lowercase or all-uppercase as recommended in
 section 4 "Base-32 characters") as an annotation telling how to
 convert the folded Unicode string into a mixed-case Unicode string
 for display purposes.

 Each Unicode code point (unless it is U+002D hyphen-minus) is
 represented by a sequence of base-32 characters, the last of which
 is always a letter (as opposed to a digit). If that letter is
 uppercase, it is a suggestion that the Unicode character be mapped
 to uppercase (if possible); if the letter is lowercase, it is a
 suggestion that the Unicode character be mapped to lowercase (if
 possible).

 DUDE encoders and decoders are not required to support these
 annotations, and higher layers need not use them.

 Example: In order to suggest that example O in section 7 "Example
 strings" be displayed as:

 <amuro><namie>-with-SUPER-MONKEYS

 one could capitalize the DUDE encoding as:

 x58jupu8nuy6gt99m-yssctqtptn-tMGFtFtH-tRCBFQtNK

D. Differences from draft-ietf-idn-dude-01

 Four changes have been made since draft-ietf-idn-dude-01 (DUDE-01):

 1) DUDE-01 computed the XOR of each integer with the previous one
 in order to decide how many bits of each integer to encode, but
 now the XOR itself is encoded, so there is no need for a mask.

 2) DUDE-01 made the first quintet of each sequence different from
 the rest, while now it is the last quintet that differs, so it's
 easier for the decoder to detect the end of the sequence.

 3) The base-32 map has changed to avoid 0, 1, o, and l, to help

http://www.cs.berkeley.edu/~amc/
https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-dude-01
https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-dude-01

 humans avoid transcription errors.

 4) The initial value of the previous code point has changed from 0
 to 0x60, making the encodings of a few domain names shorter and
 none longer.

E. Example implementation

/**/
/* dude.c 0.2.3 (2001-May-31-Thu) */
/* Adam M. Costello <amc@cs.berkeley.edu> */
/**/

/* This is ANSI C code (C89) implementing */
/* DUDE (draft-ietf-idn-dude-02). */

/**/
/* Public interface (would normally go in its own .h file): */

#include <limits.h>

enum dude_status {
 dude_success,
 dude_bad_input,
 dude_big_output /* Output would exceed the space provided. */
};

enum case_sensitivity { case_sensitive, case_insensitive };

#if UINT_MAX >= 0x1FFFFF
typedef unsigned int u_code_point;
#else
typedef unsigned long u_code_point;
#endif

enum dude_status dude_encode(
 unsigned int input_length,
 const u_code_point input[],
 const unsigned char uppercase_flags[],
 unsigned int *output_size,
 char output[]);

 /* dude_encode() converts Unicode to DUDE (without any */
 /* signature). The input must be represented as an array */
 /* of Unicode code points (not code units; surrogate pairs */
 /* are not allowed), and the output will be represented as */
 /* null-terminated ASCII. The input_length is the number of code */

https://datatracker.ietf.org/doc/pdf/draft-ietf-idn-dude-02

 /* points in the input. The output_size is an in/out argument: */
 /* the caller must pass in the maximum number of characters */
 /* that may be output (including the terminating null), and on */
 /* successful return it will contain the number of characters */
 /* actually output (including the terminating null, so it will be */
 /* one more than strlen() would return, which is why it is called */
 /* output_size rather than output_length). The uppercase_flags */
 /* array must hold input_length boolean values, where nonzero */
 /* means the corresponding Unicode character should be forced */
 /* to uppercase after being decoded, and zero means it is */
 /* caseless or should be forced to lowercase. Alternatively, */
 /* uppercase_flags may be a null pointer, which is equivalent */
 /* to all zeros. The encoder always outputs lowercase base-32 */
 /* characters except when nonzero values of uppercase_flags */
 /* require otherwise. The return value may be any of the */
 /* dude_status values defined above; if not dude_success, then */
 /* output_size and output may contain garbage. On success, the */
 /* encoder will never need to write an output_size greater than */
 /* input_length*k+1 if all the input code points are less than 1 */
 /* << (4*k), because of how the encoding is defined. */

enum dude_status dude_decode(
 enum case_sensitivity case_sensitivity,
 char scratch_space[],
 const char input[],
 unsigned int *output_length,
 u_code_point output[],
 unsigned char uppercase_flags[]);

 /* dude_decode() converts DUDE (without any signature) to */
 /* Unicode. The input must be represented as null-terminated */
 /* ASCII, and the output will be represented as an array of */
 /* Unicode code points. The case_sensitivity argument influences */
 /* the check on the well-formedness of the input string; it */
 /* must be case_sensitive if case-sensitive comparisons are */
 /* allowed on encoded strings, case_insensitive otherwise. */
 /* The scratch_space must point to space at least as large */
 /* as the input, which will get overwritten (this allows the */
 /* decoder to avoid calling malloc()). The output_length is */
 /* an in/out argument: the caller must pass in the maximum */
 /* number of code points that may be output, and on successful */
 /* return it will contain the actual number of code points */
 /* output. The uppercase_flags array must have room for at */
 /* least output_length values, or it may be a null pointer if */
 /* the case information is not needed. A nonzero flag indicates */
 /* that the corresponding Unicode character should be forced to */
 /* uppercase by the caller, while zero means it is caseless or */
 /* should be forced to lowercase. The return value may be any */
 /* of the dude_status values defined above; if not dude_success, */
 /* then output_length, output, and uppercase_flags may contain */
 /* garbage. On success, the decoder will never need to write */

 /* an output_length greater than the length of the input (not */
 /* counting the null terminator), because of how the encoding is */
 /* defined. */

/**/
/* Implementation (would normally go in its own .c file): */

#include <string.h>

/* Character utilities: */

/* base32[q] is the lowercase base-32 character representing */
/* the number q from the range 0 to 31. Note that we cannot */
/* use string literals for ASCII characters because an ANSI C */
/* compiler does not necessarily use ASCII. */

static const char base32[] = {
 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, /* a-k */
 109, 110, /* m-n */
 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, /* p-z */
 50, 51, 52, 53, 54, 55, 56, 57 /* 2-9 */
};

/* base32_decode(c) returns the value of a base-32 character, in the */
/* range 0 to 31, or the constant base32_invalid if c is not a valid */
/* base-32 character. */

enum { base32_invalid = 32 };

static unsigned int base32_decode(char c)
{
 if (c < 50) return base32_invalid;
 if (c <= 57) return c - 26;
 if (c < 97) c += 32;
 if (c < 97 || c == 108 || c == 111 || c > 122) return base32_invalid;
 return c - 97 - (c > 108) - (c > 111);
}

/* unequal(case_sensitivity,s1,s2) returns 0 if the strings s1 and s2 */
/* are equal, 1 otherwise. If case_sensitivity is case_insensitive, */
/* then ASCII A-Z are considered equal to a-z respectively. */

static int unequal(enum case_sensitivity case_sensitivity,
 const char s1[], const char s2[])
{
 char c1, c2;

 if (case_sensitivity != case_insensitive) return strcmp(s1,s2) != 0;

 for (;;) {

 c1 = *s1;
 c2 = *s2;
 if (c1 >= 65 && c1 <= 90) c1 += 32;
 if (c2 >= 65 && c2 <= 90) c2 += 32;
 if (c1 != c2) return 1;
 if (c1 == 0) return 0;
 ++s1, ++s2;
 }
}

/* Encoder: */

enum dude_status dude_encode(
 unsigned int input_length,
 const u_code_point input[],
 const unsigned char uppercase_flags[],
 unsigned int *output_size,
 char output[])
{
 unsigned int max_out, in, out, k, j;
 u_code_point prev, codept, diff, tmp;
 char shift;

 prev = 0x60;
 max_out = *output_size;

 for (in = out = 0; in < input_length; ++in) {

 /* At the start of each iteration, in and out are the number of */
 /* items already input/output, or equivalently, the indices of */
 /* the next items to be input/output. */

 codept = input[in];

 if (codept == 0x2D) {
 /* Hyphen-minus stands for itself. */
 if (max_out - out < 1) return dude_big_output;
 output[out++] = 0x2D;
 continue;
 }

 diff = prev ^ codept;

 /* Compute the number of base-32 characters (k): */
 for (tmp = diff >> 4, k = 1; tmp != 0; ++k, tmp >>= 4);

 if (max_out - out < k) return dude_big_output;
 shift = uppercase_flags && uppercase_flags[in] ? 32 : 0;
 /* shift controls the case of the last base-32 digit. */

 /* Each quintet has the form 1xxxx except the last is 0xxxx. */
 /* Computing the base-32 digits in reverse order is easiest. */

 out += k;
 output[out - 1] = base32[diff & 0xF] - shift;

 for (j = 2; j <= k; ++j) {
 diff >>= 4;
 output[out - j] = base32[0x10 | (diff & 0xF)];
 }

 prev = codept;
 }

 /* Append the null terminator: */
 if (max_out - out < 1) return dude_big_output;
 output[out++] = 0;

 *output_size = out;
 return dude_success;
}

/* Decoder: */

enum dude_status dude_decode(
 enum case_sensitivity case_sensitivity,
 char scratch_space[],
 const char input[],
 unsigned int *output_length,
 u_code_point output[],
 unsigned char uppercase_flags[])
{
 u_code_point prev, q, diff;
 char c;
 unsigned int max_out, in, out, scratch_size;
 enum dude_status status;

 prev = 0x60;
 max_out = *output_length;

 for (c = input[in = 0], out = 0; c != 0; c = input[++in], ++out) {

 /* At the start of each iteration, in and out are the number of */
 /* items already input/output, or equivalently, the indices of */
 /* the next items to be input/output. */

 if (max_out - out < 1) return dude_big_output;

 if (c == 0x2D) output[out] = c; /* hyphen-minus is literal */
 else {

 /* Base-32 sequence. Decode quintets until 0xxxx is found: */

 for (diff = 0; ; c = input[++in]) {
 q = base32_decode(c);
 if (q == base32_invalid) return dude_bad_input;
 diff = (diff << 4) | (q & 0xF);
 if (q >> 4 == 0) break;
 }

 prev = output[out] = prev ^ diff;
 }

 /* Case of last character determines uppercase flag: */
 if (uppercase_flags) uppercase_flags[out] = c >= 65 && c <= 90;
 }

 /* Enforce the uniqueness of the encoding by re-encoding */
 /* the output and comparing the result to the input: */

 scratch_size = ++in;
 status = dude_encode(out, output, uppercase_flags,
 &scratch_size, scratch_space);
 if (status != dude_success || scratch_size != in ||
 unequal(case_sensitivity, scratch_space, input)
) return dude_bad_input;

 *output_length = out;
 return dude_success;
}

/**/
/* Wrapper for testing (would normally go in a separate .c file): */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* For testing, we'll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a */
/* command-line option. */

enum {
 unicode_max_length = 256,
 ace_max_size = 256,
 test_case_sensitivity = case_insensitive
 /* suitable for host names */
};

static void usage(char **argv)
{
 fprintf(stderr,
 "%s -e reads code points and writes a DUDE string.\n"
 "%s -d reads a DUDE string and writes code points.\n"
 "Input and output are plain text in the native character set.\n"
 "Code points are in the form u+hex separated by whitespace.\n"
 "A DUDE string is a newline-terminated sequence of LDH characters\n"
 "(without any signature).\n"
 "The case of the u in u+hex is the force-to-uppercase flag.\n"
 , argv[0], argv[0]);
 exit(EXIT_FAILURE);
}

static void fail(const char *msg)
{
 fputs(msg,stderr);
 exit(EXIT_FAILURE);
}

static const char too_big[] =
 "input or output is too large, recompile with larger limits\n";
static const char invalid_input[] = "invalid input\n";
static const char io_error[] = "I/O error\n";

/* The following string is used to convert LDH */
/* characters between ASCII and the native charset: */

static const char ldh_ascii[] =
 "................"
 "................"
 ".............-.."
 "0123456789......"
 ".ABCDEFGHIJKLMNO"
 "PQRSTUVWXYZ....."
 ".abcdefghijklmno"
 "pqrstuvwxyz";

int main(int argc, char **argv)
{
 enum dude_status status;
 int r;
 char *p;

 if (argc != 2) usage(argv);
 if (argv[1][0] != '-') usage(argv);
 if (argv[1][2] != 0) usage(argv);

 if (argv[1][1] == 'e') {
 u_code_point input[unicode_max_length];
 unsigned long codept;
 unsigned char uppercase_flags[unicode_max_length];
 char output[ace_max_size], uplus[3];
 unsigned int input_length, output_size, i;

 /* Read the input code points: */

 input_length = 0;

 for (;;) {
 r = scanf("%2s%lx", uplus, &codept);
 if (ferror(stdin)) fail(io_error);
 if (r == EOF || r == 0) break;

 if (r != 2 || uplus[1] != '+' || codept > (u_code_point)-1) {
 fail(invalid_input);
 }

 if (input_length == unicode_max_length) fail(too_big);

 if (uplus[0] == 'u') uppercase_flags[input_length] = 0;
 else if (uplus[0] == 'U') uppercase_flags[input_length] = 1;
 else fail(invalid_input);

 input[input_length++] = codept;
 }

 /* Encode: */

 output_size = ace_max_size;
 status = dude_encode(input_length, input, uppercase_flags,
 &output_size, output);
 if (status == dude_bad_input) fail(invalid_input);
 if (status == dude_big_output) fail(too_big);
 assert(status == dude_success);

 /* Convert to native charset and output: */

 for (p = output; *p != 0; ++p) {
 i = *p;
 assert(i <= 122 && ldh_ascii[i] != '.');
 *p = ldh_ascii[i];
 }

 r = puts(output);
 if (r == EOF) fail(io_error);
 return EXIT_SUCCESS;
 }

 if (argv[1][1] == 'd') {
 char input[ace_max_size], scratch[ace_max_size], *pp;
 u_code_point output[unicode_max_length];
 unsigned char uppercase_flags[unicode_max_length];
 unsigned int input_length, output_length, i;

 /* Read the DUDE input string and convert to ASCII: */

 fgets(input, ace_max_size, stdin);
 if (ferror(stdin)) fail(io_error);
 if (feof(stdin)) fail(invalid_input);
 input_length = strlen(input);
 if (input[input_length - 1] != '\n') fail(too_big);
 input[--input_length] = 0;

 for (p = input; *p != 0; ++p) {
 pp = strchr(ldh_ascii, *p);
 if (pp == 0) fail(invalid_input);
 *p = pp - ldh_ascii;
 }

 /* Decode: */

 output_length = unicode_max_length;
 status = dude_decode(test_case_sensitivity, scratch, input,
 &output_length, output, uppercase_flags);
 if (status == dude_bad_input) fail(invalid_input);
 if (status == dude_big_output) fail(too_big);
 assert(status == dude_success);

 /* Output the result: */

 for (i = 0; i < output_length; ++i) {
 r = printf("%s+%04lX\n",
 uppercase_flags[i] ? "U" : "u",
 (unsigned long) output[i]);
 if (r < 0) fail(io_error);
 }

 return EXIT_SUCCESS;
 }

 usage(argv);
 return EXIT_SUCCESS; /* not reached, but quiets compiler warning */
}

 INTERNET-DRAFT expires 2001-Dec-07

