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Status of this Memo

    This document is an Internet-Draft and is in full conformance with
    all provisions of Section 10 of RFC2026.

    Internet-Drafts are working documents of the Internet Engineering
    Task Force (IETF), its areas, and its working groups.  Note
    that other groups may also distribute working documents as
    Internet-Drafts.

    Internet-Drafts are draft documents valid for a maximum of six
    months and may be updated, replaced, or obsoleted by other documents
    at any time.  It is inappropriate to use Internet-Drafts as
    reference material or to cite them other than as "work in progress."

    The list of current Internet-Drafts can be accessed at
    http://www.ietf.org/ietf/1id-abstracts.txt

    The list of Internet-Draft Shadow Directories can be accessed at
    http://www.ietf.org/shadow.html

    Distribution of this document is unlimited.  Please send comments to
    the authors or to the idn working group at idn@ops.ietf.org.

Abstract

    DUDE is a reversible transformation from a sequence of nonnegative
    integer values to a sequence of letters, digits, and hyphens (LDH
    characters).  DUDE provides a simple and efficient ASCII-Compatible
    Encoding (ACE) of Unicode strings [UNICODE] for use with
    Internationalized Domain Names [IDN] [IDNA].
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1. Introduction

    The IDNA draft [IDNA] describes an architecture for supporting
    internationalized domain names.  Each label of a domain name may
    begin with a special prefix, in which case the remainder of the
    label is an ASCII-Compatible Encoding (ACE) of a Unicode string
    satisfying certain constraints.  For the details of the constraints,
    see [IDNA] and [NAMEPREP].  The prefix has not yet been specified,
    but see http://www.i-d-n.net/ for prefixes to be used for testing
    and experimentation.

    DUDE is intended to be used as an ACE within IDNA, and has been
    designed to have the following features:

      * Completeness:  Every sequence of nonnegative integers maps to an
        LDH string.  Restrictions on which integers are allowed, and on
        sequence length, may be imposed by higher layers.

      * Uniqueness:  Every sequence of nonnegative integers maps to at
        most one LDH string.

      * Reversibility:  Any Unicode string mapped to an LDH string can
        be recovered from that LDH string.

      * Efficient encoding:  The ratio of encoded size to original size
        is small.  This is important in the context of domain names
        because [RFC1034] restricts the length of a domain label to 63
        characters.

      * Simplicity:  The encoding and decoding algorithms are reasonably
        simple to implement.  The goals of efficiency and simplicity are
        at odds; DUDE places greater emphasis on simplicity.

    An optional feature is described in appendix C "Mixed-case
    annotation".

2. Terminology

    The key words "must", "shall", "required", "should", "recommended",
    and "may" in this document are to be interpreted as described in
    RFC 2119 [RFC2119].

    LDH characters are the letters A-Z and a-z, the digits 0-9, and
    hyphen-minus.
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    A quartet is a sequence of four bits (also known as a nibble or
    nybble).

    A quintet is a sequence of five bits.

    Hexadecimal values are shown preceeded by "0x".  For example, 0x60
    is decimal 96.

    As in the Unicode Standard [UNICODE], Unicode code points are
    denoted by "U+" followed by four to six hexadecimal digits, while a
    range of code points is denoted by two hexadecimal numbers separated
    by "..", with no prefixes.

    XOR means bitwise exclusive or.  Given two nonnegative integer
    values A and B, A XOR B is the nonnegative integer value whose
    binary representation is 1 in whichever places the binary
    representations of A and B disagree, and 0 wherever they agree.
    For the purpose of applying this rule, recall that an integer's
    representation begins with an infinite number of unwritten zeros.
    In some programming languages, care may need to be taken that A and
    B are stored in variables of the same type and size.

3. Overview

    DUDE encodes a sequence of nonnegative integral values as a sequence
    of LDH characters, although implementations will of course need to
    represent the output characters somehow, typically as ASCII octets.
    When DUDE is used to encode Unicode characters, the input values are
    Unicode code points (integral values in the range 0..10FFFF, but not
    D800..DFFF, which are reserved for use by UTF-16).

    Each value in the input sequence is represented by one or more LDH
    characters in the encoded string.  The value 0x2D is represented
    by hyphen-minus (U+002D).  Each non-hyphen-minus character in
    the encoded string represents a quintet.  A sequence of quintets
    represents the bitwise XOR between each non-0x2D integer and the
    previous one.

4. Base-32 characters

        "a" =  0 = 0x00 = 00000         "s" = 16 = 0x10 = 10000
        "b" =  1 = 0x01 = 00001         "t" = 17 = 0x11 = 10001
        "c" =  2 = 0x02 = 00010         "u" = 18 = 0x12 = 10010
        "d" =  3 = 0x03 = 00011         "v" = 19 = 0x13 = 10011
        "e" =  4 = 0x04 = 00100         "w" = 20 = 0x14 = 10100
        "f" =  5 = 0x05 = 00101         "x" = 21 = 0x15 = 10101
        "g" =  6 = 0x06 = 00110         "y" = 22 = 0x16 = 10110
        "h" =  7 = 0x07 = 00111         "z" = 23 = 0x17 = 10111
        "i" =  8 = 0x08 = 01000         "2" = 24 = 0x18 = 11000
        "j" =  9 = 0x09 = 01001         "3" = 25 = 0x19 = 11001
        "k" = 10 = 0x0A = 01010         "4" = 26 = 0x1A = 11010



        "m" = 11 = 0x0B = 01011         "5" = 27 = 0x1B = 11011
        "n" = 12 = 0x0C = 01100         "6" = 28 = 0x1C = 11100
        "p" = 13 = 0x0D = 01101         "7" = 29 = 0x1D = 11101
        "q" = 14 = 0x0E = 01110         "8" = 30 = 0x1E = 11110
        "r" = 15 = 0x0F = 01111         "9" = 31 = 0x1F = 11111

    The digits "0" and "1" and the letters "o" and "l" are not used, to
    avoid transcription errors.

    A decoder must accept both the uppercase and lowercase forms of
    the base-32 characters (including mixtures of both forms).  An
    encoder should output only lowercase forms or only uppercase forms
    (unless it uses the feature described in the appendix C "Mixed-case
    annotation").

5. Encoding procedure

    All ordering of bits, quartets, and quintets is big-endian (most
    significant first).

    let prev = 0x60
    for each input integer n (in order) do begin
      if n == 0x2D then output hyphen-minus
      else begin
        let diff = prev XOR n
        represent diff in base 16 as a sequence of quartets,
          as few as are sufficient (but at least one)
        prepend 0 to the last quartet and 1 to each of the others
        output a base-32 character corresponding to each quintet
        let prev = n
      end
    end

    If an encoder encounters an input value larger than expected (for
    example, the largest Unicode code point is U+10FFFF, and nameprep
    [NAMEPREP03] can never output a code point larger than U+EFFFD),
    the encoder may either encode the value correctly, or may fail, but
    it must not produce incorrect output.  The encoder must fail if it
    encounters a negative input value.

6. Decoding procedure

    let prev = 0x60
    while the input string is not exhausted do begin
      if the next character is hyphen-minus
      then consume it and output 0x2D
      else begin
        consume characters and convert them to quintets until
          encountering a quintet whose first bit is 0
        fail upon encountering a non-base-32 character or end-of-input
        strip the first bit of each quintet



        concatenate the resulting quartets to form diff
        let prev = prev XOR diff
        output prev
      end
    end
    encode the output sequence and compare it to the input string
    fail if they do not match (case-insensitively)

    The comparison at the end is necessary to guarantee the uniqueness
    property (there cannot be two distinct encoded strings representing
    the same sequence of integers).  This check also frees the decoder
    from having to check for overflow while decoding the base-32
    characters.  (If the decoder is one step of a larger decoding
    process, it may be possible to defer the re-encoding and comparison
    to the end of that larger decoding process.)

7. Example strings

    The first several examples are nonsense strings of mostly unassigned
    code points intended to exercise the corner cases of the algorithm.

    (A) u+0061
        DUDE: b

    (B) u+2C7EF u+2C7EF
        DUDE: u6z2ra

    (C) u+1752B u+1752A
        DUDE: tzxwmb

    (D) u+63AB1 u+63ABA
        DUDE: yv47bm

    (E) u+261AF u+261BF
        DUDE: uyt6rta

    (F) u+C3A31 u+C3A8C
        DUDE: 6v4xb5p

    (G) u+09F44 u+0954C
        DUDE: 39ue4si

    (H) u+8D1A3 u+8C8A3
        DUDE: 27t6dt3sa

    (I) u+6C2B6 u+CC266
        DUDE: y6u7g4ss7a

    (J) u+002D u+002D u+002D u+E848F
        DUDE: ---82w8r



    (K) u+BD08E u+002D u+002D u+002D
        DUDE: 57s8q---

    (L) u+A9A24 u+002D u+002D u+002D u+C05B7
        DUDE: 434we---y393d

    (M) u+7FFFFFFF
        DUDE: z999993r or explicit failure

    The next several examples are realistic Unicode strings that could
    be used in domain names.  They exhibit single-row text, two-row
    text, ideographic text, and mixtures thereof.  These examples are
    names of Japanese television programs, music artists, and songs,
    merely because one of the authors happened to have them handy.

    (N) 3<nen>b<gumi><kinpachi><sensei>  (Latin, kanji)
        u+0033 u+5E74 u+0062 u+7D44 u+91D1 u+516B u+5148 u+751F
        DUDE: xdx8whx8tgz7ug863f6s5kuduwxh

    (O) <amuro><namie>-with-super-monkeys  (Latin, kanji, hyphens)
        u+5B89 u+5BA4 u+5948 u+7F8E u+6075 u+002D u+0077 u+0069 u+0074
        u+0068 u+002D u+0073 u+0075 u+0070 u+0065 u+0072 u+002D u+006D
        u+006F u+006E u+006B u+0065 u+0079 u+0073
        DUDE: x58jupu8nuy6gt99m-yssctqtptn-tmgftfth-trcbfqtnk

    (P) maji<de>koi<suru>5<byou><mae>  (Latin, hiragana, kanji)
        u+006D u+0061 u+006A u+0069 u+3067 u+006B u+006F u+0069 u+3059
        u+308B u+0035 u+79D2 u+524D
        DUDE: pnmdvssqvssnegvsva7cvs5qz38hu53r

    (Q) <pafii>de<runba>  (Latin, katakana)
        u+30D1 u+30D5 u+30A3 u+30FC u+0064 u+0065 u+30EB u+30F3 u+30D0
        DUDE: vs5bezgxrvs3ibvs2qtiud

    (R) <sono><supiido><de>  (hiragana, katakana)
        u+305D u+306E u+30B9 u+30D4 u+30FC u+30C9 u+3067
        DUDE: vsvpvd7hypuivf4q

8. Security considerations

    Users expect each domain name in DNS to be controlled by a single
    authority.  If a Unicode string intended for use as a domain label
    could map to multiple ACE labels, then an internationalized domain
    name could map to multiple ACE domain names, each controlled by
    a different authority, some of which could be spoofs that hijack
    service requests intended for another.  Therefore DUDE is designed
    so that each Unicode string has a unique encoding.

    However, there can still be multiple Unicode representations of the
    "same" text, for various definitions of "same".  This problem is
    addressed to some extent by the Unicode standard under the topic of



    canonicalization, and this work is leveraged for domain names by
    "nameprep" [NAMEPREP03].
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C. Mixed-case annotation

    In order to use DUDE to represent case-insensitive Unicode strings,
    higher layers need to case-fold the Unicode strings prior to DUDE
    encoding.  The encoded string can, however, use mixed-case base-32
    (rather than all-lowercase or all-uppercase as recommended in
    section 4 "Base-32 characters") as an annotation telling how to
    convert the folded Unicode string into a mixed-case Unicode string
    for display purposes.

    Each Unicode code point (unless it is U+002D hyphen-minus) is
    represented by a sequence of base-32 characters, the last of which
    is always a letter (as opposed to a digit).  If that letter is
    uppercase, it is a suggestion that the Unicode character be mapped
    to uppercase (if possible); if the letter is lowercase, it is a
    suggestion that the Unicode character be mapped to lowercase (if
    possible).

    DUDE encoders and decoders are not required to support these
    annotations, and higher layers need not use them.

    Example:  In order to suggest that example O in section 7 "Example
    strings" be displayed as:

        <amuro><namie>-with-SUPER-MONKEYS

    one could capitalize the DUDE encoding as:

        x58jupu8nuy6gt99m-yssctqtptn-tMGFtFtH-tRCBFQtNK

D. Differences from draft-ietf-idn-dude-01

    Four changes have been made since draft-ietf-idn-dude-01 (DUDE-01):

     1) DUDE-01 computed the XOR of each integer with the previous one
        in order to decide how many bits of each integer to encode, but
        now the XOR itself is encoded, so there is no need for a mask.

     2) DUDE-01 made the first quintet of each sequence different from
        the rest, while now it is the last quintet that differs, so it's
        easier for the decoder to detect the end of the sequence.

     3) The base-32 map has changed to avoid 0, 1, o, and l, to help
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        humans avoid transcription errors.

     4) The initial value of the previous code point has changed from 0
        to 0x60, making the encodings of a few domain names shorter and
        none longer.

E. Example implementation

/******************************************/
/* dude.c 0.2.3 (2001-May-31-Thu)         */
/* Adam M. Costello <amc@cs.berkeley.edu> */
/******************************************/

/* This is ANSI C code (C89) implementing */
/* DUDE (draft-ietf-idn-dude-02).         */

/************************************************************/
/* Public interface (would normally go in its own .h file): */

#include <limits.h>

enum dude_status {
  dude_success,
  dude_bad_input,
  dude_big_output  /* Output would exceed the space provided. */
};

enum case_sensitivity { case_sensitive, case_insensitive };

#if UINT_MAX >= 0x1FFFFF
typedef unsigned int u_code_point;
#else
typedef unsigned long u_code_point;
#endif

enum dude_status dude_encode(
  unsigned int input_length,
  const u_code_point input[],
  const unsigned char uppercase_flags[],
  unsigned int *output_size,
  char output[] );

    /* dude_encode() converts Unicode to DUDE (without any            */
    /* signature).  The input must be represented as an array         */
    /* of Unicode code points (not code units; surrogate pairs        */
    /* are not allowed), and the output will be represented as        */
    /* null-terminated ASCII.  The input_length is the number of code */
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    /* points in the input.  The output_size is an in/out argument:   */
    /* the caller must pass in the maximum number of characters       */
    /* that may be output (including the terminating null), and on    */
    /* successful return it will contain the number of characters     */
    /* actually output (including the terminating null, so it will be */
    /* one more than strlen() would return, which is why it is called */
    /* output_size rather than output_length).  The uppercase_flags   */
    /* array must hold input_length boolean values, where nonzero     */
    /* means the corresponding Unicode character should be forced     */
    /* to uppercase after being decoded, and zero means it is         */
    /* caseless or should be forced to lowercase.  Alternatively,     */
    /* uppercase_flags may be a null pointer, which is equivalent     */
    /* to all zeros.  The encoder always outputs lowercase base-32    */
    /* characters except when nonzero values of uppercase_flags       */
    /* require otherwise.  The return value may be any of the         */
    /* dude_status values defined above; if not dude_success, then    */
    /* output_size and output may contain garbage.  On success, the   */
    /* encoder will never need to write an output_size greater than   */
    /* input_length*k+1 if all the input code points are less than 1  */
    /* << (4*k), because of how the encoding is defined.              */

enum dude_status dude_decode(
  enum case_sensitivity case_sensitivity,
  char scratch_space[],
  const char input[],
  unsigned int *output_length,
  u_code_point output[],
  unsigned char uppercase_flags[] );

    /* dude_decode() converts DUDE (without any signature) to         */
    /* Unicode.  The input must be represented as null-terminated     */
    /* ASCII, and the output will be represented as an array of       */
    /* Unicode code points.  The case_sensitivity argument influences */
    /* the check on the well-formedness of the input string; it       */
    /* must be case_sensitive if case-sensitive comparisons are       */
    /* allowed on encoded strings, case_insensitive otherwise.        */
    /* The scratch_space must point to space at least as large        */
    /* as the input, which will get overwritten (this allows the      */
    /* decoder to avoid calling malloc()).  The output_length is      */
    /* an in/out argument: the caller must pass in the maximum        */
    /* number of code points that may be output, and on successful    */
    /* return it will contain the actual number of code points        */
    /* output.  The uppercase_flags array must have room for at       */
    /* least output_length values, or it may be a null pointer if     */
    /* the case information is not needed.  A nonzero flag indicates  */
    /* that the corresponding Unicode character should be forced to   */
    /* uppercase by the caller, while zero means it is caseless or    */
    /* should be forced to lowercase.  The return value may be any    */
    /* of the dude_status values defined above; if not dude_success,  */
    /* then output_length, output, and uppercase_flags may contain    */
    /* garbage.  On success, the decoder will never need to write     */



    /* an output_length greater than the length of the input (not     */
    /* counting the null terminator), because of how the encoding is  */
    /* defined.                                                       */

/**********************************************************/
/* Implementation (would normally go in its own .c file): */

#include <string.h>

/* Character utilities: */

/* base32[q] is the lowercase base-32 character representing  */
/* the number q from the range 0 to 31.  Note that we cannot  */
/* use string literals for ASCII characters because an ANSI C */
/* compiler does not necessarily use ASCII.                   */

static const char base32[] = {
  97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,     /* a-k */
  109, 110,                                               /* m-n */
  112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122,  /* p-z */
  50, 51, 52, 53, 54, 55, 56, 57                          /* 2-9 */
};

/* base32_decode(c) returns the value of a base-32 character, in the */
/* range 0 to 31, or the constant base32_invalid if c is not a valid */
/* base-32 character.                                                */

enum { base32_invalid = 32 };

static unsigned int base32_decode(char c)
{
  if (c < 50) return base32_invalid;
  if (c <= 57) return c - 26;
  if (c < 97) c += 32;
  if (c < 97 || c == 108 || c == 111 || c > 122) return base32_invalid;
  return c - 97 - (c > 108) - (c > 111);
}

/* unequal(case_sensitivity,s1,s2) returns 0 if the strings s1 and s2 */
/* are equal, 1 otherwise.  If case_sensitivity is case_insensitive,  */
/* then ASCII A-Z are considered equal to a-z respectively.           */

static int unequal( enum case_sensitivity case_sensitivity,
                    const char s1[], const char s2[]        )
{
  char c1, c2;

  if (case_sensitivity != case_insensitive) return strcmp(s1,s2) != 0;

  for (;;) {



    c1 = *s1;
    c2 = *s2;
    if (c1 >= 65 && c1 <= 90) c1 += 32;
    if (c2 >= 65 && c2 <= 90) c2 += 32;
    if (c1 != c2) return 1;
    if (c1 == 0) return 0;
    ++s1, ++s2;
  }
}

/* Encoder: */

enum dude_status dude_encode(
  unsigned int input_length,
  const u_code_point input[],
  const unsigned char uppercase_flags[],
  unsigned int *output_size,
  char output[] )
{
  unsigned int max_out, in, out, k, j;
  u_code_point prev, codept, diff, tmp;
  char shift;

  prev = 0x60;
  max_out = *output_size;

  for (in = out = 0;  in < input_length;  ++in) {

    /* At the start of each iteration, in and out are the number of */
    /* items already input/output, or equivalently, the indices of  */
    /* the next items to be input/output.                           */

    codept = input[in];

    if (codept == 0x2D) {
      /* Hyphen-minus stands for itself. */
      if (max_out - out < 1) return dude_big_output;
      output[out++] = 0x2D;
      continue;
    }

    diff = prev ^ codept;

    /* Compute the number of base-32 characters (k): */
    for (tmp = diff >> 4, k = 1;  tmp != 0;  ++k, tmp >>= 4);

    if (max_out - out < k) return dude_big_output;
    shift = uppercase_flags && uppercase_flags[in] ? 32 : 0;
    /* shift controls the case of the last base-32 digit. */



    /* Each quintet has the form 1xxxx except the last is 0xxxx. */
    /* Computing the base-32 digits in reverse order is easiest. */

    out += k;
    output[out - 1] = base32[diff & 0xF] - shift;

    for (j = 2;  j <= k;  ++j) {
      diff >>= 4;
      output[out - j] = base32[0x10 | (diff & 0xF)];
    }

    prev = codept;
  }

  /* Append the null terminator: */
  if (max_out - out < 1) return dude_big_output;
  output[out++] = 0;

  *output_size = out;
  return dude_success;
}

/* Decoder: */

enum dude_status dude_decode(
  enum case_sensitivity case_sensitivity,
  char scratch_space[],
  const char input[],
  unsigned int *output_length,
  u_code_point output[],
  unsigned char uppercase_flags[] )
{
  u_code_point prev, q, diff;
  char c;
  unsigned int max_out, in, out, scratch_size;
  enum dude_status status;

  prev = 0x60;
  max_out = *output_length;

  for (c = input[in = 0], out = 0;  c != 0;  c = input[++in], ++out) {

    /* At the start of each iteration, in and out are the number of */
    /* items already input/output, or equivalently, the indices of  */
    /* the next items to be input/output.                           */

    if (max_out - out < 1) return dude_big_output;

    if (c == 0x2D) output[out] = c;  /* hyphen-minus is literal */
    else {



      /* Base-32 sequence.  Decode quintets until 0xxxx is found: */

      for (diff = 0;  ;  c = input[++in]) {
        q = base32_decode(c);
        if (q == base32_invalid) return dude_bad_input;
        diff = (diff << 4) | (q & 0xF);
        if (q >> 4 == 0) break;
      }

      prev = output[out] = prev ^ diff;
    }

    /* Case of last character determines uppercase flag: */
    if (uppercase_flags) uppercase_flags[out] = c >= 65 && c <= 90;
  }

  /* Enforce the uniqueness of the encoding by re-encoding */
  /* the output and comparing the result to the input:     */

  scratch_size = ++in;
  status = dude_encode(out, output, uppercase_flags,
                       &scratch_size, scratch_space);
  if (status != dude_success || scratch_size != in ||
      unequal(case_sensitivity, scratch_space, input)
     ) return dude_bad_input;

  *output_length = out;
  return dude_success;
}

/******************************************************************/
/* Wrapper for testing (would normally go in a separate .c file): */

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* For testing, we'll just set some compile-time limits rather than */
/* use malloc(), and set a compile-time option rather than using a  */
/* command-line option.                                             */

enum {
  unicode_max_length = 256,
  ace_max_size = 256,
  test_case_sensitivity = case_insensitive
                          /* suitable for host names */
};



static void usage(char **argv)
{
  fprintf(stderr,
    "%s -e reads code points and writes a DUDE string.\n"
    "%s -d reads a DUDE string and writes code points.\n"
    "Input and output are plain text in the native character set.\n"
    "Code points are in the form u+hex separated by whitespace.\n"
    "A DUDE string is a newline-terminated sequence of LDH characters\n"
    "(without any signature).\n"
    "The case of the u in u+hex is the force-to-uppercase flag.\n"
    , argv[0], argv[0]);
  exit(EXIT_FAILURE);
}

static void fail(const char *msg)
{
  fputs(msg,stderr);
  exit(EXIT_FAILURE);
}

static const char too_big[] =
  "input or output is too large, recompile with larger limits\n";
static const char invalid_input[] = "invalid input\n";
static const char io_error[] = "I/O error\n";

/* The following string is used to convert LDH      */
/* characters between ASCII and the native charset: */

static const char ldh_ascii[] =
  "................"
  "................"
  ".............-.."
  "0123456789......"
  ".ABCDEFGHIJKLMNO"
  "PQRSTUVWXYZ....."
  ".abcdefghijklmno"
  "pqrstuvwxyz";

int main(int argc, char **argv)
{
  enum dude_status status;
  int r;
  char *p;

  if (argc != 2) usage(argv);
  if (argv[1][0] != '-') usage(argv);
  if (argv[1][2] != 0) usage(argv);



  if (argv[1][1] == 'e') {
    u_code_point input[unicode_max_length];
    unsigned long codept;
    unsigned char uppercase_flags[unicode_max_length];
    char output[ace_max_size], uplus[3];
    unsigned int input_length, output_size, i;

    /* Read the input code points: */

    input_length = 0;

    for (;;) {
      r = scanf("%2s%lx", uplus, &codept);
      if (ferror(stdin)) fail(io_error);
      if (r == EOF || r == 0) break;

      if (r != 2 || uplus[1] != '+' || codept > (u_code_point)-1) {
        fail(invalid_input);
      }

      if (input_length == unicode_max_length) fail(too_big);

      if (uplus[0] == 'u') uppercase_flags[input_length] = 0;
      else if (uplus[0] == 'U') uppercase_flags[input_length] = 1;
      else fail(invalid_input);

      input[input_length++] = codept;
    }

    /* Encode: */

    output_size = ace_max_size;
    status = dude_encode(input_length, input, uppercase_flags,
                         &output_size, output);
    if (status == dude_bad_input) fail(invalid_input);
    if (status == dude_big_output) fail(too_big);
    assert(status == dude_success);

    /* Convert to native charset and output: */

    for (p = output;  *p != 0;  ++p) {
      i = *p;
      assert(i <= 122 && ldh_ascii[i] != '.');
      *p = ldh_ascii[i];
    }

    r = puts(output);
    if (r == EOF) fail(io_error);
    return EXIT_SUCCESS;
  }



  if (argv[1][1] == 'd') {
    char input[ace_max_size], scratch[ace_max_size], *pp;
    u_code_point output[unicode_max_length];
    unsigned char uppercase_flags[unicode_max_length];
    unsigned int input_length, output_length, i;

    /* Read the DUDE input string and convert to ASCII: */

    fgets(input, ace_max_size, stdin);
    if (ferror(stdin)) fail(io_error);
    if (feof(stdin)) fail(invalid_input);
    input_length = strlen(input);
    if (input[input_length - 1] != '\n') fail(too_big);
    input[--input_length] = 0;

    for (p = input;  *p != 0;  ++p) {
      pp = strchr(ldh_ascii, *p);
      if (pp == 0) fail(invalid_input);
      *p = pp - ldh_ascii;
    }

    /* Decode: */

    output_length = unicode_max_length;
    status = dude_decode(test_case_sensitivity, scratch, input,
                         &output_length, output, uppercase_flags);
    if (status == dude_bad_input) fail(invalid_input);
    if (status == dude_big_output) fail(too_big);
    assert(status == dude_success);

    /* Output the result: */

    for (i = 0;  i < output_length;  ++i) {
      r = printf("%s+%04lX\n",
                 uppercase_flags[i] ? "U" : "u",
                 (unsigned long) output[i] );
      if (r < 0) fail(io_error);
    }

    return EXIT_SUCCESS;
  }

  usage(argv);
  return EXIT_SUCCESS;  /* not reached, but quiets compiler warning */
}
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