
IETF IDN Working Group Seungik Lee, Hyewon Shin, Dongman Lee
Internet Draft ICU
draft-ietf-idn-icu-00.txt Eunyong Park, Sungil Kim
Expires: 14 January 2001 KKU, Netpia.com
 14 July 2000

Architecture of Internationalized Domain Name System

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

1. Abstract

 For restrict use of Domain Name System (DNS) for domain names with
 alphanumeric characters only, there needs a way to find an Internet
 host using multi-lingual domain names: Internationalized Domain Name
 System (IDNS).

 This document describes how multi-lingual domain names are handled in
 a new protocol scheme for IDNS servers and resolvers in architectural
 view and it updates the [RFC1035] but still preserves the backward
 compatibility with the current DNS protocol.

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 "IDNS" (Internationalized Domain Name System) is used here to
 indicate a new system designed for a domain name service, which

https://datatracker.ietf.org/doc/html/draft-ietf-idn-icu-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119

 supports multi-lingual domain names.

 "The current/conventional DNS" or "DNS" (Domain Name System) is used
 here to indicate the domain name systems currently in use. It
 fulfills the [RFC1034, RFC1035], but implementations and functional
 operations may be different from each other.

 The "alphanumeric" character data used here is the character set that
 is allowed for a domain name in DNS query format, [a-zA-Z0-9-].

3. Introduction

 Domain Name System (DNS) has eliminated the difficulty of remembering
 the IP addresses. As the Internet becomes spread over all the people,
 the likelihood that the people who are not familiar with alphanumeric
 characters use the Internet increases. The domain names in
 alphanumeric characters are difficult to remember or use for the
 people who is not educated English. Therefore, it needs a way to find
 an Internet host using multi-lingual domain name: Internationalized
 Domain Name System.

3.1 The current issues of IDNS

 IDNS maps a name to an IP address as the typical DNS does, but it
 allows domain names to contain multi-lingual characters. The multi-
 lingual characters need to be encoded/decoded into one standardized
 format, and it needs changes in the conventional DNS protocol
 described in [RFC1034] and [RFC1035]. But it is required to minimize
 the changes in the present DNS protocol so that it guarantees the
 backward compatibility.

 The IDNS issues have been discussed in IETF IDN Working Group. These
 issues are well described in [IDN-REQ]. The main issues are:

 - Compatibility and interoperability. The DNS protocol is in use
 widely in the Internet. Although a new protocol is introduced for DNS,
 the current protocol may be used with no changes. Therefore, a new
 design for DNS protocol, IDNS must provide backward compatibility and
 interoperability with the current DNS.

 - Internationalization. IDNS is on the purpose of using multi-lingual
 domain names. The international character data must be represented by
 one standardized format in domain names.

 - Canonicalization. DNS indexes and matches domain names to look up a
 domain name from zone data. In the conventional DNS, canonicalization
 is subjected to US-ASCII only. However, every multi-lingual character
 data must be canonicalized in its own rules for a DNS standardized
 matching policy, e.g. case-insensitive matching rule.

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035

 - Operational issues. IDNS uses international character data for
 domain names. Normalization and canonicalization of domain names are
 needed in addition to the current DNS operations. IDNS also needs an
 operation for interoperability with the current DNS. Therefore, it is
 needed to specify the operational guidelines for IDNS.

3.2 Overview of the proposed scheme

 Our proposed scheme for IDNS is also subjected on the issues
 described earlier to fulfill the requirements of IDN [IDN-REQ].

 The proposed scheme can be summarized as following:

 - The IN bit, which is reserved and currently unused in the DNS
 query/response format header, is used to distinguish between the
 queries generated by IDNS servers or resolvers and those of non-IDNS
 ones [Oscarsson]. This mechanism is also needed to indicate whether
 the query is generated by the appropriate IDNS operations for
 canonicalization and normalization or not.

 - The multi-lingual domain names are encoded into UTF-8 as a wire
 format. UTF-8 is recommended as a default character encoding scheme
 (CES) in the creation of new protocols which transmit text in
 [RFC2130]. This scheme allows the IDNS server to handle the DNS query
 from non-IDNS servers or resolvers because the ASCII code has no
 changes in UTF-8.

 - The UTF-8 domain names must be case-folded before transmission. It
 minimizes the overhead on server's operations of matching names in
 case-insensitive. It also guarantees that the result of caching
 queries can be used without any further normalization and
 canonicalization. If IDNS server gets non-IDNS query that is not
 case-folded, it case-folds the query before transmitting to another
 servers.

4. Design considerations

 Our proposed scheme is designed to fulfill the requirements of IETF
 IDN WG [IDN-REQ]. All the methods for IDNS schemes must be approved
 by the requirements documents. The design described in this document
 is based on these requirements.

4.1 Protocol Extensions

 To indicate an IDNS query format, we use an unallocated bit in the
 current DNS query format header, named 'IN' bit [Oscarsson]. All IDNS
 queries are set IN bit to 1. Without this bit set to 1, we cannot

https://datatracker.ietf.org/doc/html/rfc2130

 guarantee that the query is in the appropriate format for IDNS.

 'IN' bit is to indicate whether the query is from IDNS
 resolvers/servers or not. It also reduces overhead on canonicalizing
 operation at IDNS server. It will be described further in <4.4.
 Canonicalization>.

 We devise new operations and new structures of resolvers and name
 servers to add the multi-lingual domain name handling features into
 the DNS. This causes changes of all DNS servers and resolvers to use
 multi-lingual domain names. The new architectures for resolvers and
 servers will be described in <5. Architectures>

4.2 Compatibility and interoperability

 The 'IN' bit is valid bit location of query for the conventional DNS
 protocol to be set to zero [RFC1035]. And operations and structures
 of IDNS preserve the conventional rules of DNS to guarantee the
 interoperability with the conventional DNS servers or resolvers so
 that the changes are optional. These make this scheme for IDNS
 compatible with the current protocol.

 Although the current DNS protocol uses 7-bit ASCII characters only,
 the query format of the current DNS protocol set is 8 bit-clean.
 Therefore, we can guarantee the backward compatibility and
 interoperability with the current DNS using UTF-8 code because the
 ASCII code is preserved with no changes in UTF-8.

 Note: There are also in use implementations that are compatible with
 the current DNS but extend their operations to use UTF-8 domain names.
 The IDNS described here interoperates well with these implementations.
 The interoperability with these implementations will be described in
 <5.4 Interoperability with the current DNS>.

4.3 Internationalization

 All international character data must be represented in one
 standardized format and the standardized format must be compatible
 with the current ASCII-based protocols. Therefore, the coded
 character set (CCS) for IDNS protocol must be Unicode [Unicode], and
 be encoded using the UTF-8 [RFC2279] character encoding scheme (CES).

 The client-side interface may allow the domain names encoded in any
 local character sets, Unicode, ASCII and so on. But they must be
 encoded into Unicode before being used in IDNS resolver. The IDNS
 resolver accepts Unicode character data only, and converts it to UTF-
 8 finally for transmission.

4.4 Canonicalization

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2279

 In the current DNS protocol, the domain names are matched in case-
 insensitive. Therefore, the domain names in a query and zone file
 must be case-folded before equivalence test.

 The case-folding issue has been discussed for a long time in IETF IDN
 WG. The main problem is for case folding in locale-dependent. Some
 different local characters are overlapped within case-folded format.
 For example, Latin capital letter I (U+0049) case-folded to lower
 case in the Turkish context will become Latin small letter dotless i
 (U+0131). But in the English context, it will become Latin small
 letter i (U+0069)

 Therefore, we case-fold the domain names in locale-independent in our
 new IDNS design with a method defined in [UTR21].

 Multi-lingual domain names should be case-folded in IDNS resolvers or
 IDNS servers before transmitting to other IDNS/DNS servers. That is,
 IDNS resolver should case-fold the domain name and converts it to
 UTF-8 before transmission. In case of IDNS server, if it gets a query
 with IN bit set to 1, then it needs not to make the multi-lingual
 domain name canonicalized anymore. If the IDNS server gets a query
 with IN bit set to 0, then it cannot determine the query is
 appropriate canonicalized format for IDNS server, so that it case-
 folds that multi-lingual domain name in the query, and set 'IN' bit
 to 1.

 The current DNS queries contain the original case of domain names to
 preserve the original cases. To be consistent with this rule, all
 case-folded multi-lingual domain names should be stored by IDNS
 resolvers or servers before case-folding, and should be restored
 before sending response.

 In the case of case-folding UTF-8 code, using the case-folding method
 in [UTR21], the UTF-8 should be converted to Unicode and it must be
 mapped to the mapping table finally. Of course that if we could make
 a case-folding mapping table of UTF-8 character data, this overhead
 could be reduced.

 However it cannot avoid an overhead in IDNS servers for
 canonicalization, because the canonicalization of international
 character data is complicated.

 To minimize this overhead, we use 'IN' bit to indicate that the
 canonicalization for the query has been already handled. That means
 it needs not canonicalization operation anymore. The detailed
 operations according to the 'IN' bit are described later in <5.
 Architectures>.

 With international character data, the canonicalization (e.g. case-
 folding) is much more complicated than the one with US-ASCII, and is

 different from each other's by their locale contexts.

 But this document doesn't specify any method or recommendation more
 than case-folding. For canonicalization of international character
 data, [UTR15] is a good start. It must be discussed further and
 specified in the IDNS protocol specification.

4.5 Operational issues

 In the current DNS scheme, it uses only ASCII code for a wire format.
 But our new IDNS scheme uses UTF-8 code for a wire format. All the
 IDNS resolvers must transmit queries encoded in UTF-8 and case-folded.
 This format can be guaranteed by checking the IN bit: if IN bit is
 set to 1, the query is encoded in UTF-8 and case-folded. Otherwise
 the IDNS server cannot assure that the query is encoded in UTF-8 and
 case-folded. Therefore it needs additional operations for encoding to
 UTF-8 and case-folding, etc in this case.

 The current DNS resolvers transmit the queries in ASCII code. But
 it's not considerable in IDNS servers because the ASCII code is
 preserved with no changes in UTF-8.

 Some applications and resolvers transmit the queries in UTF-8
 although they don't fit on the new IDNS resolvers' structures, e.g.
 Microsoft's DNS servers. We cannot guarantee that those queries are
 case-folded correctly. Therefore, the IDNS servers should convert
 them to appropriate IDNS queries instead of the IDNS resolver in that
 case.

 All detailed operations of IDNS servers and resolvers are described
 in <5. Architectures>.

5. Architectures

5.1 New header format

 A new IDNS servers and resolvers must interoperate with the ones of
 current DNS. Therefore, we need a way to determine whether the query
 is for IDN or not. For this reason, we use a new header format as
 proposed in [Oscarsson].

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ID |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 |QR| Opcode |AA|TC|RD|RA|IN|AD|CD| RCODE |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 | QDCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ANCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | NSCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
 | ARCOUNT |
 +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

 The IDNS resolvers and servers identify themselves in a query or a
 response by setting the 'IN' bit to 1 in the DNS query/response
 format header. This bit is defined to be zero by default in the
 current DNS servers and resolvers.

5.2 Structures of IDNS resolvers

 To use multi-lingual domain names with IDNS servers, all the IDNS/DNS
 resolvers must generate the query in a format of UTF-8 or ASCII. The
 design of a resolver could be different with each other according to
 the local operating systems or applications. We propose new design
 guidelines of a resolver for a new standardization.

 The IDNS resolver accepts Unicode from user interface for domain
 names. The other character sets should be rejected. It encodes all
 such character data into UTF-8 for transmission to name servers.

 The procedures of the operation of an IDNS resolver are below:

 <1>. If the resolver gets a domain name in Unicode or ASCII then it
 stores the original domain name query. Otherwise the request for
 lookup is rejected. In the current DNS protocol, the original case of
 the domain name should be preserved. Therefore, the resolver must
 store the original cases of the domain names before canonicalization
 (e.g. case-folding).

 <2>. Make the domain name case-folded with locale-independent case-
 mapping table defined in [UTR21].

 <3>. Convert it to UTF-8.

 <4>. Set IN bit to 1. It indicates the query is from IDNS resolver
 and the format is UTF-8, case-folded.

 <5>. Send request query to name servers.

 <6>. Restore the original domain name query into the response query
 format.

 <7>. Send response to the application.

5.3 Structures of IDNS servers

 The operation of IDNS server is similar to the current one of DNS
 server, but the IDNS server accepts UTF-8 queries and converts them
 to the appropriate formats additionally.

 The IDNS server distinguishes between the IDNS queries and DNS
 queries by checking IN bit in the query/response format header.
 According to the 'IN' bit, it operates differently.

 The procedures of the operation of an IDNS server are below:

 <1>. If the IN bit in the query/response format header is set to 1
 then it matches the domain name within zone file data or forwards
 request query to resolve. It operates as same as the operations of
 the current DNS servers but retrieves UTF-8 code. In this case, it
 needs not to make domain name canonicalized because the domain name
 is already canonicalized in the previous procedures of IDNS resolvers
 or IDNS servers. Go to step <7>.

 <2>. Set IN bit to 1.

 <3>. Store the original domain name query.

 <4>. Make the domain name case-folded with locale-independent case-
 mapping table defined in [UTR21].

 <5>. Match the domain name within zone file data or send request
 query to lookup.

 <6>. Restore the original domain name query into the response query
 format.

 <7>. Send response for the query to the resolver or the other server
 requested.

5.4 Interoperability with the current DNS

 The DNS servers and resolvers accept domain names in ASCII only. But
 IDNS servers and resolvers accept domain names in UTF-8. Therefore,
 the queries from DNS ones to IDNS ones can be well handled because
 the UTF-8 is a superset of ASCII code. But the queries from IDNS ones
 to DNS ones will be rejected because the UTF-8 code is beyond the
 range of ASCII code.

 Note: There are some implementations which can handle UTF-8 domain
 names although they don't fit on this specification of IDNS and fully
 implemented with DNS protocol specification, e.g. Microsoft's DNS
 server and resolvers. In this case, we cannot guarantee that the
 queries from these 3rd-party implementations are encoded into UTF-8

 and well canonicalized. But this queries are set 'IN' bit to 0, so
 that the IDNS evaluates whether the domain name is the range of UTF-8
 or not, and converts it into UTF-8 and makes it canonicalized finally.

6. Security Considerations

 This architecture of IDNS uses 8bit-clean queries for transmission
 and the UTF-8 code is handled instead of ASCII. The DNS protocol has
 already allocated 8bit query format for domain names Therefore, the
 IDNS protocol inherits the security issues for the current DNS.

 Canonicalization of IDNS is defined in [UTR15] and case folding in
 [UTR21]. All security issues related with canonicalization or
 normalization inherits ones described in [UTR15, UTR21].

 As always with data, if software does not check for data that can be
 a problem, security may be affected. As more characters than ASCII is
 allowed, software only expecting ASCII and with no checks may now get
 security problems.

7. References

 [IDN-REQ] James Seng, "Requirements of Internationalized Domain
 Names," Internet Draft, June 2000

 [KWAN] Stuart Kwan, "Using the UTF-8 Character Set in the
 Domain Name System," Internet Draft, February 2000

 [Oscarsson] Dan Oscarsson, "Internationalisation of the Domain Name
 Service," Internet Draft, February 2000

 [RFC1034] Mockapetris, P., "Domain Names - Concepts and
 Facilities," STD 13, RFC 1034, USC/ISI, November 1987

 [RFC1035] Mockapetris, P., "Domain Names - Implementation and
 Specification," STD 13, RFC 1035, USC/ISI, November
 1987

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels," RFC 2119, March 1997

 [RFC2130] C. Weider et. Al., "The Report of the IAB Character Set
 Workshop held 29 February - 1 March 1996," RFC 2130,
 Apr 1997.

 [RFC2279] F. Yergeau, "UTF-8, a transformation format of ISO
 10646," RFC 2279, January 1998

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2130
https://datatracker.ietf.org/doc/html/rfc2279

 [RFC2535] D. Eastlake, "Domain Name System Security Extensions,"
RFC 2535, March 1999

 [UNICODE] The Unicode Consortium, "The Unicode Standard - Version
 3.0," http://www.unicode.org/unicode/

 [UTR15] M. Davis and M. Duerst, "Unicode Normalization Forms",
 Unicode Technical Report #15, Nov 1999,

http://www.unicode.org/unicode/reports/tr15/

 [UTR21] Mark Davis, "Case Mappings," Unicode Technical Report
 #21, May 2000,

http://www.unicode.org/unicode/reports/tr21

8. Acknowledgments

 Kyoungseok Kim <gimgs@asadal.cs.pusan.ac.kr>
 Chinhyun Bae <piano@netpia.com>

9. Author's Addresses

 Seungik Lee
 Email: silee@icu.ac.kr

 Hyewon Shin
 Email: hwshin@icu.ac.kr

 Dongman Lee
 Email: dlee@icu.ac.kr

 Information & Communications University
 58-4 Whaam-dong Yuseong-gu Taejon, 305-348 Korea

 Eunyong Park
 Email: eunyong@eunyong.pe.kr
 Konkuk University
 93-1 Mojindong, Kwangjin-ku Seoul, 143-701 Korea

 Sungil Kim
 Email: clicky@netpia.com
 Netpia.com
 35-1 8-ga Youngdeungpo-dong Youngdeungpo-gu Seoul, 150-038 Korea

https://datatracker.ietf.org/doc/html/rfc2535
http://www.unicode.org/unicode/
http://www.unicode.org/unicode/reports/tr15/
http://www.unicode.org/unicode/reports/tr21

