
Internet Draft M. Ishisone
draft-ietf-idn-mace-00.txt SRA
Jun 21, 2001 Y. Yoneya
Expires Dec 21, 2001 JPNIC

 MACE: Modal ASCII Compatible Encoding for IDN

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 MACE is a reversible transformation method from a sequence of Unicode
 [UNICODE] characters to a sequence of ASCII letters, digits and
 hyphens (LDH characters). It is designed to be used as an encoding
 for internationalized domain names [IDN].

Contents

 1. Introduction
 2. Terminology
 3. Overview
 4. Base32 format
 5. Notations
 6. Encoding Description
 7. Encoding Procedure
 8. Decoding Description
 9. Decoding Procedure
 10. ACE Identifier
 11. Examples

https://datatracker.ietf.org/doc/html/draft-ietf-idn-mace-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

 Expires December 21th, 2001 [Page 1]

Internet Draft MACE June 21th, 2001

 12. Security Considerations
 13. References
 14. Acknowlegdements
 15. Authors' Address

1. Introduction

 MACE is intended to be used as an ACE in the IDNA architecture
 [IDNA], and encodes a sequence of Unicode (ISO/IEC 10646) characters
 in the range U+0000-U+10FFFF as a sequence of LDH characters.

 MACE is designed to have following features:

 Completeness: Every Unicode string has a map to an LDH character
 string.

 Uniqueness: Every Unicode string maps to at most one LDH character
 string.

 Reversibility: The original Unicode string can be obtained from an
 LDH character string to which the Unicode string maps.

 Efficiency: The ratio of encoded size to original size is small.
 If the code points of the Unicode string are clustered, a
 compression algorithm enables a compact encoding. Even if they
 are not, the encoded size is still kept small.

 Simplicity: The encoding/decoding algorithms are fairly simple to
 implement.

2. Terminology

 LDH characters are the letters A-Z and a-z, the digits 0-9, and
 hyphen-minus.

 As in the Unicode Standard [UNICODE], Unicode characters are denoted
 by "U+" followed by four to six hexadecimal digits representing its
 UCS-4 code point. A range of Unicode characters is denoted by the
 form "U+xxxx-U+yyyy".

3. Overview

 MACE encodes a sequence of Unicode (ISO/IEC 10646) characters in the

 range U+0000-U+10FFFF as a sequence of LDH characters.

 MACE is a modal encoding. There are two major modes and one of which
 has four submodes. Each character is encoded in a specific
 mode/submode. The mode/submode is chosen according to the code point

 Expires December 21th, 2001 [Page 2]

Internet Draft MACE June 21th, 2001

 of the character and possibly its neiboring characters. The modal
 encoding enables compact representation of each character, and the
 modes are chosen so that mode change occurs rather infrequently as
 long as the source string is written in a single language.

 LDH characters are represented literally, for the compactness of the
 encoded result. Other Unicode characters are represented as base32
 format strings. Each of Unicode characters in Basic Multilingual
 Plane (BMP, U+0000-U+FFFF) except LDH characters is encoded as a
 3-octet base32 format sting, while each non-BMP (U+10000-U+10FFFF)
 character is encoded as a 4-octet base32 format string.

 To achieve fairly good compression for non-LDH charactes, there is
 also a submode for differential encoding. Using this submode,
 characters are encoded as bitwise-xor value between the code points
 of the previous character and the current character. In this submode
 a character is encoded as a 1 or 2 octet base32 format string.

 So if the code points of the input string are clusterd in a small
 region, an effective compression algorithm enables 1 or 2
 octets/character encoding (plus some overhead for mode changes).
 Even if the code points are widely scattered and difficult to
 compress (such as CJK Han characters), 3 octets/character (for BMP)
 or 4 octets/character (for Non-BMP) encoding (plus some overhead for
 mode changes) can be achieved.

4. Base32 Format

 MACE uses base32 format string to encode non-negative intergers. The
 base32 format used for MACE is:

 "0" = 0 = 0x00 = 00000 "g" = 16 = 0x10 = 10000
 "1" = 1 = 0x01 = 00001 "h" = 17 = 0x11 = 10001
 "2" = 2 = 0x02 = 00010 "i" = 18 = 0x12 = 10010
 "3" = 3 = 0x03 = 00011 "j" = 19 = 0x13 = 10011
 "4" = 4 = 0x04 = 00100 "k" = 20 = 0x14 = 10100
 "5" = 5 = 0x05 = 00101 "l" = 21 = 0x15 = 10101
 "6" = 6 = 0x06 = 00110 "m" = 22 = 0x16 = 10110
 "7" = 7 = 0x07 = 00111 "n" = 23 = 0x17 = 10111

 "8" = 8 = 0x08 = 01000 "o" = 24 = 0x18 = 11000
 "9" = 9 = 0x09 = 01001 "p" = 25 = 0x19 = 11001
 "a" = 10 = 0x0A = 01010 "q" = 26 = 0x1A = 11010
 "b" = 11 = 0x0B = 01011 "r" = 27 = 0x1B = 11011
 "c" = 12 = 0x0C = 01100 "s" = 28 = 0x1C = 11100
 "d" = 13 = 0x0D = 01101 "t" = 29 = 0x1D = 11101
 "e" = 14 = 0x0E = 01110 "u" = 30 = 0x1E = 11110
 "f" = 15 = 0x0F = 01111 "v" = 31 = 0x1F = 11111

 The encoding is big-endian (most-significant bits first). The
 following shows some examples.

 Expires December 21th, 2001 [Page 3]

Internet Draft MACE June 21th, 2001

 decimal hexadecimal binary base32 string

 40 0x28 00001 01000 "18"
 9876 0x2694 01001 10100 10100 "9kk"

5. Notations

 In the following description, following five functions are used.

 base32_encode(N, LEN)
 denotes a base32 format string of LEN octets representing number
 N. If LEN is larger than what needs to represent N, "0" is
 prepended.

 base32_decode(S)
 denotes a number which corresponds to a base32 format string S.

 codepoint(C)
 denotes a UCS-4 code point value for character C.

 character(N)
 denotes a Unicode character whose UCS-4 code point is N.

 xor(N, M)
 denotes a bit-wise XOR value of integer N and M.

6. Encoding Description

 MACE can encode Unicode/ISO10646 characters in the range
 U+0000-U+10FFFF. If the input string contains other characters, or
 it represents a non-internationalized host name parts (conforms to

 [STD13]), it MUST NOT be converted.

 MACE has several encoding modes/submodes. There are two major modes,
 `Literal' and `Non-Literal'. Non-Literal mode has four submodes,
 while Literal mode has none. Each character is encoded in a specific
 mode/submode. The encoding process of a character is:

 1. Determine the mode/submode to encode the character.
 2. If and only if it is necessary to change the current mode,
 output ASCII hyphen-minus to change the mode.
 3. If and only if it is necessary to change the current submode,
 output the submode introducer octet (described below) to change
 the submode.
 4. Encode the character in the mode/submode.

 ASCII letter and digit characters are encoded in Literal mode, while
 non-LDH characters are encoded in Non-Literal mode. ASCII hyphen

 Expires December 21th, 2001 [Page 4]

Internet Draft MACE June 21th, 2001

 character (U+002D) can be encoded in either modes, and is always
 encoded as a sequence of two hyphen-minus ("--"). Switching between
 Literal mode and Non-Literal mode is indicated by an ASCII hyphen not
 followed by another hyphen. The initial mode is Non-Literal.

 In Literal mode, characters are encoded as they are. For example
 ASCII character "a" is encoded as "a". In Non-Literal mode,
 characters are encoded as a base32 format string.

 Non-Literal mode further comprises four submodes, `BMP-A', `BMP-B',
 `Non-BMP' and `Compress'. Every non-LDH character is encoded one of
 these submodes. Shifting to each submode is indicated by a certain
 octet (called introducer octet) shown below. These introducer octets
 can be distinguished from the base32 string since they never appear
 in the base32 string used by MACE.

 submode introducer octet

 BMP-A "w"
 BMP-B "x"
 Non-BMP "y"
 Compress "z"

 Switching between Literal mode and Non-Literal mode doesn't affect
 current submode, that is, on returning from the Literal mode,
 previous submode is restored. This lowers the necessity of submode
 changes. The initial submode is BMP-A.

 BMP-A and BMP-B submodes are used for encoding characters in Unicode
 Basic Multilingual Plane (U+0000-U+FFFF), except LDH characters. In
 these submodes, a character is encoded as base32 format string of 3
 octets. BMP-A is used for characters in the range U+0000-U+1FFF and
 U+A000-U+FFFF, covering most of Western/Middle-Eastern scripts and
 Hangul. BMP-B is used for characters in the range U+2000-U+9FFF,
 covering CJK unification area. Those characters are first mapped to
 integers of the range 0x0000-0x7fff (15bit integer), then converted
 to base32 format string using the following scheme:

 submode character range encoding

 BMP-A U+0000-U+1FFF base32_encode(codepoint(C), 3)
 U+A000-U+FFFF base32_encode(codepoint(C) - 0x8000, 3)

 BMP-B U+2000-U+9FFF base32_encode(codepoint(C) - 0x2000, 3)

 Expires December 21th, 2001 [Page 5]

Internet Draft MACE June 21th, 2001

 Here are some examples:

 character submode integer base32 string

 U+00B0 BMP-A 0xb0 "05g"
 U+5678 BMP-B 0x3678 "djo"
 U+BCDE BMP-A 0x3CDE "f6u"

 Non-BMP submode is used for encoding Unicode characters outside Basic
 Multilingual Plane (U+10000-U+10FFFF). In this mode a character is
 encoded as base 32 format string of 4 octets. Characters
 U+10000-U+10FFFF are first mapped to intergers of the range
 0x00000-0xFFFFF (20bit integer), then converted to bae32 format
 string using the following scheme:

 submode character range encoding

 Non-BMP U+10000-U+10FFFF base32_encode(codepoint(C) - 0x10000, 4)

 Compress submode is used for the efficient encoding of non-LDH
 characters. This mode can be used for any non-LDH characters if
 certain condition is met. In this mode, a character is encoded as a
 bit-wise XOR value between the code point of the character (called C)

 and the last non-LDH character before C (called PREV). The XOR value
 (xor(codepoint(PREV), codepoint(C))) must be less than 0x200, or the
 Compress submode cannot be used. If the XOR value is less than 16,
 it is encoded as a base32 format string of 1 octet. Otherwise 0x200
 is added to the XOR value, then it is encoded as a base32 format
 string of 2 octets. When decoding, this encoding enables to determine
 the encoded length by looking at the first octet.

 submode character range encoding condition
 --
 Compress U+0000-U+10FFFF base32_encode(X, 1) if X < 16
 base32_encode(X + 0x200, 2) if X >= 16
 [where X is xor(codepoint(PREV), codepoint(C))]

 There are two possible submodes for encoding a non-LDH character C,
 one of which is Compress, and the other is one of the other three
 (BMP-A, BMP-B, Non-BMP). The submode is determined using the
 following algorithm. This algorithm is designed so that it chooses
 the submode which produces shorter encoding result.

 1. Let PREV be the last non-LDH character before C, and let NXT be
 the first non-LDH character after C. In case C is the first
 non-LDH character of the input string, let PREV be U+0000.
 2. If xor(codepoint(PREV), codepoint(C)) > 0x1FF, go to 4.
 3. If at least one of the following conditions holds, choose
 `Compress'. Otherwise go to 4.
 a) the current submode is `Compress'
 b) C is non-BMP character (U+10000-U+10FFFF)

 Expires December 21th, 2001 [Page 6]

Internet Draft MACE June 21th, 2001

 c) xor(codepoint(PREV), codepoint(C)) is less than 16
 d) NXT exists and xor(codepoint(C), codepoint(NXT)) <= 0x1ff
 4. If C is in the range U+0000-U+1FFF or U+A000-U+FFFF, choose
 `BMP-A'.
 5. If C is in the range U+2000-U+9FFF, choose `BMP-B'.
 6. Otherwise choose `Non-BMP'.

 Initial state is set as follows.

 mode : Non-Literal
 submode : BMP-A
 PREV : U+0000

7. Encoding Procedure

 procedure encode(INPUT)
 MODE = `Non-Literal'

 SUBMODE = `BMP-A'
 PREV = U+0000

 while (is_not_empty(INPUT))
 C = read_one_character(INPUT)
 if (<C is not in the range U+0000-U+10FFFF>)
 <encode error>
 else if (<C is hyphen (U+002D)>)
 output("--")
 else if (<C is ASCII letter or digit>)
 if (MODE != `Literal')
 output("-")
 MODE = `Literal'
 endif
 output(C)
 else
 if (MODE != `Non-Literal')
 output("-")
 MODE = `Non-Literal'
 endif

 if (compressible(SUBMODE, C, PREV, INPUT) == TRUE)
 NEW_SUBMODE = `Compress'
 V = xor(codepoint(PREV), codepoint(C))
 if (V >= 16)
 V = V + 0x200
 LEN = 2
 else
 LEN = 1
 endif
 else
 V = codepoint(C)
 if (0x0000 <= V <= 0x1FFF)
 NEW_SUBMODE = `BMP-A'

 Expires December 21th, 2001 [Page 7]

Internet Draft MACE June 21th, 2001

 LEN = 3
 else if (0xA000 <= V <= 0xFFFF)
 NEW_SUBMODE = `BMP-A'
 V = V - 0x8000
 LEN = 3
 else if (0x2000 <= V <= 0x9FFF)
 NEW_SUBMODE = `BMP-B'
 V = V - 0x2000
 LEN = 3
 else

 NEW_SUBMODE == `Non-BMP'
 V = V - 0x10000
 LEN = 4
 endif
 endif
 if (NEW_SUBMODE != SUBMODE)
 output(<submode introducer for NEW_SUBMODE>)
 SUBMODE = NEW_SUBMODE
 endif
 output(base32_encode(V, LEN))
 PREV = C
 endif
 end
 end

 function compressible(SUBMODE, C, PREV, INPUT)
 if (xor(codepoint(C), codepoint(PREV)) > 0x1FF)
 return (FALSE)
 endif

 # The differenct between C and PREV is confined to lower 9 bits.
 if (SUBMODE == `Compress')
 return (TRUE)
 else if (codepoint(C) >= 0x10000)
 return (TRUE)
 else if (xor(codepoint(C), codepoint(PREV)) < 16)
 return (TRUE)
 else
 <peek the next non-LDH character in INPUT>
 if (<there is such a character (called NXT)> and
 xor(codepoint(NXT), codepoint(C)) <= 0x1FF)
 return (TRUE)
 endif
 endif
 return (FALSE)
 end

8. Decoding Description

 Like encoding, MACE decoding process keeps track of the current

 Expires December 21th, 2001 [Page 8]

Internet Draft MACE June 21th, 2001

 mode/submode to decode each character. The initial state for
 decoding is the same as that of encoding.

 mode : Non-Literal

 submode : BMP-A
 PREV : U+0000

 Because ASCII domain names are case-insensitive, decoding process
 MUST treat uppercase leters and lowercase letters equally.

 The consecutive two ASCII hyphen-minus characters are always decoded
 as a single ASCII hyphen-minus, regardless of the current
 mode/submode. ASCII hyphen-minus not followed by another
 hyphen-minus indicates mode switching between Literal mode and
 Non-Literal mode.

 In Literal mode, all ASCII letter and digit characters are decoded as
 they are.

 In Non-Literal mode, every character is either a submode introducer
 or a part of base32 format string. If a character is a submode
 introducer, the current submode is changed to the corresponding
 submode. If it isn't, it is a part of base32 format string.

 To decode base32 format string in a certain submode, first determine
 the length of the string which is decoded to a single Unicode
 character. For submodes other than Compress, the number of octets
 which encodes a character is fixed (3 for BMP-A and BMP-B, 4 for
 Non-BMP). For Compress submode, the number of octets is variable (1
 or 2), and can be determined by looking at the first octet. If the
 first octet represents a number less than 16 in base32 (either 0-9,
 a-f or A-F) the number of octets is one, otherwise two. The
 following list shows the length of the string S and how to get the
 decoded character in each submode.

 submode length decoded character condition
 --
 BMP-A 3 character(N) if N < 0x2000
 character(N + 0x8000) if N >= 0x2000
 BMP-B 3 character(N + 0x2000)
 Non-BMP 4 character(N + 0x10000)
 Compress 1 character(xor(P, N))
 2 character(xor(P, N - 0x200))
 [where N is base32_decode(S), P is codepoint(PREV)]

 MACE decoding process can accept invalidly-encoded strings as well.
 In order to guarantee the unique mapping, following two types of
 check must be performed.

 1) The decoded string must be checked if it is a [STD13] conforming
 name. If it is, decoding process MUST fail.

 Expires December 21th, 2001 [Page 9]

Internet Draft MACE June 21th, 2001

 2) The decoded string must be re-encoded and compared to the input
 string. If they are not equal (allowing case-difference),
 decoding process MUST fail.

9. Decoding Procedure

 procedure decode(input)
 MODE = `Non-Literal'
 SUBMODE = `BMP-A'
 PREV = U+0000

 while (is_not_empty(INPUT))
 C = read_one_character(INPUT)
 if (<C is hyphen>)
 NXT = read_one_character(INPUT)
 if (<NXT is hyphen>)
 output("-")
 else
 <push back NXT to INPUT>
 if (MODE == `Literal')
 MODE = `Non-Literal'
 else
 MODE = `Literal'
 endif
 endif
 else if (MODE == `Literal')
 output(C)
 else if (<C matches one of the submode introducer octets>)
 SUBMODE = <corresponding submode>
 else
 <push back C to INPUT>
 if (SUBMODE == `BMP-A')
 S = read_string_of_length(INPUT, 3)
 V = base32_decode(S)
 if (V >= 0x2000)
 V = V + 0x8000
 endif
 else if (SUBMODE == `BMP-B')
 S = read_string_of_length(INPUT, 3)
 V = base32_decode(S) + 0x2000
 else if (SUBMODE == `Non-BMP')
 S = read_string_of_length(INPUT, 4)
 V = base32_decode(S) + 0x10000
 else if (SUBMODE == `Compress')
 if (<C is either 0-9, a-f or A-F>)
 S = read_string_of_length(INPUT, 1)
 V = base32_decode(S)

 else
 S = read_string_of_length(INPUT, 2)

 Expires December 21th, 2001 [Page 10]

Internet Draft MACE June 21th, 2001

 V = base32_decode(S) - 0x200
 endif
 V = PREV xor V
 endif
 output(character(V))
 PREV = character(V)
 endif
 end
 end

 The above decoding procedure accepts invalidly-encoded strings as
 well. In order to guarantee the unique mapping, following two
 additional checks MUST be performed after decoding:

 1) that the decoding string is NOT a [STD13] conforming name.
 2) that the string which is the result of re-encoding of the
 decoded string matches the original string.

10. ACE Identifier

 In order to use MACE as an ACE, there must be a certain prefix or
 suffix string which is unlikely to be used in normal domain names and
 thus identifies MACE-encoded domain name parts. Since MACE-encoded
 names can begin with hyphen-minus and names beginning with
 hyphen-minus do not conform [STD13], a prefix string should be used.
 So if MACE is used for encoding domain name parts, the encoded names
 should be prefixed by the prefix string.

 This document does not specify the prefix string for MACE. The
 actual selection should be left to certain authority such as IANA
 [ACEID].

 For testing purpose, there is a registry of test prefix strings for
 ACEs on IETF IDN working group web site [IDN].

11. Examples

 The following examples are meaningless strings, but they are designed
 to exercise various aspects of the algorithm in order to verify the
 correctness of the implementation.

 (a) U+0200 U+4000 U+002D U+B001 U+40001 U+0061
 MACE: g0x800--wc01y6001-a

 (b) U+0061 U+002D U+0300 U+0062 U+0400 U+3000 U+002D U+5000
 MACE: -a---0o0-b-100x400--c00

 (c) U+1FFF U+2000 U+9FFF U+A000 U+FFFF U+10000 U+10FFFF
 MACE: 7vvx000vvvw800vvvy0000vvvv

 Expires December 21th, 2001 [Page 11]

Internet Draft MACE June 21th, 2001

 (d) U+0200 U+002F U+0030 U+0039 U+003A U+0200 U+0040 U+0041 \
 U+005A U+005B U+0200 U+0060 U+0061 U+007A U+007B
 MACE: 0g001f-09-01q0g0020-AZ-02r0g0030-az-03r

 (e) U+0061 U+0062 U+0063 U+002D U+1000 U+1200 U+002D \
 U+2000 U+2010 U+2200 U+002D U+3000 U+3010
 MACE: -abc---4004g0--x00000g0g0--40040g

 (f) U+0100 U+0102 U+0200 U+002D U+0201 U+002D U+03FE U+0061 U+0234
 MACE: zo02w0g0--z1--vv-a-ua

 (g) U+3000 U+002D U+3010 U+0061 U+3100 U+310F U+31FF
 MACE: x400--zgg-a-ogfng

 (h) U+20000 U+002D U+20100 U+0061 U+20010 U+20012 U+200FF
 MACE: y2000--zo0-a-og2nd

12. Security Considerations

 Users expect each domain name in DNS to be controlled by a single
 authority. If a Unicode string intended for use as a domain label
 could map to multiple ACE labels, then an internationalized domain
 name could map to multiple ACE domain names, each controlled by a
 different authority, some of which could be spoofs that hijack
 service requests intended for another. Therefore MACE is designed so
 that each Unicode string has a unique encoding.

13. References

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
http://www.unicode.org/unicode/standard/standard.html

 [IDN] Internationalized Domain Names (IETF Working Group),
http://www.i-d-n.net/, idn@ops.ietf.org

 [IDNA] Patrik Falstrom, Paul Hoffman, "Internationalizing Host
 Names In Applications (IDNA)", draft-ietf-idn-idna-01

 [STD13] Paul Mockapetris, "DOMAIN NAMES - IMPLEMENTATION AND
 SPECIFICATION", Nov 1987, STD 13 (RFC 1035)

 [RFC952] K. Harrenstien, M. Stahl, E. Feinler, "DOD Internet Host
 Table Specification", Oct 1985, RFC 952

 [NAMEPREP] Paul Hoffman, Marc Blanchet, "Preparation of
 Internationalized Host Names", Feb 2001,

http://www.unicode.org/unicode/standard/standard.html
http://www.i-d-n.net/
https://datatracker.ietf.org/doc/html/draft-ietf-idn-idna-01
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc952

draft-ietf-idn-nameprep-03

 Expires December 21th, 2001 [Page 12]

https://datatracker.ietf.org/doc/html/draft-ietf-idn-nameprep-03

Internet Draft MACE June 21th, 2001

 [ACEID] Naomasa Maruyama, Yoshiro Yoneya, "Proposal for a determining
 process of ACE identifier", Jun 2001, draft-ietf-idn-aceid-02

 [BRACE] Adam M. Costello, "BRACE: Bi-mode Row-based
 ASCII-Compatible Encoding for IDN", Sep 2000,

draft-ietf-idn-brace-00

 [DUDE] Mark Welter, Brian W. Spolarich, Adam M. Costello,
 "Differential Unicode Domain Encoding (DUDE)", Jun 2001,

draft-ietf-idn-dude-02

14. Acknowlegdements

 Some of the ideas in MACE are taken from other ACE proposals.

 The idea of Literal/Non-Literal mode is taken from BRACE draft
 [BRACE] by Adam M. Costello.

 The idea of differencial encoding used by Compress submode is taken
 from DUDE [DUDE], by Mark Welter, Brian W. Spolarich and Adam M.
 Costello.

 The structure of this document and text of some sections are borrowed
 from AMC-ACE- series draft (draft-ietf-idn-amc-ace-*) by Adam
 M. Costello.

15. Authors' Address

 Makoto Ishisone
 Software Research Associates, Inc.
 4-16-10, Chigasaki-Minami, Tsuzuki-ku, Yokohama,
 Kanagawa 224-0037 Japan
 <ishisone@sra.co.jp>

 Yoshiro Yoneya
 Japan Network Information Center (JPNIC)
 Fuundo Bldg 1F, 1-2 Kanda-ogawamachi,
 Chiyoda-ku Tokyo 101-0052, Japan
 <yone@nic.ad.jp>

https://datatracker.ietf.org/doc/html/draft-ietf-idn-aceid-02
https://datatracker.ietf.org/doc/html/draft-ietf-idn-brace-00
https://datatracker.ietf.org/doc/html/draft-ietf-idn-dude-02
https://datatracker.ietf.org/doc/html/draft-ietf-idn-amc-ace

 Expires December 21th, 2001 [Page 13]

