
Internet Draft Liana Ye
draft-ietf-idn-step-01.txt Y&D ISG
Sept. 28, 2001
Obsoletes: draft-ietf-idn-step-01.txt
Expires in six months (March 2002)

 StepCode - A Mnemonic Internationalized Domain Name Encoding

Status of this memo

This document is an Internet-Draft and is in full conformance with
all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF), its areas, and its working groups. Note that
other groups may also distribute working documents as
Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsolete by other documents
at any time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed
 at http://www.ietf.org/shadow.html.

Abstract

This document describes an Internationalized Domain Name (IDN)
Encoding method with US-ASCII [a-z0-9] characters, preserving the
primary sound value of such names users want, and technically
feasible, linguistically demanding once mechanism to represent the
names of multi-scripts with language tags defined by [ISO 639] in
the required DNS way, such that the encoded names can be used as
valid domain name identifiers.

 Table of Contents
1. Introduction
 1.1 Context
 1.2 Issues
 1.3 Romanized Multi-language Representation
 1.4 StepCode Protocol to Represent Trade Names
 1.5 StepCode Features
 1.6 Disclaimer
 1.7 Terminology
 1.8 IDN summary
2. Host Name Transformation
 2.1 Syntax of StepCode

https://datatracker.ietf.org/doc/html/draft-ietf-idn-step-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idn-step-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 2.2 Glyph Boundary Marks
 2.3 Encoding Steps
 2.4 Transliteration Schemes
 2.5 Alphabetic Script Transformation ¿C Mechanical Methods
 2.6 Consonant Script Transformation - Developmental Issues
 2.7 Character Script Transformation ¿C Feasibility
2.8 Mixed Script Transformation ¿C Implementing Japanese
3. Numerical Symbol Value Assignment
 3.1 Diacritic Marks
 3.2 Phoneme Table
 3.3 Overflowing
 3.4 Priority List
 3.5 Radical Layout Indicators
4. Language Specific Procedures
 4.1 IDN Input Normalization Procedures
 4.2 DNS Fitting Procedures
5. Embodiment of StepCode Protocol
...

Tables:
Table 1. Romanized Latin Letter Assignments
Table 2. Top four non-native languages used in the world
Table 3. Russian Transliteration Table
Table 4. Two methods to expend the Latin script
Table 5. IDN Hindi Section Map
Table 6. General Diacritics Mapping Table
Table 7. Example of Using Diacritics mapping (French)
Table 8. Example Phoneme Mapping (Subset of IPA)
Table 9. Example use of Overflowing mapping (Chinese)
Table 10. Example use of Priority Mapping (English)
Table 11. Glyph Layout Numeral Values

1. Introduction

Symbolic representation of a concept takes on many forms. It can be
encrypted to conceal from a human reader, it can be compressed for a
mechanical program reader, and it can be an icon for any spoken
language readers. For a domain name represents an entity as an
individual, a product, or an organization, it has to be readable for
human readers both in their native languages as well as for human
readers not in that native languages, in addition to a computer
program reader which only reads code points. To bridge the three types
of requirement, StepCode is proposed to transform a native symbol to
one or more universal ASCII symbols in a mechanical manner for a
mechanical program reader.

1.1 Context

Although world-wide desire to use characters other than plain ASCII
in hostnames is bubbling up and accelerating, ICANN has to take
a cautious approach on adopting an international domain name system,

for the fear of duplicated or confused new domain names. The challenge
of how to represent the names users want in the DNS in a way that is
clear, technically feasible, and unique is still an open issue.

1.2. Issues in Multilingual Representation of DNS Host Names

A basic technical issue regarding a name is sorting and searching
zone files or name servers of hostname identifiers containing
different written languages for potentially very large numbers of
users online, say 10% of the world's population. Hostname
identification could become a bottleneck for internet traffic if
sorting and searching has to be treated 1) in more than one set of
partially overlapping or mixed or possibly mixed symbolic
representations; and 2) mostly in compressed or semantically random
ordered zone files scattered around the globe, as in the Shared
Registration System (í SRSí) since 1999 installation.

Historically, Character-formed script such as CJK characters has
inherent sorting and indexing difficulties and is used to be an
intellectual activity just to use a dictionary. In fact, it has been
a primary problem in computer processing of Oriental languages since
the early development of computer industry. After almost importunate
research and development in the past decades, the solution are all
based on some types of table search, and the nature of such a
processing has been well understood, and the techniques are ready to
be applied to very large character set, such as Universal Character
Set [UCS].

With the experiences we have obtained from Oriental languages
processing, and suppose that we have solved such an indexing problem
and have accommodated mixed scripts such as Japanese and Korean, and
IDN goes to a character-form based system, then it is foreseeable
that IDN system will have to support a text based DNS system as
well for a long time. After all, the DNS system is a historically
successful system. To throw such a system away is like asking
people to stop shopping at supermarkets and pick up their lettuce
on the Internet. Then it is certain, that we have to deal with
two sets of domain name identifiers for a long time ahead.

The Romanized Pinyin, Jamo and On-kun systems for CJK character
indexing has provided a feasible but partial solution. The currently
used complete solution is to go through a software process of both
searching tables for possible matches (not exact-match DNS lookups)
and, where necessary, dialogue with the users, and arrive at strong
candidates for the glyph representation. If this character selection
process is organized in a similar way with book indexing system,
alphanumeral-digits-digits..., used a North American library, then
the indices can be codified using Latin alphabet. The dream of a
complete Romanized character system will be reality, sorting and
searching international domain names with one set of symbolic
representation will be speedy, and exactly matched DNS lookups could

be a reality.

1.3. Romanized Multi-language Representation

Codifing a trade name representation process is not limited to
codify a particular ASCII Compatible Encoding method or a particular
code mapping from one code standard to another code standard in a
technical context. It shall codify one set of symbols, or one
representation system, and a number of efficient paths to let the users
have some freedom to decide how to use the system to express their own
trade names in the Internet context. Though this was the sprit
of ASCII standard, it is the time to set more specific paths on how
to use ASCII to represent different scripts of spoken languages, or to
codify such a representation process, so that the number of paths does
not head for combinatorial explosion, as it is the case in Chinese
character encoding methods and for Japanese input systems. This is
analogous to let students tread out a optimal path on campus before a
concrete walk is poured, and it is our time to codify the paths.

Representation system for trade names is due to be unified. In fact,
writing system unification has been seen with Arabic, Latin and
Chinese. Many different spoken language groups use each of them.
According to [DeFrancis 1989], human scripts can be organized into
three groups for their phonetic characteristics:
1. Syllabic systems, for example, Chinese, Japanese, Maya and Yi;
2. Consonantal systems, such as Hebrew, Arabic and Indian languages;
and 3. Alphabetic systems, including Greek, Latin, Cyrillic,
Korean Hangul and English. Alphabetic systems can be unified by
embedding some differences under the hat of mnemonic representation
of language symbols, so that the French 'u' is permitted to have a
different sound value from the English 'u'.

Mapping a consonantal system to an alphabet symbol set is, essentially
embedding some phonetic differences, using a Latin mnemonic hat.
Additionally, there is the question on how to represent the vowels
of the language. Turkey has provided an answer to this question, and
Library of Congress has implemented extensive set of languages using
the same principle [Translit 97].

As to unifying a syllabic system with an alphabet system, two issues
need to be addressed. The first is the inclusion of additional
character information which can not be expressed with an one-layer
type of a flat alphabet system. The second issue is the reversibility
from the alphabetic system back to the syllabic system.

1.4. StepCode Protocol to Represent Trade Names

The proposed solution is called StepCode, for its staircase type
architecture in a transliteration procedure. First, it specifies the
phonetic differences to be embedded in the representation, where an
International Phonetic Alphabet [IPA] description of the embedded

differences shall be recorded. Second, if the Romanized embedding
is not sufficient to cover the differences, such as tones,
suprasegmentals and diacritics, then extend the mapping space to a
26x10 table for secondary phonetic elements which can not be embedded
under the Latin mnemonic hat. Third, if the 26x10 space is not
sufficient, then linearize the symbol by specifying each of its
components. This last part may become recursive, or goes down for
more steps.

This open-ended procedure not only provides a path to unify a large
syllabic or character system with an alphabet symbol set, but also
ensures that more semantically specific symbols, such as trademarks
and logos, can be represented online and sorted for speedy referencing.
In addition, the solution tolerates different viewpoints of the same
glyph, such that a CJK character may be accessed by Mandarin Pinyin,
Cantonese Wade, or Japanese On-kun, Korean Hangul as well as users of
the same dialect creating different expressions in viewing the same
glyph.

StepCode protocol does not open doors for trade name chaos. First,
there are finitely many different scripts to support particular
dialects and expressions. Second, the protocol provides locally
available expressions for users to choose from, which also helps in
conforming expressions especially in IDN context. Third, although
the process allows users of the same dialect creating different
expressions in viewing a glyph, as it has been experienced with
over 600 variety of Chinese character encoding schemes in the past
three decades, it limits the different views of a glyph to a matrix
of one to ten cells on one fixed starting point [Ye95], where
variations in such a process become predictable and manageable.

Due to its step nature, the representation can (and should) stop
for each symbol, as soon as the symbol can be identified within
its designated context. For example, the following list of StepCodes
for four Chinese characters:

xin1qin1jin0 <new>
zhu2ge1ge0 <bamboo>
qing1shui1qing0 <clear>
hua2hua2shi0 <Chinese>

Each of these codes uniquely identify a CJK [CJK] character of a UCS
[UCS] code point in CJK section using Pinyin spelling. They all have
three parts: the first part is Pinyin spelling of the character; the
second part is the digit following the Pinyin. The digit indicates the
end of a character spelling and its tone mark. The two parts together
is the transliteration of a character. The remaining alphanumeral
string following the first digit is the third part of StepCode. They
are in the same format of character transliteration, and is the radical
part of transliteration.

When there is registration calls for the four characters, then the four
characters may be combined into one new alphanumeral string:
 "xinzhuqinghua1212qin1jin0ge1ge0shui1qing0hua2shi0".
The list of StepCodes for the above four characters is resulted from
two complete iterations of StepCode protocol.

Since it is enough for í xinzhuqinghuaí to identify a well-known name
in DNS system, í xinzhuqinghua1212í for a not well-known name, and
"xinzhuqinghua1212qin1jin0ge1ge0í for pin-pointing a rarely known name,
it is up to the registrant and the a zone manager to register a DNS
identifier to be just right length for the user, and to keep the full
record for code reversal process, depends on IETF and ICANN decision to
support a duel-record system [Uname][IDNmap].

1.5 StepCode Features

The StepCode protocol is fully compatible with DNS specification, yet
is mnemonic, friendly multi-language accessible code points, and
accommodates mixed script use.

1.5.1 Multi-language access of the same UCS code point

Similar to the method used for searching books in a library, such that
CJK characters may be accessed by different language users. For
example, the following four Korean characters may be coded as:

U+???? sim0sim0 Hanja <ten>
U+2fa5 ni0ni0 Hanja <inside>
U+351a to0t2o0 Hanhul <to>
U+3747 mot0m2o2t0 Hangul <mot>
 (Note 1: the transliteration is used in [Translit 97], where the í tí ,
 in í motí should be consistent to a jamo for a Korean sound value.
 Note 2: a hangul may not need to be treated as a CJK character. If
 it is the case, then í toí and í motí MUST be unique within all hangul
 symbols.)

The two Hanja character are CJK code points used by at least three
languages, and Hangul is only used by Korean. When the four characters
combined into an DNS name, it takes the following form as its full name:

 simnitomot0000sim0ni0t2o0m2o2t0

so kr-simnitomot0000sim0ni0t2o0m2o2t0.com can be the DNS name or it
may be the full name record to be kept at local registrar and be
registered with DNS as í kr-simnitomot.comí . StepCode permits different
language tags to access the same glyph in [ISO10646].

1.5.2 Multi-script Accommodation

SeptCode protocol allows mixed scripts to co-exist. For example,
the five Kana, diacritic mark and Kanji from Japanese:

U+3055 sa <kana>
U+30fc 1 <diacritic macron>
U+3073 bi <kana>
U+3059 su <kana>
U+???? gyo1go0 <Kanji business>
 (Note: Only one radical in a Kanji is coded, since the total number
 of Kanji is much smaller set than Han character set. Thus, one radical
 to be coded may be enough to guarantee a unique code within Kanji.)

Due to more complex decoding for Kanji than that of Kana, a delimiter
for the two seems needed, so a digit 0 may be required to end the kana
section. Thus the DNS name: í sa1bisu0gyo1go0í may be used. This shows,
that StepCode protocol can be adapted to many different mix of scripts,
and different languages needs different treatments on their scripts.

1.5.3 Fully Compatible with Current DNS

From the Chinese, Korean and Japanese example given above, the host
parts have no international glyphs but US-ASCII, and can be a valid
entry to DNS, and allows standard compression or security treatment
compatible with existing hostnames.

1.5.4 One Mnemonic System

It is one mnemonic system for any scripts in UCS, such that whatever
the language that the zone master understands, he can refer to, sort
on, and support of a registered IDN name.

1.6 Author's Disclaimer

This document is a guide for implementing mnemonic StepCode protocol
for IDN hostname identifiers in a language specific way. It is not
a natural language dictionary of any decree. The sound value
assignment of script symbol although balanced among several
considerations are not intended in anyway to claim any linguistics
expertise. The different scripts used by any one particular user
group addressed in the document does not dictate the user groupsí¯
choice of any subsets of [ISO10646] symbols.

In addition, the document is bias on five issues:
1) The UCS symbol tabulation structure assumed is bias toward CJK users;
2) The mnemonic sound value is based on IPA classification;
3) The Latin letter value assignment is bias toward English usage;
4) The digits value assignment is bias toward Mandarin usage;
5) The language tag function is bias toward Indian languages.

1.7 Terminology

The key words "MUST", "SHALL", "REQUIRED", "SHOULD", "RECOMMENDED",
and "MAY" in this document are to be interpreted as described in
 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Examples in this document use the notation from the Unicode Standard
[Unicode3] as well as the ISO 10646 names. For example, the letter
"a" may be represented as either "U+0061" or "LATIN SMALL LETTER A".

A non-Roman character also is denoted in its Romanized form and
followed by its English equivalent word in <>. For example, í zhong
<heavy>í without reference to Unicode, due to difficulties in pin down
all the code points used in this document from UCS table.

An IPA symbol is presented in [], while it is referred among text. For
example, [c] is for IPA sound value í cí , not Latin letter í cí .

StepCode assumes its encoding is language specific, each language as it
is defined in [ISO10646], has its mnemonic encoding and is a part of
ACE encoding prefixed to ASCII host name only, for example, í krí for
Korean, í jaí for Japanese. The encoding is called í language tagí of a
DNS host name (for language tag implementation see [IDNmap] Section 3).
The DNS host name with such a language tag is called a "language tagged
ACE", or "T-ACE".

StepCode converts a list of internationalized characters at a client
site into a string of US-ASCII that are acceptable as a host name in
current DNS host naming usage. The former are called a list of í IDN
identifiersí or a "glyph" for a symbol represented by one code point
in [ISO10646] or "glyphs" for a string of glyphs and the post-converted
ASCII string is called a "DNS identifier".

[Nameprep] defines Unicode characters mappings, normalizing and
exclusions of internationalized host names. The characters from input
and in mapping and normalization list is called í IDN-labelí , or IDN
input, which includes symbols mapping to null. IDN-label is a super set
of IDN identifiers in term of UCS code points.

The "IDN-label" at a client site may be represented by Unicode, GB code,
JIS code, BIG5 and others which may contain equivalent information.
These code forms are referred as language specific "localized code
points", or í local display codesí .

A large script such as CJK or UCS can be classified into three glyph
groups:
1) IDN letters: which can be directly mapped onto an alphanumeral
 symbol under the Latin mnemonic hat, for example, Bopomofo, Kana,
 Arabic, Bengali, Hebrew, Jamo, diacritics, etc.
2) IDN radicals: a minimum number of frequently used glyphs which are
 also used as radicals in other glyphs, and often has independent
 pronunciation, for example, U+2f00 to U+2fd5, U+2e80 to U+2ef3, and
 others scatted in CJK Plane 0 blocks;
3) IDN icons: the rest of the glyphs in the script, for example the
 majority code points of CJK, enclosed alphanumerices, enclosed CJK
 letters and ideographs.

The protocol uses US-ASCII to denote the phonetic elements of
a script and calls for standardizing such a mapping for each
language tag. The phonetic elements of a glyph is called "spelling"
of the glyph and is called "stem" for that of a radical.

StepCode procedure may have more than two complete iterations.
The first iteration is called í character transliterationí though
it may take in more linguistic defined elements in such a conversion
than a common term transliteration may imply. The second iteration
is called í radical transliterationí , for it transcribes radicals of
a glyph. The character to transliterated character table is called
í tagged section mapí [IDNmap Sec. 2.2.3] or í tagged mapí , while a
transliterated character is called a í StepCodeí . The process of
converting an input string to T-ACE using a tagged map is called
í language tagged proceduresí [IDNmap Sec. 4].

According to phonetic nature of world scripts, three groups are
referred: Alphabet systems, including Latin, Cyrillic and Greek,
Consonant systems, ie. Indian, Arabic languages), and Character
Systems, ie. CJK languages.

1.8 IDN summary

The StepCode is a language dictated flexible ACE protocol and it is
complement to the currently proposed, UCS flat treatment ACE. Its
coding process reflects í Crowd Controlí concepts to better organize
character and symbols before they are applicable in IDN system. To
deliver ití¯s full potential and to be more effective, it needs more
consensus building among groups regarding code point treatment
[Stone], which would be arguable points even a flat UCS code point
treatment ACE is deployed alone in any case.

2. Host Name Transformation

According to [STD13], host parts must be case-insensitive, start
and end with a letter or digit, and contain only letters, digits,
and the hyphen character ("-"). This excludes any internationalized
characters, any font variations, case variations, character set
variations, as well as many other characters in the ASCII character
repertoire. Further, domain name parts must be 63 octets or shorter in
length including any language or other encoding tags.

User friendly encoding has to be coherent to usersí¯ native languages,
and consequently, host name transformation is dependent to the language
tag [IDNmap Sec. 3] selected. As a StepCode encoding guide, the
following discussion is focused on four different language groups:
Alphabet systems, Consonant systems, Character systems and mixed script
systems, from the simplest to more complex ones, and start with a
general description of StepCode syntax.

2.1 StepCode Syntax

A Stepcode unit is a string of [A-Za-z0-9] letters without any white
spaces, BLANK, in between. For each StepCode unit, there are data
elements indicated by "", which is a MUST supplied element, and []
where the element is optional, and / where the data is selectable.

Sx stands for primary sound value or spelling of xth glyph;
Tx stands for secondary sound value or tone of xth glyph;
Ry stands for Stem for yth radical;
Ly stands for Layout relation from radical y to y+1;
Rx.y stands for Stem for Xth glyph and its yth radical;
Lx.y stands for Layout relation from Xth glyph and its radical y to y+1.

2.1.1 One glyph

A code point or a glyph in UCS can be an IDN letter, an IDN radical or
an IDN icon. Where an IDN letter are phonetic symbols in its native
language context marked by a language tag. For example Kana are IDN
letters in Japanese context. An IDN radical is an independent glyph often
used as a component of another glyph, or a glyph in a foreign language
context. For example a simple Han character or a Han radical (U+2e90 ¿C
U+2ef3), a Greek letter in Chinese context. An IDN icon is a composite
glyph displayed in one display unit, normally a two dimensional square
area. The majority of CJK characters are IDN icons. IDN icons can be
viewed as compositions in terms of radicals, or IDN letters.

StepCode is language context sensitive transliteration of UCS code points. The
The following is formal definition and examples of StepCode for a glyph.
The minimum code for a StepCode is one ASCII letter:
 "S"[T][P1][L1][P2][L2]...[Py][0/BLANK]

Thus, the following are examples of IDN letters, radicals and icons:
IDN letters:
 A a <Latin capital letter A>
 U+00c2 a6 <Latin letter A^>
 U+0a98 gha <Gujarati letter gha>
 U+0a84 u1 <Gujarati letter uu>
IDN radicals:
 U+03b1 alf0 <Greek Small Letter Alfa>
 U+2f26 U+5b50 zi3z0 <CJK radical son>
 U+2f24 U+5937 da4d0 <CJK radical big>
 U+2f29 U+5b0f xiao3x0 <CJK radical small>
 U+2f25 U+5973 nv3n0 <CJK radical female>
IDN icons:
 U+2639 :-(0 <White Frowning face>
 U+263a :-)0 <White Smiling face>
 U+5b59 sun1zi1xiao0 <CJK character Grandson>
 U+597d hao3nv1zi0 <CJK character good>
 U+5c16 jian1xiao2da0 <CJK character sharp>

Where the Unicode are IDN identifiers, the ASCII code column is
corresponding transliterated StepCode, or DNS identifiers and the
phonetic system used is in Chinese Pinyin.

2.1.2 Glyphs

A string of glyphs is considered as one unit with only alphanumeral:

"S1S2S3...Sx"[T1T2...Tx][P1.1][L1.1][P1.2][L1.2]...[P1.y][0]
 [P2.1][L2.1][P2.2][L2.2]...[P2.y][0]
 ...
 [Px.1][Lx.1][Px.2][Lx.2]...[Px.y][0/BLANK]

Example of glyphs:
Latin AaA^a aaa6a
Gujarati U+0a98 U+0a84 gha + u1 -> ghu1
Chinese U+597d U+5b0f U+5b50 haoxiaozi333nv1zi0x0z0

StepCodes are language specific. The above examples are from three
language groups with common mix of symbols from the same languages.
Where the Latin example has included capital letter A Circumflex, which
is mapped to digit 6.

Gujarati letter GHA has an implicit vowel í aí , due to transliteration
rule, when another vowel following the consonant the implicit vowel is
replaced.

Chinese phrase <good boy> in the above example shows a mix of IDN
radicals and icons encoding, where the first three digits indicate
three characters in the unit, and three radical transliterations
immediately follow.

2.2 Glyph Boundary Marks

Most script transliterations are mapped to alphabet system consistent
with consonant-vowel-terminal structure. The majority of í glyph to
glyph sequenceí and í glyph sequence back to glyphí can be done with
minimum amount of linguistic rules embedded in glyph sequence
composing and decomposing procedures.

There are always exceptions to any rules in linguistics. For example,
the uses of í -í in Chinese and Korean, the uses of í í¯í in French and
Chinese, the uses of letters í ZWNJí in Arabic, and the use of í �|í in
Tibetan and Devangari to prevent two units to join, are complements
to the consonant-vowel-terminal rule.

In DNS system, only hyphen í -í is allowed for this purpose, and there
may be more than one levels of disjoints a host name of a script has to
differentiate. It is RECOMMENDED to consider an unused or non-conflict
letter first before the í -í has to be used in the transliteration of a
language tagged script. For example, the í í¯í in Chinese Pinyin may be
mapped to the letter í ví instead of a hyphen í -í .

2.3 Encoding Steps

StepCode starts at a phonetic representation of a glyph with ASCII
letters and a digit when it in need. This character transliteration
has two phases as in Sec. 2.1.1 IDN letter examples:
S1.1. Romanize the primary phonetic characteristic of a
 glyph/phrase;
S1.2. Supplement the secondary phonetic characteristic of the
 glyph with a digit/digits.

The second step of StepCode is applied to components of each glyph,
radical transliteration, in the same way specified in S1.1, and shown
in Sec. 2.1.1 IDN icon examples.
S2.1. Romanize the primary phonetic characteristic of a radical, B;
S2.2. Specify how the next radical is related to the current
 radical, B, with a digit;
S2.3. If the radical contains another radical, X of B,
 then go to S2.1 of X (and it is S2+1.1(X));
 otherwise go to the next radical, B+1.

2.4 Transliteration Schemes

Language is creation of human thoughts, which wanders everywhere
disregard boundary. StepCode above is a rigid passageway, which only let
the properly formed traffic to go through. While an alphabetic script
structurally appears closest to Latin alphabet, a few general issues are
common to all transliterations. The first issue is which transliteration
should be implemented. Unicode Consortium has given each symbol a Latin
name for ease in reference. Such a name contains the main sound value of
the symbol, but usually more than what is needed in a transliteration.
For example, Cyrillic letter BE has sound value í bí in Latin, and it is
transliterated in [Translit 97] as a í bí . This introduces transliteration
modification #1 to Unicode, that the sound value of a glyph MAY be
extracted from its Latin name from UCS standard.

2.4.1 Basic Phonetic Classifications

It is RECOMMENDED that when consulting publications on character
transliteration, the IPA [IPA] definition SHOULD be the primary classes
to be considered. IPA class is an artificial grid over an analog
spectrum. For each class there is a focus sound with a Latin letter
label, and its neighboring sound values slide into its neighboring
sound classes. It has the best classification on human language sound
values available and its focus sounds are labeled with Latin alphabet
letters. [Translit 97] has provided 54 romanization and transliteration
schemes, and SHOULD be one of the base transliteration document.

2.4.2 Fuzzy Sound Value to Base Class Mapping

Whence a sound value can be described with an IPA class, then a

proximate letter representation can be referred. Transliteration
Modification #2 is to consider a letter assignment in term of IPA class.
It is RECOMEMDED that when alphabet is used to represent a sound value
in a script, a balance between the current use of a letter in the same
script and common uses of the same letter in other languages shall be
found. The following is a comparison table of fricative alveolar-palatal
letter sound assignments of a group of sampled languages. The table is
expended a little into Plosives, Post-Palatals and Approximants for
different sound value comparison with Arabic, Hindi, Vietnamese and
Chinese languages, and also is used as illustration of the nature of IPA
classification.

Table header are IPA category represented as:
Alveolar Alveo
Postalveolar Postalv
Retroflex Retrof
Alveolar-Palatal Alv-Pal
Front Palatal FrontP
Palatal Pala

Plosive Plos
Affricative Affr
Fricative Fric
Approximant Approx

Languages tagged as:
Chinese zh-
Arabic ar-
Deutsch de-
English en-
Esperanto eo-
French fr-
Latin la-
Hebew he-
Japanese ja-
Korean ko-
Hindi hi-
Lao lo-
Russian ru-
Spanish es-
Serbo sr-
Tamil ta-
Urdu ur-
Vietnamese vi-

The IPA symbol entries:
U+0283 sh Latin Letter esh
U+0292 zh Latin Letter yogh
U+0282 s2 Latin Letter s hook
U+0290 z2 Latin Letter z Retroflex hook
U+0255 c3 Latin Letter c curl

U+0291 z3 Latin Letter z curl
U+029d j1 Latin Letter crossed-tail j
c U+0327 c1 Latin Letter c cedilla

 Alveo Postalv Retrof Alv-Pal FrontP Pala
 -------- -------- -------- -------- ------- -----
Plos t d t2 d2 c
 -------- -------- -------- -------- ------- -----
 ar-T ar-D
 he-T
 hi-t hi-d hi-T hi-D
 hi-th hi-dh hi-Th hi-Dh hi-kh hi-gh
 sr-c
 vi-ch vi-c
 ur-T
 -------- -------- -------- -------- ------- -----
Affr ts dz tsh dzh ts2 dz2 tc3 dz3 tc1 dj1
 -------- -------- -------- -------- ------- -----
 zh-z en-ch en-j zh-zh zh-j
 zh-c ar-ch zh-ch zh-q
 de-ch
 eo-cx eo-gx
 he-ts he-ch
 ja-ts ja-ch
 ko-ch ko-tch/jj ko-gg
 hi-c
 hi-ch
 lo-ch
 es-ch
 sr-dz sr-ch sr-dz2
 sr-tsí¯
 ru-ts ru-ch ru-zh
 ur-z ur-zh
 -------- -------- -------- -------- ------- -----
Fric s z sh zh s2 z2 c3 z3 c1 j1
 -------- -------- -------- -------- ------- -----
 zh-s en-sh en-as zh-sh zh-r zh-x
 ar-s ar-z ar-sh ar-zh ar-S ar-Z ar-H
 de-s de-z de-sch
 eo-s eo-z eo-sx eo-jx
 fr-s fr-z fr-sh fr-je
 he-s he-z he-sh
 ja-s ja-z ja-sh ja-j
 ko-s ko-ss ko-j
 hi-s hi-sh hi-S
 lo-s
 es-s/c es-z
 sr-s sr-z sr-sh sr-zh
 ru-c ru-sh
 vi-x vi-d vi-s
 ur-s ur-z ur-sh

 -------- -------- -------- -------- ------- -----
Approx j
 -------- -------- -------- -------- ------- -----
 hi-r hi-j
 hi-l ta-l ta-L ta-l2 hi-jh
 ta-r ta-N
 ur-R
 -------- -------- -------- -------- ------- -----
 Alveo Postalv Retrof Alv-Pal FrontP Pala
 -------- -------- -------- -------- ------- -----
Table 1. Romanized Latin letter assignments found in contemporary text
books, bilingual dictionaries and [Translit 97].

More notes on table entries:
 The entries under column headers are in unvoiced vs. voiced pairs.
 The entries of the same column with a same language tag are non-aspirated
 and aspirated pairs in two rows, for example:
 hi-c
 hi-ch
 The uppercase letter assignments are taken from certain text books,
 where the transliteration takes several forms: doubling letters (common
 in text books), a dot under a letter(Library of Congress) and a
 capital letter (IPA convention).

Particular languages often have several sounds falling into the same
class, or under the neighboring classes of IPA table, but very few under
other labels. This phenomenon is can be found in above, Table 1. It is
RECOMMENDED to follow conventional use of neighboring labels to
differentiate the value concentrated classes, provided it does not
conflict with other sound values which are already stable assignments.
Some language transliterations supplementing a secondary letter to the
label in focus often achieve satisfactory results, for example í ja-shí .

From the tabulated 18 language transliterations in Table 1, and
considering the conventional transliteration practice shown in the table,
the following sound value convention is RECOMMENDED:

Doubling vowel for a long vowel sound, (mostly used in Arabic)
Doubling consonant for sound produced from back position (Arabic, Hindi)
sh for U+0283, Latin Letter esh (All in the table)
j for U+0292, Latin Letter yogh (most in the table)
zh for dj/dz as an alternative for conventional dj and dz, it appears
 quite popular in non-Roman languages.
ch t U+0283 (Almost all in the table have done so.)
c c/ts (Though existing TS is common, but a í«cí¯ is a clear favor
 for simplicity, provided that [c] is covered under í«kí¯.)
h as an attachment letter for aspirated sound (as in Hindi).
n for nasalization, it is hard to separated from [n], as í«n-í«, so a
 diacritic is RECOMMENDED.)
k for [c],[k],[q] (It is rare to differentiate all the three in a
 language. When it has such a need, a í«kkí¯ accomplishes the task

 as ití¯s in Korean.)

Since most of the transliteration data of Table 1 is from English
literature, the recommendation above clearly is bias toward English
speakers. The bias is based on two reasons. The first is technical, that
common English does not use diacritical marks, so that it is a better
base scheme for adapting other language symbols which often use
diacritics. The second reason is the fact shown, in Table 2, that English
is the highest in number of population, as non-native language used in
the world currently.

 The principle languages of the world ¿C

 Source: S. Culbert, NI-25, University of Washington, Seattle,
 WA 98195, USA; Data as of mid-1993 [WORLD 95]
 Languages spoken by more than 100,000,000 people:

 Native Non-native Total
 Mandarin - 836 126 952
 Hindi - 333 418
 Spanish - 332 381
 English - 322 148 470
 Bengali - 189 196
 Arabic - 186 219
 Russian - 170 118 288
 Portuguese - 170 182
 Japanese - 125 126
 German - 98 121
 French - 72 124
 Malay-Indonesian - 50 105 155

Table 2. Top four non-native languages used in the world: English,
 Mandarin, Russian and Malay-Indonesian.

2.5 Alphabetic Script Transformation ¿C Mechanical Methods

Transliteration is mostly table lookups with minimum rules to implement.
Although alphabetic script transliteration is simplest, it is the place
to specify transliteration table format and a few basic concepts and
basic decision points in StepCode implementation, such as which phonetic
system shall be selected, which foreign symbol set to be included in a
language tagged script range [IDNmap] and how to include a foreign
symbol or a symbol set.

2.5.1 Transliteration Tables

Transliteration table usually contains two columns. To make referencing
easy for a layman, it is RECOMMENDED that transliteration tables contains
at least four columns: ASCII symbol, UCS glyph, IPA sound value, and
examples of spoken words of the language as shown in Table 3, with
necessary comments.

ASCII UCS IPA Example
ru-
a U+0430 U+0251 : matb
b U+0431 b co6aka
v U+0432 v
g U+0433 g
d U+0434 d
e U+0435 e
j U+0436 U+02a4
z U+0437 z
i U+0438 i:
y U+0439 i
k U+043a k
l U+043b l
m U+043c m
n U+043d n
o U+043e U+0259
p U+043f p

r U+0440 r
c U+0441 s (í«sí¯ in [Translit 97])
t U+0442 t
w U+0443 u:
f U+0444 f
x U+0445 x (í«khí¯ in [Translit 97])
ts U+0446 ts
ch U+0447 U+02a7
sh U+0448 U+0283
sch U+0449 U+0283 U+02a7 (í«shchí¯ in [Translit 97])
q U+044a (slilent)
h U+044b U+0263
q U+044c (soften the last consonant)
a U+044d U+00e6
iu U+044e ju:
ia U+044f j U+0251 :

Table 3. Russian Transliteration Table.

The third and forth columns are convenient references to phonetic data
threads online.

Structurally, alphabetic script is similar with Latin, where some letters
may represent different sound with Latin letter. For example, in Table 3
[Russian 44] the letter í«xí¯ and í«cí¯ are kept as Cyrillic letter, but in
[Translit 97] they are transliterated to í«khí¯ and í«sí¯ respectively. Since
the letters used here do not present conflict assignment with other
letters, it is in the best interests of the native speakers to decide
which version shall be used as DNS identifiers.

2.5.2 Mixed used of Alphabetical scripts

The major alphabetical scripts are Latin, Greek and Cyrillic, with very
few cases using symbols from another script, for example í AGAPEí is Greek
in Latin script, not in Greek script. It is RECOMMENDED to have three
languages tags: la-, el- and ru- for Latin, Greek and Cyrillic, as three
respective primary language tags [IDNmap] for alphabetic scripts.

If an English user wants to include a symbol from Greek, he has to wait
for Latin tag to include Greek code block as its second script, if there
is enough demand for such a service. In this case, there are two methods
to include the transliteration table for Greek symbols in Latin tag.

The first one is to use a digit to indicate the second script set, as in
column 1 of Table 4, and is called í Overflow Symbol Mappingí (Section 3.3),
for simplicity in mechanical filling with a second set of symbols.

The second method is called í Radical mappingí is shown in column 2 of
Table 4. The name í radicalí for Greek symbol is an analogy to radicals in
CJK, for a Greek letter has a sound and a name and can not be decomposed.
That is it is not a composite glyph, nor can it be sub-divided. They are
treated in the similar way with CJK character set in a foreign language.

A secondary script attached to Latin language tagged section map:

la-
a U+0061
b U+0062
...
z U+007a

a9 alf0 U+03b1
b9 bet0 U+03b2
c9 gam0 U+03b3
d9 del0 U+03b4
e9 eps0 U+03b5
f9 zet0 U+03b6
g9 eta0 U+03b7
h9 the0 U+03b8
i9 iot0 U+03b9
j9 kap0 U+03ba
k9 lam0 U+03bb
l9 mu0 U+03bc
m9 nu0 U+03bd
n9 xi0 U+03be
o9 omi0 U+03bf
p9 pi0 U+03c0
q9 pho0 U+03c1
r9 fsi0 U+03c2
s9 sig0 U+03c3
t9 tau0 U+03c4
u9 ups0 U+03c5
v9 phi0 U+03c6

w9 chi0 U+03c7
x9 psi0 U+03c8
y9 ome0 U+03c9

Table 4. Two methods to expend the Latin script.

The pros for Column 1 is short and regular, provided the digit 9 is not
assigned to something else. The cons is hard to remember which letter
of Greek is in that Latin letter position.

The second method shown in Column 2 is easy to remember since a Greek
letter is mostly spelled out in a syllable (and can be mapped according
to its sound value instead of the mechanical flooding as they are in
Table 4), but is harder for a program to tell the character boundary.
The few options are available for amending the radical mapping
implementation:
1) Filling the short name up to make all the Greek symbols with uniform
 length, say 3 letters. By recognizing digit 0, the decomposing procedure
 can take preceding 3 letters as one symbol, this is called Protocol
 method.
2) Insert another digit 0 before the Greek symbol to mark a foreign
 symbol, and is called Marker method.
3) Insert a hyphen í«-í« before the Greek symbol, to make an independent
 sub-name unit, and is also a Marker method.

The pros for the above IDN radical symbol treatment is it is flexible, in
terms of the number of symbols to be introduced, and in terms of naming
such a symbol that a native reader understand, also it can be used for
trademark encoding when there is such a request. The cons for it is
lacking market data to support such an implementation. It is RECOMEMMDED
a radical mapping is selected for introduce foreign symbols into a
language tag.

Assuming the above recommendation is accepted, it is RECOMMENDED to use
Method 2) to mark a foreign symbol in a language tag, for it accommodates
variable length description of a foreign symbol, it is consistent with CJK
symbol treatment discussed in Section 2.7 and it preserves method 3) for
users to make individual decisions on their naming.

2.6 Consonant Script Transformation ¿C Developmental Issues

The name for this group of scripts may not be accurate, it just as
well be called as the í rest of scriptsí besides Euro and Han scripts. The
main concern in treating this group of scripts is treating each script
independently and not let any rules made now develop into extreme in a
near future. For example, one extreme is to forbid any new symbols to
enter a language tagged range, the other is open up the whole UCS for one
language tag. The Hindi language section map is selected here to examine
implementation issues, since it reflects some of the reality in that user
sector as well as in the engineering sector regarding language tag design
issues [Stone].

hin-

7 U+0901 (nasalization)
 U+0902 (no decision)
 U+0903 (no decision)

a U+0905 U+028c
aa U+0906 U+0251 :
i U+0907 I
ii U+0908 i:
u U+0909 U+028a
uu U+090a u:
ri U+090b ri
lri U+090c lri
e U+090d e
e U+090e e
e U+090f e
ai U+0910 U+00e6/aI
o U+0911 U+0259 U+028a
o U+0912 U+0259 U+028a
o U+0913 U+0259 U+028a
au U+0914 U+0254 : / a U+028a

k U+0915 k
kh U+0916 x
g U+0917 g
gh U+0918 g'
ng U+0919 U+014b
c U+091a U+02a7
ch U+091b U+02a7 '
j U+091c j
jh U+091d j'
ny U+091e ni
tt/T U+091f U+0288

tth U+0920 U+0288'
dd U+0921 U+0256
ddh U+0922 U+0256'
nd U+0923 nd
t U+0924 t
th U+0925 t'
d U+0926 d
dh U+0927 d'
n U+0928 n
nn U+0929 n (for Tamil n)
p U+092a p
ph U+092b p'
b U+092c b
bh U+092d b'
m U+092e m

y U+092f y

r U+0930 r
rr U+0931 r (for Tamil r)
l U+0932 l
ld U+0933 ld
ll U+0934 l (for Tamil l)
v U+0935 v
sh U+0936 U+0283
ss U+0937 U+0282
s U+0938 s
h U+0939 h

q U+0958 q
khh U+0959 q'
ghh U+095a G'
z U+095b z
dddh U+095c U+0256 d'
rh U+095d U+0280
f U+095e f
yy U+095f y:

 U+093a
 U+093b
 U+093c
 U+093d
aa U+093e U+0251 :
i U+093f I
ii U+0940 i:
u U+0941 U+028a
uu U+0942 u:
ri U+0943 rI
rii U+0944 ri:
e U+0945 e
e U+0946 e
e U+0947 e
ai U+0948 U+00e6 / aI
o U+0949 U+0259 U+028a
o U+094a U+0259 U+028a
o U+094b U+0259 U+028a
au U+094c U+0254 : / a U+028a

Table 5. IDN Hindi section Map [Hindi 98].

Observations of Table 5:
1) It has no example word column;
2) It has not made decisions on several code points;
3) It has adopted three Tamil symbols;
4) the extra long vowel sound is indicated by doubling the vowel letter;
5) the retroflex sound is indicated by doubling the consonant letter,
 while other forms exist, such as uppercase letter or an under letter

 mark as they are shown in Table 1 and [Translit 97];
6) the aspirated sound is indicated by letter í«hí¯ instead of an apostrophe
 í í¯í used in [IPA];
7) the symbol transliteration is not mechanical mapping, it needs
 linguistic rules to composing and decomposing a transliterated Latin
 string for Hindi.
8) the nasalizing sign, Devangari Sign Candrabindu, is mapped to digit 7,
 since it is the last diacritical mark used in [Translit 97]. The
 under-letter marks either have been reflected in Table 5, or ignored
 due to implicit transliteration of Table 5;
9) the section í U+093e - U+094cí are equivalent to section í U+0905 ¿C
 U+0914í , the section of symbols are not treated separately in
 [Translit 97]. These symbols could be included in canonicalizing
 procedure specified in [Nameprep] but dependent to input code
 processing.

Each of the observations flags a developmental issue:
1) Concerning the IDN as a long term solution or a short term fix. If this is
 a long term solution, then to fill up the column will benefit long term
 reference, there is no need to revisit the same issue when the reference
 is organized for later comers.
2) The assignment of 10 digits has to consider its common meaning to
 other languages so that, there is conformity semantics for less confused
 implementation and long term use.
3) Implies that Tamil language often appears among Hindi speakers. It is
 RECOMEMMDED to consider inclusion of one to two other scripts for each
 of languages in Consonant language group in the future IDN releases.
4), 5) and 6) are differences with [Translit 97] implementation. Advantages
 of this implementation is not over-load diacritical marks and is more
 reader friendly, with easier linguistic interpretation. Disadvantage is
 using variable length of Latin letters for each Hindi symbol.
7) As result of 4) 5) and 6), more linguistic understanding is required
 in implementation of a language tagged procedures.
8) With the more reader friendly treatment of Devanagari shown in 4)-7),
 there are enough digits to be used for other aspects of the linguistic
 issues, such as boundary, nasal, tonal or stress marks.
9) Case mapping is a common issue, which can be applied equally to
 Latin, Chinese, Japanese, Hindi as well as whatever there are such
 requests, and which have been defined by their primary users. In any
 case, the Hindi case mapping requires a better understanding of how the
 symbols are used at the user end both from keyboard, as well as keyboard
 signal to text transformation and local code exchange standard. When
 such an expertise is not available, there is still no base for exclusion
 for such a case mapping in IDN.

2.7 Character Script Transformation ¿C Feasibility

The commonly used symbol set for Chinese, Japanese and Korean is around
4000 characters each, with some differences in forms, while majority of
the symbols in each set over lap with the other two. Access of the 4,000
characters is a headache if one has to select from a table of 4,000

character without some efficient indexing system. For UCS CJK character
set, the issue is to address over 21,003 characters using one primary
language tag.

For languages with a large number of glyphs, such as CJK set and is
impossible to map onto a Latin alphabet directly, a three layered scheme
is RECOMMENDED, and a minimum set of glyphs of a script which are often
used as parts of other glyphs are CJK radicals SHOULD be derived.

In the IDN system, the IDN letters include Bopomofo, Kana, and Jamo
phonetic symbol sets. Since these systems all have been used, has stable
transliterations standards to refer to, and have been discussed in
previous sections, in this section the discussion will be focused on
radical transliteration.

2.7.1 Character transliteration Scheme for IDN Radicals

Radical are building blocks of CJK character set. Radicals are independent
symbols with semantics and pronunciation or names. For example,

 Unicode Short form Long form
 U+03b1 alfa0 <Greek Small Letter Alfa>
 U+5b50 zi0 zi3z0
 U+5937 da0 da4d0
 U+5b0f xiao0 xiao3x0
 U+5973 nv0 nv3n0

are five radicals, where the first part of each code is the name of the
radical, the second part as they are shown in the last column is its
primary sub-radical name letter. Mandarin has 417 sounds with average 4
tones each, total covers basic radical set of 1,500. With 25 letters
before the delimiter 0, theoretically it is enough to give 23,000 UCS
characters unique index. However, it is not enough to give each character
a unique mnemonic name to facilitate usersí¯ access.

With the fast expansion of memory chips and transmission speed in the last
10 Years, vast amount of data can be stored at any local chips for fast
references. It is doubtful to design an index system concurs to above
theory is wise. Instead, user friendly configuration should have the
highest priority, and a complete set of data at ease of access shall be
the base for a new IDN design philosophy.

Considering the radical encoding above, although it is enough to have
Pinyin with tone indicator as its transliteration, as zi3, xiao3, da4,
and nv3, it creates a different coding format, such that when they are
mixed with an IDN icon, two different formats require more rules in
processing. For simplicity, IDN radicals takes the same StepCode format
as IDN icons, as shown in the last column on above four examples, which
all end with a digit 0 as delimiter, but include only one letter as
their sub-radical encoding to indicate a simple character with no further
decomposing.

Thus, the longer form of IDN radical transliteration applies when 1) the
radical set is large within a language tag, and the diacritical marks
play a part in the transliteration; 2) the radicals are used with large
IDN icon set, such as CJK, a uniform format with the larger set is
Preferred over code complexity, so the radical is treated as an IDN icon.

The short form of IDN radical transliteration applies, when 1) the radicals
are small set of foreign symbols under a concerned language tag, 2) a
radical is used as radical transliteration of an IDN icon transliteration,
as radical í xiao0í in Han character Sharp, í jian1xiao1da0í .

2.7.2 Radical Naming Convention

Some glyphs in the IDN radical set are most frequently used glyphs by
themselves, some are used by themselves only in a particular language,
yet some of them never stand alone, and their names follow naming
convention which is listed bellow:

"pang" - a radical on the left, í pí for short;
"bian" - a radical on the right, í bí for short;
"tou" - a radical on the top, í tí for short;
"di" - a radical on the bottom, í dí for short;
"xin" - a radical in the middle, í xí for short;
"kuang"- a container or an enclosure radical, í kí for short.

Since CJK characters are written from left to right and top-down,
often the "pang" is the first radical of a character to be used as the
key for searching into dictionaries and is partially listed in UNICODE,
so "pang" has the most number of them appear in an index table in a
regular Han dictionary.

2.7.3 CJK Character Coding Process

CJK Character coding process reflects í Crowd Controlí concepts: 1)survey
Requests ¿C sorting, 2) select leaders ¿C identify equivalent cases, 3)
mark directions ¿C mnemonic encoding, and 4) divert traffic ¿C leave out
individual issues out for other applications. The principle applies to
other UCS symbol transliteration encoding processes as well.

The naming process SHOULD reflect a userí¯s viewpoint, not a programmerí¯s
viewpoint. The following radical transliteration procedure is RECOMMENDED:
1) Sort all the characters, include IDN icons, by Romanized names, which
 is Pinyin for Chinese, or a Latin symbol name in UCS;
2) Delete all polyphones of a character but leave one as the IDN
 identifier;
3) Sort all the homophones by frequency of usage counting both as a
 radical and as an IDN icon, and obtain a sorted list on frequency of
 usage, for example:
 fei-20 fei-8 fei-3 fei-2 fei-1
4) Move the hard to decompose character to the front, and suppose fei1-3

 is such a character, then
 fei1-20 fei1-3 fei1-8 fei1-2 fei1-1
5) Adjust homophone and polyphone characters as needed for easy coding
 discrimination;
6) Code each of the above symbol in the order prepared above:
 fei1-20 fei1f0 <fly> (radical)
 fei1-3 fei1b0 <not> (radical)
 fei1-8 fei1nv1yi0 <concuban>
 fei1-2 fei1caot2fei0 <poor>
 fei1-1 fei1ko1fei0 <fei>
 such that the front radical or character gets a shorter name;
7) Identify semantically equivalent character set, and assign only one
 character per set to IDN identifier.

Additional care MUST be applied in above process for future application
system developments:
1) Reserve the polyphones opted out from Naming Process 2) and 5) above
 for other applications, for example user input processing, not
 discussed in IDN-map [IDNmap] but indicated in [SLS].
2) Reserve the members of semantically equivalent character set from
 Naming Process 7) above for other applications, for example IDN name
 display processing, which are not discussed in IDN-map [IDNmap], but
 indicated in [SLS].
3) For non-character radicals one may fall onto in Naming Process 6),
 a multi-syllabic name may be shorten with conventions specified in
Section 2.7.2, for example, í cao zi touí is shorten to í caotí in

 í fei1-2 fei1caot2fei0 <poor>í above.

It is RECOMMENDED that the glyph transliteration process of CJK
Characters DOES NOT bind by any particular radical list, which are only
references as historical character decompositions. This introduces
Transliteration modification #3 to UNICODE document, CJK radicals and
radical supplement: U+2f00 to U+2fd5 and U+2e80 to 2ef3.

Other limitations posted by IDN system application are discussed in
[Stone] Section 3. Observing limitations and follows the above coding
process and sort out equivalent character set phonetically and
semantically is REQUIRED as the first step to tame í A Tangled Webí
[RFC 2825].

2.7.4 Use of character transliteration

It was a struggle to decide to put a full description of a Han character
as its encoding or as its index, until the recent release of a wrist
watch sized computer. It is clear that such a full description of a
character will benefit symbolic processing greatly. For example, an
automated voiced teaching tool may generate instructions on characters
directly from the transliteration. IDN registration software can extract
a DNS identifier from a full character description if such a holocode is
available for access. For example, from the following IDN radicals and
icons:

https://datatracker.ietf.org/doc/html/rfc2825

 U+5b59 sun1zi1xiao0
 U+597d hao3nv1zi0
 U+5c16 jian1xiao2da0
 U+5b50 zi3z0
 U+5937 da4d0
 U+5b0f xiao3x0
 U+5973 nv3n0

It is easy to extract a transliterated word from the first part of the
above listed StepCode, and get the word í haoxiaozií . It is just as easy
to match the second part, the radical transliteration only, to refer back
to the characterí¯s pronunciation. This is a hint for another type of user
friendly input glyph processing.

2.8 Mixed Script Transformation ¿CImplementing Japanese Tag

Japanese using different phonetic system, its homophone list would be
different with that of Chinese, but the coding procedure described in
Section 2.7.3 SHOULD be the same.

Section 2.7 concerning keeping one format for two types of characters,
the radicals and icons of the same script. Japanese uses two different
scripts from two script groups, kana and Kanji. Since Kana are IDN
letters, and digits are diacritical marks of the letter preceded and
appear at non-regular places, only digit 0 is reserved as delimiter. To
include a Kanji among IDN letters, the rule of delimiter 0 SHOULD be
applied as discussed in Section 2.5. For example, the Japanese section
map:

U+3055 sa <kana>
U+30fc 1 <diacritic macron>
U+3073 bi <kana>
U+3059 su <kana>
U+???? gyo1go0 <Kanji business>

Thus the DNS name í sa1bisu0gyo1go0í is readily available to be composed
from these transliterated glyph codes.

3. Numerical Symbol Value Assignments

Though, it can be argued even among native speakers regarding a sound
value of a symbol, the domain name identifiers only have 26 letters
and some reasonable combinations within a script. These are the primary
sound elements of a script in any case. Some changes to the primary
sound elements are conventionally represented by modification marks
to a primary symbol. Some modifications are significant and can be
transcribed by a vowel from an alphabet system such as in Arabic. Others
may be represented by a diacritics, as they are in French. UNICODE has
provided clear separation along this line and some instructions on the
functions of modification marks.

Unicode also has listed more than 64 general diacritical marks, U+0300 to
U+0340, while the use of them in a language is not more than 12 by
[Translit 97], (Hindi 12, Ottoman Turkish 11, Azerbaijani and Telugu both
have used 10). Among the usage, the under-letter diacritical marks can be
reflected in letters by conventional transliteration methods used in
dictionaries and text books as shown in Hindi transliteration Table of
Sec. 2.6, so that none of them will need more than 9 diacritical marks.
It is REQUIRED that digit 0 is reserved as icon delimiter from
diacritical mark functions.

Transliteration modification #4 to UNICODE document is to use a digit
to represent diacritic like features, or secondary sound values of
a script.

A digit has no universal sound value associated to it like that of a
Latin letter. It is a good word separator and a less confusing
diacritical mark than that of a letter. For scripts have frequent use
of diacritics, it is RECOMMENDED to use digit in place of a diacritic
mark in a normalized string. For syllabic scripts, it is RECOMMENDED
to use digits at the end of an IDN identifier to indicate a semantic unit
and the number of IDN identifiers in a transliterated string as shown in
Section 2.

Although 26x10 is a two dimensional map, it can be filled with more than
two phonetic aspects of a script. With increased complexity, the
mnemonic value diminishes gradually. For simplicity, four phonetic
mapping rules SHOULD be observed: R1. Diacritic mark mapping; R2. Phoneme
Mapping; R3. Overflow consecutive slot mapping; R4. Priority elements
mapping.

3.1 Diacritic Mark Mapping

[R1] Graphic based Diacritics mapping. For some scripts a
secondary phonetic elements have to be marked for their users.
For example European scripts, a simple diacritics mapping is
RECOMMENDED, where the digits MAY denote common diacritics, tones
and suprasegmentals.

 Tone mark Diacritics
0 no tone voiceless (o)
1 flat/high(-)/long macron (-)
2 global rise (/) acute (/)
3 dip and rising (v) breve (v)
4 global fall (\) grave (\)
5 thrill (~) tilde (~)
6 rising-falling(^) circumflex (^)
7 umlaut(")
8 user assign cedilla (hook)
9 user assign user assign

Table 6. General Diacritics Mapping Table

The assignment depends on four factors: 1) current user base with respect
to keyboard assignment, 2) the number of marks in a script from a
published dictionary, 3) IPA [IPA] value, 4) first come and first serve.

The above assignments due to:
1) #0 is reserved as icon delimiter;
2) #1 ¿C 4 due to common naming as first, second, third and fourth tone in
 Chinese;
3) #6 for common Qwerty keyboard assignment;
4) #5 and 7 for frequent appearance in Russian, German, Spanish and
 Vietnamese;
5) #8 a place holder for under-letter diacritic mark for Arabic and Hindi
 languages.
6) #9 for possible inclusion of Overflow symbol set assignment shown in
Section 2.5.

The position of a similar marks are RECOMMENDED to stay in its
respective position for ease interoperation cross script boundary and
also for users looking for replacement marks. A French diacritical mark
assignment is in Table 6.

French has less than eight but more than four diacritic marks,
it is an example of phonetic mapping [R1].

fr-
0 no tone
1 Silent or Liaison '
2 rise/acute (/)
3 (dip/breve is not used)
4 drop/grave (\)
5 thrill/tilde (~)
6 throw/circumflex (^)
7 dieresis (")
8 Supercript or nasal n
9 (not used for French)

Table 7. French Example of Using Diacritics mapping.

The French diacritical mark assignment is an example to demonstrate the
usage of Table 6, not a French tag implementation. The fr- tag format is
used for consistent presentation in this document.

For scripts in consonant system, a subset of marks is RECOMMENDED to be
mapped to ASCII letters as its first choice, while the rest MAY be
assigned a digit. Letters have associated sound values and easier for a
non-native speaker to attach its IPA label association. A digit is better
used for separating a secondary property from its primary sound based on
IPA definitions. An Arabic example assignment is provided in [Mnemonics].

3.2 Phoneme Table

[R2] Sound based phoneme table mapping, where each digit specifies
a variant of a base phoneme, and a maximum of nine variants may be
accommodated. This rule has a best mnemonic result cross different
scripts. For example, IPA symbol mapping for English in Table 8.

ipa-
0 1 2 3

a U+0251 ae U+00e6 U+0292
b
c ch U+02a7
d
e U+025b .e U+0259 .e: U+025c
f
g
h
i
j U+02a4
k
l
m
n ng U+014b
o U+0252 o: U+0254
p
q
r
s sh U+0283
t th U+03b8 U+00f0
u U+028c U+028a U+0075
v
w
x
y
z zh U+0292

Table 8. Exampe English Phoneme Mapping

IPA symbol mapping for English has used four variants. The Unicode
code point indicates the IPA symbols where an ASCII symbol can not be
found.

A full set of IPA symbol Phoneme mapping is provided in [Mnemonics] for
references.

3.3 Overflowing

[R3] Overflow Symbol mapping - where the symbols SHOULD fill
in only consecutive slots in the opposite directions
in the 26 x 10 table for ease of index computation, where the middle
section of the table SHOULD be left for user selected
definitions. This rule is suited for two sets of corresponding

symbols of the similar scripts, for example Latin and Greek, Indian
scripts. A Chinese version is shown in Table 9 for the method only, not
in any way to suggest such an assignment.

zh-
 0 no tone
 1 flat/macron (-)
 2 rise/acute (/)
 3 dip/breve (v)
 4 drop/grave (\)

 5 classic character drop/grave (\)
 6 classic character dip/breve (v)
 7 classic character rise/acute (/)
 8 classic character flat/macron (-)
 9 classic character no tone

Table 9. Example use of Overflowing slot mapping.

The above Overflow and Tone Mark mapping architecture, [R1-R3],
partitions the 26 x 10 table to symmetric two different glyph sets.

3.4 Priority List

[R4] Priority elements mapping - Selecting a set of often used
symbols to be placed in the table. For example:

[R1-R3-R4]
en-
0 a-z
1 flat/macron (-)
2 rise/acute (/)
3 dip/breve (v)
4 drop/grave (\)
5 thrill/tilde (~)
6 throw/circumflex (^)
7 dieresis (")
8 Dingbats
9 A-Z

 0 8 (Dingbats)
 a U+2604 /*areo or comet*/
 b
 c U+24b8 /*copyright*/
 d U+25ca /*diamond*/
 e U+24d4 /*eletron*/
 f U+2709 /*fly*/
 g
 h U+2624 /*health or Caduceus*/
 i U+261e /*index or white right pointing index*/
 j

 k U+2654 /*king*/
 l U+2661 /*love or white heart suit*/
 m U+2709 /*mail or envelope*/
 n U+266b /*note or Barred eighth note*/
 o
 p U+262e /*peace symbol*/
 q U+2655 /*queen*/
 r U+2602 /*rain or umbrella */
 s U+263a /*smile*/
 t U+231a /*time or watch*/
 u U+2328 /*utility or keyboard*/
 v U+260e /*voice or phone*/
 w U+270d /*writing*/
 x
 y U+262f /* yinyang */
 z

Table 10. Example use of Priority Mapping.

In fact, example Table 10 is general Latin script assignment, except the
dingbats mnemonic values are keyed on English. DNS name resolver treats
uppercase same as lower case, it provides no additional way for users
to assign any specific value to upper case letters. One way to expand
the symbol set allowed in DNS is to use [R3] as in Table 10. The English
mapping assignment above takes rules [R1-R3-R4].

The above assignment rules MAY be used in a combination according
to an order of weights in such an assignment. Such an order of weights
SHOULD be specified in the form [Rx-Ry-Rz-R4] in front of a
transliteration table of a language tag in form of comments.

3.5 Digits as Radical Layout Indicators

A unified CJK character is often a composition of several independent
symbols from the script. It is possible to describe a CJK character by
representing a character with only its radicals. Although it can identify
a character uniquely, normally it is accompanied with a number of rules
with too many exceptions for the majority of users to comprehend.
StepCode encoding has reduced the complexity of the rules by considering
a CJK character as a simple grid of 1 to 10 units. Naming the 1 to 10
units in a linear fashion results a linear representation of the glyph or
its encoding.

The order of prioritizing radicals of a character is important. In
general, the radical that one writes it with a pen containing the first
stroke of a symbol in printing manner, which is publicized as part of a
national education system is the í primary radicalí of the symbol. For
example the character í xin <new>í (the digit is the tone of the character,
hereafter) has two radicals:

1) í qin1 <intimate>í + í jin1 <a half kilogram>í

Since í qin1í may be considered as two radicals as well, the radicals
list may be in the following form too:

2) í li4 <stand>í + í jin1<a half kilogram>í + í mu4 <wood>í

or with different radical ordering:

3) í li4 <stand>í + í mu4 <wood>í + í jin1 <a half kilogram>í

In this case the í qin1í or í li4í both may be the primary radical
dependent to which viewpoint of the user takes, which may be address
in a different document. StepCode protocol favors 1) as discussed in
Section 2.7.

Variation in Radical transliteration can result in multiple
StepCodes to one character within the same tagged map. It is due
to 1) Radical transliteration is usually used as secondary
representation of a character, however sometimes it may be used as
its primary representation, when the correct sound of a character
is not available to the user. 2) When viewing a character as a grid,
there are disagreements on the number of units in a character. For
domain names, the point of views in describing compositions of a
character for a domain name MUST be limited to only one major
viewpoint. The minor viewpoints SHOULD be converted to the major
viewpoint, and radical transliteration MAY be the key to locate
its character transliteration part through user interface when a
name is registered.

The digits in radical transliteration specifying how a radical of a glyph
on its grid is related to the next radical, are called layout digits.
Layout digits specify the relation to the next radical in line. The left
and right direction are defined by a user's left or right hand while
sitting in front of a display screen or a piece of paper.

The glyph layout digits are:
 0 - end of a character or a radical
 1 - to its right
 2 - to its underside
 3 - to contain the following
 4 - to divide the following
 5 - to its left
 6 - to its top

 The following selectable digits are to specify additional
glyphs of the script and directions of layout.

 7 - to overlay itself with X then to its right;
 8 - to overlay itself with X then to its left;
 9 - to overlay itself with X then to its underside.

Table 11. Glyph Layout Numeral Values

The radical layout scheme trades complexity of a glyph with code length,
such that the complexity can be left out when an application only needs
the character transliteration.

4. Language Specific Procedures

Either, StepCode may be obtained directly from local display codes to
StepCode phrase conversion tables or to be taken from IDN identifier of
language tagged section maps. Or, it inputs directly from keyboards,
where an input processing module verifies correctness of intended glyphs
and normalizes a StepCode. [Appendix] is an example of such cached input
processing procedure.

Different scripts have different transliterations published worldwide.
These publications are the base for implementing tagged maps and tagged
conversions as discussed in previous sections.

4.1 IDN Input Normalization Procedures

The protocol contains two pairs of conversion and reversion procedures
per language tag supported(See [IDNmap] Section 4.3) and calls for a
minimum number of semantic independent symbols of a language to be mapped
onto a Latin alphabet in a mnemonic manner (Section 2.7.3). The first
pair of conversion and reversion procedures are convert language specific
presentation form to a normalized form and vice versa, named as Normalize
and Present procedures respectively and have been described for
Latin, Arabic and Chinese script implementation in [UAX 15][Bidi][Icdn].

4.2 DNS Fitting Procedures

The second pair of language specific procedures converts a list of
transliterated symbols to a name unit, either it is a word or a phrase or
an identifier of any kinds, to fit into a desired format for any
artificial goals with restrictions that format has to be reversible back
into the list of transliterated symbols in its corresponding decomposing
procedure. The pair of procedures is called Fitting and Decompose
respectively.

The purpose of assembling a StepCode is to be disassembled at its
end of wire travel and indexing back into a tagged map, such that the
pre-converted local display codes can be retrieved in an equivalent
local display code worldwide. For some StepCode, when a list of
character transliteration is combine into a string, it blurs the
pre-converted symbol boundary, which is significant in their
semantic differences, and interferes with correctly disassembling
a StepCode string. It is RECOMMENDED in such a case, a hyphen, í -í ,
is added as the last reserved character separator.

When a post-converted string contains mixed scripts, for example
Japanese domain names, exceeds maximum label length, it is only the

characters with radical transliteration MAY be dropped. The truncated
radical transliteration SHOULD reinsert a digit í«0í¯ to mark the end
of radical transliteration, or using transmission protocols decided by
network group among servers on how to deal with code length exceeding
the DNS label maximum, or other protocols specific to a language
tag to recover, partial recover or intelligent guesses in preventing
confusion when it is decomposed.

Possible protocols for Fitting/Decomposing procedures depend on the scale
of such format to be placed.
1) Zone records: IDN zoned record keeping at IDN name registration locale;
2) Caches: Cached traffic records at client sites;
3) Exceptions: Exception handling rules implemented by protocols;
4) Markers: Symbolic marker interpretation for specific language tag;
5) Models: Embedded linguistic rule interpretation in Fitting/Decomposing
 programming languages.

It is RECOMMENDED, that each language tagged procedure SHOULD specify
which protocol type is implemented and what their effects are for world
wide basic code maintenance.

StepCode string is assembled with orders consistent with keyboard
input, regardless it how it would be displayed on a screen or in
URI [URI]. For some scripts, its character display order may be
rearranged. Such a display order is implied by tagged display procedure,
and is not a part of character transliteration nor a part of radical
transliteration. Layout digits apply to layout directions within a
character space as defined by UNICODE, NOT between characters.

5. Embodiment of StepCode Protocol

Symbolic representation in machine format with mnemonic label for human
readers is a basic technique to improve human control over programs. With
such a control of large name base, many artificial intelligence type of
applications can benefit from it. For example, the mnemonic indexing
system for UCS discussed in [IDNmap] may be extended to sort and index on
trademarks and icons for automatic access needed in [WIPO].

A very much needed universal keyboard access to the full spectrum
of code points in UCS becomes feasible. Imagine that a user pickups a
language tag from a pull-down window, and then types in the keys from a
Latin alphabet labeled keyboard, gets the typed alphabet showing on the
screen for the first level of input verification, and then looks at the
transliteration to symbol conversion to get the second level, í spellingí
verification. (A dream that the author has had for more than 15 years.)

Since StepCode preserves the complete character information, it is a
holocode scheme of a symbol. From which one may extract a set of radicals
to infer the content of a discourse. For example, by recognizing large
presence of í shui3 <water>í radical, one may infer a water body context.

With such type of inference, a semantic net is not too far for reach.

6. Security Considerations

Much of the security of the Internet relies on the DNS. Thus, any
change to the characteristics of the DNS can change the security of
much of the Internet. Thus, StepCode makes no changes to the DNS
itself.

Hostnames are used by users to connect to Internet servers. The
security of the Internet would be compromised if a user entering a
single internationalized name could be connected to different
servers based on different interpretations of the internationalized
hostname. Thus the restriction of DNS names to a small symbol set is
necessary and effective, where adding any other data format only
opens the security gate to complications.

7.Internationalization considerations

StepCode is designed so that every internationalized hostname part can
be represented as one and only one DNS-compatible string. If there
are two different ways to obtain the same glyph on a display device,
then they are still two distinct hostnames, with no bearing on DNS
security issues. If there is any way to follow the steps in this
document and get two or more different results, it is because of an
error in the domain name registration process, where one domain name
registrar fails to update other domain name registrar servers about a
newly registered and well researched hostname.

StepCode using only [a-z0-9] as the basic symbol set is linguistics
sounding choice. Since the base classification used by IPA is Latin
symbol set, the only authoritative study on the subject. The symbol set
has been successfully applied to majority of languages on earth, and
have been proven an effective set of symbols for people of many native
tones to remember and to map to, shown by existing vast quantity of
national standards and dictionaries. Thus [a-z0-9] is the best set of
symbols to be used for universal mnemonic applications of any kind
involving human records. StepCode is a symbol organization scheme to
connect the symbol set to these applications.

8. References

[ASCII] American National Standards Institute (formerly United
 States of America Standards Institute), X3.4, 1968, "USA Code for
 Information Interchange". (ANSI X3.4-1968)

[CJK] James SENG and etc. í Han Ideograph (CJK) for Internationalized
 Domain Namesí , draft-ietf-idn-cjk-01.txt, 11th Apr 2001.

[DeFrancis 1989] John DeFrancis, "Visible Speech - The Diverse
 Oneness of Writing Systems", 1989, ISBN 0-8248-1207-7.

https://datatracker.ietf.org/doc/html/draft-ietf-idn-cjk-01.txt

[Dictionary79] Beijing Foriegn Language Dept., "A Chinese-English
 Dictionary", 1979, BK# 9017.810.

[Icdn] Xiang Deng and Yan Fang Wang, "The Implementation of Chinese character
 in IDN", draft-ietf-idn-icdn-00.txt, July 2001.

[IDNReq] Zita Wenzel and James Seng, "Requirements of Internationalized
 Domain Names", draft-ietf-idn-requirements. May 2001.)

[IPA] The International Phonetic Alphabet, http://www2.arts.gla.ac.uk/IPA
 1996.

[ISO639][ISO639-2/T] ISO/IEC 639-2 2001 Codes for the Representation of
 Names of Languages.

[ISO10646] ISO/IEC 10646-1:2000 (note that an amendment 1 is in
 preparation), ISO/IEC 10646-2 (in preparation), plus
 corrigenda and amendments to these standards.

[Hindi 98] "Hindi & Urdu Phrase Book", Lonely Planet Publications, 1998,
 ISBN 0-86442-425-6.

[Translit 97] Barry, Randall K. 1997. ALA-LC romanization tables:
 transliteration schemes for non-Roman scripts. Washington: Library
 of Congress Cataloging Distribution Service. ISBN 0-8444-0940-5

[PinyinCon] Library of Congress Pinyin Conversion Project, í New Chinese
 Romanization Guidelinesí ,

http://lcweb.loc.gov/catdir/pinyin/romcover.html#7

[Macmillan93] The Macmillan Visual Desk Reference, 1993,
 ISBN 0-02-531310-x.

[Mnemonics] Liana Ye, í Mnemonic Symbol Mapping of UCSí .

[RFC 2026] S. Bradner, í The Internet Standards Process -- Revision 3í ,
 1996, RFC 2026.

[RFC2119] Scott Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", March 1997, RFC 2119.

[RFC2277] "IETF Policy on Character Sets and Languages",
rfc2277.txt, January 1998, H. Alvestrand.

[RFC2396] Tim Berners-Lee, et. al., "Uniform Resource Identifiers (URI):
 Generic Syntax", August 1998, RFC 2396.

[Russian 44] "New Russian-English and English-Russian Dictionary", Dover
 Publications, New York, 1944, ISBN 0-486-20208-9.

[SIS] M. Mealling & L. Daigle, í Service Lookup System (SLS)í

https://datatracker.ietf.org/doc/html/draft-ietf-idn-icdn-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-idn-requirements
http://www2.arts.gla.ac.uk/IPA
http://lcweb.loc.gov/catdir/pinyin/romcover.html#7
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2277
https://datatracker.ietf.org/doc/html/rfc2396

draft-mealling-sls-00.txt

[STD13] Paul Mockapetris, "Domain names - implementation and
 specification", November 1987, STD 13 (RFC 1035).

[RFC2825] L. Daigle, Ed. í A Tangled Web: Issues of I18N, Domain Names,
 and the Other Internet protocolsí , May 2000, RFC 2825.

[UAX15] Mark Davis and Martin Duerst. Unicode Standard Annex #15:
 í Unicode Normalization Formsí , Version 3.1.0.
 <http://www.unicode.org/unicode/reports/tr15/tr15-21.html>

[UNICODE] The Unicode Consortium, "The Unicode Standard". Described at
http://www.unicode.org/unicode/standard/versions/.

[UNICODE30] The Unicode Consortium, "The Unicode Standard -- Version
 3.0", ISBN 0-201-61633-5. Same repertoire as ISO/IEC
 10646-1:2000. Described at http://www.unicode.org/unicode/

standard/versions/Unicode3.0.html.

[URI] Roy Fielding et al., "Uniform Resource Identifiers: Generic
 Syntax", August 998, RFC 2396.

[Versions] Marc Blanchet, í Handling versions of internationalized domain
 names protocolsí , draft-ietf-idn-version-00.txt, October 26, 2000.

[WIPO] í The Role of Technical Measuresí , RFC3,
http://wipo2.wipo.int/process2/rfc/rfc3/index.html

[WORLD 95] í The world Almanac and Book of Facts 1995í , ISBN 0-88687-766-0

[Ye95] Liana Ye, "A Language Oriented Chinese Encoding for Multilingual
 Computing Environments", in "Proceeding of the 1995 International
 Conference on Computer Processing of Oriental Languages", Page 323.

9. Acknowledgements

The author has benefited from special comments and suggestions from
Aaron Irvine, John C Klensin, Eric Brunner-Williams, Erik Nordmark and
William Davis and relevant discussions from IDN Working Group to improve
this document.

10. IANA Considerations

This document requires IANA action for availability of script tag,
and registration for each tag and possibly its sub-field for phonetic
system used, and readiness of associated language specific procedures.

11. Authors' Contact Information

Liana Ye
Y&D ISG

https://datatracker.ietf.org/doc/html/draft-mealling-sls-00.txt
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc2825
http://www.unicode.org/unicode/reports/tr15/tr15-21.html
http://www.unicode.org/unicode/standard/versions/
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
http://www.unicode.org/unicode/standard/versions/Unicode3.0.html
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/draft-ietf-idn-version-00.txt
https://datatracker.ietf.org/doc/html/rfc3
http://wipo2.wipo.int/process2/rfc/rfc3/index.html

2607 Read Ave.
Belmont, CA 94002, USA.
(650) 592-7092
liana.ydisg@juno.com

Expires March 2002

[Appendix] StepCode keyboard input process for Chinese

/* buff.c StepCode processor interface Copyright Y&D ISG, Inc. 1994

 * find_gly find a glyph online.
 * find_wd find a word online.
 */

#include <stdio.h>
#include <ctype.h>
#include "steplib.h"

int auto_learn= TRUE;
int udic_large= FALSE;
int udic_database= FALSE;
int odic_expand = FALSE;
int dic_saved = FALSE;
int keyboard_in = TRUE;
int alt_memb = 2; /* extra members of a poly-code to be recorded */

/*
 * find_gly using a StepCode to find the GB code for display a glyph.
 */
int find_gly(step, stepcd, infor, gb, key)
 char *step, *stepcd, *infor, *gb;
 int *key;
{
 FILE *bufp;
 int linecnt, bytes;
 char line[MAXdatalen], *p;
 char bufname[FILENAMSIZ];

 strncpy(stepcd, step, strlen(step)+1);
 if (hit_gly(stepcd, gb))
 { *key=GB; return(A_to_B);}

 strncpy(bufname, BUFFILE, FILENAMSIZ);
 bufp = (FILE *)fopen(bufname, "w+b");
 if(bufp == NULL)
 {
 strcpy(message, "Buffer file unavailable.");
 typo(message, word);
 return(ERROR);

 }
 search_dic(STEP, 1, stepcd, bufname, &bufp, &linecnt);
 if (linecnt<=0)
 {
 if(verbose)
 typo("No entry found in GB table. You may create one.", step);

 fclose(bufp);
 return(A_to_ZIL);
 }
 fseek(bufp, 0L, 0); /* to beginning sake read */
 if(fgets(line, MAXdatalen, bufp)== NULL)
 { if(verbose)
 fprintf(stderr, "ERROR- buffer file read error.\n");
 fclose(bufp);
 return(ERROR);
 }
 sscanf(line, "%s%d%s%s\n", stepcd, key, gb, infor);
 hash_gly(stepcd, gb);
 fclose(bufp);
 if (linecnt>1)
 {
 return(A_to_N);
 }else {
 return(A_to_B);
 }
}

int find_wd(step, stepcd, infor, gb, cnt, key)
 char *step, *stepcd, *infor, *gb;
 int cnt, *key;
{
 FILE *bufp;
 int linecnt;
 char line[MAXdatalen], *p;
 char bufname[FILENAMSIZ];

 strncpy(stepcd, step, strlen(step)+1);
 if (hit_wd(stepcd, gb))
 { *key = GB; return(A_to_B);}

 strncpy(bufname, BUFFILE, FILENAMSIZ);
 bufp = (FILE *)fopen(bufname, "w+b");
 if(bufp == NULL)
 {
 fprintf(stderr, "Buffer file unavailable.");
 return(ERROR);
 }
 search_dic(STEP, cnt, stepcd, bufname, &bufp, &linecnt);
 if (linecnt<=0)
 { if (!auto_learn)

 {
 if(verbose)
 typo("Not found. You may create the word.", step);
 fclose(bufp);
 return(A_to_ZIL);
 }else
 {
 neww = learnword(cnt, stepcd, gb);
 /* Do whatever with neww here */
 if(dic_saved)
 {
 hash_wd(stepcd, gb);
 dic_saved = FALSE;
 }
 else
 {
 typo("The new word has not saved.", stepcd);
 }
 fclose(bufp);
 neww = reset_word(neww);
 return(ZIL_to_A);
 }
 }
 fseek(bufp, 0L, 0); /* to beginning sake read */
 fgets(line, MAXdatalen, bufp);
 if(line == NULL)
 {
 if (ferror(bufp)!=0 && verbose)
 fprintf(stderr, "Error during buffer read.\n");
 if (feof(bufp) !=0 && verbose)
 fprintf(stderr, "Buffer file ended.\n");
 clearerr(bufp);
 fclose(bufp);
 return(A_to_ZIL);
 }
 sscanf(line, "%s%d%s%s\n", stepcd, key, gb, infor);
 hash_wd(stepcd, gb);
 fclose(bufp);
 if (linecnt>1)
 {
 return(A_to_N);
 }else {
 return (A_to_B);
 }
}

/* --
 * Figure out the number of glyphs in a word. The next two routines are
 * based on PINYIN system.

 */
int one_letter_sound(word)
 char *word;
{
 int cnt=0;
 char *w, *v;

 w=word;
 while (*w=='m'�|�|*w=='M'�|�|*w=='n'�|�|*w=='N')
 { ++cnt; ++w;}
 if (cnt>0)
 {
 v = w; --v;
 if((*w=='g'�|�|*w=='G')&& (*v=='n'�|�|*v=='N'))
 ++w; /*ex: mng nnng*/
 }
 if(cnt==0) while (*w=='a'�|�|*w=='A'){ ++cnt; ++w;}
 if(cnt==0) while (*w=='o'�|�|*w=='O'){ ++cnt; ++w;}
 if(cnt==0) while (*w=='e'�|�|*w=='E'){ ++cnt; ++w;}
 if (!isalpha(*w))
 return(cnt); /*ex:a aa ooo eee- mmm nmn*/
 else cnt=0; /*ex: an hhh oong */
 return(cnt);
}

int tell_word(word)
 char *word;
{
 char *w, *v;
 int cnt;
 cnt=0;

 if(!isalpha(*word)) return (NULL);

 for (w=word;isalpha(*w);++w); /*skip Pinyin */
 while (isdigit(*w)) {cnt++; ++w;} /*count the number of tone marks*/

 if (cnt<1) /*special sigle letter glyph cases*/
 {
 cnt = one_letter_sound(word);
 if (cnt>=1) return(cnt); /* else do syllable analysis */
 }
 else return(cnt);

 /*
 * find the number of syllables by vowel rules
 * This implementation is accuate even without using apostrophe
 */
 w=word;
 while (isalpha(*w)) /*check the Pinyin only*/
 {

 switch (*w)
 {
 case 'a':
 case 'i':
 case 'e':
 case 'o':
 case 'u': v=w; ++w; cnt++; /*one vowel case*/
 switch (*w)
 {
 case 'i':
 case 'e':
 case 'o':
 case 'u': ++w;break; /*two vowels sound*/
 case 'a': ++w;
 if (*v=='u' && *w=='i') break;/*uai*/
 if (*v=='i' && *w=='o') break;/*iao*/

 else {
 --w; /*still two vowels*/
 break;
 }
 default: break;
 }
 default:
 /*already get out off the compound vowel*/
 break;
 }
 ++w;
 }/*check syllables*/
 return(cnt);
}

/*
 * --
 * Interactive input process procedure
 * --
 */
inputp(char *word, char *gb)
{
 int i, glyphcnt;
 char c, *w;
 int cnt, key, stat;
 char dump[MAXdatalen];

 for (;;)
 {
 *word='\0';
 fgets(word, MAXlinelen, stdin);
 if (isspace(*word))
 break;

 /* Check if the entry is a glyph string by */
 glyphcnt = tell_word(word);
 if (glyphcnt == NULL)
 {
 printf("%s", *word);
 fflush(stdin);
 continue;
 }

 w=word;
 while (isalnum(*w)) ++w;
 *w = '\0';
 if(verbose)
 printf("tell_word figure: %d glyphs\n", glyphcnt);

 /* Determin the entry is known through dictionary
 * and cache lookup.
 */
 if(glyphcnt >=2)
 stat = find_wd(word, stepcd, dump,gb,glyphcnt, &key);
 else stat = find_gly(word, stepcd, dump,gb, &key);

 /* Print out with GB code */
 if (!stat==ERROR) font_code(stepcd, gb, &key, stderr);
 if(verbose) printf("%s\n", stepcd);
 fflush(stdin);
 fflush(stderr);
 }
 return(0);
}

