BGP Link-State Extensions for Seamless BFD

draft-ietf-idr-bgp-ls-sbfd-extensions-10

Abstract

Seamless Bidirectional Forwarding Detection (S-BFD) defines a simplified mechanism to use Bidirectional Forwarding Detection (BFD) with large portions of negotiation aspects eliminated, thus providing benefits such as quick provisioning as well as improved control and flexibility to network nodes initiating the path monitoring. The link-state routing protocols (IS-IS and OSPF) have been extended to advertise the Seamless BFD (S-BFD) Discriminators.

This document defines extensions to the BGP Link-state address-family to carry the S-BFD Discriminators' information via BGP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on November 6, 2022.
Table of Contents

1. Introduction ......................................................... 2
2. Terminology .......................................................... 3
   2.1. Requirements Language ......................................... 3
3. BGP-LS Extensions for S-BFD Discriminator ......................... 3
4. IANA Considerations .................................................. 4
5. Manageability Considerations ........................................ 5
6. Security Considerations ............................................. 5
7. Acknowledgements .................................................... 5
8. References ............................................................ 6
   8.1. Normative References ........................................... 6
   8.2. Informative References ......................................... 6
Authors' Addresses ....................................................... 7

1. Introduction

Seamless Bidirectional Forwarding Detection (S-BFD) [RFC7880] defines a simplified mechanism to use Bidirectional Forwarding Detection (BFD) [RFC5880] with large portions of negotiation aspects eliminated, thus providing benefits such as quick provisioning as well as improved control and flexibility to network nodes initiating the path monitoring.

For monitoring of a service path end-to-end via S-BFD, the headend node (i.e. Initiator) needs to know the S-BFD Discriminator of the destination/tail-end node (i.e. Responder) of that service. The link-state routing protocols (IS-IS [RFC7883] and OSPF [RFC7884])
have been extended to advertise the S-BFD Discriminators. With this, an Initiator can learn the S-BFD discriminator for all Responders within its IGP area/level, or optionally within the domain. With networks being divided into multiple IGP domains for scaling and operational considerations, the service endpoints that require end to end S-BFD monitoring often span across IGP domains.

BGP Link-State (BGP-LS) [RFC7752] enables the collection and distribution of IGP link-state topology information via BGP sessions across IGP areas/levels and domains. The S-BFD discriminator(s) of a node can thus be distributed along with the topology information via BGP-LS across IGP domains and even across multiple Autonomous Systems (AS) within an administrative domain.

This document defines extensions to BGP-LS for carrying the S-BFD Discriminators information.

2. Terminology

This memo makes use of the terms defined in [RFC7880].

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. BGP-LS Extensions for S-BFD Discriminator

BGP-LS [RFC7752] specifies the Node Network Layer Reachability Information (NLRI) for the advertisement of nodes and their attributes using the BGP-LS Attribute. The S-BFD discriminators of a node are considered a node-level attribute and advertised as such.

This document defines a new BGP-LS Attribute TLV called the S-BFD Discriminators TLV and its format is as follows:
<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discriminator 1</td>
<td></td>
</tr>
<tr>
<td>Discrimator 2 (Optional)</td>
<td></td>
</tr>
<tr>
<td>Discrimator n (Optional)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1: S-BFD Discriminators TLV

where:

- **Type**: 1032
- **Length**: variable. It MUST be a minimum of 4 octets and increments by 4 octets for each additional discriminator.
- **Discriminator n**: 4 octets each, carrying an S-BFD local discriminator value of the node. At least one discriminator MUST be included in the TLV.

The S-BFD Discriminators TLV can be added to the BGP-LS Attribute associated with the Node NLRI that originates the corresponding
underlying IGP TLV/sub-TLV as described below. This information is derived from the protocol specific advertisements as follows:

- IS-IS, as defined by the S-BFD Discriminators sub-TLV in [RFC7883].
- OSPFv2/OSPFv3, as defined by the S-BFD Discriminator TLV in [RFC7884].

4. IANA Considerations

IANA is requested to permanently allocate the following code-point from the "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" registry. The column "IS-IS TLV/Sub-TLV" defined in the registry does not require any value and should be left empty.

<table>
<thead>
<tr>
<th>Code Point</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1032</td>
<td>S-BFD Discriminators TLV</td>
<td>This document</td>
</tr>
</tbody>
</table>

Table 1: S-BFD Discriminators TLV Code-Point Allocation

5. Manageability Considerations

The new protocol extensions introduced in this document augment the existing IGP topology information that was distributed via BGP-LS [RFC7752]. Procedures and protocol extensions defined in this document do not affect the BGP protocol operations and management other than as discussed in the Manageability Considerations section of [RFC7752]. Specifically, the malformed NLRIs attribute tests in the Fault Management section of [RFC7752] now encompass the new TLV for the BGP-LS NLRI in this document.

6. Security Considerations
The new protocol extensions introduced in this document augment the existing IGP topology information that can be distributed via BGP-LS [RFC7752]. Procedures and protocol extensions defined in this document do not affect the BGP security model other than as discussed in the Security Considerations section of [RFC7752]. More specifically, the aspects related to limiting the nodes and consumers with which the topology information is shared via BGP-LS to trusted entities within an administrative domain.

The TLV introduced in this document is used to propagate IGP defined information ([RFC7883] and [RFC7884]). The TLV represents information used to set up S-BFD sessions. The IGP instances originating this information are assumed to support any required security and authentication mechanisms (as described in [RFC7883] and [RFC7884]).

Advertising the S-BFD Discriminators via BGP-LS makes it possible for attackers to initiate S-BFD sessions using the advertised information. The vulnerabilities this poses and how to mitigate them are discussed in [RFC7880].

7. Acknowledgements

The authors would like to thank Nan Wu for his contributions to this work. The authors would also like to thank Gunter Van De Velde and Thomas Fossati for their reviews. The authors would also like to thank Jeff Haas for his shepherd review and Alvaro Retana for his AD review of this document.

8. References

8.1. Normative References


8.2. Informative References

Email: lizhenbin@huawei.com

Shunwan Zhuang
Huawei
Huawei Bld., No.156 Beiqing Rd.
Beijing 100095
China

Email: zhuangshunwan@huawei.com

Ketan Talaulikar (editor)
Arrcus Inc
India

Email: ketant.ietf@gmail.com

Sam Aldrin
Google, Inc

Email: aldrin.ietf@gmail.com

Jeff Tantsura
Microsoft

Email: jefftant.ietf@gmail.com

Greg Mirsky
Ericsson

Email: gregimirsky@gmail.com