Network Working Group J. G. Myers
Internet Draft: IMAP4 Authentication Mechanisms Carnegie Mellon
Document: internet-drafts/draft-ietf-imap-auth-01.txt June 1994

IMAP4 Authentication mechanisms

Status of this memo

This document is an Internet Draft. Internet Drafts are working
documents of the Internet Engineering Task Force (IETF), its Areas,
and its Working Groups. Note that other groups may also distribute
working documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of six
months. Internet Drafts may be updated, replaced, or obsoleted by
other documents at any time. It is not appropriate to use Internet
Drafts as reference material or to cite them other than as a
““working draft'' or " "work in progress’

To learn the current status of any Internet-Draft, please check the
lid-abstracts.txt listing contained in the Internet-Drafts Shadow
Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
munnari.oz.au.

This is a draft document of the IETF IMAP Working Group. It is a
preliminary specification of several authentication mechanisms for
use by the AUTHENTICATE command of the IMAP4 protocol.

A revised version of this draft document will be submitted to the RFC
editor as a Proposed Standard for the Internet Community. Discussion
and suggestions for improvement are requested. This document will
expire before 31 December 1994. Distribution of this draft is
unlimited. Comments are solicited and should be sent to
imap@CAC.wWashington.EDU.

Introduction

The Internet Message Access Protocol, Version 4 [IMAP4] contains the
AUTHENTICATE command, for identifying and authenticating a user to an
IMAP4 server and for optionally negotiating a protection mechanism
for subsequent protocol interactions. This document describes
several authentication mechanisms for use by the IMAP4 AUTHENTICATE
command.

Myers [Page 1]



Internet DRAFT IMAP4 Authentication Mechanisms June 1994

Kerberos version 4 authentication mechanism

The authentication type associated with Kerberos version 4 is
" "KERBEROS_V4'',

The data encoded in the first ready response contains a random 32-bit
number in network byte order. The client should respond with a
Kerberos ticket and an authenticator for the principal
"imap.hostname@realm", where '"hostname" is the first component of the
host name of the server with all letters in lower case and where
"realm" is the Kerberos realm of the server. The encrypted checksum
field included within the Kerberos authenticator should contain the
server provided 32-bit number in network byte order.

Upon decrypting and verifying the ticket and authenticator, the
server should verify that the contained checksum field equals the
original server provided random 32-bit number. Should the
verification be successful, the server must add one to the checksum
and construct 8 octets of data, with the first four octets containing
the incremented checksum in network byte order, the fifth octet
containing a bit-mask specifying the protection mechanisms supported
by the server, and the sixth through eighth octets containing, in
network byte order, the maximum cipher-text buffer size the server is
able to receive. The server must encrypt the 8 octets of data in the
session key and issue that encrypted data in a second ready response.
The client should consider the server authenticated if the first four
octets the un-encrypted data is equal to one plus the checksum it
previously sent.

The client must construct data with the first four octets containing
the original server-issued checksum in network byte order, the fifth
octet containing the bit-mask specifying the selected protection
mechanism, the sixth through eighth octets containing in network byte
order the maximum cipher-text buffer size the client is able to
receive, and the following octets containing a user name string. The
client must then append from one to eight octets so that the length
of the data is a multiple of eight octets. The client must then PCBC
encrypt the data with the session key and respond to the second ready
response with the encrypted data. The server decrypts the data and
verifies the contained checksum. The username field identifies the
user for whom subsequent IMAP operations are to be performed; the
server must verify that the principal identified in the Kerberos
ticket is authorized to connect as that user. After these
verifications, the authentication process is complete.

The protection mechanisms and their corresponding bit-masks are as
follows:



Myers [Page 2]



Internet DRAFT IMAP4 Authentication Mechanisms June 1994

1 No protection mechanism
2 Integrity (krb_mk_safe) protection
4 Privacy (krb_mk_priv) protection

EXAMPLE: The following are two Kerberos version 4 login scenarios
(note that the line breaks in the sample authenticators are for
editorial clarity and are not in real authenticators)

S: * OK IMAP4 Server

C: AOO1 AUTHENTICATE KERBEROS_V4

S: + AmFYig==

C: BACAQU5EUKVXLKNNVS5FRFUAOCAsho84KkLN3/IJmrMG+25a4DT
+nZImJjnTNHIUtXAA+0OKPKfHECAFs9a3CL50ebe/ydHIUwWYFd
WwuQ1MWiy6IesKvjL5rLOWjXUbOMwTObpObYLGOKi1Qh

S: + or//EoAADZI=

DiAF5A4gA+00IALUBKAAMW==

AOO1 OK Kerberos V4 authentication successful

nw O

* OK IMAP4 Server

AOO1 AUTHENTICATE KERBEROS_V4

+ gcfgCA==
BACAQU5EUKVXLKNNVS5FRFUAOCASsho84KkLN3/IJmrMG+25a4DT
+nZImJjnTNHIUtxXAA+0OKPKfHECAFs9a3CL50ebe/ydHIUwWYFd
WwuQ1MWiy6IesKvjL5rLOWjXUbOMwWTObpObYLGOKi1Qh

S: AOO1 NO Kerberos V4 authentication failed

O nmwownm

GSSAPI authentication mechanism

The authentication type associated with all mechanisms employing the
GSSAPI [RFC1508] is ~"GSSAPI''.

The first ready response issued by the server contains no data. The
client should call GSS_Init_sec_context, passing in 0 for
input_context_handle (initially) and a targ_name equal to output_name
from GSS_Import_Name called with input_name_type of NULL and
input_name_string of "SERVICE:imap@hostname" where "hostname" is the
fully qualified host name of the server with all letters in lower
case. The client must then respond with the resulting output_token.
If GSS_Init_sec_context returns GSS_CONTINUE_NEEDED, then the client
should expect the server to issue a token in a subsequent ready
response. The client must pass the token to another call to
GSS_Init_sec_context.

If GSS_Init_sec_context returns GSS_COMPLETE, then the client should


https://datatracker.ietf.org/doc/html/rfc1508

Myers [Page 3]



Internet DRAFT IMAP4 Authentication Mechanisms June 1994

respond with any resulting output_token. If there is no
output_token, the client should respond with no data. The client
should then expect the server to issue a token in a subsequent ready
response. The client should pass this token to GSS_Unseal and
interpret the first octet of resulting cleartext as a bit-mask
specifying the protection mechanisms supported by the server and the
second through fourth octets as the maximum size output_message to
send to the server. The client should construct data, with the first
octet containing the bit-mask specifying the selected protection
mechanism, the second through fourth octets containing in network
byte order the maximum size output_message the client is able to
receive, and the remaining octets containing a user name string. The
client must pass the data to GSS_Seal with conf_flag set to FALSE,
and respond with the generated output_message. The client can then
consider the server authenticated.

The server must issue a ready response with no data and pass the
resulting client supplied token to GSS_Accept_sec_context as
input_token, setting acceptor_cred_handle to NULL (for "use default
credentials"), and 0 for input_context_handle (initially). If
GSS_Accept_sec_context returns GSS_CONTINUE_NEEDED, the server should
return the generated output_token to the client in a ready response
and pass the resulting client supplied token to another call to
GSS_Accept_sec_context.

If GSS_Accept_sec_context returns GSS_COMPLETE, then if an
output_token is returned, the server should return it to the client
in a ready response and expect a reply from the client with no data.
Whether or not an output_token was returned, the server then should
then construct 4 octets of data, with the first octet containing a
bit-mask specifying the protection mechanisms supported by the server
and the second through fourth octets containing in network byte order
the maximum size output_token the server is able to receive. The
server must then pass the plaintext to GSS_Seal with conf_flag set to
FALSE and issue the generated output_message to the client in a ready
response. The server must then pass the resulting client supplied
token to GSS_Unseal and interpret the first octet of resulting
cleartext as the bit-mask for the selected protection mechanism, the
second through fourth octets as the maximum size output_message to
send to the client, and the remaining octets as the user name. Upon
verifying the src_name is authorized to authenticate as the user
name, The server should then consider the client authenticated.

The protection mechanisms and their corresponding bit-masks are as
follows:

1 No protection mechanism
2 Integrity protection.



Myers [Page 4]



Internet DRAFT IMAP4 Authentication Mechanisms June 1994

Sender calls GSS_Seal with conf_flag set to FALSE
4 Privacy protection.
Sender calls GSS_Seal with conf_flag set to TRUE

S/Key authentication mechanism

The authentication type associated with S/Key [SKEY] is ~"SKEY''.

The first ready response issued by the server contains no data. The
client responds with the user name string.

The data encoded in the second ready response contains the decimal
sequence number followed by a single space and the seed string for
the indicated user. The client responds with the one-time-password,
as either a 64-bit value in network byte order or encoded in the "six
English words" format.

Upon successful verification of the one-time-password, the server
should consider the client authenticated.

S/Key authentication does not provide for any protection mechanisms.

EXAMPLE: The following are two S/Key login scenarios.

S: * OK IMAP4 Server

C: AOO1 AUTHENTICATE SKEY

S: +

C: bw9yZ2Fu

S: + OTUgUWE1O0DMwOA==

C: Rk9VUiBNQU50IFNPTO4gRk1SIFZBUlKkgTUFTSA==
S: A0O1 OK S/Key authentication successful

* OK IMAP4 Server

AGO1 AUTHENTICATE SKEY

+

c21pdGg=

+ OTUQUWE10DMwOA==

BsAY3g4gBNo=

ABGO1 NO S/Key authentication failed

nonmonmoon



Myers [Page 5]



Internet DRAFT IMAP4 Authentication Mechanisms June 1994

References

[IMAP4] Crispin, Mark R., "Internet Message Access Protocol -
Version 4", Work in Progress of the IETF IMAP WG, draft-ietf-imap-
imap4-??.txt. Check Internet Drafts listing for latest version.

[RFC1508] Linn, John, "Generic Security Service Application Program
Interface", RFC 1508.

[SKEY] Haller, Neil M. "The S/Key One-Time Password System",
Bellcore, Morristown, New Jersey, October 1993,
thumper.bellcore.com:pub/nmh/docs/ISOC.symp.ps

Security Considerations

Security issues are discussed throughout this memo.

Author's Address

John G. Myers
Carnegie-Mellon University
5000 Forbes Ave.
Pittsburgh PA, 15213-3890

Email: jgm+@cmu.edu

This document will expire before December 25, 1994.


https://datatracker.ietf.org/doc/html/draft-ietf-imap-imap4
https://datatracker.ietf.org/doc/html/draft-ietf-imap-imap4
https://datatracker.ietf.org/doc/html/rfc1508

Myers [Page 6]



