
Network Working Group Mark Crispin
Internet Draft: IMAP2bis University of Washington
Obsoletes: RFC 1176, 1064 October 1993
Document: internet-drafts/draft-ietf-imap-imap2bis-02.txt

 INTERACTIVE MAIL ACCESS PROTOCOL - VERSION 2bis

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a "working
 draft" or "work in progress". Please check the I-D abstract listing
 contained in each Internet Draft directory to learn the current
 status of any this or any other Internet Draft.

 This is a draft document of the IETF IMAP Working Group. It is a
 draft specification of the IMAP2bis protocol, based upon the
 following earlier specifications: unpublished IMAP2bis.TXT document,

RFC 1176, and RFC 1064. This document is not a complete or final
 specification of the IMAP2bis protocol.

 Only matters that are believed to be uncontroversial, or issues that
 are believed to be resolved, appear in this document. The entirety
 of this document is subject to change and extension. A list of open
 issues may be found in the file mail/imap.unresolved on Internet site
 ftp.CAC.Washington.EDU.

 A version of this draft document will be submitted to the RFC editor
 as a Proposed Standard for the Internet Community. Discussion and
 suggestions for improvement are requested. This document will expire
 before 31 March 1994. Distribution of this draft is unlimited.
 Comments are solicited and should be sent to imap@CAC.Washington.EDU.

Introduction

 The Interactive Mail Access Protocol, Version 2bis (IMAP2bis) allows
 a client to access and manipulate electronic mail on a server.
 IMAP2bis is designed to permit manipulations of remote mailboxes as

Crispin [Page 1]

https://datatracker.ietf.org/doc/html/rfc1176
https://datatracker.ietf.org/doc/html/rfc1064
https://datatracker.ietf.org/doc/html/rfc1176
https://datatracker.ietf.org/doc/html/rfc1064

Internet Draft IMAP2bis October 27, 1993

 if they were local. IMAP2bis includes operations for creating,
 deleting, and renaming mailbox folders; checking for new mail;
 permanently removing messages; setting and clearing flags; RFC 822
 and MIME parsing; searching; and selective fetching of message
 attributes, texts, and portions thereof.

 IMAP2bis does not specify a means of posting mail; this function is
 handled by a mail transfer protocol such as SMTP (RFC 821).

 IMAP2bis assumes a reliable data stream such as provided by TCP.
 When TCP is used, an IMAP2bis server listens on port 143.

Crispin [Page 2]

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc821

Internet Draft IMAP2bis October 27, 1993

System Model and Philosophy

 There are three fundamental models of client/server email: offline,
 online, and disconnected use. IMAP2bis can be used in any one of
 these three models.

 The offline model is the most familiar form of client/server email
 today, and is used by protocols such as POP-3 (RFC 1225) and UUCP.
 In this model, a client application periodically connects to a
 server. It downloads all the pending messages to the client machine
 and deletes these from the server. Thereafter, all mail processing
 is local to the client. This model is store-and-forward; it moves
 mail on demand from an intermediate server (maildrop) to a single
 destination machine.

 The online model is most commonly used with remote filesystem
 protocols such as NFS. In this model, a client application
 manipulates mailbox data on a server machine. A connection to the
 server is maintained throughout the session. No mailbox data are
 kept on the client; the client retrieves data from the server as is
 needed. IMAP2bis introduces a form of the online model that requires
 considerably less network bandwidth than a remote filesystem
 protocol, and provides the opportunity for using the server for CPU
 or I/O intensive functions such as parsing and searching.

 The disconnected use model is a hybrid of the offline and online
 models, and is used by protocols such as PCMAIL (RFC 1056). In this
 model, a client user downloads some set of messages from the server,
 manipulates them offline, then at some later time uploads the
 changes. The server remains the authoritative repository of the
 messages. The problems of synchronization (particularly when
 multiple clients are involved) are handled through the means of
 unique identifiers for each message.

 Each of these models have their own strengths and weaknesses:

 Feature Offline Online Disc
 ------- ------- ------ ----
 Can use multiple clients NO YES YES
 Minimum use of server connect time YES NO YES
 Minimum use of server resources YES NO NO
 Minimum use of client disk resources NO YES NO
 Multiple remote mailboxes NO YES YES
 Fast startup NO YES NO
 Mail processing when not online YES NO YES

 Although IMAP2bis was originally designed to accommodate the online
 model, it can support the other two models as well. This makes

https://datatracker.ietf.org/doc/html/rfc1225
https://datatracker.ietf.org/doc/html/rfc1056

Crispin [Page 3]

Internet Draft IMAP2bis October 27, 1993

 possible the creation of clients that can be used in any of the three
 models. For example, a user may wish to switch between the online
 and disconnected models on a regular basis (e.g. owing to travel).

 IMAP2bis is designed to transmit message data on demand, and to
 provide the facilities necessary for a client to decide what data it
 needs at any particular time. There is generally no need to do a
 wholesale transfer of an entire mailbox or even of the complete text
 of a message. This makes a difference in situations where the
 mailbox is large, or when the link to the server is slow.

 More specifically, IMAP2bis supports server-based RFC 822 and MIME
 processing. With this information, it is possible for a client to
 determine in advance whether it wishes to retrieve a particular
 message or part of a message. For example, a user connected to an
 IMAP2bis server via a dialup link can determine that a message has a
 2000 byte text segment and a 40 megabyte video segment, and elect to
 fetch only the text segment.

 In IMAP2bis, the client/server relationship lasts only for the
 duration of the TCP connection, and mailbox state is maintained on
 the server. There is no registration of clients. Except for any
 unique identifiers used in disconnected use operation, the client
 initially has no knowledge of mailbox state and learns it from the
 IMAP2bis server when a mailbox is selected. This initial transfer is
 minimal; the client requests additional state data as it needs.

https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 4]

Internet Draft IMAP2bis October 27, 1993

The Protocol

 The IMAP2bis protocol consists of a sequence of client commands and
 server responses, with server data interspersed between the
 responses. Unlike most Internet protocols, commands and responses
 are tagged. That is, a command begins with a unique identifier
 (typically a short alphanumeric sequence such as a Lisp "gensym"
 function would generate e.g., A0001, A0002, etc.) called a tag. The
 response to the command is given the same tag from the server.

 Additionally, the server may send an arbitrary amount of "unsolicited
 data". Unsolicited data is identified by the special reserved tag of
 "*". The unsolicited data mechanism transmits most data in IMAP2bis.
 The term "unsolicited data" suggests that the data may have been
 transmitted without any explicit request by the client for that data.
 No distinction is made in IMAP2bis between data transmitted as a
 result of a client command and data that are unilaterally transmitted
 by the server. One form of unilaterally transmitted data that
 commonly occurs is an alert of a change to the mailbox made by some
 process other than the IMAP2bis client or server; for example,
 changes in the size of the mailbox (new mail) or in the status of
 individual messages.

 There is another special reserved tag, "+", discussed below.

 The server must be listening for a connection. When a connection is
 opened the server sends a greeting message and then waits for
 commands. This greeting is either a PREAUTH (meaning that the user
 has already been identified and authenticated by an external
 mechanism such as rsh) or OK (meaning that the user is not yet
 authenticated) unsolicited response. The server may also send a BYE
 unsolicited response and close the connection if it rejects the
 connection.

 The client opens a connection and waits for the greeting. The client
 must not send any commands until it has received the greeting from
 the server.

 Once the greeting has been received, the client may begin sending
 commands. It is not under any obligation to wait for a server
 response to a command before sending another command, subject to the
 constraints of underlying flow control. When commands are received
 the server acts on them and responds with command responses, often
 interspersed with data.

 In general, the command responses do not themselves contain the
 requested data. Instead, they indicate the completion status of the
 request. There are three fundamental responses: success (OK), error

Crispin [Page 5]

Internet Draft IMAP2bis October 27, 1993

 (NO), request faulty or not understood (BAD). The effect of a
 command can not be considered complete until a command response with
 a tag matching the command is received from the server.

 It is not required that a server process a command to completion
 before beginning processing of the next command, except when the
 processing of the previous command may affect the results of the next
 command by changing the state of the current mailbox. This has
 certain other effects; for example, this implies that an EXPUNGE
 response can not be transmitted as part of a response to a command
 that uses sequence numbers, because EXPUNGE results in message
 numbers being changed.

 Client implementations should update their local cache of data with
 any received unsolicited data, regardless of whether or not the
 client expected that data. Unlike command completion responses, data
 are not necessarily associated with a specific command. The tagged
 command completion response signals that the client cache is now
 updated with the results of the corresponding command.

 If authentication has not yet been completed, it must now be done via
 the LOGIN command before any access to data is permitted. The only
 permitted commands before successful authentication are LOGIN, NOOP,
 and LOGOUT. See the section below on authentication.

 Once authenticated, the client must send a mailbox selection command
 to access the desired mailbox; no mailbox is selected by default.
 Mailbox names are implementation dependent. However, the word
 "INBOX" must be implemented to mean the primary or default mailbox
 for this user, independent of any other server semantics. It is
 permitted for a server not to have an INBOX if there is no concept of
 a primary or default mailbox for this user. The name "INBOX" MUST
 NOT be used for any other purpose.

 On a successful selection, the server will send a list of valid
 flags, number of messages, and number of messages arrived since last
 access for this mailbox as unsolicited data, followed by an OK
 response. The client may close access to this mailbox and access a
 different one with another selection command.

 Several flags are predefined in IMAP2bis. All IMAP2bis flags begin
 with a backslash ("\") character. Servers MUST, at a minimum,
 support all the predefined flags in this specification. In addition,
 a server may also have some implementation-defined per-mailbox flags
 (called, for historical reasons, "keywords") that do not begin with
 backslash. Clients should use the information from the server's
 FLAGS response at message selection to determine what flags the
 server supports.

Crispin [Page 6]

Internet Draft IMAP2bis October 27, 1993

 The client requests mailbox data with FETCH commands, and receives it
 via the unsolicited data mechanism. Three major categories of
 mailbox data exist.

 The first category is data that are associated with a message as an
 entity in the mailbox. There are now four such items of data: the
 "internal date", the "RFC 822 size", the "flags", and the "unique
 id". The internal date is the date and time that the message was
 placed in the mailbox. The RFC 822 size is the size in octets of the
 message, expressed as an RFC 822 text string. The flags are a list
 of status flags associated with the message. The unique id is an
 identifier that is guaranteed to refer to this message and to none
 other in the mailbox and that, unlike IMAP2bis sequence numbers,
 persists across sessions.

 The second category is data that describe the composition and
 delivery information of a message; that is, information such as the
 message sender, recipient lists, message-ID, subject, MIME structure,
 etc. This is the information that is stored in the RFC 822 and MIME
 headers. In IMAP2bis, the RFC 822 header information that may be
 fetched is called the "envelope structure" (not to be confused with
 SMTP envelopes). Similarly, the MIME header information that may be
 fetched is called the "body structure". A client can use the parsed
 envelope and body structures and not worry about having to do its own

RFC 822 or MIME parsing.

 The third category is textual data, some of which are intended for
 direct human viewing. IMAP2bis defines six such items:

RFC822.HEADER, RFC822.HEADER.LINES, RFC822.HEADER.LINES.NOT,
RFC822.TEXT, RFC822, and MIME body parts. It is possible to fetch an

 individual MIME body part of a message without fetching any other
 data associated with the message.

 A simple client can "FETCH RFC822" to get the entire message without
 any processing. A more advanced client might fetch some combination
 of the first and second categories of data for use as a presentation
 menu. Then, when the user wishes to read a particular message, it
 will fetch the appropriate texts.

 Data structures in IMAP2bis are represented as an S-expression list
 similar to that used in the Lisp programming language. An S-
 expression consists of a sequence of data items delimited by space
 and bounded at each end by parentheses. An S-expression may itself
 contain other S-expressions, using parentheses to indicate nesting.
 S-expression syntax was chosen because it provides a concise and
 precise means of expressing nested data (e.g. MIME structures).

 The client can alter certain data with a STORE command. As an

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 7]

Internet Draft IMAP2bis October 27, 1993

 example, a message is deleted from a mailbox by setting the \Deleted
 flag with a STORE command.

 Other client operations that can be done to a mailbox include copying
 messages to other mailboxes, permanently removing deleted messages,
 checking for updated mailbox state, and searching for messages that
 match certain criteria. It is also possible to select a different
 mailbox, create a new mailbox, rename an existing mailbox, or delete
 an existing mailbox.

 The client should end the session with the LOGOUT command. The
 server returns a "BYE" followed by an "OK", at which point both the
 client and the server close the connection. If the client closes the
 network connection without a LOGOUT command, the server should do its
 normal logout procedures without attempting any further interaction
 with the client.

Crispin [Page 8]

Internet Draft IMAP2bis October 27, 1993

Authentication

 Pre-authentication is only possible when the connection to the
 IMAP2bis service is made through some link protocol that provides its
 own authentication mechanism. It is not used with a TCP connection
 to port 143.

 An example of pre-authentication is the BSD "RSH" protocol, that
 provides authentication through a "trusted host" facility. Another
 example would be a manual invocation of an IMAP2bis server from a
 logged-in timesharing job.

 A pre-authenticated IMAP2bis server should recognize that
 authentication has already happened, and enter the post-login state.
 In its greeting message, it should use the unsolicited response
 "PREAUTH" instead of "OK" to indicate that external authentication
 has taken place.

 This is an example of a pre-authentication scenario. In this and all
 other examples in this document, S: indicates server dialog and C:
 indicates client dialog.

 S: * PREAUTH IMAP2bis Server pre-authenticated as user "Smith"
 C: A001 SELECT INBOX
 S: * FLAGS (\Answered \Flagged \Deleted \Seen)
 S: * 19 EXISTS
 S: * 2 RECENT
 S: A001 OK SELECT complete

 A connection that is not pre-authenticated is constrained to using
 the LOGIN command for establishing authentication. Authentication
 via the LOGIN command is with either a user name and password pair,
 or with an user identifier and Kerberos authenticator. See the
 description of the LOGIN command for more details.

 Servers may allow non-authenticated access to certain mailboxes or
 bulletin boards. The convention is to use a LOGIN command with the
 userid "anonymous". A password is still required. It is
 implementation-dependent what requirements, if any, are placed on the
 password and what access restrictions are placed on anonymous users.

 Implementations are NOT required to support pre-authentication,
 Kerberos authentication, or the anonymous convention.

Crispin [Page 9]

Internet Draft IMAP2bis October 27, 1993

Definitions of Commands and Responses

 Summary of Defined Commands and Responses

 Commands || Responses
 -------- || -------
 tag NOOP || tag OK resp_text
 tag LOGIN user password || tag NO resp_text
 tag LOGOUT || tag BAD resp_text
 tag CREATE mailbox || * PREAUTH resp_text
 tag DELETE mailbox || * OK resp_text
 tag RENAME old_mailbox new_mailbox || * NO resp_text
 tag FIND MAILBOXES pattern || * BAD resp_text
 tag FIND ALL.MAILBOXES pattern || * BYE resp_text
 tag FIND BBOARDS pattern || * MAILBOX mstring
 tag FIND ALL.BBOARDS pattern || * BBOARD mstring
 tag SUBSCRIBE MAILBOX mailbox || * SEARCH 1#number
 tag UNSUBSCRIBE MAILBOX mailbox || * FLAGS flag_list
 tag SUBSCRIBE BBOARD mailbox || * number EXISTS
 tag UNSUBSCRIBE BBOARD mailbox || * number RECENT
 tag SELECT mailbox || * number EXPUNGE
 tag EXAMINE mailbox || * number FETCH data
 tag BBOARD mailbox || * number COPY
 tag CHECK || * number STORE data
 tag EXPUNGE || + text
 tag COPY sequence mailbox ||
 tag APPEND mailbox 0#flag literal ||
 tag FETCH sequence data ||
 tag PARTIAL msgno data start count ||
 tag STORE sequence data value ||
 tag UID AFTER uniqueid ||
 tag UID COPY sequence mailbox ||
 tag UID FETCH sequence data ||
 tag UID STORE sequence data value ||
 tag SEARCH search_program ||
 tag x_command arguments ||

 Note: there is no pairing between commands and responses on the same
 line. Any command may result in any number (including none at all)
 of any of responses beginning with "*" (referred to as "unsolicited
 data"), followed by one tagged response.

Crispin [Page 10]

Internet Draft IMAP2bis October 27, 1993

Commands

 If, during the execution of any command, the server observes that the
 mailbox size has changed, the server should output an unsolicited
 EXISTS and RECENT response reflecting the changed size to alert the
 client. Similarly, any observed change in message status should
 cause an unsolicited FETCH response with the new flag data.

 tag NOOP

 The NOOP command returns an OK to the client. By itself, it does
 nothing else. However, since any command can return a status
 update as unsolicited data, this command can be used to poll for
 new mail or for message status updates.

 Another possible use of this command is for the client to "ping"
 the server so that the client and server know that each other are
 still alive. This is useful with servers that have an inactivity
 autologout timer.

 tag LOGIN user password

 The LOGIN command identifies the user to the server and carries
 the password authenticating this user. This information is used
 by the server to control access to the mailboxes.

 EXAMPLE: a001 LOGIN SMITH SESAME
 logs in as user SMITH with password SESAME.

 If a server supports authentication via Kerberos, it may accept
 the string "@KERBEROS:" followed by the hexadecimal representation
 of a Kerberos authenticator.

 EXAMPLE: The following is a Kerberos login scenario (note that the
 line breaks in the sample authenticator are for editorial clarity
 and are not in a real authenticator):

 S: * OK Kerberos IMAP2bis Server
 C: a001 LOGIN smith @KERBEROS:040700414e445245572e434d552e4544550
 038202c868f3890b377fc8266acc1bedb96b80d3fa76489898e74cd1c952dc
 4003ea3428f29f1c470016cf5adc22f939e6deff2747254c1815d5b0b90d4c
 5a2cba21eb0abe32f9acbf568d751bf4cc13f5ba4e6d82c638a8b5421
 S: a001 OK [df84a4cb8323454f] Login OK via Kerberos

 The token in the brackets in the OK response is the Kerberos
 authentication response, encrypted with the session key in network

Crispin [Page 11]

Internet Draft IMAP2bis October 27, 1993

 byte order and an incremented checksum as in the usual Kerberos
 procedure.

 tag LOGOUT

 The LOGOUT command informs the server that the client is done with
 the session. The server should send an unsolicited BYE response
 before the (tagged) OK response, and then close the network
 connection.

 Mailbox manipulation commands: CREATE, DELETE, RENAME

 These commands permit the manipulation of entire mailboxes.

 tag CREATE mailbox

 The CREATE command creates a mailbox with the given name. This
 command returns an OK response only if a new mailbox with that
 name has been created. It is an error to attempt to create a
 mailbox with a name that refers to an extant mailbox. Any
 error in creation will return a NO response.

 Creating INBOX is not permitted. If there is a primary or
 default mailbox for this user, it MUST exist and be called
 INBOX.

 tag DELETE mailbox

 The DELETE command deletes a mailbox with the given name. This
 command returns an OK response only if a mailbox with that name
 has been deleted. It is an error to attempt to delete a
 mailbox name that does not exist. Any error in deletion will
 return a NO response.

 A server SHOULD NOT attempt to test that a mailbox is empty
 before permitting deletion; this would prevent the deletion of
 a mailbox that for some reason can not be opened or expunged,
 leaving to possible denial of service problems. Any such
 checking should be left to the discretion of the client.

 Deleting INBOX is not permitted.

Crispin [Page 12]

Internet Draft IMAP2bis October 27, 1993

 tag RENAME old_mailbox new_mailbox

 The RENAME command changes the name of a mailbox. This command
 returns an OK response only if a mailbox with the old name
 exists and has been successfully renamed to the new name. It
 is an error to attempt to rename with an old mailbox name that
 does not exist or a new mailbox name that already exists. Any
 error in renaming will return a NO response.

 Renaming INBOX is permitted. A new, empty INBOX is created in
 its place.

 FIND commands

 The FIND commands return some set of unsolicited MAILBOX or BBOARD
 replies, depending on the type of FIND, that have as their value a
 single mailbox name.

 Three wildcard characters are defined in the pattern argument. "*"
 specifies any number (including zero) characters may match at this
 position. "%" and "?" specify a single character may match at this
 position. For example, FOO*BAR will match FOOBAR, FOOD.ON.THE.BAR
 and FOO.BAR, whereas FOO%BAR and FOO?BAR match only FOO.BAR. "*"
 will match all mailboxes.

 tag FIND MAILBOXES pattern

 The FIND MAILBOXES command accepts as an argument a pattern
 (including wildcards) that specifies some set of mailbox names
 that the user has declared as being "active" or "subscribed".
 The exact meaning of this is implementation-dependent, since
 the concept of a set of "active" or "subscribed" mailboxes that
 is preserved across sessions may not be meaningful for a
 particular server or server implementation. If the SUBSCRIBE
 MAILBOX and UNSUBSCRIBE MAILBOX commands are implemented then
 this command returns the list manipulated by those commands.

 EXAMPLE: C: A002 FIND MAILBOXES *
 S: * MAILBOX FOOBAR
 S: * MAILBOX GENERAL
 S: A002 OK FIND completed

 tag FIND ALL.MAILBOXES pattern

 The FIND ALL.MAILBOXES command is similar to FIND MAILBOXES;

Crispin [Page 13]

Internet Draft IMAP2bis October 27, 1993

 however, it should return a complete list of all mailboxes
 available to the user. Data are returned as in FIND MAILBOXES.

 The special name INBOX is included in the output from FIND
 ALL.MAILBOXES unless INBOX is not supported by this server or
 for this user. The criteria for omitting INBOX is whether
 SELECT INBOX will return failure; it is not relevant whether
 the user's real INBOX resides on this or some other server.
 FIND MAILBOXES and SUBSCRIBE MAILBOX provide a mechanism for
 the user to identify that this is his or her real INBOX.

 FIND ALL.MAILBOXES must, at least, return all the mailbox names
 that are returned by FIND MAILBOXES.

 The exact meaning of this is implementation-dependent, since
 the concept of a bounded or deterministic set of "mailboxes
 available to the user" may not be meaningful for a particular
 server or server implementation.

 tag FIND BBOARDS pattern

 The FIND BBOARDS command accepts as an argument a pattern that
 specifies some set of bulletin board names that the user has
 declared as being "active" or "subscribed". Wildcards are
 permitted as in FIND MAILBOXES.

 The FIND BBOARDS command will return some set of unsolicited
 BBOARD replies that have as their value a single bulletin board
 name.

 EXAMPLE: C: A002 FIND BBOARDS *
 S: * BBOARD FOOBAR
 S: * BBOARD GENERAL
 S: A002 OK FIND completed

 The exact meaning of this is implementation-dependent, since
 the concept of a set of "active" or "subscribed" bboards that
 is preserved across sessions may not be meaningful for a
 particular server or server implementation. If the SUBSCRIBE
 BBOARD and UNSUBSCRIBE BBOARD commands are implemented then
 this command returns the list manipulated by those commands.

 tag FIND ALL.BBOARDS pattern

 The FIND ALL.BBOARDS command is similar to FIND BBOARDS;
 however, it should return a complete list of all bulletin

Crispin [Page 14]

Internet Draft IMAP2bis October 27, 1993

 boards available to the user. Data are returned as in FIND
 BBOARDS.

 FIND ALL.BBOARDS must, at least, return all the bboard names
 that are returned by FIND BBOARDS.

 The exact meaning of this is implementation-dependent, since
 the concept of a bounded or deterministic set of "bboards
 available to the user" may not be meaningful for a particular
 server or server implementation.

 Subscription commands

 These commands permit the manipulation of mailbox or bulletin board
 subscriptions. Subscription status should be preserved between
 sessions.

 tag SUBSCRIBE MAILBOX mailbox

 The SUBSCRIBE MAILBOX command adds the specified mailbox name
 to the list of "active" or "subscribed" mailboxes as returned
 by the FIND MAILBOXES command. This command returns an OK
 response only if the subscription is successful.

 tag UNSUBSCRIBE MAILBOX mailbox

 The UNSUBSCRIBE MAILBOX command removes the specified mailbox
 name from the list of "active" or "subscribed" mailboxes as
 returned by the FIND MAILBOXES command. This command returns
 an OK response only if the unsubscription is successful.

 tag SUBSCRIBE BBOARD bboard

 The SUBSCRIBE BBOARD command adds the specified mailbox name to
 the list of "active" or "subscribed" bulletin boards as
 returned by the FIND BBOARDS command. This command returns an
 OK response only if the subscription is successful.

 tag UNSUBSCRIBE BBOARD bboard

 The UNSUBSCRIBE BBOARD command removes the specified mailbox
 name from the list of "active" or "subscribed" bulletin boards
 as returned by the FIND BBOARDS command. This command returns

Crispin [Page 15]

Internet Draft IMAP2bis October 27, 1993

 an OK response only if the unsubscription is successful.

 tag SELECT mailbox

 This command selects a particular mailbox. The server must check
 that the user is permitted read access to this mailbox. Before
 returning an OK to the client, the server must send the following
 unsolicited data to the client:
 FLAGS mailbox's defined flags
 <n> EXISTS the number of messages in the mailbox
 <n> RECENT the number of messages added to the mailbox since the
 previous time this mailbox was read
 to define the initial state of the mailbox at the client. If it
 can not be determined which messages were added since the previous
 time a mailbox was read, then all messages SHOULD be considered
 recent. An example of this is if no "last read" time information
 is available or a read-only mailbox that does not permit a change
 of "last read" time.

 Multiple selection commands are permitted in a session. The
 previous mailbox is automatically deselected when a new selection
 is made. If concurrent access to multiple mailboxes is desired,
 the client should open additional sessions as needed.

 The mailbox name INBOX is a special name reserved to mean "the
 primary mailbox for this user on this server". The format of
 other mailbox names is implementation dependent.

 The text of an OK response to the SELECT command should begin with
 either "[READ-ONLY]" or "[READ-WRITE]" to show the mailbox's
 access status.

 tag EXAMINE mailbox

 The EXAMINE command is similar to SELECT, and returns the same
 output; however, the selected mailbox is identified as read-only
 and no changes are permitted to this mailbox. EXAMINE has the
 same mailbox namespace as SELECT.

 tag BBOARD mailbox

 The BBOARD command is similar to SELECT, and returns the same
 output. Its argument is a shared mailbox (bulletin board) name
 instead of an ordinary mailbox. There is no requirement that the
 namespace for BBOARD be the same as that for SELECT and EXAMINE.

Crispin [Page 16]

Internet Draft IMAP2bis October 27, 1993

 BBOARD also differs from EXAMINE in that it may allow changes
 (e.g. marking a message as seen or deleted) to a mailbox; the
 exact handling of this is implementation dependent.

 tag CHECK

 The CHECK command requests a checkpoint of the mailbox. CHECK may
 cause an operation that may take a non-instantaneous amount of
 real-time to complete. The exact meaning of a checkpoint is
 implementation-dependent. Possible interpretations include
 forcing an update of the server's disk of all changes made to the
 selected mailbox, rescanning of the entire mailbox, etc. If an
 implementation has no such considerations, CHECK should be
 equivalent to NOOP.

 CHECK should NOT be used to poll for new mail; new mail checking
 happens implicitly as part of every command. NOOP should be used
 for any new mail polling. CHECK should NOT be used to get the
 current size of the mailbox; there is no guarantee that CHECK will
 cause an EXISTS or RECENT unsolicited response.

 tag EXPUNGE

 The EXPUNGE command permanently removes all messages with the
 \Deleted flag set from the currently selected mailbox. Before
 returning an OK to the client, for each message that is removed,
 an unsolicited EXPUNGE response is sent. The message number for
 each successive message in the mailbox is immediately decremented
 by 1; this means that if the last 5 messages in a 9-message mail
 file are expunged the client will receive 5 unsolicited EXPUNGE
 responses for message 5.

 tag COPY sequence mailbox

 The COPY command copies the specified message(s) to the specified
 destination mailbox. The flags of the message(s) SHOULD be
 preserved in the copy.

 If the destination mailbox does not exist, a server SHOULD return
 an error. It SHOULD NOT automatically create the mailbox. Unless
 it is certain that the destination mailbox can not be created, the
 server MUST send the special information token "[TRYCREATE]" as
 the prefix of the text of the tagged NO response. This gives a
 hint to the client that it can attempt a CREATE command and retry
 the COPY if the CREATE is successful.

Crispin [Page 17]

Internet Draft IMAP2bis October 27, 1993

 If the COPY command is unsuccessful for any reason, IMAP2bis
 server implementations MUST restore the destination mailbox its
 prior state before the COPY attempt.

 EXAMPLE: A003 COPY 2:4 MEETING
 copies messages 2, 3, and 4 to mailbox "MEETING".

 tag APPEND mailbox 0#flag literal

 The APPEND command appends the literal argument as a new message
 in the specified destination mailbox. This argument is in the
 format of an RFC 822 message. If any flags are specified, those
 flags SHOULD be set in the resulting message. If the append is
 unsuccessful for any reason the mailbox must be restored to its
 prior state before the APPEND attempt; no partial appending is
 permitted. If the mailbox is currently selected, the normal new
 mail actions should occur.

 Server implementations SHOULD return a NO response if the length
 of the literal is zero.

 If the destination mailbox does not exist, a server MUST return an
 error, and MUST NOT automatically create the mailbox. Unless it
 is certain that the destination mailbox can not be created, the
 server MUST send the special information token "[TRYCREATE]" as
 the prefix of the text of the tagged NO response. This gives a
 hint to the client that it can attempt a CREATE command and retry
 the APPEND if the CREATE is successful.

 Note that this functionality is unsuitable for message delivery,
 because it does not provide a mechanism to transfer RFC 821 (SMTP)
 envelope information.

 tag FETCH sequence data

 The FETCH command retrieves data associated with a message in the
 mailbox. The data items to be fetched may be either a single atom
 or an S-expression list. The currently defined data items that
 can be fetched are:

 ALL Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE)

 BODY Non-extensible form of BODYSTRUCTURE.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 18]

Internet Draft IMAP2bis October 27, 1993

 BODY[section] The text of a particular body section. The
 section specification is a set of one or more
 part numbers delimited by periods.

 Single-part messages only have a part 1.

 Multipart messages are assigned consecutive
 part numbers, as they occur in the message.
 If a particular part is of type message or multipart,
 its parts must be indicated by a period followed by
 the part number within that nested multipart part.
 It is not permitted to fetch a multipart part
 itself, only its individual members.

 A part of type MESSAGE and subtype RFC822 also
 has nested parts. These are the parts of the
 MESSAGE part's body. Nested part 0 of a part of
 type MESSAGE and subtype RFC822 is the RFC 822
 header of the message.

 Every message has at least one part.

 EXAMPLE: Here is a complex message with its
 associated section specifications.
 1 TEXT/PLAIN
 2 APPLICATION/OCTET-STREAM
 3 MESSAGE/RFC822
 3.0 (RFC 822 header of the message)
 3.1 TEXT/PLAIN
 3.2 APPLICATION/OCTET-STREAM
 MULTIPART/MIXED
 4.1 IMAGE/GIF
 4.2 MESSAGE/RFC822
 4.2.0 (RFC 822 header of the message)
 4.2.1 TEXT/PLAIN
 MULTIPART/ALTERNATIVE
 4.2.2.1 TEXT/PLAIN
 4.2.2.2 TEXT/RICHTEXT
 Note that there is no section specification for
 the Multi-part parts (no section 4 or 4.2.2).

 The \Seen flag is implicitly set; if this causes
 the flags to change they should be included as
 part of the fetch results.

 BODYSTRUCTURE The MIME body structure of the message. This
 is computed by the server by parsing the MIME
 header lines.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 19]

Internet Draft IMAP2bis October 27, 1993

 ENVELOPE The envelope structure of the message. This
 computed by the server by parsing the RFC 822
 header into the component parts, defaulting
 various fields as necessary.

 FAST Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE)

 FLAGS The flags that are set for this message.

 FULL Macro equivalent to:
 (FLAGS INTERNALDATE RFC822.SIZE ENVELOPE BODY)

 INTERNALDATE The date and time the message was written to
 the mailbox.

RFC822 The message in RFC 822 format. The \Seen
 flag is implicitly set; if this causes the
 flags to change they should be included as
 part of the fetch results. This is the
 concatenation of RFC822.HEADER and RFC822.TEXT.

RFC822.HEADER The RFC 822 format header of the message as
 stored on the server including the delimiting
 blank line between the header and the body.

RFC822.HEADER.LINES header_line_list
 All header lines (including continuation lines)
 of the RFC 822 format header of the message
 with a field-name (as defined in RFC 822) that
 matches any of the strings in header_line_list.
 The matching is case-independent but otherwise
 exact.

RFC822.HEADER.LINES.NOT header_line_list
 All header lines (including continuation lines)
 of the RFC 822 format header of the message
 with a field-name (as defined in RFC 822) that
 does not match any of the strings in
 header_line_list. The matching is
 case-independent but otherwise exact.

RFC822.SIZE The number of characters in the message as
 expressed in RFC 822 format.

RFC822.TEXT The text body of the message, omitting the
RFC 822 header. The \Seen flag is implicitly

 set; if this causes the flags to change they

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 20]

Internet Draft IMAP2bis October 27, 1993

 should be included as part of the fetch results.

 UID The unique identifier for the message.

 EXAMPLES:

 A003 FETCH 2:4 ALL
 fetches the flags, internal date, RFC 822 size, and envelope
 structure for messages 2, 3, and 4.

 A004 FETCH 3 RFC822
 fetches the RFC 822 representation for message 3.

 A005 FETCH 4 (FLAGS RFC822.HEADER)
 fetches the flags and RFC 822 format header for message 4.

 tag PARTIAL msgno data start_octet octet_count

 The PARTIAL command is equivalent to the associated FETCH command,
 with the added functionality that only the specified number of
 octets, beginning at the specified starting octet, are returned.
 Note that only a single message can be fetched at a time. The
 first octet of a message, and hence the minimum for the starting
 octet, is octet 1.

 The following FETCH items are valid data for PARTIAL: RFC822,
RFC822.HEADER, RFC822.TEXT, and BODY[section].

 Any partial fetch that attempts to read beyond the end of the text
 is truncated as appropriate. If the starting octet is beyond the
 end of the text, an empty string is returned.

 The data are returned with the FETCH response. There is no
 indication of the range of the partial data in this response; thus
 it is generally not possible to implement caching with PARTIAL
 data. It is also not possible to stream multiple PARTIAL commands
 of the same data item without processing and synchronizing at each
 step, since each PARTIAL fetch of data replaces any prior
 (PARTIAL) FETCH of the data.

 Note that when partial fetching it is possible to break in the
 middle of a line or a critical sequence such as a BASE64 quadruple
 or QUOTED-PRINTABLE shift. Implementations using partial fetching
 should keep this in mind. There is no requirement that partial
 fetches follow any sequence; so if it turns out that a partial
 fetch of octets 1 through 10000 breaks in an awkward place, it is
 permitted to continue with a partial fetch of 9987 through 19987,

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 21]

Internet Draft IMAP2bis October 27, 1993

 etc.

 The handling of the \Seen flag is the same as with the FETCH
 command.

 tag STORE sequence data value

 The STORE command alters data associated with a message in the
 mailbox. The currently defined data items that can be stored are:

 FLAGS Replace the flags for the message with the
 argument (in flag list format).

 +FLAGS Add the flags in the argument to the
 message's flag list.

 -FLAGS Remove the flags in the argument from the
 message's flag list.

 EXAMPLE: A003 STORE 2:4 +FLAGS (\Deleted)
 marks messages 2, 3, and 4 for deletion.

 UID commands

 These commands use unique identifiers instead of message numbers in
 their arguments to reference a particular message or range of
 messages. The unique identifier of a message is guaranteed not to
 refer to any other message in the mailbox. Unlike IMAP2bis sequence
 numbers, unique identifiers persist across sessions.

 Sequence ranges are permitted; note however that there is no
 guarantee that unique identifiers be contiguous. A non-existent
 unique identifier within a sequence range is ignored without any
 error message generated.

 Because of the potential for ambiguity, the UID command does not
 change responses. That is, the number after the "*" in an
 unsolicited FETCH response is a message number, not a unique
 identifier. However, servers MUST implicitly include UID as part of
 any FETCH response caused by a UID command, regardless of whether UID
 was specified.

Crispin [Page 22]

Internet Draft IMAP2bis October 27, 1993

 EXAMPLE: C: A003 UID FETCH 4827313:4828442 FLAGS
 S: * 23 FETCH (FLAGS (\Seen) UID 4827313)
 S: * 24 FETCH (FLAGS (\Seen) UID 4827943)
 S: * 25 FETCH (FLAGS (\Seen) UID 4828442)
 S: A003 UID FETCH completed

 tag UID AFTER uniqueid

 The UID AFTER command determines what unique identifiers exist
 that are greater than the specified unique identifier. It
 returns unsolicited FETCH responses for each such message.

 For example, if the specified unique identifier refers to
 message 572 in a mailbox with 613 messages, the results
 returned are equivalent to doing "FETCH 573:613 UID".

 tag UID COPY sequence mailbox

 The UID COPY command is identical to the COPY command, with the
 exception that the numbers used in the sequence are unique
 identifiers instead of message numbers.

 tag UID FETCH sequence data

 The UID FETCH command is identical to the FETCH command, with
 the exception that the numbers used in the sequence are unique
 identifiers instead of message numbers.

 tag UID STORE sequence data value

 The UID STORE command is identical to the STORE command, with
 the exception that the numbers used in the sequence are unique
 identifiers instead of message numbers.

 tag SEARCH search_criteria

 The SEARCH command searches the mailbox for messages that match
 the given set of criteria. The unsolicited SEARCH <1#number>
 response from the server is a list of messages that express the
 intersection (AND function) of all the messages that match that
 criteria. For example,
 A003 SEARCH DELETED FROM "SMITH" SINCE 1-OCT-87
 returns the message numbers for all deleted messages from Smith

Crispin [Page 23]

Internet Draft IMAP2bis October 27, 1993

 that were placed in the mail file since October 1, 1987.

 In all search criteria that use strings, a message matches the
 criteria if the string is a substring of the field. The matching
 is case-independent except as noted below.

 The server may interpret an RFC 1522 format string to express text
 in a character set other than US-ASCII. The criteria matches if
 the RFC 1522 interpreted string matches an interpreted substring
 (MIME or RFC 1522 as appropriate) of the field.

 A server implementation may omit case-independent matching on RFC
1522 strings.

 The currently defined search criteria are:

 ALL All messages in the mailbox; the default
 initial criterion for ANDing.

 ANSWERED Messages with the \Answered flag set.

 BCC istring Messages that contain the specified string
 in the envelope structure's BCC field.

 BEFORE date Messages whose internal date is earlier than
 the specified date.

 BODY istring Messages that contain the specified string
 in the body of the message.

 CC istring Messages that contain the specified string
 in the envelope structure's CC field.

 DELETED Messages with the \Deleted flag set.

 FLAGGED Messages with the \Flagged flag set.

 FROM istring Messages that contain the specified string
 in the envelope structure's FROM field.

 KEYWORD flag Messages with the specified flag set.

 NEW Messages that have the \Recent flag set but
 not the \Seen flag. This is functionally
 equivalent to "RECENT UNSEEN".

 OLD Messages that do not have the \Recent flag
 set.

https://datatracker.ietf.org/doc/html/rfc1522
https://datatracker.ietf.org/doc/html/rfc1522
https://datatracker.ietf.org/doc/html/rfc1522
https://datatracker.ietf.org/doc/html/rfc1522
https://datatracker.ietf.org/doc/html/rfc1522

Crispin [Page 24]

Internet Draft IMAP2bis October 27, 1993

 ON date Messages whose internal date is within the
 specified date.

 RECENT Messages that have the \Recent flag set.

 SEEN Messages that have the \Seen flag set.

 SINCE date Messages whose internal date is later than
 the specified date.

 SUBJECT istring Messages that contain the specified string
 in the envelope structure's SUBJECT field.

 TEXT istring Messages that contain the specified string.

 TO istring Messages that contain the specified string in
 the envelope structure's TO field.

 UIDAFTER uniqueid
 Messages that have a UID greater than the
 specified UID.

 UIDBEFORE uniqueid
 Messages that have a UID less than the
 specified UID.

 UNANSWERED Messages that do not have the \Answered flag
 set.

 UNDELETED Messages that do not have the \Deleted flag
 set.

 UNFLAGGED Messages that do not have the \Flagged flag
 set.

 UNKEYWORD flag Messages that do not have the specified flag
 set.

 UNSEEN Messages that do not have the \Seen flag set.

Crispin [Page 25]

Internet Draft IMAP2bis October 27, 1993

Responses

 The first group of responses complete a request, and indicate whether
 the command was successful. The response text is a line of human
 readable text, optionally prefixed by an atom inside square brackets
 that conveys a special information token between cooperating servers
 and clients.

 The currently defined special information tokens are:

 PARSE An error occurred in parsing the RFC 822 or MIME
 headers of a message in the mailbox.

 READ-ONLY The mailbox is open read-only, or its access while
 open has changed from read-write to read-only.

 READ-WRITE The mailbox is open read-write, or its access while
 open has changed from read-only to read-write.

 TRYCREATE An APPEND or COPY attempt failed because the target
 mailbox does not exist. The server sends this as a
 hint to the client that the operation would probably
 succeed if the mailbox is first created by means of
 the CREATE command.

 UNSEEN Followed by a decimal number, indicates the number
 of the first unread message. This is intended to be
 used with certain bboard formats to assist the user
 in finding the first unread message in those cases
 where "unread" and "recent" are separate concepts.

 hex string A hexadecimal string is returned as a special
 information token to represent a Kerberos return
 authenticator. This only occurs in response to a
 LOGIN command that uses Kerberos authentication.

 Other special information tokens defined by particular client or
 server implementations should be prefixed with an "X" until they are
 added to a revision of this protocol.

 tag OK resp_text

 This response identifies successful completion of the command with
 that tag. The response text may be useful in a protocol telemetry
 log for debugging purposes.

https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 26]

Internet Draft IMAP2bis October 27, 1993

 tag NO resp_text

 This response identifies unsuccessful completion of the command
 with that tag. The text is a line of human-readable text that
 probably should be displayed to the user in an error report by the
 client.

 tag BAD resp_text

 This response identifies faulty protocol received from the client;
 The text is a line of human-readable text that should be recorded
 in any telemetry as part of a bug report to the maintainer of the
 client.

 The second group of responses convey human-readable information. The
 response text is a line of human readable text, optionally prefixed
 by an atom inside square brackets that conveys special information
 between cooperating servers and clients.

 * PREAUTH resp_text

 This response is one of three possible greetings at session
 startup. It indicates that the session has already been
 authenticated by external means and thus no LOGIN command is
 needed.

 * OK resp_text

 This response identifies an information message from the server.
 It does not indicate completion of any particular request, nor is
 it necessarily related to any request. The text is a line of
 human-readable text that should be presented to the user as an
 information message.

 This response is also one of three possible greetings at session
 startup. It indicates that the session is not yet authenticated
 and that a LOGIN command is needed.

 * NO resp_text

 This response identifies a warning message from the server. It
 does not indicate completion of any request, nor is it necessarily
 related to any request. The text is a line of human-readable text

Crispin [Page 27]

Internet Draft IMAP2bis October 27, 1993

 that should be presented to the user as a warning of improper
 operation.

 * BAD resp_text

 This response identifies a serious error message from the server.
 It does not indicate completion of any request, nor is it
 necessarily related to any request. It may also indicate a faulty
 command from the client in which a tag could not be parsed. The
 text is a line of human-readable text that should be presented to
 the user as a serious or possibly fatal error.

 * BYE text

 This response identifies that the server is about to close the
 connection. The text is a line of human-readable text that should
 be displayed to the user in a status report by the client. This
 may be sent as part of a normal logout sequence, or as a panic
 shutdown announcement by the server. It is also used by some
 servers as an announcement of an inactivity autologout.

 This response is also one of three possible greetings at session
 startup. It indicates that the server is not willing to accept a
 session from this client.

 The third group of responses convey data about the mailbox or
 messages inside the mailbox. This is how message data are
 transmitted from the server to the client.

 * MAILBOX mstring

 This response occurs as a result of a FIND command for MAILBOXES
 and ALL.MAILBOXES. The string is a mailbox name that matches the
 pattern in the command.

 * BBOARD mstring

 This response occurs as a result of a FIND command for BBOARDS and
 ALL.BBOARDS. The string is a bulletin board name that matches the
 pattern in the command.

Crispin [Page 28]

Internet Draft IMAP2bis October 27, 1993

 * SEARCH number(s)

 This response occurs as a result of a SEARCH command. The
 number(s) refer to those messages that match the search criteria.
 Each number is delimited by a space, e.g., "SEARCH 2 3 6".

 * FLAGS flag_list

 This response generally occurs as a result of a selection command
 (SELECT, BBOARD, and EXAMINE). The flag list are the list of
 flags (at a minimum, the system-defined flags) that are applicable
 for this mailbox. Flags other than the system flags are a
 function of the server implementation.

 * number message_data

 This response occurs as a result of any command when a mailbox is
 selected. The message_data is one of the following:

 EXISTS The number of messages in the mailbox.

 RECENT The number of messages that have arrived since the
 previous time this mailbox was read.

 EXPUNGE The specified message number has been permanently
 removed from the mailbox, and the next message in the
 mailbox (if any) becomes that message number.

 An unsolicited EXPUNGE response MUST NOT be sent except
 while responding to a request other than FETCH, STORE,
 or SEARCH. All references to message numbers sent after
 an unsolicited EXPUNGE response are adjusted to reflect
 the effect of the expunge.

 Discussion: a potential ambiguity exists with
 the FETCH, STORE, and SEARCH requests if the
 server is permitted to send unsolicited EXPUNGE
 responses. This is because these requests can be
 streamed. If two successive FETCH requests are
 streamed, and if during the time of the processing
 of the first request there is an expunge response,
 then the sequence of the second request is no
 longer valid.

Crispin [Page 29]

Internet Draft IMAP2bis October 27, 1993

 FETCH data
 This is the principal means that data about a message
 are returned to the client. The data are in an
 S-expression form, and consists of a sequence of pairs
 of data item name and their values. The current data
 items are:

 BODY Similar to BODYSTRUCTURE, but without the extension
 data.

 BODY[section] A string expressing the body contents of the
 specified section. The string should be
 interpreted by the client according to the
 content transfer encoding, body type, and subtype.

 Note that non-textual data are transfer encoded;
 therefore, the string is likely to be 7-bit
 US-ASCII. This is NOT necessarily the byte size
 or character set of the interpreted result.

 BODYSTRUCTURE An S-expression format list that describes the body
 structure of a message. This is computed by the
 server by parsing the RFC 822 header and body into
 the component parts, defaulting various fields
 as necessary.

 Multiple parts are indicated by S-expression
 nesting. Instead of a body type as the first element
 of the list there is a nested body. The second
 element of the list is the multipart subtype (mixed,
 digest, parallel, alternative, etc.).

 Extension data follows the multipart subtype.
 Extension data is never returned with the older
 BODY fetch, but may be returned with a BODYSTRUCTURE
 fetch. Extension data, if present, must be in the
 defined order.

 No multipart extension data is currently defined.

 Any subsequent data is extension data, not yet defined
 in this version of the protocol. Such extension data
 consist of zero or more NILs, strings, numbers,
 and/or potentially nested lists of such data. Clients
 which do a BODYSTRUCTURE fetch MUST be prepared to
 accept such extension data. Servers MUST NOT send
 such extension data until it has been defined by a
 future version of the protocol.

https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 30]

Internet Draft IMAP2bis October 27, 1993

 The basic fields of a non-multipart body part are in
 the following order:
 body type - a string giving the content type name
 as defined in MIME
 body subtype - a string giving the content subtype
 name as defined in MIME
 body parameter list - an S-expression list of
 attribute/value pairs [e.g. (foo bar baz rag)
 where "bar" is the value of "foo" and "rag" is
 the value of "baz"] as defined in MIME.
 body id - a string giving the content id as
 defined in MIME.
 body description - a string giving the content
 description as defined in MIME.
 body encoding - a string giving the content
 transfer encoding as defined in MIME.
 body size - a number giving the size of the
 body in octets. Note that this size is the
 size in its transfer encoding and not the
 resulting size after any decoding.

 A body type of type MESSAGE and subtype RFC822
 contains, immediately after the basic fields,
 the envelope structure, body structure, and
 size in text lines of the encapsulated message.

 A body type of type TEXT contains, immediately
 after the basic fields, the size of the body
 in text lines. Note that this size is the size
 in its transfer encoding and not the resulting
 size after any decoding.

 Extension data follows the basic fields and the
 type-specific fields listed above. Extension data
 is never returned with the older BODY fetch, but
 may be returned with a BODYSTRUCTURE fetch.
 Extension data, if present, must be in the defined
 order.

 The extension data of a non-multipart body part are
 in the following order:
 body MD5 - a string giving the content MD5 value
 as defined in MIME

 Any subsequent extension data are not yet defined
 in this version of the protocol, and would be in the
 form described above under multipart extension data.

https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 31]

Internet Draft IMAP2bis October 27, 1993

 ENVELOPE An S-expression format list that describes the
 envelope structure of a message. This is computed
 by the server by parsing the RFC 822 header into
 the component parts, defaulting various fields
 as necessary.

 The fields of the envelope structure are in the
 following order: date, subject, from, sender,
 reply-to, to, cc, bcc, in-reply-to, and message-id.
 The date, subject, in-reply-to, and message-id fields
 are strings. The from, sender, reply-to, to, cc,
 and bcc fields are lists of address structures.

 An address structure is an S-expression format list
 that describes an electronic mail address. The
 fields of an address structure are in the following
 order: personal name, source-route (a.k.a. the
 at-domain-list in SMTP), mailbox name, and
 host name.

RFC 822 group syntax is indicated by a special
 form of address structure in which the host name
 file is NIL. If the mailbox name field is also NIL,
 this is an end of group marker (semi-colon in RFC 822
 syntax). If the mailbox name field is non-NIL,
 this is a start of group marker, and the mailbox
 name field holds the group name phrase.

 Any field of an envelope or address structure that
 is not applicable is presented as the atom NIL.
 Note that the server must default the reply-to
 and sender fields from the from field; a client is
 not expected to know to do this.

 FLAGS An S-expression format list of flags that are set
 for this message. This may include the following
 system flags:

 \Seen Message has been read
 \Answered Message has been answered
 \Flagged Message is "flagged" for
 urgent/special attention
 \Deleted Message is "deleted" for
 removal by later EXPUNGE

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 32]

Internet Draft IMAP2bis October 27, 1993

 as well as the following special flag:

 \Recent Message arrived since the
 previous time this mailbox
 was read

 INTERNALDATE A string containing the date and time the
 message was written to the mailbox.

RFC822 A string expressing the message in RFC 822
 format.

RFC822.HEADER A string expressing the RFC 822 format header
 of the message, including the delimiting
 blank line between the header and the body.
 This is used for the FETCH data items

RFC822.HEADER, RFC822.HEADER.LINES, and
RFC822.HEADER.LINES.NOT (note that a blank

 line is always included regardless of header
 line restrictions).

RFC822.SIZE A number indicating the number of
 characters in the message as expressed
 in RFC 822 format.

RFC822.TEXT A string expressing the text body of the
 message, omitting the RFC 822 header.

 UID A number expressing the unique identifier
 of the message.

 COPY Obsolete. New server implementations MUST NOT transmit
 this response. Client implementations SHOULD ignore
 this response (not report an error).

 STORE data
 Obsolete and functionally equivalent to FETCH. New
 server implementations MUST NOT transmit this response.
 Client implementations SHOULD treat this response as
 equivalent to the FETCH response.

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 33]

Internet Draft IMAP2bis October 27, 1993

 The final group of responses contains a single, special purpose
 response.

 + resp_text

 This response identifies that the server is ready to accept the
 text of a literal from the client. The text of this response is a
 line of human-readable text of the server's choosing (it is
 generally never seen by a client's human user).

 The purpose of this command is to solve a synchronization problem
 that can occur if a string in a command is a literal. This may
 occur when logging in (if the password contains "funny"
 characters), and always occurs when using the APPEND command,
 since a message consists of multiple lines.

 Normally, a command from the client is a single text line. If the
 server detects an error in the command, it can simply discard the
 remainder of the line. It cannot do this for commands that
 contain literals, since a literal can be an arbitrarily long
 amount of text, and the server may not even be expecting a
 literal. This mechanism is provided so the client knows not to
 send a literal until the server expects it, preserving
 client/server synchronization.

 No such synchronization protection is provided for literals sent
 from the server to the client. Any synchronization problems in
 this direction would be caused by a bug in the client or server.

Crispin [Page 34]

Internet Draft IMAP2bis October 27, 1993

Sample IMAP2bis session

 The following is a transcript of an IMAP2bis session. A long line in
 this sample is broken for editorial clarity.

 S: * OK IMAP2bis Service 7.2(62) at Thu, 29 Jul 1993 21:34:23 -0700 (PDT)
 C: a001 login mrc secret
 S: a001 OK LOGIN completed
 C: a002 select inbox
 S: * 18 EXISTS
 S: * FLAGS (\Answered \Flagged \Deleted \Seen)
 S: * 0 RECENT
 S: a002 OK [READ-WRITE] SELECT completed
 S: a003 fetch 12 full
 S: * 12 FETCH (FLAGS (\Seen) INTERNALDATE "14-Jul-1993 02:44:25 -0700"

RFC822.SIZE 4282 ENVELOPE ("Wed, 14 Jul 1993 02:23:25 -0700 (PDT)"
 "IMAP2bis WG mtg summary and minutes" (("Terry Gray" NIL "gray"
 "cac.washington.edu")) ((NIL NIL "owner-imap" "cac.washington.edu"))
 (("Terry Gray" NIL "gray" "cac.washington.edu")) ((NIL NIL "imap"
 "cac.washington.edu")) ((NIL NIL "minutes" "CNRI.Reston.VA.US")
 ("John C Klensin" NIL "KLENSIN" "INFOODS.MIT.EDU")("Erik Huizer"
 NIL "Erik.Huizer" "SURFnet.nl")) NIL NIL
 "<Pine.3.84.9307140123.B27397-0100000@shiva2.cac.washington.edu>")
 BODY ("TEXT" "PLAIN" ("CHARSET" "US-ASCII") NIL NIL "7BIT" 3028 92))
 S: a003 OK FETCH completed
 C: a004 fetch 12 rfc822.header
 S: * 12 FETCH (RFC822.HEADER {485}
 S: Date: Wed, 14 Jul 1993 02:23:25 -0700 (PDT)
 S: From: Terry Gray <gray@cac.washington.edu>
 S: Reply-To: Terry Gray <gray@cac.washington.edu>
 S: Subject: IMAP2bis WG mtg summary and minutes
 S: To: imap@cac.washington.edu
 S: Cc: minutes@CNRI.Reston.VA.US,
 S: John C Klensin <KLENSIN@INFOODS.MIT.EDU>,
 S: Erik Huizer <Erik.Huizer@SURFnet.nl>
 S: Message-Id:
 S: <Pine.3.84.9307140123.B27397-0100000@shiva2.cac.washington.edu>
 S: Mime-Version: 1.0
 S: Content-Type: TEXT/PLAIN; CHARSET=US-ASCII
 S:
 S:)
 S: a004 OK FETCH completed
 C: a005 store 12 +flags \deleted
 S: * 12 FETCH (FLAGS (\Seen \Deleted))
 S: a005 OK +FLAGS completed
 C: a006 logout
 S: * BYE IMAP2bis server terminating connection
 S: a006 OK LOGOUT completed

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 35]

Internet Draft IMAP2bis October 27, 1993

Design Discussion

 IMAP2bis is a textual protocol. The use of MIME encoding in IMAP2bis
 makes it possible to support 8-bit textual and binary mail.

 IMAP2bis implementations MAY transmit 8-bit or multi-octet characters
 in literals, but should do so only when the character set is
 identified. For example, 8-bit characters are specifically permitted
 in MIME body parts (fetching BODY[section]) of type TEXT. 8-bit
 characters are also permitted in the argument to APPEND.

 Servers MUST NOT transmit 8-bit characters in RFC822.HEADER fetch
 results. Servers MUST NOT transmit 8-bit characters in RFC822.TEXT
 (and by extension RFC822) fetch results, unless there are MIME data
 in the message that identify the character sets of all 8-bit data.

 Because 8-bit characters are permitted in the argument to APPEND, a
 server that is unable to preserve 8-bit data properly MUST be able to
 reversibly convert 8-bit APPEND data to 7-bit using MIME.

 Although a BINARY body encoding is defined, IMAP2bis does not permit
 unencoded binary strings. A "binary string" is any string with NUL
 characters; a string with an excessive amount of CTL characters may
 also be considered to be binary. The mixing of unencoded binary in
 the same stream as textual commands would make the protocol more
 vulnerable to synchronization problems. Implementations MUST encode
 binary data into BASE64 before transmitting it with IMAP2bis.

 When operating in the online model, an IMAP2bis client should
 maintain a local cache of data from the mailbox. This cache is an
 incomplete model of the mailbox, and at startup is generally empty.
 As the client processes all unsolicited data, it updates the cache
 based on this data. When a tagged response arrives, the client's
 cache has been updated from the associated request.

 Note that a server can send data that the client did not request,
 such as mailbox size or flag updates. A server MUST send mailbox
 size updates automatically while processing a command. A server
 SHOULD send message flag updates automatically, without requiring the
 client to request such updates explicitly.

 Regardless of what implementation decisions a client may take on
 caching, a client MUST record EXISTS and RECENT updates and MUST NOT
 assume that a CHECK or NOOP command will return EXISTS or RECENT
 information.

 Although it is permitted for a server to send an unsolicited response
 while there is no command in progress, this practice SHOULD NOT be

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 36]

Internet Draft IMAP2bis October 27, 1993

 followed because of flow control considerations. It can cause an
 incautious implementation to deadlock. A deadlock is avoided if
 either of the following conditions are true: (1) except for the
 greeting, the server never sends responses while there is no command
 in progress; (2) the server process is capable of reading commands
 while sending data. The latter condition generally requires either a
 multi-threading server implementation or use of a polling facility
 and non-blocking I/O.

 If a server has an inactivity autologout timer, that timer MUST be of
 at least 30 minutes' duration. The receipt of a NOOP command from
 the client during that interval should suffice to reset the
 autologout timer. Periodic transmission of a NOOP from the client
 during periods of inactivity also has the benefit of avoiding the
 possible deadlock noted above.

 It is frequently asked why there is no message posting function in
 IMAP2bis. Message posting is orthogonal to the scope of a mail
 access protocol and detracts from its primary focus. SMTP (RFC 821)
 provides the minimal functionality needed for message posting without
 losing valuable capabilities (such as blind carbon copies). Any
 message posting function in IMAP2bis would need, at a minimum, to
 provide equivalent functionality.

 At the time of the writing of this document, an extensive set of
 extensions to SMTP is in the Internet standards process. Should
 those extensions become an Internet Standard it would be necessary to
 revise IMAP2bis again to provide corresponding capabilities, were a
 message posting facility to be included in IMAP2bis. In other words,
 a duplication of effort would be required each time a change is made
 to message transport technology.

 Another undesirable aspect of message posting in IMAP2bis occurs when
 a remote server is used. It is unlikely that a client would support
 multiple means of posting a message. It adds excessive size and
 complexity that can not be afforded, particularly on smaller
 machines. It also can lead to poor performance. Consider a client
 connecting to an IMAP2bis server over an interactive satellite link
 to a foreign country. A local message posting (SMTP) server is
 available that uses a lower-cost batched link. Here, it would be
 wasteful to use the interactive link for posting.

 Message posting to IMAP2bis has been suggested as a means of
 authenticating postings. The problem is that access authentication
 credentials are not necessarily the same as posting authentication
 credentials. At some sites, the disclosure of a portion of access
 authentication credentials in a mail message (as a "From" or "Sender"
 address) may be a serious security breach of greater significance

https://datatracker.ietf.org/doc/html/rfc821

Crispin [Page 37]

Internet Draft IMAP2bis October 27, 1993

 than forged mail.

 The Internet message transport infrastructure has no concept of
 authentication credentials, and neither authentication syntax nor
 semantics are transferred within a message. As a result, any attempt
 at authenticating a message via posting authentication is completely
 ineffective once the message leaves the authenticating server; any
 indication of authentication in the message can easily be reproduced
 further down the line. Public-key based message authentication
 systems such as Privacy Enhanced Mail are now under development to
 address this problem.

 IMAP2bis does not address problems with multiple IMAP2bis servers at
 a single site, access control lists, and mobility of client
 configuration and address book information. These and other issues
 are being considered for a companion protocol.

Crispin [Page 38]

Internet Draft IMAP2bis October 27, 1993

Formal Syntax

 The following syntax specification uses the augmented Backus-Naur
 Form (BNF) notation as specified in RFC 822 with one exception; the
 delimiter used with the "#" construct is a single space (SPACE) and
 not a comma.

 Except as noted otherwise, all alphabetic characters in the IMAP2bis
 protocol are case-insensitive. For example, "LOGIN", "login" and
 "lOgIn" all refer to the same command, and \FLAGGED, \Flagged, and
 \FlAgGeD all refer to the same flag. The use of upper or lower case
 characters to define token strings is for editorial clarity only,
 although they may be construed as defining a suggested usage.
 Implementations MUST accept these strings in a case-insensitive
 fashion.

 Syntax marked as obsolete may be encountered with implementations
 written for an older version of this specification. New
 implementations SHOULD accept obsolete syntax as input, but MUST NOT
 otherwise use it.

 address ::= "(" addr_name SPACE addr_adl SPACE addr_mailbox
 SPACE addr_host ")"

 addr_adl ::= nstring

 addr_host ::= nstring
 ;; NIL indicates RFC 822 group syntax

 addr_mailbox ::= nstring
 ;; NIL indicates end of RFC 822 group; if non-NIL
 ;; and addr_host is NIL, holds RFC 822 group name

 addr_name ::= nstring

 append ::= "APPEND" SPACE mailbox [SPACE 1#flag] SPACE literal

 astring ::= atom / string

 atom ::= 1*<any CHAR except specials, SPACE, and CTLs>

 bboard ::= "BBOARD" SPACE mailbox_bboard

 body ::= "(" body_structure ")"

 body2 ::= "(" body2_structure ")"

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 39]

Internet Draft IMAP2bis October 27, 1993

 body2_extension ::= nstring / number / "(" 1#body2_extension ")"
 ;; Future expansion. Clients MUST accept body2
 ;; extension fields. Servers MUST NOT generate
 ;; body2 extension fields.

 body2_md5 ::= nstring
 ;; reserved for MD5 checksum

 body2_multipart ::= 1*body2 SPACE body_subtype [SPACE 1#body2_extension]

 body2_structure ::= body2_terminal / body2_multipart

 body2_terminal ::= body_terminal SPACE body2_md5 [SPACE 1#body2_extension]

 body_basic ::= body_type_basic SPACE body_subtype SPACE body_fields

 body_fields ::= body_parameter SPACE body_id SPACE body_description
 SPACE body_encoding SPACE body_size

 body_description
 ::= nstring

 body_encoding ::= <"> body_enc_def <"> / body_enc_other

 body_enc_def ::= "7BIT" / "8BIT" / "BINARY" / "BASE64"/
 "QUOTED-PRINTABLE"

 body_enc_other ::= string

 body_id ::= nstring

 body_msg ::= body_msg_822 / body_msg_other

 body_msg_822 ::= body_type_msg SPACE body_subtyp_822 SPACE body_fields
 SPACE envelope SPACE body SPACE body_size_lines

 body_msg_other ::= body_type_msg SPACE body_subtype SPACE body_fields
 ;; subtype MUST NOT be "RFC822"

 body_multipart ::= 1*body SPACE body_subtype

 body_parameter ::= nil / "(" 1#(string string) ")"

 body_section ::= number / number "." body_section

 body_size ::= number
 ;; size in octets

https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 40]

Internet Draft IMAP2bis October 27, 1993

 body_size_lines ::= number

 body_structure ::= body_terminal / body_multipart

 body_subtype ::= string

 body_subtyp_822 ::= <"> "RFC822" <">

 body_terminal ::= body_basic / body_msg / body_text

 body_text ::= body_type_text SPACE body_subtype SPACE body_fields
 SPACE body_size_lines

 body_type_basic ::= <"> ("APPLICATION" / "AUDIO" / "IMAGE" / "VIDEO") <"> /
 string

 body_type_msg ::= <"> "MESSAGE" <">

 body_type_text ::= <"> "TEXT" <">

 CHAR ::= <any 7-bit US-ASCII character except NUL, 0x01 - 0x7f>

 CHAR8 ::= <any 8-bit octet except NUL, 0x01 - 0xff>

 check ::= "CHECK"

 copy ::= "COPY" SPACE sequence SPACE mailbox

 CR ::= <ASCII CR, carriage return, 0x0C>

 create ::= create_real / create_check

 create_check ::= "CREATE" SPACE "INBOX"
 ;; returns a NO response (not BAD)

 create_real ::= "CREATE" SPACE mailbox_other

 CRLF ::= CR LF

 CTL ::= <any ASCII control character and DEL, 0x00 - 0x1f,
0x7f>

 date ::= date_text / <"> date_text <">

 date_day ::= 1*2DIGIT
 ;; day of month

 date_day_fixed ::= (SPACE 1DIGIT) / 2DIGIT
 ;; fixed-format version of date_day

https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 41]

Internet Draft IMAP2bis October 27, 1993

 date_month ::= "Jan" / "Feb" / "Mar" / "Apr" / "May" / "Jun" /
 "Jul" / "Aug" / "Sep" / "Oct" / "Nov" / "Dec"

 date_text ::= date_day "-" date_month "-" (date_year / date_year_old)

 date_year ::= 4DIGIT

 date_year_old ::= 2DIGIT
 ;; Obsolete, (year - 1900)

 date_time ::= <"> (date_time_new / date_time_old) <">

 date_time_new ::= date_day_fixed "-" date_month "-" date_year SPACE
 time SPACE zone

 date_time_old ::= date_day_fixed "-" date_month "-" date_year_old SPACE
 time "-" zone_old
 ;; Obsolete

 delete ::= "DELETE" SPACE mailbox_other

 DIGIT ::= <any ASCII decimal digit, 0x30 - 0x39>

 DIGIT_HEX :: DIGIT / "a" / "b" / "c" / "d" / "e" / "f"

 envelope ::= "(" env_date SPACE env_subject SPACE env_from SPACE
 env_sender SPACE env_reply-to SPACE env_to SPACE
 env_cc SPACE env_bcc SPACE env_in-reply-to SPACE
 env_message-id ")"

 env_bcc ::= nil / "(" 1*address ")"

 env_cc ::= nil / "(" 1*address ")"

 env_date ::= nstring

 env_from ::= nil / "(" 1*address ")"

 env_in-reply-to ::= nstring

 env_message-id ::= nstring

 env_reply-to ::= nil / "(" 1*address ")"

 env_sender ::= nil / "(" 1*address ")"

 env_subject ::= nstring

Crispin [Page 42]

Internet Draft IMAP2bis October 27, 1993

 env_to ::= nil / "(" 1*address ")"

 examine ::= "EXAMINE" SPACE mailbox

 expunge ::= "EXPUNGE"

 fetch ::= "FETCH" SPACE sequence SPACE ("ALL" / "FULL" /
 "FAST" / fetch_att / "(" 1#fetch_att ")")

 fetch_att ::= fetch_att_lines / fetch_att_other / fetch_att_text

 fetch_att_lines ::= "RFC822.HEADER.LINES" SPACE header_line_list /
 "RFC822.HEADER.LINES.NOT" SPACE header_line_list /

 fetch_att_other ::= "BODY" / "BODYSTRUCTURE" / "ENVELOPE" / "FLAGS" /
 "INTERNALDATE" / "RFC822.SIZE" / "UID"

 fetch_att_text ::= "BODY[" body_section "]" / "RFC822" /
 "RFC822.HEADER" / "RFC822.TEXT"

 find ::= find_mailbox / find_bboard

 find_bboard ::= find_bboards / find_boards_all

 find_bboards ::= "FIND" SPACE "BBOARDS" SPACE find_pattern

 find_bboards_all
 ::= "FIND" SPACE "ALL.BBOARDS" SPACE find_pattern

 find_mailbox ::= find_mailboxes / find_mailboxes_all

 find_mailboxes ::= "FIND" SPACE "MAILBOXES" SPACE find_pattern

 find_mailboxes_all
 ::= "FIND" SPACE "ALL.MAILBOXES" SPACE find_pattern

 find_pattern ::= astring
 ;; includes find_wildcards

 find_wildcards ::= "%" / "?" / "*"

 flag ::= user_flag / system_flag

 flag_list ::= "(" 1#flag ")"

 flags ::= 1#flag / flag_list

 greeting ::= "*" SPACE (resp_cond_auth / resp_cond_bye) CRLF

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 43]

Internet Draft IMAP2bis October 27, 1993

 header_line ::= astring

 header_line_list
 ::= "(" 1#header_line ")"

 inbox ::= "INBOX"
 ;; case-independent, but SHOULD be upper-case

 istring ::= astring
 ;; possible RFC 1522 format data

 kerberos_authenticator
 ::= 1*DIGIT_HEX

 kerberos_response
 ::= 1*DIGIT_HEX

 LF ::= <ASCII LF, line feed, 0x0A>

 literal ::= "{" number "}" CRLF 1*CHAR8
 ;; The number represents the number of CHAR8 octets.

 login ::= "LOGIN" SPACE userid SPACE password

 logout ::= "LOGOUT"

 mailbox ::= inbox / mailbox_other

 mailbox_bboard ::= astring
 ;; May not be INBOX (in any case). Should not
 ;; include find_wildcards. May be case-dependent
 ;; as a function of server implementation. May
 ;; be a different namespace from mailbox_other.

 mailbox_other ::= astring
 ;; May not be INBOX (in any case). Should not
 ;; include find_wildcards. May be case-dependent
 ;; as a function of server implementation

 mailbox_data ::= "MAILBOX" SPACE mstring / "BBOARD" SPACE mstring /
 "SEARCH" [SPACE 1#number] / "FLAGS" SPACE flag_list

 message_data ::= number SPACE (msg_exists / msg_recent / msg_expunge /
 msg_fetch / msg_obsolete)

https://datatracker.ietf.org/doc/html/rfc1522

Crispin [Page 44]

Internet Draft IMAP2bis October 27, 1993

 msg_copy ::= "COPY"
 ;; Obsolete

 msg_exists ::= "EXISTS"

 msg_expunge ::= "EXPUNGE"

 msg_fetch ::= "FETCH" SPACE "(" 1#("BODY" SPACE body /
 "BODYSTRUCTURE" SPACE body2 /
 "BODY[" body_section "]" nstring /
 "ENVELOPE" SPACE envelope /
 "FLAGS" SPACE "(" 0#(recent_flag / flag) ")" /
 "INTERNALDATE" SPACE date_time /
 "RFC822" SPACE nstring /
 "RFC822.HEADER" SPACE nstring /
 "RFC822.SIZE" SPACE number /
 "RFC822.TEXT" SPACE nstring /
 "UID" SPACE uniqueid) ")"

 msg_obsolete ::= msg_copy / msg_store
 ;; Obsolete unsolicited data responses

 msg_recent ::= "RECENT"

 msg_store ::= "STORE" SPACE "(" 1#("FLAGS" SPACE
 "(" 0#(recent_flag / flag) "))"
 ;; Obsolete

 mstring ::= text_line
 ;; Represents a mailbox

 nil ::= "NIL"

 noop ::= "NOOP"

 nstring ::= nil / string

 number ::= 1*DIGIT

 partial ::= "PARTIAL" SPACE number SPACE fetch_att_text SPACE
 number SPACE number

 password ::= astring / "@KERBEROS:" kerberos_authenticator

 QCHAR ::= <any CHAR except qspecials, CR, and LF>

 qspecials ::= <"> / "%" / "\"

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 45]

Internet Draft IMAP2bis October 27, 1993

 quoted_string ::= <"> *QCHAR <">

 recent_flag ::= "\Recent"

 ready ::= "+" SPACE resp_text

 rename ::= "RENAME" SPACE mailbox SPACE mailbox_other

 request ::= tag SPACE (request_auth / request_authed /
request_open)
 ;; modal based on state

 request_any ::= noop / logout
 ;; valid in all modes

 request_auth ::= request_any / login
 ;; valid only when in not authenticated mode

 request_authed ::= request_any / create / delete / rename / find /
 subscribe / unsubscribe / select / examine / bboard /
 append / x_command
 ;; valid only when in authenticated or mailbox open
mode

 request_open ::= request_authed / check / expunge / copy / fetch /
 partial / store / uid / search / x_command
 ;; valid only when in mailbox open mode

 response ::= *<response_data> response_done

 response_data ::= "*" SPACE (resp_cond_state / resp_cond_bye /
 mailbox_data / message_data) CRLF

 response_done ::= response_tagged / response_fatal

 response_fatal ::= "*" SPACE resp_cond_bye CRLF

 response_tagged ::= tag SPACE resp_cond_state CRLF

 resp_cond_auth ::= ("OK" / "PREAUTH") SPACE resp_text
 ;; authentication condition

 resp_cond_bye ::= "BYE" SPACE resp_text
 ;; server will disconnect condition

 resp_cond_state ::= ("OK" / "NO" / "BAD") SPACE resp_text
 ;; status condition

 resp_text ::= [resp_token SPACE] text_line

Crispin [Page 46]

Internet Draft IMAP2bis October 27, 1993

 resp_token ::= "[" resp_token_type "]" [SPACE res_token_arg]

 resp_token_arg ::= 1#number
 ;; arguments depend upon token type

 resp_token_type ::= "PARSE" / "READ-ONLY" / "READ-WRITE" / "TRYCREATE" /
 "UNSEEN" / "X" atom / kerberos_response

 search ::= "SEARCH" SPACE 1#("ALL" / "ANSWERED" /
 "BCC" SPACE istring / "BEFORE" SPACE date /
 "BODY" SPACE istring / "CC" SPACE istring / "DELETED" /
 "FLAGGED" / "FROM" space istring /
 "KEYWORD" SPACE user_flag / "NEW" / "OLD" /
 "ON" SPACE date / "RECENT" / "SEEN" /
 "SINCE" SPACE date / "SUBJECT" SPACE istring /
 "TEXT" SPACE istring / "TO" SPACE istring /
 "UIDBEFORE" SPACE uniqueid / "UIDAFTER" SPACE uniqueid
/
 "UNANSWERED" / "UNDELETED" / "UNFLAGGED" /
 "UNKEYWORD" SPACE user_flag / "UNSEEN")

 select ::= "SELECT" SPACE mailbox

 sequence ::= number / (sequence "," sequence) / (number ":" number)
 ;; identifies a set of messages by consecutive numbers
 ;; from 1 to the number of messages in the mailbox.
 ;; Comma delimits individual numbers, colon delimits
 ;; between two numbers inclusive.
 ;; Example: 2,4:7,9,12:15 is 2,4,5,6,7,9,12,13,14,15

 SPACE ::= <ASCII SP, space, 0x20>

 specials ::= "(" / ")" / "{" / qspecials

 store ::= "STORE" SPACE sequence SPACE store_att

 store_att ::= "+FLAGS" SPACE flags / "-FLAGS" SPACE flags /
 "FLAGS" SPACE flags

 string ::= quoted_string / literal

 subscribe ::= subscribe_mailbox / subscribe_bboard

 subscribe_bboard
 ::= "SUBSCRIBE" SPACE "BBOARD" SPACE mailbox_bboard

 subscribe_mailbox
 ::= "SUBSCRIBE" SPACE "MAILBOX" SPACE mailbox

Crispin [Page 47]

Internet Draft IMAP2bis October 27, 1993

 system_flag ::= "\Answered" / "\Flagged" / "\Deleted" / "\Seen" /
 system_flag_new

 system_flag_new ::= "\" atom
 ;; future expansion

 tag ::= 1*<any CHAR except "*", "+", specials, SPACE, and CTLs>

 text_line ::= 1*<any CHAR except CR and LF>

 time ::= 2DIGIT ":" 2DIGIT ":" 2DIGIT
 ;; hours minutes seconds

 uid ::= "UID" SPACE (uid_after / copy / fetch / store)
 ;; uniqueids used instead of message numbers

 uid_after ::= "AFTER" SPACE uniqueid

 uniqueid ::= number
 ;;; strictly ascending

 unsubscribe ::= unsubscribe_mailbox / unsubscribe_bboard

 unsubscribe_bboard
 ::= "UNSUBSCRIBE" SPACE "BBOARD" SPACE mailbox_bboard

 unsubscribe_mailbox
 ::= "UNSUBSCRIBE" SPACE "MAILBOX" SPACE mailbox_mailbox

 userid ::= astring

 user_flag ::= atom

 x_command ::= "X" atom <optional arguments>
 ;; experimental expansion commands

 zone ::= ("+" / "-") 4DIGIT
 ;; Signed four-digit value of hhmm representing
 ;; hours and minutes west of Greenwich (that is,
 ;; (the amount that the given time differs from
 ;; Universal Time). Subtracting the timezone
 ;; from the given time will give the UT form.
 ;; The Universal Time zone is "+0000".

Crispin [Page 48]

Internet Draft IMAP2bis October 27, 1993

 zone_old ::= "UT" / "GMT" / "Z" / ;; +0000
 "AST" / "EST" / "CST" / "MST" / ;; -0400 to -0700
 "PST" / "YST" / "HST" / "BST" / ;; -0800 to -1100
 "ADT" / "EDT" / "CDT" / "MDT" / ;; -0300 to -0600
 "PDT" / "YDT" / "HDT" / "BDT" / ;; -0700 to -1000
 "A" / "B" / "C" / "D" / "E" / "F" / ;; +0100 to +0600
 "G" / "H" / "I" / "K" / "L" / "M" / ;; +0700 to +1200
 "N" / "O" / "P" / "Q" / "R" / "S" / ;; -0100 to -0600
 "T" / "U" / "V" / "W" / "X" / "Y" ;; -0700 to -1200
 ;; Obsolete

 A protocol session is as follows:

 Server: greeting
 *<Client: request (first part, if it contains a literal)
 *<Server: ready
 Client: request (next part)
 >
 Server: response
 >

Crispin [Page 49]

Internet Draft IMAP2bis October 27, 1993

Compatibility Notes

 This is a summary of hints and recommendations to enable an IMAP2bis
 implementation, written to this specification, to interoperate with
 implementations that conform to earlier specifications. None of
 these hints and recommendations are required by this specification;
 implementors must decide for themselves whether they want their
 implementation to fail if it encounters old software.

 IMAP2bis has been designed to be upwards compatible with earlier
 specifications. IMAP2bis facilities that were not in earlier
 specifications should be invisible to clients unless the client asks
 for the facility.

 This information may not be complete; it reflects current knowledge
 of server and client implementations as well as "folklore" acquired
 in the evolution of the protocol.

 IMAP2bis client interoperability with old servers

 In general, a client should be able to discover whether a server
 supports a facility by trial-and-error; if an attempt to use a
 facility generates a BAD response, the client can assume that the
 server does not support the facility.

 Some servers may disable certain commands as a matter of
 intentional site policy. For example, a bboard-only server may
 disable the SELECT command. Such servers should return a NO
 response to disabled commands instead of a BAD response.

 A quick way to check whether a server implementation supports this
 specification is to try a UID FETCH 0 UID command. An OK or NO
 response would indicate a server that conforms to this
 specification; a BAD response would indicate an older server.

 The CREATE, DELETE, and RENAME commands are new in IMAP2bis,
 and may not be present in old servers. A safe mechanism to
 test whether these commands are present is to try a CREATE
 INBOX command. If the response is NO, these commands are
 supported by the server. If the response is BAD, they are not.
 If the response is OK, the server's implementation is broken,
 since creating INBOX is not permitted.

 The FIND MAILBOXES and FIND BBOARDS commands are new in RFC
1176. A BAD response to these commands indicates a server that

 does not support any form of FIND. It also indicates a server
 that does not support SUBSCRIBE and UNSUBSCRIBE. Note that the
 definition of the FIND MAILBOXES and FIND BBOARDS commands in

https://datatracker.ietf.org/doc/html/rfc1176
https://datatracker.ietf.org/doc/html/rfc1176

Crispin [Page 50]

Internet Draft IMAP2bis October 27, 1993

RFC 1176 differs from the definition in this specification; in
RFC 1176 these commands were defined as returning a list of

 mailboxes or bulletin boards with no clear specification of
 whether the returned values were "subscribed" or "all possible"
 names.

 The FIND ALL.MAILBOXES and FIND ALL.BBOARDS commands are new in
 IMAP2bis. A BAD response to these commands indicates a server
 that does not support a concept of subscriptions to a mailbox
 or bulletin board. The server may support FIND MAILBOXES and
 FIND BBOARDS using the older RFC 1176 semantics.

 The SUBSCRIBE and UNSUBSCRIBE commands are new in IMAP2bis. A
 server that supports FIND ALL.MAILBOXES and FIND ALL.BBOARDS
 will also support the SUBSCRIBE and UNSUBSCRIBE commands.

 The EXAMINE command is new in IMAP2bis. A BAD response to this
 command indicates a server that does not support an explicit
 read-only mode of access, and a SELECT command should be used
 instead.

 Older server implementations may automatically create the
 destination mailbox on COPY if that mailbox does not already
 exist. This was how a new mailbox was created in older
 specifications. If the server does not support the CREATE
 command (see above for how to test for this), it will probably
 create a mailbox on COPY.

 The APPEND command is new in IMAP2bis. A way to see if this
 command is implemented is to try to append a zero-length stream
 to a mailbox name that is known not to exist (or at least,
 highly unlikely to exist) on the remote system.

 Although IMAP2bis clients SHOULD avoid asking for the same data
 more than once (by having a client-based cache of data returned
 by the server), this is not a requirement of the protocol.
 However, IMAP2bis clients MUST cache data from the EXISTS and
 RECENT unsolicited responses. Only the SELECT command is
 guaranteed to return EXISTS/RECENT information.

 The BODY, BODY[section], and FULL fetch data items are new in
 IMAP2bis. A BAD response to an attempt to fetch either data
 item indicates a server that does not support server-based MIME
 parsing.

 The BODYSTRUCTURE fetch data item is new in IMAP2bis. A BAD
 response to an attempt to fetch this data item indicates a
 server that does not support extensible results from server-

https://datatracker.ietf.org/doc/html/rfc1176
https://datatracker.ietf.org/doc/html/rfc1176
https://datatracker.ietf.org/doc/html/rfc1176

Crispin [Page 51]

Internet Draft IMAP2bis October 27, 1993

 based MIME parsing. The server may be running an earlier,
 experimental version of IMAP2bis and support the older, non-
 extensible, BODY fetch data item. A client should attempt this
 data item before deciding that the server does not support
 MIME.

 The use of nested part 0 of a part of type MESSAGE in a BODY or
 BODYSTRUCTURE fetch to get only the RFC 822 header of the
 message is new, and is not in earlier, experimental versions of
 IMAP2bis. A server that returns NIL is probably running the
 earlier version; with such servers the only way to obtain the

RFC 822 header is to fetch the entire nested message.

 The RFC822.HEADER.LINES and RFC822.HEADER.LINES.NOT fetch data
 items are new in IMAP2bis. A BAD response to an attempt to
 fetch this data item indicates a server that does not support
 selective header fetching. A client should use RFC822.HEADER
 and remove the unwanted information.

 The UID fetch data item and the UID commands are new in
 IMAP2bis. A BAD response to an attempt to use these indicates
 a server that does not support unique identifiers.

 The PARTIAL command is new in IMAP2bis. If this command causes
 a BAD response, then the client should use the appropriate
 FETCH command and ignore the unwanted data.

 IMAP2bis client implementations must accept all responses and
 data formats documented in this specification, including those
 labeled as obsolete. This includes the COPY and STORE
 unsolicited responses and the old format of dates and times.

 Older server implementations may not provide a way to set flags
 on APPEND. Client implementations which receive a BAD response
 to an APPEND command with flags should retry the command
 without flags.

 Older server implementations may not preserve flags on COPY.
 Some server implementations may not permit the preservation of
 certain flags on COPY or their setting with APPEND as site
 policy. Older server implementations may attempt to preserve
 the internal date on COPY, and may cause a mailbox to be
 ordered in other than strictly ascending internal date/time
 order. Client implementations should not depend on any of
 these behaviors.

 Older server implementations may send a TRYCREATE special
 information token inside a separate unsolicited OK response

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/rfc822

Crispin [Page 52]

Internet Draft IMAP2bis October 27, 1993

 instead of inside the NO response.

 IMAP2bis server interoperability with old clients

 In general, there should be no interoperation problem between a
 server conforming to this specification and a well-written client
 that conforms to an earlier specification. Known problems are
 noted below:

 Clients written to use undocumented private server extensions
 that are not in any published specification may work poorly
 with server implementations that do not have those extensions.

 Poor wording in the description of the CHECK command in earlier
 specifications implied that a CHECK command is the way to get
 the current number of messages in the mailbox. This is
 incorrect. A CHECK command does not necessarily result in an
 EXISTS response. Clients must remember the most recent EXISTS
 value sent from the server, and should not generate unnecessary
 CHECK commands.

 An incompatibility exists with COPY in IMAP2bis. COPY in
 IMAP2bis servers does not automatically create the destination
 mailbox if that mailbox does not already exist. This may cause
 problems with old clients that expect automatic mailbox
 creation in COPY.

 The PREAUTH unsolicited response is new in IMAP2bis. It is
 highly unlikely that an old client would ever see this
 response.

 The COPY unsolicited response is obsolete. Old clients must
 not depend on receiving this response.

 The STORE unsolicited response is obsolete. Old clients must
 not object to receiving a FETCH response instead of this
 response.

 The format of dates and times has changed. Old clients should
 accept a four-digit year instead of a two-digit year, and a
 signed four-digit timezone value instead of a timezone name.
 In particular, client implementations must not treat a
 date/time as a fixed format string and assumed that the time
 begins at a particular octet.

Crispin [Page 53]

Internet Draft IMAP2bis October 27, 1993

Acknowledgements

 Bill Yeager and Rich Acuff contributed invaluable suggestions in the
 evolution of IMAP2 from the original IMAP. James Rice pointed out
 several ambiguities in the previous IMAP2 specification.

 My colleagues on the Pine team -- Steve Hubert, Laurence Lundblade,
 David Miller, and Mike Seibel -- worked long and hard to create a
 fantastic email user agent with worldwide popularity. Without their
 efforts, IMAP2 would have languished in obscurity. Terry Gray, our
 boss, provided much-needed moral support and guidance, while refusing
 to let us get away with "good enough" when "great" was possible.

 John G. Myers and Chris Newman carefully examined the formal grammar
 and identified numerous mistakes and omissions in the drafts of this
 specification. They also provided invaluable input towards the
 overall architecture of the present protocol, and endured long
 meetings to reach the present protocol.

 The present protocol would not have come into existence without the
 assistance of the rest of the IETF IMAP2 working group, in particular
 Ned Freed and Adam Treister.

 Any mistakes, flaws, or sins of omission in this IMAP2bis protocol
 specification are, however, strictly my own; and the mention of any
 name above does not imply an endorsement.

Security Considerations

 Security issues are discussed in this memo only as far as
 authentication to access a server are concerned.

Author's Address

 Mark R. Crispin
 Networks and Distributed Computing, JE-30
 University of Washington
 Seattle, WA 98195

 Phone: (206) 543-5762

 EMail: MRC@CAC.Washington.EDU

Crispin [Page 54]

