
IMAPEXT Working Group A. Melnikov
Internet Draft Editor
Document: draft-ietf-imapext-acl-06.txt October 2002

IMAP4 ACL extension

Status of this Memo

 This document is an Internet Draft and is in full conformance with
 all provisions of Section 10 of RFC 2026.

 Internet Drafts are working documents of the Internet Engineering
 Task Force (IETF), its Areas, and its Working Groups. Note that
 other groups may also distribute working documents as Internet
 Drafts. Internet Drafts are draft documents valid for a maximum of
 six months. Internet Drafts may be updated, replaced, or obsoleted
 by other documents at any time. It is not appropriate to use
 Internet Drafts as reference material or to cite them other than as
 ``work in progress''.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 A revised version of this draft document will be submitted to the RFC
 editor as a Proposed Standard for the Internet Community. Discussion
 and suggestions for improvement are requested. Distribution of this
 draft is unlimited.

0. Open issues

 This section will be removed when the draft will be published as RFC.
 It is intended to simplify discussion.

 1). Require support for special identifier "disabled" for
 "ACL2=MOST-SPECIFIC" model?

 2). Obsolete LISTRIGHTS?

Mark Crispin wrote:

 > [...] If rights are tied in an
 > implementation, the implementation must be conservative in granting
 > rights in response to SETACL commands--unless all rights in a tied
 > set are specified, none of that set should be included in the ACL

https://datatracker.ietf.org/doc/html/draft-ietf-imapext-acl-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 > entry for that identifier. A client may discover the set of rights
 > which may be granted to a given identifier in the ACL for a given
 > mailbox by using the LISTRIGHTS command.
 >
 > This was in RFC 2086 as well.
 >
 > Do we really want these semantics?
 >
 > The effect of this is that it is mandatory to do a LISTRIGHTS prior to any
 > SETACL (and multiple LISTRIGHTS prior to any REPLACEACL), since otherwise
 > there is no way for a client to know how to grant a particular right to an
 > identifier.
 >
 > Presumably, the reason for these semantics is so a client can review the
 > impact of granting a particular right if it's tied to another. But will
 > any client actually do this? Or will clients just blindly do the
 > LISTRIGHTS to get the necessary incantation for SETACL?
 >
 > What I see is no savings of work for a client which cares about any side
 > effects due to tied-rights, but a lot of extra work for clients which do
 > not care.

Alexey Melnikov replied:

 I tend to agree. I would rather have a new response code LISTRIGHTS that is
 returned in NO response to SETACL command.
 Imagine that the client wants to grant "cp" rights to a user "smith". The
 client instead of doing:

 C: A001 LISTRIGHTS ~/Mail/saved smith
 S: * LISTRIGHTS ~/Mail/saved smith la r swi cdext
 S: A001 OK Listrights completed
 C: A002 SETACL ~/Mail/saved smith cdextp
 S: A002 OK Setacl complete

 will do the following (this assumes that the server doesn't want to grant a
 right unless all tied rights are specified by the client):

 C: A001 SETACL ~/Mail/saved smith cp
 S: A001 NO [LISTRIGHTS la r swi cdext] No some rights are
tied,
 specify both
 C: A002 SETACL ~/Mail/saved smith cdextp
 S: A002 OK Setacl complete
 C: A002 LISTRIGHTS ~/Mail/saved smith

 and if the server sets all tied rights automatically if at least one of them
 is specified (not recommended by the document but still possible):

 C: A001 SETACL ~/Mail/saved smith cp
 S: * ACL ~/Mail/saved smith cdextp

https://datatracker.ietf.org/doc/html/rfc2086

 S: A001 OK Setacl complete

 3). Other editorial comments/questions are enclosed in << and >>.

1. Abstract

 The ACL extension of the Internet Message Access Protocol [IMAP4]
 permits access control lists to be manipulated through the IMAP
 protocol.

2. Conventions Used in this Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 In all examples "/" character is used as hierarchy separator.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [KEYWORDS].

3. Introduction and Overview

 The ACL extension is present in any IMAP4 implementation which
 returns a capability starting with "ACL2=" as one of the supported
 capabilities to the CAPABILITY command.

 An access control list is a set of <identifier,rights> pairs.

 Identifier is a UTF-8 string. An identifier may have one of the following
 forms:
 a). "anyone" - special identifier that refers to the universal identity
 (all authentications, including anonymous).
 b). "authuser" - special identifier that refer to all authenticated users,
 but not anonymous.
 c). "owner" - special identifier that refers to the owner of a mailbox
 (if any).
 d). "administrators" - special identifier that refers to all users with
 administrative rights.
 e). "user=<xxx>" - refers to a user. Here "<xxx>" is a user name string
 accepted by the LOGIN or AUTHENTICATE commands.
 f). "group=<xxx>" - refers to a group.
 g). "-<identifier>", where <identifier> is one of a).-f). This is
 reserved for "negative rights", described below.

<<Reserve X- and V- prefixes?>>

 Note that a server is not required to implement any special identifier
mentioned

https://datatracker.ietf.org/doc/html/rfc2119

 above. However if it allows a user to perform ACL operations on any one of
them,
 server MUST use the semantic as described above.

 All other identifier names are reserved for future definition in an
 extension or revision to this specification (also known as ACL2).

 Rights is a string listing a (possibly empty) set of alphanumeric
 characters, each character listing a set of operations which is being
 controlled. Letters are reserved for ''standard'' rights, listed
 below. The set of standard rights may only be extended by a
 standards-track document. Digits are reserved for implementation or
 site defined rights. The currently defined standard rights are:

 l - lookup (mailbox is visible to LIST/LSUB commands, SUBSCRIBE mailbox)
 r - read (SELECT the mailbox, perform STATUS, CHECK, FETCH, SEARCH,
 COPY from mailbox)
 s - keep seen/unseen information across sessions (set or clear \SEEN flag
 via STORE, APPEND or COPY)
 w - write (set or clear flags other than \SEEN and \DELETED via STORE,
 APPEND or COPY)
 i - insert (perform APPEND, COPY into mailbox)
 p - post (send mail to submission address for mailbox,
 not enforced by IMAP4 itself)
 c - create mailboxes (CREATE new sub-mailboxes in any
 implementation-defined hierarchy, parent mailbox for the new
 mailbox name in RENAME).
 When a new mailbox is created it SHOULD inherit rights from
 the parent mailbox (if one exists) in the defined hierarchy.
 x - delete mailbox (DELETE mailbox, old mailbox name in RENAME)
 t - delete messages (set or clear \DELETED flag via STORE, set \DELETED flag
 during APPEND/COPY)
 e - perform EXPUNGE and expunge as a part of CLOSE
 d - This right is defined for backward compatibility with ACL
 extension (RFC 2086). If a client sets "d" right, the server MUST
 set "x", "e" and "t" rights. When the client clears the "d" right,
 the server MUST clear "x", "e" and "t" rights. When all three of "x",
 "e" and "t" are set, the server MUST return "d" right in response to
 a ACL GET command. If "x", "e" and "t" rights are not tied together,
 "d" right MUST NOT be returned in a ACL LIST response.
 a - administer (perform ACL STORE, ACL SET and ACL DELETE)

 An implementation may tie rights together or may force rights to
 always or never be granted to particular identifiers. For example,
 in an implementation that uses unix mode bits, the rights "wisd" are
 tied, the "a" right is always granted to the owner of a mailbox and
 is never granted to another user. If rights are tied in an
 implementation, the implementation must be conservative in granting
 rights in response to ACL STORE commands--unless all rights in a tied
 set are specified, none of that set should be included in the ACL
 entry for that identifier. A client may discover the set of rights

https://datatracker.ietf.org/doc/html/rfc2086

 which may be granted to a given identifier in the ACL for a given
 mailbox by using the ACL LIST command.

 When an identifier in an ACL starts with a dash ("-"), that indicates
 that associated rights are to be removed from the identifier that is
 prefixed by the dash. This is referred to as a "negative right".
 This differs from ACL DELETE in that a negative right is added to the
 ACL, and is part of the calculation of the rights.

 For example, if the identifier "-user=fred" is granted the "w" right,
 that indicates that the "w" right is to be removed from users matching
 the identifier "user=fred", even though the user "fred" might have
 the "w" right as a consequence of some other identifier in the ACL.
 A ACL DELETE of "user=fred" simply deletes the identifier "user=fred"
 from the ACL; it does not affect any rights that the user "fred"
 may get from another ACL.

 Server implementations are not required to support "negative right"
 identifiers.

 It is possible for multiple identifiers in an access control list to
 apply to a given user (or other authentication identity). For
 example, an ACL may include rights to be granted to the identifier
 matching the user, one or more implementation-defined identifiers
 matching groups which include the user, and/or the identifier
 "anyone". How these rights are combined to determine the user's
 access is implementation-defined. The set of rules that describes
 how access is calculated is defined by a rule identifier (rule-ID).

 A client may determine the set of rights granted to the logged-in user
 for a given mailbox by using the MYRIGHTS command.

 If a server implementing ACL2 uses the union of the rights granted to
 the applicable identifiers minus the union of the negative rights
 in order to calculate access, it MUST report "ACL2=UNION" in the server's
 capability list.

 An implementation may instead choose to only use those rights granted
 to the most specific identifier present in the ACL. In this case the
 server MUST report "ACL2=MOST-SPECIFIC" in the server's capability
 list.

 If the server implements any other policy for rights calculation,
 it MUST be either registered with IANA using the template provided in 7.1
 or start with "X-". The server MUST report one and only one "ACL2=<rule-ID>"
 capability in its CAPABILITY response.

3.1. Rights required to perform different IMAP4rev1 commands

 Before executing a command an ACL2 compliant server must check which rights
 are required to perform it. This section groups command by functions

 they perform and list the rights required. It also gives the detailed
description
 of any special processing required.

 Listing and subscribing/unsubscribing mailboxes:
 LIST - "l" right is required.

 Note, that if the user has "l" right to a mailbox "A/B", but not to its
parent
 mailbox "A", the LIST command should behave as if the mailbox "A" doesn't
exist,
 for example:
 C: A777 LIST "" *
 S: * LIST (\NoInferiors) "/" "A/B"
 S: * LIST () "/" "C"
 S: * LIST (\NoInferiors) "/" "C/D"
 S: A777 OK LIST completed

 SUBSCRIBE - "l" right is required only if the server checks for mailbox
existence
 when performing SUBSCRIBE.

<<Allow if the user has "r" right?>>

 UNSUBSCRIBE - no rights required to perform this operation.

 LSUB - "l" right is required only if the server checks for mailbox
existence when
 performing SUBSCRIBE.

 Mailbox management:
 CREATE - "c" right on a nearest existing parent mailbox. When a new mailbox
 is created it SHOULD inherit rights from the parent mailbox (if
one exists)
 in the defined hierarchy.

 DELETE - "x" right on the mailbox.

 RENAME - Moving a mailbox from one parent to another
 requires "x" right on the mailbox itself and "c" right for the new
parent.
 For example, if the user wants to rename mailbox named "A/B/C"
 to "D/E", the user must have "x" right
 for the mailbox "A/B/C" and "c" right for the mailbox "D".

 Copying or appending messages:

 Before performing a COPY/APPEND command the server MUST check if the user
has "i" right
 for the target mailbox. If the user doesn't have "i" right, the operation
fails.
 Otherwise for each copied/appended message the server MUST check if the

user has
 "t" right - when the message has \Deleted flag set
 "s" right - when the message has \Seen flag set
 "w" right for all other message flags.
 Only when the user has a particular right the corresponding flags are
stored for the
 newly created message. The server MUST NOT fail a COPY/APPEND if the user
has no rights
 to set a particular flag.

<<Add an example here?>>

 Expunging the selected mailbox:
 EXPUNGE - "e" right on the selected mailbox.

 CLOSE - "e" right on the selected mailbox. Server MUST NOT fail CLOSE
operation if it is
 unable to expunge the mailbox.

 Fetch information about a mailbox and its messages:
 SELECT/EXAMINE/STATUS - "r" right on the mailbox.

 FETCH - A FETCH request that implies setting \Seen flag MUST NOT set it, if
the
 current user doesn't have "s" right.

 Changing flags:
 STORE - the server MUST check if the user has
 "t" right - when the user modifies \Deleted flag
 "s" right - when the user modifies \Seen flag
 "w" right for all other message flags.
 STORE operation SHOULD NOT fail if the user has rights to modify at least
one flag
 specified in the STORE.

 Changing ACLs:
 ACL STORE/DELETE/SET - "a" right on the mailbox (*).

 Reading ACLs:
 ACL GET - "a" right on the mailbox (*).
<<Several implementations allow GETACL (ACL GET) with "r" right. If this is
allowed,
 ACL GET can disclose some identifiers existing on a mail system>>

 MYRIGHTS - any of the following rights is required to perform the
operation:
 "l", "r", "i", "c", "x", "e", "a".

 ACL LIST - same as for MYRIGHTS(*).

 (*) Note, that when one or more mailbox pattern is specified,
 'l' right is required for each mailbox matching the mailbox pattern(s).

4. Commands

 All ACL commands (i.e. ACL STORE/DELETE/SET/GET/LIST, except for MYRIGHTS)
 accept either a single mailbox name or several mailbox patterns as a
 parameter. Mailbox pattern is a mailbox with wildcards, wildcards are
 interpreted as described in [IMAP4] LIST command. In order to distinguish
 between a mailbox name (that is allowed to have wildcard characters '*'
 and '%') and a mailbox pattern, the latter is always represented as a
 parenthesized list.

 For simplicity the bahaviour of ACL STORE/DELETE/SET/GET/LIST commands
 is described for a single mailbox case. When one or more mailbox pattern
 is specified, the server internally performs LIST command for all specified
 patterns and than it combines the results. Note, that only mailboxes for
 which the user has 'l' right are included in the combined result. If the
 combined result has no mailboxes, an ACL operation completes with success
 and the tagged OK response is sent. Otherwise the requested operation is
 performed for each mailbox in the combined result. If a particular mailbox
 causes the operation to fail (e.g. insufficient permissions), instead of
 failing the whole command, an untagged ACLFAILED response is sent for this
 mailbox and the operation continues for the rest of the mailboxes.
 If the server knows that the operation will fail in the same
 manner for all matching mailboxes (e.g. user doesn't exist), it SHOULD
 return tagged NO response instead of sending several untagged ACLFAILED
 responses.

 Example: C: A002 ACL SET (INBOX Personal/*) user=Fred rwist
 S: * ACLFAILED Personal/ABC
 S: A002 OK acl set complete

<<Add some responses caused by side effects>>

 Example: C: A002 ACL SET (Fruits/Apples/*) user=Zak lrs
 S: A002 NO User Zak doesn't exist

4.1. ACL STORE

 Arguments: mailbox name or one or more mailbox masks
 authentication identifier
 access right modification

 Data: OPTIONAL untagged responses: ACLINFO

 Result: OK - ACL STORE completed
 NO - ACL STORE failure: can't set acl
 BAD - command unknown or arguments invalid

 The ACL STORE command changes the access control list on the
 specified mailbox so that the specified identifier is granted

 permissions as specified in the third argument.

 The third argument is a string containing an optional plus ("+")
 or minus ("-") prefix, followed by zero or more rights characters.
 If the string starts with a plus, the following rights are added
 to any existing rights for the identifier. If the string starts
 with a minus, the following rights are removed from any existing
 rights for the identifier. If the string does not start with a
 plus or minus, the rights replace any existing rights for the
 identifier.

 Note, that for "ACL2=UNION" access calculation rule
 <ACL STORE mailbox identifier ""> MUST be treated as
 <ACL DELETE mailbox identifier>. Also note that these two commands
 don't have the same result for "ACL2=MOST-SPECIFIC".

 An ACL2 server MAY modify one or more ACL for one or more identifier
 as a side effect of modifying the ACL specified in ACL STORE. If the
 server does that it MUST send untagged ACLINFO response to notify the
 client about the changes made.

4.2. ACL DELETE

 Arguments: mailbox name or one or more mailbox masks
 authentication identifier

 Data: OPTIONAL untagged responses: ACLINFO

 Result: OK - ACL DELETE completed
 NO - ACL DELETE failure: can't delete acl
 BAD - command unknown or arguments invalid

 The ACL DELETE command removes any <identifier,rights> pair for the
 specified identifier from the access control list for the
 specified mailbox.

 An ACL2 server MAY modify one or more ACL for one or more identifier
 as a side effect of modifying the ACL specified in ACL DELETE. If the
 server does that it MUST send untagged ACLINFO response to notify the
 client about the changes made.

4.3. ACL SET

 Arguments: mailbox name or one or more mailbox masks
 list of (authentication identifier, access rights) pairs

 Data: OPTIONAL untagged responses: ACLINFO

 Result: OK - replaceacl completed
 NO - replaceacl failure: can't replace acl

 BAD - command unknown or arguments invalid

 The ACL SET command replaces the access control list of the
 specified mailbox with the one provided as the second parameter to
 ACL SET. This command is semantically equivalent to the following
 sequence of commands:

 1). ACL GET <mailbox name>
 2). For each (authentication identifier AID, access rights RD) pair
returned
 in the untagged ACL response that was caused by ACL GET, perform
 ACL DELETE <mailbox name> AID
 3). For each (authentication identifier AIA, access rights RA) pair from
 the second parameter of ACL SET perform
 ACL STORE <mailbox name> AIA RA

 An ACL2 server MAY modify one or more ACL for one or more identifier
 as a side effect of modifying the ACL specified in ACL SET. If the
 server does that it MUST send untagged ACLINFO response to notify the
 client about the changes made.

4.4. ACL GET

 Arguments: mailbox name or one or more mailbox masks

 Data: REQUIRED untagged responses: ACLINFO

 Result: OK - ACL GET completed
 NO - ACL GET failure: can't get acl
 BAD - command unknown or arguments invalid

 The ACL GET command returns the access control list for mailbox in
 an untagged ACLINFO reply.

 Example: C: A002 ACL GET INBOX
 S: * ACLINFO INBOX user=Fred rwipslextda
 S: A002 OK acl get complete

4.5. ACL LIST

 Arguments: mailbox name or one or more mailbox masks
 authentication identifier

 Data: untagged responses: RIGHTS-INFO

 Result: OK - ACL LIST completed
 NO - ACL LIST failure: can't get rights list
 BAD - command unknown or arguments invalid

 The ACL LIST command takes a mailbox name and an identifier and

 returns information about what rights may be granted to the
 identifier in the ACL for the mailbox.

 Example: C: a001 ACL LIST ~/Mail/saved user=smith
 S: * RIGHTS-INFO ~/Mail/saved user=smith la r swi cdext
 S: a001 OK ACL LIST completed

 C: a005 ACL LIST archive.imap anyone
 S: * RIGHTS-INFO archive.imap anyone "" l r s w i p c dtex a
 0 1 2 3 4 5 6 7 8 9
 S: a005 OK ACL LIST completed

4.6. MYRIGHTS

 Arguments: mailbox name

 Data: untagged responses: MYRIGHTS

 Result: OK - myrights completed
 NO - myrights failure: can't get rights
 BAD - command unknown or arguments invalid

 The MYRIGHTS command returns the set of rights that the user has
 to mailbox in an untagged MYRIGHTS reply.

<<There is a proposal to replace MYRIGHT with either ACL FETCH or ACL CHECK:

 ACL FETCH is slightly different than MYRIGHTS in that it takes an identifier
 as an argument and returns the rights for that identifier (?? is this
 desirable ??).

 Or perhaps there could be an ACL CHECK that, given an identifier and a set of
 right, returns whether or not that identifier has those rights. ACL CHECK
 is probably more useful.

 For now MYRIGHTS is left as is, because neither parameters, nor responses
were
 affected by the change to identifiers. However, if there is a desire to
 accept multiple mailboxes or mailbox masks in MYRIGHT, it would be better to
 change it to ACL <something> as well.>>

 The user must have any of the following rights to perform this operation:
 "l", "r", "i", "c", "x", "e", "a".
 If the user doesn't have any right from the above list, the server
 MUST behave as if the mailbox doesn't exist.

 Example: C: A003 MYRIGHTS INBOX
 S: * MYRIGHTS INBOX rwipsldexta
 S: A003 OK Myrights complete

5. Responses

5.1. ACLINFO

 Data: mailbox name
 zero or more identifier rights pairs

 The ACLINFO response occurs as a result of a ACL GET command. It MAY
 also occur as a result of ACL STORE/DELETE/SET. The first string
 is the mailbox name for which this ACL applies. This is followed
 by zero or more pairs of strings, each pair contains the identifier
 for which the entry applies followed by the set of rights that the
 identifier has.

<< There is a proposal to use LISTEXT syntax instead. This requires
 publishing a new revision of LISTEXT, that in its current form, is not
 flexible enough. >>

5.2. RIGHTS-INFO

 Data: mailbox name
 identifier
 required rights
 list of optional rights

 The RIGHTS-INFO response occurs as a result of a ACL LIST
 command. The first two strings are the mailbox name and
 identifier for which this rights list applies. Following the
 identifier is a string containing the (possibly empty) set of
 rights the identifier will always be granted in the mailbox.
 Following this are zero or more strings each containing a set of
 rights the identifier may be granted in the mailbox. Rights
 mentioned in the same string are tied together--either all must be
 granted to the identifier in the mailbox or none may be granted.

 The same right may not be listed more than once in the RIGHTS-INFO
 response.

5.3. ACLFAILED untagged response

 Contents: OPTIONAL response code (failure reason)
 mailbox name

 The ACLFAILED response containing a mailbox name indicates that
 the ACL operations failed for the specified mailbox. The
 reason for failure may be described by the response code
 (if included).

 Example: C: A002 ACL SET (INBOX Personal/*) user=Fred rwist
 S: * ACLFAILED Personal/ABC
 S: A002 OK acl set complete

<<Add human readable text?>>

<<Currently no existing response code can be used in ACLFAILED>>

5.4. MYRIGHTS untagged response

 Data: mailbox name
 rights

 The MYRIGHTS response occurs as a result of a MYRIGHTS command.
 The first string is the mailbox name for which these rights apply.
 The second string is the set of rights that the client has.

5.5. MYRIGHTS response code

 Data: rights

 The MYRIGHTS response code is sent in an untagged OK response
 that results from SELECT/EXAMINE. Also this response code can be
 sent at any time after opening a mailbox when the server detects
 that the set of rights allowed for the logged in user has changed.

 The MYRIGHT response code is equivalent to MYRIGHTS untagged response
 for the selected mailbox.

6. Formal Syntax

 Formal syntax is defined using ABNF [ABNF] as modified by [IMAP4].
 Non-terminals referenced but not defined below are as defined by
 [IMAP4].

 Except as noted otherwise, all alphabetic characters are
 case-insensitive. The use of upper or lower case characters to
 define token strings is for editorial clarity only. Implementations
 MUST accept these strings in a case-insensitive fashion.

 acl2_command = myrights | "ACL" SPACE acl2_subcommand

 acl2_subcommand = replaceacl | deleteacl | updateacl | getacl | listrights

 acl_data = "ACLINFO" SPACE mailbox *(SPACE identifier SPACE rights)

 always_granted = rights

 deleteacl = "DELETE" SPACE mbox_or_pat SPACE identifier

 getacl = "GET" SPACE mbox_or_pat

 identifier = astring
 ;; UTF-8

<< Specify more detailed syntax for identifiers? >>

 listrights = "LIST" SPACE mbox_or_pat SPACE identifier

 listrights_data = "RIGHTS-INFO" SPACE mailbox SPACE identifier
 SPACE always_granted *(SPACE rights)

 mod_rights = quoted
 ;; +rights to add, -rights to remove

 myrights = "MYRIGHTS" SPACE mailbox

 myrights_data = "MYRIGHTS" SPACE mailbox SPACE rights

 myrights_rspcod = "MYRIGHTS" SPACE rights

 replaceacl = "SET" SPACE mbox_or_pat *(SPACE identifier SPACE rights)

 resp-text-code =/ myrights_data

 rights = quoted
 ;; MUST NOT contain leading "+" or "-"

 updateacl = "STORE" SPACE mbox_or_pat SPACE identifier SPACE
mod_rights

 mbox_or_pat = mailbox / patterns

 patterns = "(" list-mailbox *(list-mailbox) ")"

 partialfail_rsp = "ACLFAILED" [SPACE "[" resp-text-code "]"] SPACE mailbox
 ;; May contain optional failure reason

7. IANA considerations

7.1. ACL access calculation rule Registration Template

 When an access calculation rule for ACL2 extension is registered, the
 following information is supplied:

 Rule Identification: specify a string that identifies this
 rule. Unless the rule is registered with the IANA, the
 rule's identification must start with "X-".
 The server supporting a particular rule <rule-ID> MUST report
 "ACL2=<rule-ID>" in the capability list.

 Rule Semantics: specify how access rights for a mailbox are calculated.

 Negative rights allowed: specify whether "negative right" identifiers are
 allowed.

 Groups allowed: specify whether group identifiers are allowed.

 Special Identifiers: describe whether any implementation defined
 aliases are allowed and define their meaning.

 Contact Information: specify the postal and electronic contact
 information for the author of the feature.

8. Initial Registrations

8.1. Registration: UNION access calculation rule

 Rule Identification: UNION

 Rule Semantics: the union of the rights granted to
 the applicable identifiers minus the union of the negative rights.

 Negative rights allowed: Yes.

 Groups allowed: Yes, but not required.

 Special Identifiers: No.

 Contact Information: c.f., the "Editor's Address" section of this
 memo

8.2. Registration: MOST-SPECIFIC access calculation rule

 Rule Identification: MOST-SPECIFIC

 Rule Semantics: the rights granted to the most specific identifier
 present in the ACL are used, i.e. if the user identifier is present,
 its ACL is used. If no user identifier is present, but a group that
 includes this user as a member is present, the group ACL is used.
 If neither user, nor group identifier is present, but an ACL for
 a special group "anyone" is present, the ACL for "anyone" is used.

 Negative rights allowed: No.

 Groups allowed: Yes, but not required.

 Special Identifiers: No.

 Contact Information: c.f., the "Editor's Address" section of this
 memo

9. Security Considerations

 An implementation must make sure the ACL commands themselves do not
 give information about mailboxes with appropriately restricted ACL's.
 For example, a ACL GET command on a mailbox for which the user has
 insufficient rights should not admit the mailbox exists, much less
 return the mailbox's ACL.

 IMAP clients implementing ACL2 that are able to modify ACLs SHOULD
 warn a user that wants to give full access to the special identifier
 "anyone".

10. Other considerations

10.1. Compatibility with RFC 2086

 << This has to be written >>

10.2. ACL2 interaction with QUOTA extension

 Server that implement both ACL2 and QUOTA extensions MUST use the following
 table to determine if a quote operation should be allowed for the user:

 GETQUOTAROOT - "r" right
<< Replace with/add "a" and "i"? >>

 GETQUOTA - no rights required

 SETQUOTA - implementation defined, as SETQUOTA operates on a quotaroot,
 not on a mailbox.

10.3. Mapping of ACL rights to READ-WRITE and READ-ONLY response codes.

 A particular ACL2 server implementation may allow "shared multiuser
 access" to some mailboxes. "Shared multiuser access" to a mailbox means
 that multiple different users are able to access the same mailbox,
 if they have proper access rights. "Shared multiuser access" to the
 mailbox doesn't mean that the ACL for the mailbox is currently set
 to allow access by multiple users. Let's denote a "shared multiuser
 write access" as a "shared multiuser access" when a user may be
 granted flag modification rights (any of "w", "s" or "t").

Section 3.1 ("Rights required to perform different IMAP4rev1 commands")
 describes which rights are required for modifying different flags.

 If the ACL2 server implements some flags as shared for a mailbox (i.e.,
 the ACL for the mailbox may be set up so that changes to those flags are

https://datatracker.ietf.org/doc/html/rfc2086

 visible to another user), let's call the set of rights associated with these
 flags (as described in 3.1) for that mailbox collectively as "shared flag
 rights". Note, that "shared flag rights" set MAY be different for different
 mailboxes.

 If the server doesn't support "shared multiuser write access" to a
 mailbox or doesn't implement shared flags on the mailbox, "shared flag
 rights" for the mailbox is defined to be the empty set.

 Example 1: Mailbox "banan" allows "shared multiuser write access" and
 implements flags \Deleted, \Answered and $MDNSent as
 shared flags. "Shared flag rights" for the mailbox "banan"
 is a set containing flags "t" (because system flag \Deleted
 requires "t" right) and "w" (because both \Answered and
 $MDNSent require "w" right).

 Example 2: Mailbox "apple" allows "shared multiuser write access" and
 implements \Seen system flag as shared flag. "Shared flag
 rights" for the mailbox "apple" contains "s" right,
 because system flag \Seen requires "s" right.

 Example 3: Mailbox "pear" allows "shared multiuser write access" and
 implements flags \Seen, \Draft as shared flags. "Shared flag
 rights" for the mailbox "apple" is a set containing flags "s"
 (because system flag \Seen requires "s" right) and "w"
 (because system flag \Draft requires "w" right).

<<Editor: I know this looks ugly, but this is required for interoperability.
 Please check whether this makes any sense!>>

 The server MUST include a READ-ONLY prefix in the tagged OK response to
 a SELECT command if none of the following rights is granted to the
 current user:
 "i", "e" and "shared flag rights".
 The server SHOULD include a READ-WRITE prefix in the tagged OK response
 if at least one of the "i", "e" or "shared flag rights" is granted to the
 current user.

 Example 1 (continue): The user that has "lrs" rights for the mailbox
 "banan". The server returns READ-ONLY response
 code on SELECT, as none of "iewt" rights is
 granted to the user.

 Example 2 (continue): The user that has "rit" rights for the mailbox
 "apple". The server returns READ-WRITE response
 code on SELECT, as the user has "i" right.

 Example 3 (continue): The user that has "rset" rights for the mailbox
 "pear". The server returns READ-WRITE response
 code on SELECT, as the user has "e" and "s" rights.

10.4. Additional requirements and Implementation notes

 Any server implementing an ACL2 extension MUST accurately reflect the
current
 user's rights in FLAGS and PERMANENTFLAGS responses. The server SHOULD issue
 a MYRIGHTS response code in an untagged OK response as a result of a SELECT
 or EXAMINE command.

 Example: C: A142 SELECT INBOX
 S: * 172 EXISTS
 S: * 1 RECENT
 S: * OK [UNSEEN 12] Message 12 is first unseen
 S: * OK [UIDVALIDITY 3857529045] UIDs valid
 S: * OK [UIDNEXT 4392] Predicted next UID
 S: * FLAGS (\Answered \Flagged \Deleted \Seen \Draft)
 S: * OK [PERMANENTFLAGS (\Deleted \Seen *)] Limited
 S: * OK [MYRIGHTS rwiste] Allowed rights
 S: A142 OK [READ-WRITE] SELECT completed

 An ACL2 server MAY modify one or more ACL for one or more identifier as a
 side effect of modifying the ACL specified in ACL STORE/DELETE/SET.
 If the server does that it MUST send untagged ACL response to notify the
 client about the changes made.

11. References

 [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March 1997.

 [ABNF] Crocker, Overell, "Augmented BNF for Syntax Specifications:
 ABNF", RFC 2234, Internet Mail Consortium, Demon Internet Ltd,
 November 1997.

 [IMAP4] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, University of Washington, December 1996.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of IS0 10646",
RFC 2279, Alis Technologies, January 1998.

 [QUOTA] Myers, J., "IMAP4 QUOTA extension", RFC 2087, Carnegie Mellon
 University, January 1997.

12. Aknowledgement

 This document is a revision of the RFC 2086 written by John G. Myers.

 Editor appreciates comments received from Mark Crispin, Chris Newman,
 Cyrus Daboo, John G. Myers, Curtis King, Lyndon Nerenberg, Larry Greenfield,
 Vladimir Butenko, Dave Cridland and other members of IMAPEXT working group.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2060
https://datatracker.ietf.org/doc/html/rfc2279
https://datatracker.ietf.org/doc/html/rfc2087
https://datatracker.ietf.org/doc/html/rfc2086

13. Editor's Address

 Alexey Melnikov
 mailto: mel@messagingdirect.com

 ACI WorldWide/MessagingDirect
 59 Clarendon Road, Watford,
 Hertfordshire, United Kingdom, WD17 1FQ

 Phone: +44 1923 81 2877

14. Full Copyright Statement

 Copyright (C) The Internet Society 2002. All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Changes since RFC 2086

 1. Changed the charset of "identifier" from US-ASCII to UTF-8.

 2. Changed identifier syntax. Now all users must start with "user="
 prefix. Specified that identifiers starting with a "group=" prefix are
 reserved for groups and implementation defined aliases.

 3. Specified that mailbox deletion is controled by the "x" right and

https://datatracker.ietf.org/doc/html/rfc2086

 EXPUNGE is controlled by "e" right.

 4. Clarified that RENAME requires "c" right for the new parent and "x"
 right for the old name.

 5. Changed capability name from "ACL" to "ACL2" because changes 2 and 3
 are not backward compatible with ACL RFC.

 6. Added "t" right that controls STORE \Deleted. Redefined "d" to be a
 macro for "e", "x" and "t".

 7. Added "ACL2=UNION" and "ACL2=MOST-SPECIFIC" capabilities and IANA
 registration template.

 8. Specified that "a" right also controls DELETEACL

 9. Specified that "r" right also controls STATUS

 10. Specified that "w" controls setting flags other than \Seen and \Deleted
 on APPEND. Same for "s" and "t" flags.

 11. Specified that "l" controls SUBSCRIBE/UNSUBSCRIBE.

 12. Added note about compatibility with RFC 2086

 13. Added "Implementation Notes" section.

 14. Updated "References" section.

 15. Deleted "PARTIAL", this is a depricated feature of RFC1730.

 16. Added MYRIGHT response code as per Cyrus suggestion.

 17. Added REPLACEACL (ACL SET) as per Mark and Cyrus request.

 18. Added new section that describes which rights are required and/or
 checked when performing various IMAP commands.

 19. Added section about interaction of ACL2 with the QUOTA extension.

 20. Added special identifiers "authuser", "owner" and "administrators".

 21. Added mail client security considerations when dealing with special
 identifier "anyone".

 22. Clarified that negative rights are not the same as DELETEACL (ACL
DELETE).

 23. Removed the requirement to check the "r" right for CHECK, SEARCH and
 FETCH, as this is required for SELECT/EXAMINE to be successful.

 24. Added note that a server can modify an ACL for any identifier(s) as a
 side effect of performing SETACL/DELETEACL/REPLACEACL

https://datatracker.ietf.org/doc/html/rfc2086
https://datatracker.ietf.org/doc/html/rfc1730

 (ACL STORE/DELETE/SET). Also specified that the server MUST send
 untagged ACL response if it does that. Updated command definition
 to include optional ACL untagged response.

 25. Fixed typo in 10.1. (Was "ACL=...", not "ACL2=...")

 26. Cleaned up section 10.2 a bit.

 27. LISTRIGHTS (ACL LIST) requires same rights as MYRIGHTS.

 28. Added section about mapping of ACL rights to READ-WRITE and READ-ONLY
 response codes.

 29. Changed ABNF for rigths/mod_rights to be quoted instead of astring.

 30. Changed syntax of ACL2 commands according to the following table:
 SETACL => ACL STORE
 DELETEACL => ACL DELETE
 REPLACEACL => ACL SET
 GETACL => ACL GET
 LISTRIGHTS => ACL LIST

 MYRIGHTS was left as is

 Changed syntax of ACL2 responses:
 ACL => ACLINFO
 LISTRIGHTS => RIGHTS-INFO

 MYRIGHTS was left as is

 Any better suggestions for names are welcome.

 31. Added mailbox patterns and partial failures. Updated ABNF.

To Do List:

 1). Cleanup appendix A before publication as RFC, as some changes don't
 apply to RFC 2086.

https://datatracker.ietf.org/doc/html/rfc2086

