
IMAP Extensions Working Group M. Crispin
Internet-Draft K. Murchison
Intended status: Proposed Standard September 5, 2007
Expires: March 5, 2008
Document: internet-drafts/draft-ietf-imapext-sort-19.txt

 INTERNET MESSAGE ACCESS PROTOCOL - SORT AND THREAD EXTENSIONS

Status of this Memo

 By submitting this Internet-Draft, each author represents that
 any applicable patent or other IPR claims of which he or she is
 aware have been or will be disclosed, and any of which he or she
 becomes aware will be disclosed, in accordance with Section 6 of
 BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 A revised version of this draft document will be submitted to the RFC
 editor as a Proposed Standard for the Internet Community. Discussion
 and suggestions for improvement are requested, and should be sent to
 ietf-imapext@IMC.ORG.

 Distribution of this memo is unlimited.

Abstract

 This document describes the base-level server-based sorting and
 threading extensions to the [IMAP] protocol. These extensions
 provide substantial performance improvements for IMAP clients which
 offer sorted and threaded views.

1. Introduction

 The SORT and THREAD extensions to the [IMAP] protocol provide a means

https://datatracker.ietf.org/doc/html/bcp79#section-6
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 of server-based sorting and threading of messages, without requiring
 that the client download the necessary data to do so itself. This is
 particularly useful for online clients as described in [IMAP-MODELS].

 A server which supports the base-level SORT extension indicates this
 with a capability name which starts with "SORT". Future,
 upwards-compatible extensions to the SORT extension will all start
 with "SORT", indicating support for this base level.

 A server which supports the THREAD extension indicates this with one
 or more capability names consisting of "THREAD=" followed by a
 supported threading algorithm name as described in this document.
 This provides for future upwards-compatible extensions.

 A server which implements the SORT and/or THREAD extensions SHOULD
 also implement the COMPARATOR extension as described in [IMAP-I18N].

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [KEYWORDS].

 The word "can" (not "may") is used to refer to a possible
 circumstance or situation, as opposed to an optional facility of the
 protocol.

 "User" is used to refer to a human user, whereas "client" refers to
 the software being run by the user.

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

2.1 Base Subject

 Subject sorting and threading use the "base subject," which has
 specific subject artifacts removed. Due to the complexity of these
 artifacts, the formal syntax for the subject extraction rules is
 ambiguous. The following procedure is followed to determine the
 "base subject", using the [ABNF] formal syntax rules described in

section 5:

 (1) Convert any RFC 2047 encoded-words in the subject to
 UTF-8 as described in "internationalization
 considerations." Convert all tabs and continuations to
 space. Convert all multiple spaces to a single space.

 (2) Remove all trailing text of the subject that matches
 the subj-trailer ABNF, repeat until no more matches are
 possible.

https://datatracker.ietf.org/doc/html/rfc2047

 (3) Remove all prefix text of the subject that matches the
 subj-leader ABNF.

 (4) If there is prefix text of the subject that matches the
 subj-blob ABNF, and removing that prefix leaves a non-empty
 subj-base, then remove the prefix text.

 (5) Repeat (3) and (4) until no matches remain.

 Note: it is possible to defer step (2) until step (6), but this
 requires checking for subj-trailer in step (4).

 (6) If the resulting text begins with the subj-fwd-hdr ABNF
 and ends with the subj-fwd-trl ABNF, remove the
 subj-fwd-hdr and subj-fwd-trl and repeat from step (2).

 (7) The resulting text is the "base subject" used in the
 SORT.

 All servers and disconnected (as described in [IMAP-MODELS]) clients
 MUST use exactly this algorithm to determine the "base subject".
 Otherwise there is potential for a user to get inconsistent results
 based on whether they are running in connected or disconnected mode.

2.2 Sent Date

 As used in this document, the term "sent date" refers to the date and
 time from the Date: header, adjusted by time zone to normalize to
 UTC. For example, "31 Dec 2000 16:01:33 -0800" is equivalent to the
 UTC date and time of "1 Jan 2001 00:01:33 +0000".

 If the time zone is invalid, the date and time SHOULD be treated as
 UTC. If the time is also invalid, the time SHOULD be treated as
 00:00:00. If there is no valid date or time, the date and time
 SHOULD be treated as 00:00:00 on the earliest possible date.

 This differs from the date-related criteria in the SEARCH command
 (described in [IMAP] section 6.4.4), which use just the date and not
 the time, and are not adjusted by time zone.

3. Additional Commands

 These commands are extension to the [IMAP] base protocol.

 The section headings are intended to correspond with where they would
 be located in the main document if they were part of the base
 specification.

BASE.6.4.SORT. SORT Command

 Arguments: sort program
 charset specification
 searching criteria (one or more)

 Data: untagged responses: SORT

 Result: OK - sort completed
 NO - sort error: can't sort that charset or
 criteria
 BAD - command unknown or arguments invalid

 The SORT command is a variant of SEARCH with sorting semantics for
 the results. Sort has two arguments before the searching criteria
 argument; a parenthesized list of sort criteria, and the searching
 charset.

 The charset argument is mandatory (unlike SEARCH) and indicates
 the [CHARSET] of the strings that appear in the searching
 criteria. The US-ASCII and UTF-8 charsets MUST be implemented.
 All other charsets are optional.

 There is also a UID SORT command which returns unique identifiers
 instead of message sequence numbers. Note that there are separate
 searching criteria for message sequence numbers and UIDs; thus the
 arguments to UID SORT are interpreted the same as in SORT. This
 is analogous to the behavior of UID SEARCH, as opposed to UID
 COPY, UID FETCH, or UID STORE.

 The SORT command first searches the mailbox for messages that
 match the given searching criteria using the charset argument for
 the interpretation of strings in the searching criteria. It then
 returns the matching messages in an untagged SORT response, sorted
 according to one or more sort criteria.

 Sorting is in ascending order. Earlier dates sort before later
 dates; smaller sizes sort before larger sizes; and strings are
 sorted according to ascending values established by their
 collation algorithm (see under "Internationalization
 Considerations").

 If two or more messages exactly match according to the sorting
 criteria, these messages are sorted according to the order in
 which they appear in the mailbox. In other words, there is an
 implicit sort criterion of "sequence number".

 When multiple sort criteria are specified, the result is sorted in
 the priority order that the criteria appear. For example,
 (SUBJECT DATE) will sort messages in order by their base subject
 text; and for messages with the same base subject text will sort
 by their sent date.

 Untagged EXPUNGE responses are not permitted while the server is
 responding to a SORT command, but are permitted during a UID SORT
 command.

 The defined sort criteria are as follows. Refer to the Formal
 Syntax section for the precise syntactic definitions of the
 arguments. If the associated RFC-822 header for a particular
 criterion is absent, it is treated as the empty string. The empty
 string always collates before non-empty strings.

 ARRIVAL
 Internal date and time of the message. This differs from the
 ON criteria in SEARCH, which uses just the internal date.

 CC
 [IMAP] addr-mailbox of the first "cc" address.

 DATE
 Sent date and time from the Date: header, adjusted by time
 zone. This differs from the SENTON criteria in SEARCH, which
 uses just the date and not the time, nor adjusts by time zone.
 If the sent date can not be determined (a Date: header is
 missing or can not be parsed), the INTERNALDATE for that
 message is used as the sent date.

 FROM
 [IMAP] addr-mailbox of the first "From" address.

 REVERSE
 Followed by another sort criterion, has the effect of that
 criterion but in reverse (descending) order.
 Note: REVERSE only reverses a single criterion, and does not
 affect the implicit "sequence number" sort criterion if all
 other criteria are identicial. Consequently, a sort of
 REVERSE SUBJECT is not the same as a reverse ordering of a
 SUBJECT sort. This can be avoided by use of additional
 criteria, e.g. SUBJECT DATE vs. REVERSE SUBJECT REVERSE
 DATE. In general, however, it's better (and faster, if the
 client has a "reverse current ordering" command) to reverse
 the results in the client instead of issuing a new SORT.

 SIZE
 Size of the message in octets.

 SUBJECT
 Base subject text.

 TO
 [IMAP] addr-mailbox of the first "To" address.

 Example: C: A282 SORT (SUBJECT) UTF-8 SINCE 1-Feb-1994

https://datatracker.ietf.org/doc/html/rfc822

 S: * SORT 2 84 882
 S: A282 OK SORT completed
 C: A283 SORT (SUBJECT REVERSE DATE) UTF-8 ALL
 S: * SORT 5 3 4 1 2
 S: A283 OK SORT completed
 C: A284 SORT (SUBJECT) US-ASCII TEXT "not in mailbox"
 S: * SORT
 S: A284 OK SORT completed

BASE.6.4.THREAD. THREAD Command

Arguments: threading algorithm
 charset specification
 searching criteria (one or more)

Data: untagged responses: THREAD

Result: OK - thread completed
 NO - thread error: can't thread that charset or
 criteria
 BAD - command unknown or arguments invalid

 The THREAD command is a variant of SEARCH with threading semantics
 for the results. Thread has two arguments before the searching
 criteria argument; a threading algorithm, and the searching
 charset.

 The charset argument is mandatory (unlike SEARCH) and indicates
 the [CHARSET] of the strings that appear in the searching
 criteria. The US-ASCII and UTF-8 charsets MUST be implemented.
 All other charsets are optional.

 There is also a UID THREAD command which returns unique
 identifiers instead of message sequence numbers. Note that there
 are separate searching criteria for message sequence numbers and
 UIDs; thus the arguments to UID THREAD are interpreted the same as
 in THREAD. This is analogous to the behavior of UID SEARCH, as
 opposed to UID COPY, UID FETCH, or UID STORE.

 The THREAD command first searches the mailbox for messages that
 match the given searching criteria using the charset argument for
 the interpretation of strings in the searching criteria. It then
 returns the matching messages in an untagged THREAD response,
 threaded according to the specified threading algorithm.

 All collation is in ascending order. Earlier dates collate before
 later dates and strings are collated according to ascending values
 established by their collation algorithm (see under
 "Internationalization Considerations").

 Untagged EXPUNGE responses are not permitted while the server is

 responding to a THREAD command, but are permitted during a UID
 THREAD command.

 The defined threading algorithms are as follows:

 ORDEREDSUBJECT

 The ORDEREDSUBJECT threading algorithm is also referred to as
 "poor man's threading." The searched messages are sorted by
 base subject and then by the sent date. The messages are then
 split into separate threads, with each thread containing
 messages with the same base subject text. Finally, the threads
 are sorted by the sent date of the first message in the thread.

 The first message of each thread are siblings of each other
 (the "root"). The second message of a thread is the child of
 the first message, and subsequent messages of the thread are
 siblings of the second message and hence children of the
 message at the root. Hence, there are no grandchildren in
 ORDEREDSUBJECT threading.

 Note: early drafts of this specification specified
 that each message in an ORDEREDSUBJECT thread is a child
 (as opposed to a sibling) of the previous message. This
 is now deprecated. For compatibility with servers which
 may still use the old definition, client implementations
 SHOULD treat descendents of a child as being siblings of
 that child.

 This is because the old definition mistakenly indicated
 that there was a parent/child relationship between
 successive messages in a thread; when in fact there was
 only a chronological relationship. In clients which
 indicate parent/child relationships in a thread tree,
 this would indicate levels of descent which did not
 exist.

 REFERENCES

 The REFERENCES threading algorithm is based on the [THREADING]
 algorithm written used in "Netscape Mail and News" versions 2.0
 through 3.0. This algorithm threads the searched messages by
 grouping them together in parent/child relationships based on
 which messages are replies to others. The parent/child
 relationships are built using two methods: reconstructing a
 message's ancestry using the references contained within it;
 and checking the original (not base) subject of a message to
 see if it is a reply to (or forward of) another message.

 Note: "Message ID" in the following description refers to a
 normalized form of the msg-id in [RFC-2822]. The actual

https://datatracker.ietf.org/doc/html/rfc2822

 text in an RFC 2822 may use quoting, resulting in multiple
 ways of expressing the same Message ID. Implementations of
 the REFERENCES threading algorithm MUST normalize any msg-id
 in order to avoid false non-matches due to differences in
 quoting.

 For example, the msg-id
 <"01KF8JCEOCBS0045PS"@xxx.yyy.com>
 and the msg-id
 <01KF8JCEOCBS0045PS@xxx.yyy.com>
 MUST be interpreted as being the same Message ID.

 The references used for reconstructing a message's ancestry are
 found using the following rules:

 If a message contains a References header line, then use the
 Message IDs in the References header line as the references.

 If a message does not contain a References header line, or
 the References header line does not contain any valid
 Message IDs, then use the first (if any) valid Message ID
 found in the In-Reply-To header line as the only reference
 (parent) for this message.

 Note: Although [RFC-2822] permits multiple Message IDs in
 the In-Reply-To header, in actual practice this
 discipline has not been followed. For example,
 In-Reply-To headers have been observed with message
 addresses after the Message ID, and there are no good
 heuristics for software to determine the difference.
 This is not a problem with the References header however.

 If a message does not contain an In-Reply-To header line, or
 the In-Reply-To header line does not contain a valid Message
 ID, then the message does not have any references (NIL).

 A message is considered to be a reply or forward if the base
 subject extraction rules, applied to the original subject,
 remove any of the following: a subj-refwd, a "(fwd)"
 subj-trailer, or a subj-fwd-hdr and subj-fwd-trl.

 The REFERENCES algorithm is significantly more complex than
 ORDEREDSUBJECT and consists of six main steps. These steps are
 outlined in detail below.

 (1) For each searched message:

 (A) Using the Message IDs in the message's references, link
 the corresponding messages (those whose Message-ID header
 line contains the given reference Message ID) together as
 parent/child. Make the first reference the parent of the
 second (and the second a child of the first), the second the

https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822

 parent of the third (and the third a child of the second),
 etc. The following rules govern the creation of these
 links:

 If a message does not contain a Message-ID header line,
 or the Message-ID header line does not contain a valid
 Message ID, then assign a unique Message ID to this
 message.

 If two or more messages have the same Message ID, then
 only use that Message ID in the first (lowest sequence
 number) message, and assign a unique Message ID to each
 of the subsequent messages with a duplicate of that
 Message ID.

 If no message can be found with a given Message ID,
 create a dummy message with this ID. Use this dummy
 message for all subsequent references to this ID.

 If a message already has a parent, don't change the
 existing link. This is done because the References
 header line may have been truncated by a MUA. As a
 result, there is no guarantee that the messages
 corresponding to adjacent Message IDs in the References
 header line are parent and child.

 Do not create a parent/child link if creating that link
 would introduce a loop. For example, before making
 message A the parent of B, make sure that A is not a
 descendent of B.

 Note: Message ID comparisons are case-sensitive.

 (B) Create a parent/child link between the last reference
 (or NIL if there are no references) and the current message.
 If the current message already has a parent, it is probably
 the result of a truncated References header line, so break
 the current parent/child link before creating the new
 correct one. As in step 1.A, do not create the parent/child
 link if creating that link would introduce a loop. Note
 that if this message has no references, that it will now
 have no parent.

 Note: The parent/child links created in steps 1.A and 1.B
 MUST be kept consistent with one another at ALL times.

 (2) Gather together all of the messages that have no parents
 and make them all children (siblings of one another) of a dummy
 parent (the "root"). These messages constitute the first
 (head) message of the threads created thus far.

 (3) Prune dummy messages from the thread tree. Traverse each

 thread under the root, and for each message:

 If it is a dummy message with NO children, delete it.

 If it is a dummy message with children, delete it, but
 promote its children to the current level. In other words,
 splice them in with the dummy's siblings.

 Do not promote the children if doing so would make them
 children of the root, unless there is only one child.

 (4) Sort the messages under the root (top-level siblings only)
 by sent date. In the case of an exact match on sent date, use
 the order in which the messages appear in the mailbox (that is,
 by sequence number) to determine the order. In the case of a
 dummy message, sort its children by sent date and then use the
 first child for the top-level sort. If the sent date can not
 be determined (a Date: header is missing or can not be parsed),
 the INTERNALDATE for that message is used as the sent date.

 (5) Gather together messages under the root that have the same
 base subject text.

 (A) Create a table for associating base subjects with
 messages, called the subject table.

 (B) Populate the subject table with one message per each
 base subject. For each child of the root:

 (i) Find the subject of this thread, by using the base
 subject from either the current message or its first
 child if the current message is a dummy. This is the
 thread subject.

 (ii) If the thread subject is empty, skip this message.

 (iii) Look up the message associated with the thread
 subject in the subject table.

 (iv) If there is no message in the subject table with the
 thread subject, add the current message and the thread
 subject to the subject table.

 Otherwise, if the message in the subject table is not a
 dummy, AND either of the following criteria are true:

 The current message is a dummy, OR

 The message in the subject table is a reply or forward
 and the current message is not.

 then replace the message in the subject table with the

 current message.

 (C) Merge threads with the same thread subject. For each
 child of the root:

 (i) Find the message's thread subject as in step 5.B.i
 above.

 (ii) If the thread subject is empty, skip this message.

 (iii) Lookup the message associated with this thread
 subject in the subject table.

 (iv) If the message in the subject table is the current
 message, skip this message.

 Otherwise, merge the current message with the one in the
 subject table using the following rules:

 If both messages are dummies, append the current
 message's children to the children of the message in
 the subject table (the children of both messages
 become siblings), and then delete the current message.

 If the message in the subject table is a dummy and the
 current message is not, make the current message a
 child of the message in the subject table (a sibling
 of its children).

 If the current message is a reply or forward and the
 message in the subject table is not, make the current
 message a child of the message in the subject table (a
 sibling of its children).

 Otherwise, create a new dummy message and make both
 the current message and the message in the subject
 table children of the dummy. Then replace the message
 in the subject table with the dummy message.

 Note: Subject comparisons are case-insensitive, as
 described under "Internationalization
 Considerations."

 (6) Traverse the messages under the root and sort each set of
 siblings by sent date. Traverse the messages in such a way
 that the "youngest" set of siblings are sorted first, and the
 "oldest" set of siblings are sorted last (grandchildren are
 sorted before children, etc). In the case of an exact match on
 sent date or if either of the Date: headers used in a
 comparison can not be parsed, use the order in which the
 messages appear in the mailbox (that is, by sequence number) to
 determine the order. In the case of a dummy message (which can

 only occur with top-level siblings), use its first child for
 sorting.

 Example: C: A283 THREAD ORDEREDSUBJECT UTF-8 SINCE 5-MAR-2000
 S: * THREAD (166)(167)(168)(169)(172)(170)(171)
 (173)(174 (175)(176)(178)(181)(180))(179)(177
 (183)(182)(188)(184)(185)(186)(187)(189))(190)
 (191)(192)(193)(194 195)(196 (197)(198))(199)
 (200 202)(201)(203)(204)(205)(206 207)(208)
 S: A283 OK THREAD completed
 C: A284 THREAD ORDEREDSUBJECT US-ASCII TEXT "gewp"
 S: * THREAD
 S: A284 OK THREAD completed
 C: A285 THREAD REFERENCES UTF-8 SINCE 5-MAR-2000
 S: * THREAD (166)(167)(168)(169)(172)((170)(179))
 (171)(173)((174)(175)(176)(178)(181)(180))
 ((177)(183)(182)(188 (184)(189))(185 186)(187))
 (190)(191)(192)(193)((194)(195 196))(197 198)
 (199)(200 202)(201)(203)(204)(205 206 207)(208)
 S: A285 OK THREAD completed

 Note: The line breaks in the first and third server
 responses are for editorial clarity and do not appear in
 real THREAD responses.

4. Additional Responses

 These responses are extensions to the [IMAP] base protocol.

 The section headings of these responses are intended to correspond
 with where they would be located in the main document.

BASE.7.2.SORT. SORT Response

 Data: zero or more numbers

 The SORT response occurs as a result of a SORT or UID SORT
 command. The number(s) refer to those messages that match the
 search criteria. For SORT, these are message sequence numbers;
 for UID SORT, these are unique identifiers. Each number is
 delimited by a space.

 Example: S: * SORT 2 3 6

BASE.7.2.THREAD. THREAD Response

 Data: zero or more threads

 The THREAD response occurs as a result of a THREAD or UID THREAD
 command. It contains zero or more threads. A thread consists of
 a parenthesized list of thread members.

 Thread members consist of zero or more message numbers, delimited
 by spaces, indicating successive parent and child. This continues
 until the thread splits into multiple sub-threads, at which point
 the thread nests into multiple sub-threads with the first member
 of each subthread being siblings at this level. There is no limit
 to the nesting of threads.

 The messages numbers refer to those messages that match the search
 criteria. For THREAD, these are message sequence numbers; for UID
 THREAD, these are unique identifiers.

 Example: S: * THREAD (2)(3 6 (4 23)(44 7 96))

 The first thread consists only of message 2. The second thread
 consists of the messages 3 (parent) and 6 (child), after which it
 splits into two subthreads; the first of which contains messages 4
 (child of 6, sibling of 44) and 23 (child of 4), and the second of
 which contains messages 44 (child of 6, sibling of 4), 7 (child of
 44), and 96 (child of 7). Since some later messages are parents
 of earlier messages, the messages were probably moved from some
 other mailbox at different times.

 -- 2

 -- 3
 \-- 6
 |-- 4
 | \-- 23
 |
 \-- 44
 \-- 7
 \-- 96

 Example: S: * THREAD ((3)(5))

 In this example, 3 and 5 are siblings of a parent which does not
 match the search criteria (and/or does not exist in the mailbox);
 however they are members of the same thread.

5. Formal Syntax of SORT and THREAD Commands and Responses

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [ABNF]. It also uses [ABNF]
 rules defined in [IMAP].

sort = ["UID" SP] "SORT" SP sort-criteria SP search-criteria

sort-criteria = "(" sort-criterion *(SP sort-criterion) ")"

sort-criterion = ["REVERSE" SP] sort-key

sort-key = "ARRIVAL" / "CC" / "DATE" / "FROM" / "SIZE" /
 "SUBJECT" / "TO"

thread = ["UID" SP] "THREAD" SP thread-alg SP search-criteria

thread-alg = "ORDEREDSUBJECT" / "REFERENCES" / thread-alg-ext

thread-alg-ext = atom
 ; New algorithms MUST be registered with IANA

search-criteria = charset 1*(SP search-key)

charset = atom / quoted
 ; CHARSET values MUST be registered with IANA

sort-data = "SORT" *(SP nz-number)

thread-data = "THREAD" [SP 1*thread-list]

thread-list = "(" (thread-members / thread-nested) ")"

thread-members = nz-number *(SP nz-number) [SP thread-nested]

thread-nested = 2*thread-list

 The following syntax describes base subject extraction rules (2)-(6):

subject = *subj-leader [subj-middle] *subj-trailer

subj-refwd = ("re" / ("fw" ["d"])) *WSP [subj-blob] ":"

subj-blob = "[" *BLOBCHAR "]" *WSP

subj-fwd = subj-fwd-hdr subject subj-fwd-trl

subj-fwd-hdr = "[fwd:"

subj-fwd-trl = "]"

subj-leader = (*subj-blob subj-refwd) / WSP

subj-middle = *subj-blob (subj-base / subj-fwd)
 ; last subj-blob is subj-base if subj-base would
 ; otherwise be empty

subj-trailer = "(fwd)" / WSP

subj-base = NONWSP *(*WSP NONWSP)

 ; can be a subj-blob

BLOBCHAR = %x01-5a / %x5c / %x5e-ff
 ; any CHAR8 except '[' and ']'

NONWSP = %x01-08 / %x0a-1f / %x21-ff
 ; any CHAR8 other than WSP

6. Security Considerations

 The SORT and THREAD extensions do not raise any security
 considerations that are not present in the base [IMAP] protocol, and
 these issues are discussed in [IMAP]. Nevertheless, it is important
 to remember that [IMAP] protocol transactions, including message
 data, are sent in the clear over the network unless protection from
 snooping is negotiated, either by the use of STARTTLS, privacy
 protection is negotiated in the AUTHENTICATE command, or some other
 protection mechanism is in effect.

7. Internationalization Considerations

 As stated in the introduction, the server SHOULD support the
 [IMAP-I18N] COMPARATOR extension and follow its rules to perform
 collations in the SORT and THREAD extensions.

 If the server does not support COMPARATOR, strings MUST be collated
 according to the i;unicode-casemap collation described in
 [UNICASEMAP].

 As described in [IMAP-I18N], strings in charsets other than US-ASCII
 and UTF-8 MUST be converted to UTF-8 and compared in ascending order
 according to the selected or active collation algorithm. If the
 server does not support the [IMAP-I18N] COMPARATOR extension, the
 collation algorithm used is the "en;ascii-casemap" collation
 described in [COMPARATOR].

 Translations of the "re" or "fw"/"fwd" tokens are not specified for
 removal in the base subject extraction process. An attempt to add
 such translated tokens would result in a geometrically complex, and
 ultimately unimplementable, task.

 Instead, note that [RFC-2822] section 3.6.5 recommends that "re:"
 (from the Latin "res", in the matter of) be used to identify a reply.
 Although it is evident that, from the multiple forms of token to
 identify a forwarded message, there is considerable variation found
 in the wild, the variations are (still) manageable. Consequently, it
 is suggested that "re:" and one of the variations of the tokens for
 forward supported by the base subject extraction rules be adopted for
 Internet mail messages, since doing so makes it a simple display time
 task to localize the token language for the user.

https://datatracker.ietf.org/doc/html/rfc2822#section-3.6.5

8. IANA Considerations

 [IMAP] capabilities are registered by publishing a standards track or
 IESG approved experimental RFC. This document constitutes
 registration of the SORT and THREAD capabilities in the [IMAP]
 capabilities registry.

 This document creates a new [IMAP] threading algorithms registry,
 which registers threading algorithms by publishing a standards track
 or IESG approved experimental RFC. This document constitutes
 registration of the ORDEREDSUBJECT and REFERENCES algorithms in that
 registry.

9. Normative References

 The following documents are normative to this document:

 [ABNF] Crocker, D. and Overell, P. "Augmented BNF
 for Syntax Specifications: ABNF", RFC 4234
 October 2005.

 [CHARSET] Freed, N. and Postel, J. "IANA Character Set
 Registration Procedures", RFC 2978, October
 2000.

 [COMPARATOR] Newman, C. and Duerst, M. "Internet
 Appplication Protocol Collation Registry",

RFC 4790, March 2007

 [IMAP] Crispin, M. "Internet Message Access Protocol -
 Version 4rev1", RFC 3501, March 2003.

 [IMAP-I18N] Newman, C. and Gulbrandsen, A. "Internet
 Message Access Protocol Internationalization",
 Work in Progress.

 [KEYWORDS] Bradner, S. "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC-2822] Resnick, P. "Internet Message Format", RFC
2822, April 2001.

 [UNICASEMAP] Crispin, M. "i;unicode-casemap - Simple Unicode
 Collation Algorithm", Work in Progress.

10. Informative References

https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc2978
https://datatracker.ietf.org/doc/html/rfc4790
https://datatracker.ietf.org/doc/html/rfc3501
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2822
https://datatracker.ietf.org/doc/html/rfc2822

 The following documents are informative to this document:

 [IMAP-MODELS] Crispin, M. "Distributed Electronic Mail Models
 in IMAP4", RFC 1733, December 1994.

 [THREADING] Zawinski, J. "Message Threading",
http://www.jwz.org/doc/threading.html,

 1997-2002.

Appendices

Author's Address

 Mark R. Crispin
 Networks and Distributed Computing
 University of Washington
 4545 15th Avenue NE
 Seattle, WA 98105-4527

 Phone: +1 (206) 543-5762

 EMail: MRC@CAC.Washington.EDU

 Kenneth Murchison
 Carnegie Mellon University
 5000 Forbes Avenue
 Cyert Hall 285
 Pittsburgh, PA 15213

 Phone: +1 (412) 268-2638
 Email: murch@andrew.cmu.edu

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

https://datatracker.ietf.org/doc/html/rfc1733
http://www.jwz.org/doc/threading.html
https://datatracker.ietf.org/doc/html/bcp78

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

