
Network Working Group P. Jones
Internet-Draft G. Salgueiro
Obsoletes: 7329 (if approved) C. Pearce
Intended status: Standards Track P. Giralt
Expires: February 19, 2017 Cisco Systems, Inc.
 August 18, 2016

End-to-End Session Identification in IP-Based Multimedia Communication
Networks

draft-ietf-insipid-session-id-27

Abstract

 This document describes an end-to-end Session Identifier for use in
 IP-based multimedia communication systems that enables endpoints,
 intermediary devices, and management systems to identify a session
 end-to-end, associate multiple endpoints with a given multipoint
 conference, track communication sessions when they are redirected,
 and associate one or more media flows with a given communication
 session. While the identifier is intended to work across multiple
 protocols, this document describes its usage in SIP.

 This document also describes a backwards compatibility mechanism for
 an existing session identifier implementation (RFC 7329) that is
 sufficiently different from the procedures defined in this document.

 This document obsoletes RFC 7329.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 19, 2017.

Jones, et al. Expires February 19, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7329
https://datatracker.ietf.org/doc/html/rfc7329
https://datatracker.ietf.org/doc/html/rfc7329
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft End-To-End Session ID August 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions used in this document 4

 3. Session Identifier Definitions, Requirements, and Use Cases . 4
4. Constructing and Conveying the Session Identifier 4
4.1. Constructing the Session Identifier 4
4.2. Conveying the Session Identifier 5

5. The Session-ID Header Field 7
6. Endpoint Behavior . 8
7. Processing by Intermediaries 10
8. Handling of Remote UUID Changes 13
9. Associating Endpoints in a Multipoint Conference 15
10. Examples of Various Call Flow Operations 16
10.1. Basic Call with 2 UUIDs 16
10.2. Basic Call Transfer using REFER 20
10.3. Basic Call Transfer using re-INVITE 22
10.4. Single Focus Conferencing 24

 10.5. Single Focus Conferencing using a web-based conference
 service . 26

10.6. Cascading Conference Bridges 28
10.6.1. Establishing a Cascaded Conference 28
10.6.2. Calling into Cascaded Conference Bridges 29

10.7. Basic 3PCC for two UAs 30
 10.8. Handling in 100 Trying SIP Response and CANCEL Request . 31

10.8.1. Handling in a 100 Trying SIP Response 31
10.8.2. Handling a CANCEL SIP Request 33

10.9. Out-of-dialog REFER Transaction 34
11. Compatibility with a Previous Implementation 35
12. Security and Privacy Considerations 36
13. IANA Considerations . 38
13.1. Registration of the "Session-ID" Header Field 38
13.2. Registration of the "remote" Parameter 38

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Jones, et al. Expires February 19, 2017 [Page 2]

Internet-Draft End-To-End Session ID August 2016

14. Acknowledgements . 38
15. Dedication . 38
16. References . 39
16.1. Normative References 39
16.2. Informative References 40

 Authors' Addresses . 41

1. Introduction

 IP-based multimedia communication systems such as Session Initiation
 Protocol (SIP) [RFC3261] and [H.323] have the concept of a "call
 identifier" that is globally unique. The identifier is intended to
 represent an end-to-end communication session from the originating
 device to the terminating device. Such an identifier is useful for
 troubleshooting, session tracking, and so forth.

 For several reasons, however, the current call identifiers defined in
 SIP and H.323 are not suitable for end-to-end session identification.
 A fundamental issue in protocol interworking is the fact that the
 syntax for the call identifier in SIP and H.323 is different. Thus,
 if both protocols are used in a call, it is impossible to exchange
 the call identifier end-to-end.

 Another reason why the current call identifiers are not suitable to
 identify a session end-to-end is that, in real-world deployments,
 devices such as session border controllers [RFC7092] often change the
 session signaling, including the value of the call identifier, as it
 passes through the device. While this is deliberate and useful, it
 makes it very difficult to track a session end-to-end.

 This document defines a new identifier, referred to as the Session
 Identifier, that is intended to overcome the issues that exist with
 the currently defined call identifiers used in SIP and other IP-based
 communication systems. The identifier defined here has been adopted
 by the ITU ([H.460.27]) for use in H.323-based systems, allowing for
 the ability to trace a session end-to-end for sessions traversing
 both SIP and H.323-based systems. This document defines its use in
 SIP.

 The procedures specified in this document attempt to comply with the
 requirements specified in [RFC7206]. The procedures also specify
 capabilities not mentioned in [RFC7206], shown in call flows in

section 10. Additionally, the specification attempts to account for
 a previous, pre-standard version of a SIP Session Identifier header
 [RFC7329], specifying a backwards compatibility approach in section

11.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc7092
https://datatracker.ietf.org/doc/html/rfc7206
https://datatracker.ietf.org/doc/html/rfc7206
https://datatracker.ietf.org/doc/html/rfc7329

Jones, et al. Expires February 19, 2017 [Page 3]

Internet-Draft End-To-End Session ID August 2016

2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] when they
 appear in ALL CAPS. These words may also appear in this document in
 lower case as plain English words, absent their normative meanings.

 The term "Session Identifier" refers to the value of the identifier,
 whereas "Session-ID" refers to the header field used to convey the
 identifier. The Session Identifier is a set of two Universally
 Unique Identifiers (UUIDs) and each element of that set is simply
 referred to herein as a UUID.

 Throughout this document, the term "endpoint" refers to a SIP User
 Agent (UA) that either initiates or terminates a SIP session, such as
 a user's mobile phone or a conference server, but excludes entities
 such as Back-to-Back User Agents (B2BUAs) that are generally located
 along the call signaling path between endpoints. The term
 "intermediary" refers to any entity along the call signaling path
 between the aforementioned endpoints, including B2BUAs and SIP
 proxies. In certain scenarios, intermediaries are allowed to
 originate and terminate SIP messages without an endpoint being part
 of the session or transaction. An intermediary may be performing
 interworking between different protocols (e.g. SIP and H.323) that
 support the Session Identifier defined in this document.

3. Session Identifier Definitions, Requirements, and Use Cases

 Requirements and use cases for the end-to-end Session Identifier,
 along with the definition of "session identifier", "communication
 session", and "end-to-end" can be found in [RFC7206]. Throughout
 this document, the term "session" refers to a "communication session"
 as defined in [RFC7206].

 As mentioned in section 6.1 of [RFC7206], the ITU-T undertook a
 parallel effort to define compatible procedures for an H.323 Session
 Identifier. They are documented in [H.460.27].

4. Constructing and Conveying the Session Identifier

4.1. Constructing the Session Identifier

 The Session Identifier comprises two UUIDs [RFC4122], with each UUID
 representing one of the endpoints participating in the session.

 The version number in the UUID indicates the manner in which the UUID
 is generated, such as using random values or using the MAC address of

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7206
https://datatracker.ietf.org/doc/html/rfc7206
https://datatracker.ietf.org/doc/html/rfc7206#section-6.1
https://datatracker.ietf.org/doc/html/rfc4122

Jones, et al. Expires February 19, 2017 [Page 4]

Internet-Draft End-To-End Session ID August 2016

 the endpoint. To satisfy the requirement that no user or device
 information be conveyed, endpoints MUST generate version 4 (random)
 or version 5 (SHA-1) UUIDs to address privacy concerns related to use
 of MAC addresses in UUIDs.

 When generating a version 5 UUID, endpoints or intermediaries MUST
 utilize the procedures defined in Section 4.3 of [RFC4122] and employ
 the following "name space ID":

 uuid_t NameSpace_SessionID = {
 /* a58587da-c93d-11e2-ae90-f4ea67801e29 */
 0xa58587da,
 0xc93d,
 0x11e2,
 0xae, 0x90, 0xf4, 0xea, 0x67, 0x80, 0x1e, 0x29
 };

 Further, the "name" to utilize for version 5 UUIDs is the
 concatenation of the Call-ID header-value and the "tag" parameter
 that appears on the "From" or "To" line associated with the device
 for which the UUID is created. Once an endpoint generates a UUID for
 a session, the UUID never changes, even if values originally used as
 input into its construction change over time.

 Stateless intermediaries that insert a Session-ID header field into a
 SIP message on behalf of an endpoint MUST utilize version 5 UUIDs to
 ensure that UUIDs for the communication session are consistently
 generated. If a stateless intermediary does not know the tag value
 for the endpoint (e.g., a new INVITE without a To: tag value or an
 older SIP implementation [RFC2543] that did not include a tag
 parameter), the intermediary MUST NOT attempt to generate a UUID for
 that endpoint. Note that if an intermediary is stateless and the
 endpoint on one end of the call is replaced with another endpoint due
 to some service interaction, the values used to create the UUID
 should change and, if so, the intermediary will compute a different
 UUID.

4.2. Conveying the Session Identifier

 The SIP User Agent (UA) initiating a new session by transmitting a
 SIP request ("Alice"), i.e., a User Agent Client (UAC), MUST create a
 new, previously unused, UUID and transmit that to the ultimate
 destination UA ("Bob"). Likewise, the destination UA ("Bob"), i.e.,
 a User Agent Server (UAS), MUST create a new, previously unused, UUID
 and transmit that to the first UA ("Alice"). These two distinct
 UUIDs form what is referred to as the Session Identifier and is
 represented in this document in set notation of the form {A,B}, where
 "A" is UUID value created by UA "Alice" and "B" is the UUID value

https://datatracker.ietf.org/doc/html/rfc4122#section-4.3
https://datatracker.ietf.org/doc/html/rfc2543

Jones, et al. Expires February 19, 2017 [Page 5]

Internet-Draft End-To-End Session ID August 2016

 created by UA "Bob". The Session Identifier {A,B} is equal to the
 Session Identifier {B,A}. Section 6 describes how the UUIDs selected
 by the source and destination UAs persist for the duration of the
 session.

 In the case where only one UUID is known, such as when a UA first
 initiates a potentially dialog-initiating SIP request, the Session
 Identifier would be {A,N}, where "A" represents the UUID value
 transmitted by the UA "Alice" and "N" is what is referred to as the
 nil UUID [RFC4122] (see section 5).

 Since SIP sessions are subject to any number of service interactions,
 SIP INVITE messages might be forked as sessions are established, and
 since conferences might be established or expanded with endpoints
 calling in or the conference focus calling out, the construction of
 the Session Identifier as a set of UUIDs is important.

 To understand this better, consider that an endpoint participating in
 a communication session might be replaced with another, such as the
 case where two "legs" of a call are joined together by a Private
 Branch Exchange (PBX). Suppose "Alice" and "Bob" both call UA C
 ("Carol"). There would be two distinctly identifiable Session
 Identifiers, namely {A,C} and {B,C}. Then suppose that "Carol" uses
 a local PBX function to join the call between herself and "Alice"
 with the call between herself and "Bob", resulting in a single
 remaining call between "Alice" and "Bob". This merged call can be
 identified using two UUID values assigned by each entity in the
 communication session, namely {A,B} in this example.

 In the case of forking, "Alice" might send an INVITE that gets forked
 to several different endpoints. A means of identifying each of these
 separate communication sessions is needed and, since each of the
 destination UAs will create its own UUID, each communication session
 would be uniquely identified by the values {A, B1}, {A, B2}, {A, B3},
 and so on, where each of the Bn values refers to the UUID created by
 the different UAs to which the SIP session is forked.

 For conferencing scenarios, it is also useful to have a two-part
 Session Identifier where the conference focus specifies the same UUID
 for each conference participant. This allows for correlation among
 the participants in a single conference. For example, in a
 conference with three participants, the Session Identifiers might be
 {A,M}, {B,M}, and {C,M}, where "M" is assigned by the conference
 focus. Only a conference focus will purposely utilize the same UUID
 for more than one SIP session and, even then, such reuse MUST be
 restricted to the participants in the same conference.

https://datatracker.ietf.org/doc/html/rfc4122

Jones, et al. Expires February 19, 2017 [Page 6]

Internet-Draft End-To-End Session ID August 2016

 How a device acting on Session Identifiers processes or utilizes the
 Session Identifier is outside the scope of this document, however
 devices storing a Session Identifier in a log file SHOULD follow the
 security considerations outlined in [RFC6872]. Note that the primary
 intent of a Session Identifier is for troubleshooting and should
 therefore be included in logs at rest that will be used for
 troubleshooting purposes.

5. The Session-ID Header Field

 This document replaces the definition of the "Session-ID" token that
 was added to the definition of the element "message-header" in the
 SIP message grammar by [RFC7329]. The Session-ID header is a single-
 instance header.

 Each endpoint participating in a communication session has a
 distinct, preferably locally-generated, UUID associated with it. The
 endpoint's UUID value remains unchanged throughout the duration of
 the communication session. Multipoint conferences can bridge
 sessions from multiple endpoints and impose unique requirements
 defined in Section 9. An intermediary MAY generate a UUID on behalf
 of an endpoint that did not include a UUID of its own.

 The UUID values for each endpoint are inserted into the "Session-ID"
 header field of all transmitted SIP messages. The Session-ID header
 field has the following ABNF [RFC5234] syntax:

 session-id = "Session-ID" HCOLON session-id-value

 session-id-value = local-uuid *(SEMI sess-id-param)

 local-uuid = sess-uuid / nil

 remote-uuid = sess-uuid / nil

 sess-uuid = 32(DIGIT / %x61-66) ;32 chars of [0-9a-f]

 sess-id-param = remote-param / generic-param

 remote-param = "remote" EQUAL remote-uuid

 nil = 32("0")

 The productions "SEMI", "EQUAL", and "generic-param" are defined in
 [RFC3261]. The production DIGIT is defined in [RFC5234].

 The Session-ID header field MUST NOT have more than one "remote"
 parameter. In the case where an entity compliant with this

https://datatracker.ietf.org/doc/html/rfc6872
https://datatracker.ietf.org/doc/html/rfc7329
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc5234

Jones, et al. Expires February 19, 2017 [Page 7]

Internet-Draft End-To-End Session ID August 2016

 specification is interworking with an entity that implemented
 [RFC7329], the "remote" parameter may be absent, but otherwise the
 remote parameter MUST be present. The details under which those
 conditions apply are described in Section 11. Except for backwards
 compatibility with [RFC7329], the "remote" parameter MUST be present.

 A special nil UUID value composed of 32 zeros is required in certain
 situations. A nil UUID is expected as the "remote-uuid" of every
 initial standard SIP request since the initiating endpoint would not
 initially know the UUID value of the remote endpoint. This nil value
 will get replaced by the ultimate destination UAS when that UAS
 generates a response message. One caveat is explained in Section 11
 for a possible backwards compatibility case. A nil UUID value is
 also returned by some intermediary devices that send provisional or
 other responses as the "local-uuid" component of the Session-ID
 header field value, as described in Section 7.

 The "local-uuid" in the Session-ID header field represents the UUID
 value of the endpoint transmitting a message and the "remote-uuid" in
 the Session-ID header field represents the UUID of the endpoint's
 peer. For example, a Session-ID header field might appear like this:

 Session-ID: ab30317f1a784dc48ff824d0d3715d86;
 remote=47755a9de7794ba387653f2099600ef2

 While this is the general form of the Session-ID header field,
 exceptions to syntax and procedures are detailed in subsequent
 sections.

 The UUID values are presented as strings of lowercase hexadecimal
 characters, with the most significant octet of the UUID appearing
 first.

6. Endpoint Behavior

 To comply with this specification, endpoints (non-intermediaries)
 MUST include a Session-ID header field value in all SIP messages
 transmitted as a part of a communication session. The locally-
 generated UUID of the transmitter of the message MUST appear in the
 "local-uuid" portion of the Session-ID header field value. The UUID
 of the peer device, if known, MUST appear as the "remote" parameter
 following the transmitter's UUID. The nil UUID value MUST be used if
 the peer device's UUID is not known.

 Once an endpoint allocates a UUID value for a communication session,
 the endpoint originating the request MUST NOT change that UUID value
 for the duration of the session, including when

https://datatracker.ietf.org/doc/html/rfc7329
https://datatracker.ietf.org/doc/html/rfc7329

Jones, et al. Expires February 19, 2017 [Page 8]

Internet-Draft End-To-End Session ID August 2016

 o communication attempts are retried due to receipt of 4xx messages
 or request timeouts;

 o the session is redirected in response to a 3xx message;

 o a session is transferred via a REFER message [RFC3515]; or

 o a SIP dialog is replaced via an INVITE with Replaces [RFC3891].

 An endpoint that receives a Session-ID header field MUST take note of
 any non-nil "local-uuid" value that it receives and assume that is
 the UUID of the peer endpoint within that communications session.
 Endpoints MUST include this received UUID value as the "remote"
 parameter when transmitting subsequent messages, making sure not to
 change this UUID value in the process of moving the value internally
 from the "local-uuid" field to the "remote-uuid" field.

 If an endpoint receives a 3xx message, receives a REFER that directs
 the endpoint to a different peer, or receives an INVITE with Replaces
 that also potentially results in communicating with a new peer, the
 endpoint MUST complete any message exchanges with its current peer
 using the existing Session Identifier, but MUST NOT use the current
 peer's UUID value when sending the first message to what it believes
 may be a new peer endpoint (even if the exchange results in
 communicating with the same physical or logical entity). The
 endpoint MUST retain its own UUID value, however, as described above.

 It should be noted that messages received by an endpoint might
 contain a "local-uuid" value that does not match what the endpoint
 expected its peer's UUID to be. It is also possible for an endpoint
 to receive a "remote-uuid" value that does not match its generated
 UUID for the session. Either might happen as a result of service
 interactions by intermediaries and MUST NOT affect how the endpoint
 processes the session; however, the endpoint may log this event for
 troubleshooting purposes.

 An endpoint MUST assume that the UUID value of the peer endpoint may
 change at any time due to service interactions. Section 8 discusses
 how endpoints must handle remote UUID changes.

 It is also important to note that if an intermediary in the network
 forks a session, the endpoint initiating a session may receive
 multiple responses back from different endpoints, each of which
 contains a different UUID ("local-uuid") value. Endpoints MUST
 ensure that the correct UUID value is returned in the "remote"
 parameter when interacting with each endpoint. The one exception is
 when the endpoint sends a CANCEL message, in which case the Session-

https://datatracker.ietf.org/doc/html/rfc3515
https://datatracker.ietf.org/doc/html/rfc3891

Jones, et al. Expires February 19, 2017 [Page 9]

Internet-Draft End-To-End Session ID August 2016

 ID header field value MUST be identical to the Session-ID header
 field value sent in the original request.

 If an endpoint receives a message that does not contain a Session-ID
 header field, that message must have no effect on what the endpoint
 believes is the UUID value of the remote endpoint. That is, the
 endpoint MUST NOT change the internally maintained "remote-uuid"
 value for the peer.

 If an endpoint receives a SIP response with a non-nil "local-uuid"
 that is not 32 octets long, this response comes from a misbehaving
 implementation, and its Session-ID header field MUST be discarded.
 That said, the response might still be valid according to the rules
 within SIP [RFC3261], and SHOULD be checked further.

 A Multipoint Control Unit (MCU) is a special type of conferencing
 endpoint and is discussed in Section 9.

7. Processing by Intermediaries

 The following applies only to an intermediary that wishes to comply
 with this specification and does not impose a conformance requirement
 on intermediaries that elect to not provide any special treatment for
 the Session-ID header field. Intermediaries that do not comply with
 this specification might pass the header unchanged or drop it
 entirely.

 The Call-ID often reveals personal, device, domain or other sensitive
 information associated with a user, which is one reason why
 intermediaries, such as session border controllers, sometimes alter
 the Call-ID. In order to ensure the integrity of the end-to-end
 Session Identifier, it is constructed in a way which does not reveal
 such information, removing the need for intermediaries to alter it.

 When an intermediary receives messages from one endpoint in a
 communication session that causes the transmission of one or more
 messages toward the second endpoint in a communication session, the
 intermediary MUST include the Session-ID header field in the
 transmitted messages with the same UUID values found in the received
 message, except as outlined in this section and in section 8.

 If the intermediary aggregates several responses from different
 endpoints, as described in Section 16.7 of [RFC3261], the
 intermediary MUST set the local-uuid field to the nil UUID value when
 forwarding the aggregated response to the endpoint since the true
 UUID value of the peer is undetermined at that point. Note that an
 intermediary that does not implement this specification might forward
 a non-nil value, resulting in the originating endpoint receiving

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261#section-16.7

Jones, et al. Expires February 19, 2017 [Page 10]

Internet-Draft End-To-End Session ID August 2016

 different UUID values in the responses. It is possible for this to
 result in the endpoint temporarily using the wrong remote UUID.
 Subsequent messages in the dialog should resolve the temporary
 mismatch as long as the endpoint follows the rules outlined in

Section 8 dealing with the handling of remote UUID changes.

 Intermediary devices that transfer a call, such as by joining
 together two different "call legs", MUST properly construct a
 Session-ID header field that contains the UUID values associated with
 the endpoints involved in the joined session and correct placement of
 those values. As described in Section 6, the endpoint receiving a
 message transmitted by the intermediary will assume that the first
 UUID value belongs to its peer endpoint.

 If an intermediary receives a SIP message without a Session-ID header
 field or valid header field value from an endpoint for which the
 intermediary is not storing a "remote-uuid" value, the intermediary
 MAY assign a "local-uuid" value to represent that endpoint and,
 having done so, MUST insert that assigned value into all signaling
 messages on behalf of the endpoint for that dialog. In effect, the
 intermediary becomes dialog stateful and it MUST follow the endpoint
 procedures in Section 6 with respect to Session-ID header field value
 treatment with itself acting as the endpoint (for the purposes of the
 Session-ID header field) for which it inserted a component into the
 Session-ID header field value. If the intermediary is aware of the
 UUID value that identifies the endpoint to which a message is
 directed, it MUST insert that UUID value into the Session-ID header
 field value as the "remote-uuid" value. If the intermediary is
 unaware of the UUID value that identifies the receiving endpoint, it
 MUST use the nil UUID value as the "remote-uuid" value.

 If an intermediary receives a SIP message without a Session-ID header
 field or valid Session-ID header field value from an endpoint for
 which the intermediary has previously received a Session-ID and is
 storing a "remote-uuid" value for that endpoint, the lack of a
 Session-ID must have no effect on what the intermediary believes is
 the UUID value of the endpoint. That is, the intermediary MUST NOT
 change the internally maintained "remote-uuid" value for the peer.

 When an intermediary originates a response, such as a provisional
 response or a response to a CANCEL request, the "remote-uuid" field
 will contain the UUID value of the receiving endpoint. When the UUID
 of the peer endpoint is known, the intermediary MUST insert the UUID
 of the peer endpoint in the "local-uuid" field of the header value.
 Otherwise, the intermediary MAY set the "local-uuid" field of the
 header value to the "nil" UUID value.

Jones, et al. Expires February 19, 2017 [Page 11]

Internet-Draft End-To-End Session ID August 2016

 When an intermediary originates a request message without first
 having received a SIP message that triggered the transmission of the
 message (e.g., sending a BYE message to terminate a call for policy
 reasons), the intermediary MUST, if it has knowledge of the UUID
 values for the two communicating endpoints, insert a Session-ID
 header field with the "remote-uuid" field of the header value set to
 the UUID value of the receiving endpoint and the "local-uuid" field
 of the header value set to the UUID value of the other endpoint.
 When the intermediary does not have knowledge of the UUID value of an
 endpoint in the communication session, the intermediary SHOULD set
 the unknown UUID value(s) to the "nil" UUID value. (If both are
 unknown, the Session-ID header value SHOULD NOT be included at all,
 since it would have no practical value.)

 With respect to the previous two paragraphs, note that if an
 intermediary transmits a "nil" UUID value, the receiving endpoint
 might use that value in subsequent messages it sends. This
 effectively violates the requirement of maintaining an end-to-end
 Session Identifier value for the communication session if a UUID for
 the peer endpoint had been previously conveyed. Therefore, an
 intermediary MUST only send the "nil" UUID when the intermediary has
 not communicated with the peer endpoint to learn its UUID. This
 means that intermediaries SHOULD maintain state related to the UUID
 values for both ends of a communication session if it intends to
 originate messages (versus merely conveying messages). An
 intermediary that does not maintain this state and that originates a
 message as described in the previous two paragraphs MUST NOT insert a
 Session-ID header field in order to avoid unintended, incorrect
 reassignment of a UUID value.

 The Session-ID header field value included in a CANCEL request MUST
 be identical to the Session-ID header field value included in the
 corresponding request being cancelled.

 If a SIP intermediary initiates a dialog between two endpoints in a
 third-party call control (3PCC [RFC3725]) scenario, the SIP request
 in the initial INVITE will have a non-nil, locally-fabricated "local-
 uuid" value; call this temporary UUID X. The request will still have
 a nil "remote-uuid" value; call this value N. The SIP server MUST be
 transaction stateful. The UUID pair in the INVITE will be {X,N}. A
 1xx or 2xx response will have a UUID pair {A,X}. This transaction
 stateful, dialog initiating SIP server MUST replace its own UUID,
 i.e., X, with a nil UUID (i.e., {A,N}) in the INVITE sent towards the
 other UAS as expected (see Section 10.7 for an example).

 Intermediaries that manipulate messages containing a Session-ID
 header field SHOULD be aware of what UUID values it last sent towards
 an endpoint and, following any kind of service interaction initiated

https://datatracker.ietf.org/doc/html/rfc3725

Jones, et al. Expires February 19, 2017 [Page 12]

Internet-Draft End-To-End Session ID August 2016

 or affected by the intermediary, of what UUID values the receiving
 endpoint should have knowledge to ensure that both endpoints in the
 session have the correct and same UUID values. If an intermediary
 can determine that an endpoint might not have received a current,
 correct Session-ID field, the intermediary SHOULD attempt to provide
 the correct Session-ID header field to the endpoint such as by
 sending a re-INVITE message. Failure to take such measures may make
 troubleshooting more difficult because of the mismatched identifiers,
 therefore it is strongly advised that intermediaries attempt to
 provide the correct Session Identifier if it able to do so.

 If an intermediary receives a SIP response with a non-nil "local-
 uuid" that is not 32 octets long, this response comes from a
 misbehaving implementation, and its Session-ID header field MUST be
 discarded. That said, the response might still be valid according to
 the rules within SIP [RFC3261], and SHOULD be checked further.

 An intermediary MUST assume that the UUID value of session peers may
 change at any time due to service interactions and MAY itself change
 UUID values for sessions under its control to ensure end to end
 session identifiers are consistent for all participants in a session.

Section 8 discusses how intermediaries must handle remote UUID
 changes if they maintain state of the session identifier.

 An intermediary may perform protocol interworking between different
 IP-based communications systems, e.g. interworking between H.323 and
 SIP. If the intermediary supports the Session Identifier for both
 protocols for which it is interworking, it SHOULD pass the identifier
 between the two call legs to maintain an end-to-end identifier
 regardless of protocol.

8. Handling of Remote UUID Changes

 It is desirable to have all endpoints and intermediaries involved in
 a session agree upon the current session identifier when these
 changes occur. Due to race conditions or certain interworking
 scenarios, it is not always possible to guarantee session identifier
 consistency; however, in an attempt to ensure the highest likelihood
 of consistency, all endpoints and intermediaries involved in a
 session MUST accept a peer's new UUID under the following conditions:

 o When an endpoint or intermediary receives a mid-dialog request
 containing a new UUID from a peer, all responses to that request
 MUST contain the new UUID value as the "remote" parameter unless a
 subsequent successful transaction (for example, an UPDATE)
 contains a different UUID, in which case the newest UUID MUST be
 used.

https://datatracker.ietf.org/doc/html/rfc3261

Jones, et al. Expires February 19, 2017 [Page 13]

Internet-Draft End-To-End Session ID August 2016

 o If an endpoint or intermediary sends a successful (2xx) or
 redirection (3xx) response to the request containing the new UUID
 value, the endpoint or intermediary MUST accept the peer's UUID
 and include this new UUID as the "remote" parameter for any
 subsequent messages unless the UUID from a subsequent transaction
 has already been accepted. The one exception is a CANCEL request
 as outlined below.

 o If the endpoint or intermediary sends a failure (4xx, 5xx, 6xx)
 response, it MUST NOT accept the new UUID value and any subsequent
 messages MUST contain the previously stored UUID value in the
 "remote" parameter for any subsequent message. Note that the
 failure response itself will contain the new UUID value from the
 request in the "remote" parameter.

 o The ACK method is a special case as there is no response. When an
 endpoint or intermediary receives an ACK for a successful (2xx) or
 redirection (3xx) response with a new UUID value, it MUST accept
 the peer's new UUID value and include this new UUID as the
 "remote" parameter for any subsequent messages. If the ACK is for
 a failure (4xx, 5xx, 6xx) response, the new value MUST NOT be
 used.

 o As stated in Section 6 and Section 7, the Session-ID header field
 value included in a CANCEL request MUST be identical to the
 Session-ID header field value included in the corresponding
 INVITE. Upon receiving a CANCEL request, an endpoint or
 intermediary would normally send a Request Terminated (487 - see

Section 15.1.2 of [RFC3261]) response which, by the rules outlined
 above, would result in the endpoint or intermediary not storing
 any UUID value contained in the CANCEL. Section 3.8 of [RFC6141]
 specifies conditions where a CANCEL can result in 2xx response.
 Because CANCEL is not passed end-to-end and will always contain
 the UUID from the original INVITE, retaining a new UUID value
 received in a CANCEL may result in inconsistency with the Session-
 ID value stored on the endpoints and intermediaries involved in
 the session. To avoid this situation, an endpoint or intermediary
 MUST NOT accept the new UUID value received in a CANCEL and any
 subsequent messages MUST contain the previously stored UUID value
 in the "remote" parameter". Note that the response to the CANCEL
 will contain the UUID value from the CANCEL request in the
 "remote" parameter.

 o When an endpoint or intermediary receives a response containing a
 new UUID from a peer, the endpoint or intermediary MUST accept the
 new UUID as the peer's UUID and include this new UUID as the
 "remote" parameter for any subsequent messages.

https://datatracker.ietf.org/doc/html/rfc3261#section-15.1.2
https://datatracker.ietf.org/doc/html/rfc6141#section-3.8

Jones, et al. Expires February 19, 2017 [Page 14]

Internet-Draft End-To-End Session ID August 2016

 When an intermediary accepts a new UUID from a peer, the intermediary
 SHOULD attempt to provide the correct Session-ID header field to
 other endpoints involved in the session, for example, by sending a
 re-INVITE message. If an intermediary receives a message with a
 "remote" parameter in the session identifier that does not match the
 updated UUID, the intermediary MUST update the "remote" parameter
 with the latest stored UUID.

 If an intermediary is performing interworking between two different
 protocols that both support the Session Identifier defined in this
 document (e.g. SIP to H.323), UUID changes SHOULD be communicated
 between protocols to maintain the end-to-end session identifier.

9. Associating Endpoints in a Multipoint Conference

 Multipoint Control Units (MCUs) group two or more sessions into a
 single multipoint conference and have a conference Focus responsible
 for maintaining the dialogs connected to it [RFC4353]. MCUs,
 including cascaded MCUs, MUST utilize the same UUID value ("local-
 uuid" portion of the Session-ID header field value) with all
 participants in the conference. In so doing, each individual session
 in the conference will have a unique Session Identifier (since each
 endpoint will create a unique UUID of its own), but will also have
 one UUID in common with all other participants in the conference.

 When creating a cascaded conference, an MCU MUST convey the UUID
 value to utilize for a conference via the "local-uuid" portion of the
 Session-ID header field value in an INVITE to a second MCU when using
 SIP to establish the cascaded conference. A conference bridge, or
 MCU, needs a way to identify itself when contacting another MCU.
 [RFC4579] defines the "isfocus" Contact header field value parameter
 just for this purpose. The initial MCU MUST include the UUID of that
 particular conference in the "local-uuid" of an INVITE to the other
 MCU(s) participating in that conference. Also included in this
 INVITE is an "isfocus" Contact header field value parameter
 identifying that this INVITE is coming from an MCU and that this UUID
 is to be given out in all responses from endpoints into those MCUs
 participating in this same conference. This ensures a single UUID is
 common across all participating MCUs of the same conference, but is
 unique between different conferences.

 In the case where two existing conferences are joined, there should
 be a session between the two MCUs where the Session Identifier is
 comprised of the UUID values of the two conferences. This Session
 Identifier can be used to correlate the sessions between participants
 in the joined conference. This specification does not impose any
 additional requirements when two existing conferences are joined.

https://datatracker.ietf.org/doc/html/rfc4353
https://datatracker.ietf.org/doc/html/rfc4579

Jones, et al. Expires February 19, 2017 [Page 15]

Internet-Draft End-To-End Session ID August 2016

 Intermediary devices or network diagnostics equipment might assume
 that when they see two or more sessions with different Session
 Identifiers, but with one UUID in common, that the sessions are part
 of the same conference. However, the assumption that two sessions
 having one common UUID being part of the same conference is not
 always correct. In a SIP forking scenario, for example, there might
 also be what appears to be multiple sessions with a shared UUID
 value; this is intended. The desire is to allow for the association
 of related sessions, regardless of whether a session is forked or
 part of a conference.

10. Examples of Various Call Flow Operations

 Seeing something frequently makes understanding easier. With that in
 mind, this section includes several call flow examples with the
 initial UUID and the complete Session Identifier indicated per
 message, as well as when the Session Identifier changes according to
 the rules within this document during certain operations/functions.

 This section is for illustrative purposes only and is non-normative.
 In the following flows, RTP refers to the Real-time Transport
 Protocol [RFC3550].

 In the examples in this section, "N" represents a nil UUID and other
 letters represents the unique UUID values corresponding to endpoints
 or MCUs.

10.1. Basic Call with 2 UUIDs

 Session-ID
 --- Alice B2BUA Bob Carol
 {A,N} |---INVITE F1--->| |
 {A,N} | |---INVITE F2--->|
 {B,A} | |<---200 OK F3---|
 {B,A} |<---200 OK F4---| |
 {A,B} |-----ACK F5---->| |
 {A,B} | |-----ACK F6---->|
 |<==============RTP==============>|

 Figure 1: Session-ID Creation when Alice calls Bob

 General operation of this example:

 o UA-Alice populates the "local-uuid" portion of the Session-ID
 header field value.

 o UA-Alice sends its UUID in the SIP INVITE, and populates the
 "remote" parameter with a nil value (32 zeros).

https://datatracker.ietf.org/doc/html/rfc3550

Jones, et al. Expires February 19, 2017 [Page 16]

Internet-Draft End-To-End Session ID August 2016

 o B2BUA receives an INVITE with both a "local-uuid" portion of the
 Session-ID header field value from UA-Alice as well as the nil
 "remote-uuid" value, and transmits the INVITE towards UA-Bob with
 an unchanged Session-ID header field value.

 o UA-Bob receives Session-ID and generates its "local-uuid" portion
 of the Session-ID header field value UUID to construct the whole/
 complete Session-ID header field value, at the same time
 transferring Alice's UUID unchanged to the "remote-uuid" portion
 of the Session-ID header field value in the 200 OK SIP response.

 o B2BUA receives the 200 OK response with a complete Session-ID
 header field value from UA-Bob, and transmits 200 OK towards UA-
 Alice with an unchanged Session-ID header field value.

 o UA-Alice, upon reception of the 200 OK from the B2BUA, transmits
 the ACK towards the B2BUA. The construction of the Session-ID
 header field in this ACK is that of Alice's UUID is the "local-
 uuid", and Bob's UUID populates the "remote-uuid" portion of the
 header-value.

 o B2BUA receives the ACK with a complete Session-ID header field
 from UA-Alice, and transmits ACK towards UA-Bob with an unchanged
 Session-ID header field value.

 Below is a SIP message exchange illustrating proper use of the
 Session-ID header field. For the sake of brevity, non-essential
 headers and message bodies are omitted.

 F1 INVITE Alice -> B2BUA

 INVITE sip:bob@biloxi.example.com SIP/2.0
 Via: SIP/2.0/UDP pc33.atlanta.example.com
 ;branch=z9hG4bK776asdhds
 Max-Forwards: 70
 To: Bob <sip:bob@biloxi.example.com>
 From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.example.com
 Session-ID: ab30317f1a784dc48ff824d0d3715d86
 ;remote=00000000000000000000000000000000
 CSeq: 314159 INVITE
 Contact: <sip:alice@pc33.atlanta.example.com>
 Content-Type: application/sdp
 Content-Length: 142

 (Alice's SDP not shown)

Jones, et al. Expires February 19, 2017 [Page 17]

Internet-Draft End-To-End Session ID August 2016

 F2 INVITE B2BUA -> Bob

 INVITE sip:bob@192.168.10.20 SIP/2.0
 Via: SIP/2.0/UDP server10.biloxi.example.com
 ;branch=z9hG4bK4b43c2ff8.1
 Via: SIP/2.0/UDP pc33.atlanta.example.com
 ;branch=z9hG4bK776asdhds;received=10.1.3.33
 Max-Forwards: 69
 To: Bob <sip:bob@biloxi.example.com>
 From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.example.com
 Session-ID: ab30317f1a784dc48ff824d0d3715d86
 ;remote=00000000000000000000000000000000
 CSeq: 314159 INVITE
 Contact: <sip:alice@pc33.atlanta.example.com>
 Record-Route: <sip:server10.biloxi.example.com;lr>
 Content-Type: application/sdp
 Content-Length: 142

 (Alice's SDP not shown)

 F3 200 OK Bob -> B2BUA

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP server10.biloxi.example.com
 ;branch=z9hG4bK4b43c2ff8.1;received=192.168.10.1
 Via: SIP/2.0/UDP pc33.atlanta.example.com
 ;branch=z9hG4bK776asdhds;received=10.1.3.33
 To: Bob <sip:bob@biloxi.example.com>;tag=a6c85cf
 From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.example.com
 Session-ID: 47755a9de7794ba387653f2099600ef2
 ;remote=ab30317f1a784dc48ff824d0d3715d86
 CSeq: 314159 INVITE
 Contact: <sip:bob@192.168.10.20>
 Record-Route: <sip:server10.biloxi.example.com;lr>
 Content-Type: application/sdp
 Content-Length: 131

 (Bob's SDP not shown)

 F4 200 OK B2BUA -> Alice

 SIP/2.0 200 OK
 Via: SIP/2.0/UDP pc33.atlanta.example.com
 ;branch=z9hG4bK776asdhds;received=10.1.3.33

Jones, et al. Expires February 19, 2017 [Page 18]

Internet-Draft End-To-End Session ID August 2016

 To: Bob <sip:bob@biloxi.example.com>;tag=a6c85cf
 From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.example.com
 Session-ID: 47755a9de7794ba387653f2099600ef2
 ;remote=ab30317f1a784dc48ff824d0d3715d86
 CSeq: 314159 INVITE
 Contact: <sip:bob@192.168.10.20>
 Record-Route: <sip:server10.biloxi.example.com;lr>
 Content-Type: application/sdp
 Content-Length: 131

 (Bob's SDP not shown)

 F5 ACK Alice -> B2BUA

 ACK sip:bob@192.168.10.20 SIP/2.0
 Via: SIP/2.0/UDP pc33.atlanta.example.com
 ;branch=z9hG4bKnashds8
 Route: <sip:server10.biloxi.example.com;lr>
 Max-Forwards: 70
 To: Bob <sip:bob@biloxi.example.com>;tag=a6c85cf
 From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.example.com
 Session-ID: ab30317f1a784dc48ff824d0d3715d86
 ;remote=47755a9de7794ba387653f2099600ef2
 CSeq: 314159 ACK
 Content-Length: 0

 F6 ACK B2BUA -> Bob

 ACK sip:bob@192.168.10.20 SIP/2.0
 Via: SIP/2.0/UDP server10.biloxi.example.com
 ;branch=z9hG4bK4b43c2ff8.2
 Via: SIP/2.0/UDP pc33.atlanta.example.com
 ;branch=z9hG4bKnashds8;received=10.1.3.33
 Max-Forwards: 70
 To: Bob <sip:bob@biloxi.example.com>;tag=a6c85cf
 From: Alice <sip:alice@atlanta.example.com>;tag=1928301774
 Call-ID: a84b4c76e66710@pc33.atlanta.example.com
 Session-ID: ab30317f1a784dc48ff824d0d3715d86
 ;remote=47755a9de7794ba387653f2099600ef2
 CSeq: 314159 ACK
 Content-Length: 0

Jones, et al. Expires February 19, 2017 [Page 19]

Internet-Draft End-To-End Session ID August 2016

 The remaining examples in this Section do not display the complete
 SIP message exchange. Instead, they simply use the set notation
 described in Section 4.2 to show the Session Identifier exchange
 throughout the particular call flow being illustrated.

10.2. Basic Call Transfer using REFER

 From the example built within Section 10.1, we proceed to this 'Basic
 Call Transfer using REFER' example. Note that this is a mid-dialog
 REFER in contrast with the out-of-dialog REFER in Section 10.9.

Jones, et al. Expires February 19, 2017 [Page 20]

Internet-Draft End-To-End Session ID August 2016

 Session-ID
 --- Alice B2BUA Bob Carol
 | | | |
 |<==============RTP==============>| |
 {B,A} | |<---re-INVITE---| |
 {B,A} |<---re-INVITE---| (puts Alice on Hold) |
 {A,B} |-----200 OK---->| | |
 {A,B} | |-----200 OK---->| |
 {B,A} | |<-----ACK-------| |
 {B,A} |<-----ACK-------| | |
 | | | |
 {B,A} | |<----REFER------| |
 {B,A} |<----REFER------| | |
 {A,B} |-----200 OK---->| | |
 {A,B} | |-----200 OK---->| |
 {A,B} |-----NOTIFY---->| | |
 {A,B} | |-----NOTIFY---->| |
 {B,A} | |<----200 OK-----| |
 {B,A} |<----200 OK-----| | |
 | | | |
 {A,N} |-----INVITE---->| |
 {A,N} | |-----INVITE-------------------->|
 {C,A} | |<----200 OK---------------------|
 {C,A} |<----200 OK-----| |
 {A,C} |------ACK------>| |
 {A,C} | |------ACK---------------------->|
 | | | |
 |<======================RTP======================>|
 | | | |
 {A,B} |-----NOTIFY---->| | |
 {A,B} | |-----NOTIFY---->| |
 {B,A} | |<----200 OK-----| |
 {B,A} |<----200 OK-----| | |
 {B,A} | |<-----BYE-------| |
 {B,A} |<-----BYE-------| | |
 {A,B} |-----200 OK---->| | |
 {A,B} | |-----200 OK---->| |
 | | | |

 Figure 2: Call Transfer using REFER

 General operation of this example:

 Starting from the existing Alice/Bob call described in Figure 1 of
 this document, which established an existing Session-ID header field
 value:

Jones, et al. Expires February 19, 2017 [Page 21]

Internet-Draft End-To-End Session ID August 2016

 o UA-Bob requests Alice to call Carol, using a REFER transaction, as
 described in [RFC3515]. UA-Alice is initially put on hold, then
 told in the REFER who to contact with a new INVITE, in this case
 UA-Carol. This Alice-to-Carol dialog will have a new Call-ID,
 therefore it requires a new Session-ID header field value. The
 wrinkle here is we can, and will, use Alice's UUID from her
 existing dialog with Bob in the new INVITE to Carol.

 o UA-Alice retains her UUID from the Alice-to-Bob call {A} when
 requesting a call with UA-Carol. This is placed in the "local-
 uuid" portion of the Session-ID header field value, at the same
 time inserting a nil "remote-uuid" value (because Carol's UA has
 not yet received the UUID value). This same UUID traverses the
 B2BUA unchanged.

 o UA-Carol receives the INVITE with a Session Identifier UUID {A,N},
 replaces the A UUID value into the "remote-uuid" portion of the
 Session-ID header field value and creates its own UUID {C} and
 places this value in the "local-uuid" portion of the Session-ID
 header field value, thereby removing the N (nil) value altogether.
 This combination forms a full Session Identifier {C,A} in the 200
 OK to the INVITE. This Session-ID header field traverses the
 B2BUA unchanged towards UA-Alice.

 o UA-Alice receives the 200 OK with the Session Identifier {C,A} and
 responds to UA-Carol with an ACK (just as in Figure 1 - switches
 places of the two UUID fields), and generates a NOTIFY to Bob with
 a Session Identifier {A,B} indicating the call transfer was
 successful.

 o It does not matter which UA terminates the Alice-to-Bob call;
 Figure 2 shows UA-Bob doing this transaction.

10.3. Basic Call Transfer using re-INVITE

 From the example built within Section 10.1, we proceed to this 'Basic
 Call Transfer using re-INVITE' example.

 Alice is talking to Bob. Bob pushes a button on his phone to transfer
 Alice to Carol via the B2BUA (using re-INVITE).

https://datatracker.ietf.org/doc/html/rfc3515

Jones, et al. Expires February 19, 2017 [Page 22]

Internet-Draft End-To-End Session ID August 2016

 Session-ID
 --- Alice B2BUA Bob Carol
 | | | |
 |<==============RTP==============>| |
 | | | |
 | | <--- (non-standard signaling) |
 {A,B} | |---re-INVITE--->| |
 {B,A} | |<-----200 OK----| |
 {A,B} | |-----ACK------->| |
 | | | |
 {A,N} | |-----INVITE-------------------->|
 {C,A} | |<----200 OK---------------------|
 {A,C} | |------ACK---------------------->|
 | | | |
 |<======================RTP======================>|
 | | | |
 {A,B} | |------BYE------>| |
 {B,A} | |<----200 OK-----| |
 | | | |
 {C,A} |<--re-INVITE----| | |
 {A,C} |----200 OK----->| | |
 {C,A} |<-----ACK-------| | |
 | (Suppose Alice modifies the session) |
 {A,C} |---re-INVITE--->| | |
 {A,C} | |---re-INVITE------------------->|
 {C,A} | |<---200 OK----------------------|
 {C,A} |<---200 OK------| | |
 {A,C} |------ACK------>| | |
 {A,C} | |------ACK---------------------->|
 | | | |

 Figure 3: Call transfer using re-INVITE

 General operation of this example:

 o We assume the call between Alice and Bob from Section 10.1 is
 operational with Session Identifier {A,B}.

 o Bob uses non-standard signaling to the B2BUA to initiate a call
 transfer from Alice to Carol. This could also be initiated via a
 REFER message from Bob, but the signaling that follows might still
 be similar to the above flow. In either case, Alice is completely
 unaware of the call transfer until a future point in time when
 Alice receives a message from Carol.

 o The B2BUA sends a re-INVITE with the Session Identifier {"local-
 uuid" = "A", "remote-uuid" = "B"} to re-negotiate the session with
 Bob.

Jones, et al. Expires February 19, 2017 [Page 23]

Internet-Draft End-To-End Session ID August 2016

 o The B2BUA sends a new INVITE with Alice's UUID {"local-uuid" =
 "A"} to Carol.

 o Carol receives the INVITE and accepts the request and adds her
 UUID {C} to the Session Identifier for this session {"local-uuid"
 = "C", "remote-uuid" = "A"}.

 o The B2BUA then terminates the call to Bob with a BYE using the
 Session Identifier {"local-uuid" = "A", "remote-uuid" = "B"}.

 o The B2BUA sends a re-INVITE to Alice to update Alice's view of the
 Session Identifier.

 o When Alice later attempts to modify the session with a re-INVITE,
 Alice will send "remote-uuid" = "C" toward Carol because it had
 previously received the updated UUID in the re-INVITE from the
 B2BUA. The B2BUA maintains the Session Identifier {"local-uuid" =
 "A", "remote-uuid" = "C"}. Carol replies with the "local-uuid" =
 "C", "remote-uuid" = "A" to reflect what was received in the
 INVITE (which Carol already knew from previous exchanges with the
 B2BUA). Alice then includes "remote-uuid" = "C" in the subsequent
 ACK message.

10.4. Single Focus Conferencing

 Multiple users call into a conference server (say, an MCU) to attend
 one of many conferences hosted on or managed by that server. Each
 user has to identify which conference they want to join, but this
 information is not necessarily in the SIP messaging. It might be
 done by having a dedicated address for the conference or via an IVR,
 as assumed in this example and depicted with the use of M1, M2, and
 M3. Each user in this example goes through a two-step process of
 signaling to gain entry onto their conference call, which the
 conference focus identifies as M'.

Jones, et al. Expires February 19, 2017 [Page 24]

Internet-Draft End-To-End Session ID August 2016

 Session-ID Conference
 --- Alice Focus Bob Carol
 | | | |
 | | | |
 {A,N} |----INVITE----->| | |
 {M1,A} |<---200 OK------| | |
 {A,M1} |-----ACK------->| | |
 |<====RTP=======>| | |
 {M',A} |<---re-INVITE---| | |
 {A,M'} |-----200 OK---->| | |
 {M',A} |<-----ACK-------| | |
 | | | |
 | | | |
 {B,N} | |<----INVITE-----| |
 {M2,B} | |-----200 OK---->| |
 {B,M2} | |<-----ACK-------| |
 | |<=====RTP======>| |
 {M',B} | |---re-INVITE--->| |
 {B,M'} | |<----200 OK-----| |
 {M',B} | |------ACK------>| |
 | | | |
 | | | |
 {C,N} | |<--------------------INVITE-----|
 {M3,C} | |---------------------200 OK---->|
 {C,M3} | |<---------------------ACK-------|
 | |<=====================RTP======>|
 {M',C} | |-------------------re-INVITE--->|
 {C,M'} | |<--------------------200 OK-----|
 {M',C} | |----------------------ACK------>|

 Figure 4: Single Focus Conference Bridge

 General operation of this example:

 Alice calls into a conference server to attend a certain conference.
 This is a two-step operation since Alice cannot include the
 conference ID at this time and/or any passcode in the INVITE request.
 The first step is Alice's UA calling another UA to participate in a
 session. This will appear to be similar as the call-flow in Figure 1
 (in section 10.1). What is unique about this call is the second
 step: the conference server sends a re-INVITE request with its second
 UUID, but maintaining the UUID Alice sent in the first INVITE. This
 subsequent UUID from the conference server will be the same for each
 UA that calls into this conference server participating in this same
 conference bridge/call, which is generated once Alice typically
 authenticates and identifies which bridge she wants to participate
 on.

Jones, et al. Expires February 19, 2017 [Page 25]

Internet-Draft End-To-End Session ID August 2016

 o Alice sends an INVITE to the conference server with her UUID {A}
 and a "remote-uuid" = N.

 o The conference server responds with a 200 OK response which
 replaces the N UUID with a temporary UUID ("M1") as the "local-
 uuid" and a "remote-uuid" = "A".

 NOTE: this 'temporary' UUID is a real UUID; it is only temporary to
 the conference server because it knows that it is going to generate
 another UUID to replace the one just send in the 200 OK.

 o Once Alice, the user, gains access to the IVR for this conference
 server, she enters a specific conference ID and whatever passcode
 (if needed) to enter a specific conference call.

 o Once the conference server is satisfied Alice has identified which
 conference she wants to attend (including any passcode
 verification), the conference server re-INVITEs Alice to the
 specific conference and includes the Session-ID header field value
 component "local-uuid" = "M'" (and "remote-uuid" = "A") for that
 conference. All valid participants in the same conference will
 receive this same UUID for identification purposes and to better
 enable monitoring, and tracking functions.

 o Bob goes through this two-step process of an INVITE transaction,
 followed by a re-INVITE transaction to get this same UUID ("M'")
 for that conference.

 o In this example, Carol (and each additional user) goes through the
 same procedures and steps as Alice and Bob to get on this same
 conference.

10.5. Single Focus Conferencing using a web-based conference service

 Alice, Bob and Carol call into same web-based conference. Note this
 this is one of many ways of implementing this functionality and
 should not be construed as the preferred way of establishing a web-
 based conference.

Jones, et al. Expires February 19, 2017 [Page 26]

Internet-Draft End-To-End Session ID August 2016

 Session-ID Conference
 --- Alice Focus Bob Carol
 | | | |
 |<** HTTPS *****>| | |
 | Transaction | | |
 | | | |
 {M,N} |<----INVITE-----| | |
 {A,M} |-----200 OK---->| | |
 {M,A} |<-----ACK-------| | |
 |<=====RTP======>| | |
 | | | |
 | |<** HTTPS *****>| |
 | | Transaction | |
 | | | |
 {M,N} | |-----INVITE---->| |
 {B,M} | |<----200 OK-----| |
 {M,B} | |------ACK------>| |
 | |<=====RTP======>| |
 | | | |
 | |<****************** HTTPS *****>|
 | | Transaction |
 | | | |
 {M,N} | |--------------------INVITE----->|
 {C,M} | |<-------------------200 OK------|
 {M,C} | |---------------------ACK------->|
 | |<====================RTP=======>|

 Figure 5: Single Focus Web-based Conference

 General operation of this example:

 o Alice communicates with web server with desire to join a certain
 meeting, by meeting number; also includes UA-Alice's contact
 information (phone number, URI and/or IP address, etc.) for each
 device she wants for this conference call. For example, the audio
 and video play-out devices could be separate units.

 o Conference Focus server sends INVITE (Session-ID header field
 value components "local-uuid" = M and a remote UUID of N, where M
 equals the "local-uuid" for each participant on this conference
 bridge) to UA-Alice to start session with that server for this A/V
 conference call.

 o Upon receiving the INVITE request from the conference focus
 server, Alice responds with a 200 OK. Her UA moves the "local-
 uuid" unchanged into the "remote-uuid" field, and generates her
 own UUID and places that into the "local-uuid" field to complete
 the Session-ID construction.

Jones, et al. Expires February 19, 2017 [Page 27]

Internet-Draft End-To-End Session ID August 2016

 o Bob and Carol perform same function to join this same A/V
 conference call as Alice.

10.6. Cascading Conference Bridges

10.6.1. Establishing a Cascaded Conference

 To expand conferencing capabilities requires cascading conference
 bridges. A conference bridge, or MCU, needs a way to identify itself
 when contacting another MCU. [RFC4579] defines the 'isfocus'
 Contact: header parameter just for this purpose.

 Session-ID
 --- MCU-1 MCU-2 MCU-3 MCU-4
 | | | |
 {M',N} |----INVITE----->| | |
 {J,M'} |<---200 OK------| | |
 {M',J} |-----ACK------->| | |

 Figure 6: MCUs Communicating Session Identifier UUID for Bridge

 Regardless of which MCU (1 or 2) a UA contacts for this conference,
 once the above exchange has been received and acknowledged, the UA
 will get the same {M',N} UUID pair from the MCU for the complete
 Session Identifier.

 A more complex form would be a series of MCUs all being informed of
 the same UUID to use for a specific conference. This series of MCUs
 can either be informed

 o All by one MCU (that initially generates the UUID for the
 conference).

 o The MCU that generates the UUID informs one or several MCUs of
 this common UUID, and they inform downstream MCUs of this common
 UUID that each will be using for this one conference.

https://datatracker.ietf.org/doc/html/rfc4579

Jones, et al. Expires February 19, 2017 [Page 28]

Internet-Draft End-To-End Session ID August 2016

 Session-ID
 --- MCU-1 MCU-2 MCU-3 MCU-4
 | | | |
 {M',N} |----INVITE----->| | |
 {J,M'} |<---200 OK------| | |
 {M',J} |-----ACK------->| | |
 | | | |
 {M',N} |---------------------INVITE----->| |
 {K,M'} |<--------------------200 OK------| |
 {M',K} |----------------------ACK------->| |
 | | | |
 {M',N} |-------------------------------------INVITE----->|
 {L,M'} |<------------------------------------200 OK------|
 {M',L} |--------------------------------------ACK------->|

 Figure 7: MCU Communicating Session Identifier UUID to More than One
 MCU

 General operation of this example:

 o The MCU generating the Session Identifier UUID communicates this
 in a separate INVITE, having a Contact header with the 'isfocus'
 header parameter. This will identify the MCU as what [RFC4579]
 calls a conference-aware SIP entity.

 o An MCU that receives this {M',N} UUID pair in an inter-MCU
 transaction can communicate the M' UUID in a manner in which it
 was received to construct a hierarchical cascade (though this time
 this second MCU would be the UAC MCU).

 o Once the conference is terminated, the cascaded MCUs will receive
 a BYE message to terminate the cascade.

10.6.2. Calling into Cascaded Conference Bridges

 Here is an example of how a UA, say Robert, calls into a cascaded
 conference focus. Because MCU-1 has already contacted MCU-3, the MCU
 where Robert is going to join the conference, MCU-3 already has the
 Session-ID (M') for this particular conference call.

https://datatracker.ietf.org/doc/html/rfc4579

Jones, et al. Expires February 19, 2017 [Page 29]

Internet-Draft End-To-End Session ID August 2016

 Session-ID
 --- MCU-1 MCU-2 MCU-3 Robert
 | | | |
 {M',N} |----INVITE----->| | |
 {J,M'} |<---200 OK------| | |
 {M',J} |-----ACK------->| | |
 | | | |
 {M',N} |---------------------INVITE----->| |
 {K,M'} |<--------------------200 OK------| |
 {M',K} |----------------------ACK------->| |
 | | | |
 {R,N} | | |<---INVITE-----|
 (M',R} | | |----200 OK---->|
 {R,M'} | | |<----ACK-------|

 Figure 8: A UA Calling into a Cascaded MCU UUID

 General operation of this example:

 o The UA, Robert in this case, INVITEs the MCU to join a particular
 conference call. Robert's UA does not know anything about whether
 this is the main MCU of the conference call, or a cascaded MCU.
 Robert likely does not know MCUs can be cascaded, he just wants to
 join a particular call. Like as with any standard implementation,
 he includes a nil "remote-uuid".

 o The cascaded MCU, upon receiving this INVITE from Robert, replaces
 the nil UUID with the UUID value communicated from MCU-1 for this
 conference call as the "local-uuid" in the SIP response. Thus,
 moving Robert's UUID "R" to the "remote-uuid" value.

 o The ACK has the Session-ID {R,M'}, completing the 3-way handshake
 for this call establishment. Robert has now joined the conference
 call originated from MCU-1.

 o Once the conference is terminated, the cascaded MCUs will receive
 a BYE message to terminate the cascade.

10.7. Basic 3PCC for two UAs

 An external entity sets up calls to both Alice and Bob for them to
 talk to each other.

Jones, et al. Expires February 19, 2017 [Page 30]

Internet-Draft End-To-End Session ID August 2016

 Session-ID
 --- Alice B2BUA Bob Carol
 | | |
 {X,N} |<----INVITE-----| |
 {A,X} |-----200 OK---->| |
 {A,N} | |----INVITE----->|
 {B,A} | |<---200 OK------|
 {B,A} |<-----ACK-------| |
 {A,B} | |------ACK------>|
 |<==============RTP==============>|

 Figure 9: 3PCC initiated call between Alice and Bob

 General operation of this example:

 o Some out of band procedure directs a B2BUA (or other SIP server)
 to have Alice and Bob talk to each other. In this case, the SIP
 server has to be transaction stateful, if not dialog stateful.

 o The SIP server INVITEs Alice to a session and uses a temporary
 UUID {X} and a nil UUID pairing.

 o Alice receives and accepts this call set-up and replaces the nil
 UUID with her UUID {A} in the Session Identifier, now {A,X}.

 o The transaction stateful SIP server receives Alice's UUID {A} in
 the local UUID portion and keeps it there, and discards its own
 UUID {X}, replacing this with a nil UUID value in the INVITE to
 Bob as if this came from Alice originally.

 o Bob receives and accepts this INVITE and adds his own UUID {B} to
 the Session Identifier, now {B,A} for the response.

 o The session is established.

10.8. Handling in 100 Trying SIP Response and CANCEL Request

 The following two subsections show examples of the Session Identifier
 for a 100 Trying response and a CANCEL request in a single call-flow.

10.8.1. Handling in a 100 Trying SIP Response

 The following 100 Trying response is taken from an existing RFC, from
[RFC5359] Section 2.9 ("Call Forwarding - No Answer").

https://datatracker.ietf.org/doc/html/rfc5359#section-2.9

Jones, et al. Expires February 19, 2017 [Page 31]

Internet-Draft End-To-End Session ID August 2016

 Session-ID Alice SIP Server Bob-1 Bob-2
 | | | |
 {A,N} |----INVITE----->| | |
 {A,N} | |---INVITE---->| |
 {N,A} |<--100 Trying---| | |
 {B1,A} | |<-180 Ringing-| |
 {B1,A} |<--180 Ringing--| | |
 | | | |
 | *Request Timeout* |
 | | | |
 {A,N} | |---CANCEL---->| |
 {B1,A} | |<--200 OK-----| |
 {B1,A} | |<---487-------| |
 {A,B1} | |---- ACK ---->| |
 | | | |
 {N,A} |<-181 Call Fwd--| | |
 | | | |
 {A,N} | |------------------INVITE------>|
 {B2,A} | |<----------------180 Ringing---|
 {B2,A} |<-180 Ringing---| | |
 {B2,A} | |<-----------------200 OK ------|
 {B2,A} |<--200 OK-------| | |
 {A,B2} |----ACK-------->| | |
 {A,B2} | |------------------ACK--------->|
 | | | |
 |<=========== Both way RTP Established =========>|
 | | | |
 {A,B2} |----BYE-------->| | |
 {A,B2} | |--------------------BYE------->|
 {B2,A} | |<------------------200 OK------|
 {B2,A} |<--200 OK-------| | |
 | | | |

 Figure 10: Session Identifier in the 100 Trying and CANCEL Messaging

 Below is the explanatory text from RFC 5359 Section 2.9 detailing
 what the desired behavior is in the above call flow (i.e., what the
 call-flow is attempting to achieve).

 "Bob wants calls to B1 forwarded to B2 if B1 is not answered
 (information is known to the SIP server). Alice calls B1 and no one
 answers. The SIP server then places the call to B2."

 General operation of this example:

 o Alice generates an INVITE request because she wants to invite Bob
 to join her session. She creates a UUID as described in section

10.1, and places that value in the "local-uuid" field of the

https://datatracker.ietf.org/doc/html/rfc5359#section-2.9

Jones, et al. Expires February 19, 2017 [Page 32]

Internet-Draft End-To-End Session ID August 2016

 Session-ID header field value. Alice also generates a "remote-
 uuid" of nil and sends this along with the "local-uuid".

 o The SIP server (imagine this is a B2BUA), upon receiving Alice's
 INVITE, generates the optional provisional response 100 Trying.
 Since the SIP server has no knowledge Bob's UUID for his part of
 the Session Identifier value, it cannot include his "local-uuid".
 Rather, any 100 Trying response includes Alice's UUID in the
 "remote-uuid" portion of the Session-ID header-value with a nil
 "local-uuid" value in the response. This is consistent with what
 Alice's UA expects to receive in any SIP response containing this
 UUID.

10.8.2. Handling a CANCEL SIP Request

 In the same call-flow example as the 100 Trying response is a CANCEL
 request. Please refer to Figure 10 for the CANCEL request example.

 General operation of this example:

 o In Figure 10 above, Alice generates an INVITE with her UUID value
 in the Session-ID header field.

 o Bob-1 responds to this INVITE with a 180 Ringing. In that
 response, he includes his UUID in the Session-ID header field
 value (i.e., {B1,A}); thus completing the Session-ID header field
 for this session, even though no final response has been generated
 by any of Bob's UAs.

 o While this means that if the SIP server were to generate a SIP
 request within this session it could include the complete
 SessionID, the server sends a CANCEL and a CANCEL always uses the
 same Session-ID header field as the original INVITE. Thus, the
 CANCEL would have a Session Identifier with the "local-uuid" =
 "A", and the "remote-uuid" = "N".

 o As it happens with this CANCEL, the SIP server intends to invite
 another UA of Bob (i.e., B2) for Alice to communicate with.

 o In this example call-flow, taken from RFC 5359, Section 2.9, a 181
 (Call is being Forwarded) response is sent to Alice. Since the
 SIP server generated this SIP request, and has no knowledge of
 Bob-2's UUID value, it cannot include that value in this 181.
 Thus, and for the exact reasons the 100 Trying including the
 Session Identifier value, only Alice's UUID is included in the
 remote-uuid component of the Session-ID header field value, with a
 nil UUID present in the "local-uuid" component.

https://datatracker.ietf.org/doc/html/rfc5359#section-2.9

Jones, et al. Expires February 19, 2017 [Page 33]

Internet-Draft End-To-End Session ID August 2016

10.9. Out-of-dialog REFER Transaction

 The following call-flow was extracted from Section 6.1 of [RFC5589]
 ("Successful Transfer"), with the only changes being the names of the
 UAs to maintain consistency within this document.

 Alice is the transferee
 Bob is the transferer
 and Carol is the transfer-target

 Session-ID Bob Alice Carol
 | | |
 {A,N} |<-----INVITE--------| |
 {B,A} |------200 OK------->| |
 {A,B} |<------ACK----------| |
 | | |
 {B,A} |--INVITE {hold}---->| |
 {A,B} |<-200 OK------------| |
 {B,A} |--- ACK ----------->| |
 | | |
 {B,A} |--REFER------------>|(Refer-To:Carol) |
 {A,B} |<-202 Accepted------| |
 | | |
 {A,B} |<NOTIFY {100 Trying}| |
 {B,A} |-200 OK------------>| |
 | | |
 {A,N} | |--INVITE------------>|
 {C,A} | |<-200 OK-------------|
 {A,C} | |---ACK-------------->|
 | | |
 {A,B} |<--NOTIFY {200 OK}--| |
 {B,A} |---200 OK---------->| |
 | | |
 {B,A} |--BYE-------------->| |
 {A,B} |<-200 OK------------| |
 {C,A} | |<------------BYE-----|
 {A,C} | |-------------200 OK->|

 Figure 11: Out-Of-Dialog Call Transfer

 General operation of this example:

 o Just as in Section 10.2, Figure 2, Alice invites Bob to a session,
 and Bob eventually transfers Alice to communicate with Carol.

 o What is different about the call-flow in Figure 11 is that Bob's
 REFER is not in-dialog. Even so, this is treated as part of the

https://datatracker.ietf.org/doc/html/rfc5589#section-6.1

Jones, et al. Expires February 19, 2017 [Page 34]

Internet-Draft End-To-End Session ID August 2016

 same communication session and, thus, the Session Identifier in
 those messages is {A,B}.

 o Alice will use her existing UUID and the nil UUID ({A,N}) in the
 INVITE towards Carol (who generates UUID "C" for this session),
 thus maintaining the common UUID within the Session Identifier for
 this new Alice-to-Carol session.

11. Compatibility with a Previous Implementation

 There is a much earlier document that specifies the use of a Session-
 ID header field (namely, [RFC7329]) that we will herewith attempt to
 achieve backwards compatibility. Neither Session-ID header field has
 any versioning information, so merely adding that this document
 describes "version 2" is insufficient. Here are the set of rules for
 compatibility between the two specifications. Although the previous
 version was never standardized, it has been heavily implemented and
 adopted by other standards development organizations. For the
 purposes of this discussion, we will label the pre-standard
 specification of the Session-ID as the "old" version and this
 specification as the "new" version of the Session-ID.

 The previous (i.e., "old") version only has a single UUID value as a
 Session-ID header field value, but has a generic-parameter value that
 can be of use.

 In order to have an "old" version talk to an "old" version
 implementation, nothing needs to be done as far as the IETF is
 concerned.

 In order to have a "new" version talk to a "new" version
 implementation, both implementations need to follow this document (to
 the letter) and everything should be just fine.

 For this "new" implementation to work with the "old" implementation
 and an "old" implementation to work with "new" implementations, there
 needs to be a set of rules that all "new" implementations MUST follow
 if the "new" implementation will be communicating with devices that
 have implemented the "old" implementation.

 o Since no option tags or feature tags are to be used for
 distinguishing versions, the presence and order of any "remote-
 uuid" value within the Session-ID header field value is to be used
 to distinguish implementation versions.

 o If a SIP request has a "remote-uuid" value, this comes from a
 standard implementation, and not a pre-standard one.

https://datatracker.ietf.org/doc/html/rfc7329

Jones, et al. Expires February 19, 2017 [Page 35]

Internet-Draft End-To-End Session ID August 2016

 o If a SIP request has no "remote-uuid" value, this comes from a
 pre-standard implementation, and not a standard one. In this
 case, one UUID is used to identify this dialog, even if the
 responder is a standard implementation of this specification.

 o If a SIP response has a non-nil "local-uuid" that is 32 octets
 long and differs from the endpoint's own UUID value, this response
 comes from a standard implementation.

 o If a SIP response arrives that has the same value of Session-ID
 UUIDs in the same order as was sent, this comes from a pre-
 standard implementation, and MUST NOT be discarded even though the
 "remote-uuid" may be nil. In this case, any new transaction
 within this dialog MUST preserve the order of the two UUIDs within
 all Session-ID header fields, including the ACK, until this dialog
 is terminated.

 o If a SIP response only contains the "local-uuid" that was sent
 originally, this comes from a pre-standard implementation and MUST
 NOT be discarded for removing the nil "remote-uuid". In this
 case, all future transactions within this dialog MUST contain only
 the UUID received in the first SIP response. Any new transaction
 starting a new dialog from the standard Session-ID implementation
 MUST include a "local-uuid" and a nil "remote-uuid", even if that
 new dialog is between the same two UAs.

 o Standard implementations should not expect pre-standard
 implementations to be consistent in their implementation, even
 within the same dialog. For example, perhaps the first, third and
 tenth responses contain a "remote-uuid", but all the others do
 not. This behavior MUST be allowed by implementations of this
 specification.

 o The foregoing does not apply to other, presently unknown
 parameters that might be defined in the future. They are ignored
 for the purposes of interoperability with previous
 implementations.

12. Security and Privacy Considerations

 The Session Identifier MUST be constructed in such a way that does
 not conveyed any user or device information as outlined in

Section 4.1. This ensures that the data contained in the Session
 Identifier itself does not convey user or device information, however
 the Session Identifier may reveal relationships between endpoints
 that might not be revealed by messages without a Session Identifier.

Jones, et al. Expires February 19, 2017 [Page 36]

Internet-Draft End-To-End Session ID August 2016

Section 4.2 requires that a UA always generate a new, previously
 unused, UUID when transmitting a request to initiate a new session.
 This ensures that two unrelated sessions originating from the same UA
 will never have the same UUID value, thereby removing the ability for
 an attacker to use the Session Identifier to identify the two
 unrelated sessions as being associated with the same user.

 Because of the inherent property that Session Identifiers are
 conveyed end-to-end and remain unchanged by a UA for the duration of
 a session, the Session Identifier could be misused to discover
 relationships between two or more parties when multiple parties are
 involved in the same session such as the case of a redirect,
 transfer, or conference. For example, suppose that Alice calls Bob
 and Bob, via his PBX (acting as a B2BUA), forwards or transfers the
 call to Carol. Without use of the Session Identifier, an
 unauthorized third party that is observing the communications between
 Alice and Bob might not know that Alice is actually communicating
 with Carol. If Alice, Bob, and Carol include the Session Identifier
 as a part of the signaling messages, it is possible for the third
 party to observe that the UA associated with Bob changed to some
 other UA. If the third party also has access to signaling messages
 between Bob and Carol, the third party can then discover that Alice
 is communicating with Carol. This would be true even if all other
 information relating to the session is changed by the PBX, including
 both signaling information and media address information. That said,
 the Session Identifier would not reveal the identity of Alice, Bob,
 or Carol. It would only reveal the fact that those endpoints were in
 associated with the same session.

 This document allows for additional parameters (generic-param) to be
 included in the Session-ID header. This is done to allow for future
 extensions while preserving backward compatibility with this
 document. To protect privacy, the data for any generic-param
 included in the Session-ID header value MUST NOT include any user or
 device information. Additionally, any information conveyed through
 an additional parameter MUST NOT persist beyond the current session
 and therefore MUST NOT be reused between unrelated sessions.
 Additional parameters MAY be used by future extensions of this
 document to correlate related communication sessions that cannot
 already be correlated by the procedures described in this document as
 long as the requirements regarding privacy and persistence defined
 above are followed."

 An intermediary implementing a privacy service that provides user
 privacy as per Section 5.3 of [RFC3323] MAY choose to consider the
 Session-ID header as being a non-essential informational header with
 the understanding that doing so will impair the ability to use the
 Session Identifier for troubleshooting purposes.

https://datatracker.ietf.org/doc/html/rfc3323#section-5.3

Jones, et al. Expires February 19, 2017 [Page 37]

Internet-Draft End-To-End Session ID August 2016

13. IANA Considerations

13.1. Registration of the "Session-ID" Header Field

 The following is the registration for the 'Session-ID' header field
 to the "Header Name" registry at

http://www.iana.org/assignments/sip-parameters:

 RFC number: RFC XXXX

 Header name: 'Session-ID'

 Compact form: none

 Note: This document replaces the "Session-ID" header originally
 registered via [RFC7329].

 [RFC Editor: Please replace XXXX in this section and the next with
 the this RFC number of this document.]

13.2. Registration of the "remote" Parameter

 The following parameter is to be added to the "Header Field
 Parameters and Parameter Values" section of the SIP parameter
 registry:

 +--------------+----------------+-------------------+-----------+
 | Header Field | Parameter Name | Predefined Values | Reference |
 +--------------+----------------+-------------------+-----------+
 | Session-ID | remote | No | [RFCXXXX] |
 +--------------+----------------+-------------------+-----------+

14. Acknowledgements

 The authors would like to thank Robert Sparks, Hadriel Kaplan,
 Christer Holmberg, Paul Kyzivat, Brett Tate, Keith Drage, Mary
 Barnes, Charles Eckel, Peter Dawes, Andrew Hutton, Arun Arunachalam,
 Adam Gensler, Roland Jesske, and Faisal Siyavudeen for their
 invaluable comments during the development of this document.

15. Dedication

 This document is dedicated to the memory of James Polk, a long-time
 friend and colleague. James made important contributions to this
 specification, including being one of its primary editors. The IETF
 global community mourns his loss and he will be missed dearly.

http://www.iana
https://datatracker.ietf.org/doc/html/rfc7329

Jones, et al. Expires February 19, 2017 [Page 38]

Internet-Draft End-To-End Session ID August 2016

16. References

16.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC3261] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,
 A., Peterson, J., Sparks, R., Handley, M., and E.
 Schooler, "SIP: Session Initiation Protocol", RFC 3261,
 DOI 10.17487/RFC3261, June 2002,
 <http://www.rfc-editor.org/info/rfc3261>.

 [RFC3515] Sparks, R., "The Session Initiation Protocol (SIP) Refer
 Method", RFC 3515, DOI 10.17487/RFC3515, April 2003,
 <http://www.rfc-editor.org/info/rfc3515>.

 [RFC3891] Mahy, R., Biggs, B., and R. Dean, "The Session Initiation
 Protocol (SIP) "Replaces" Header", RFC 3891,
 DOI 10.17487/RFC3891, September 2004,
 <http://www.rfc-editor.org/info/rfc3891>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <http://www.rfc-editor.org/info/rfc4122>.

 [RFC4579] Johnston, A. and O. Levin, "Session Initiation Protocol
 (SIP) Call Control - Conferencing for User Agents",

BCP 119, RFC 4579, DOI 10.17487/RFC4579, August 2006,
 <http://www.rfc-editor.org/info/rfc4579>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <http://www.rfc-editor.org/info/rfc5234>.

 [RFC7206] Jones, P., Salgueiro, G., Polk, J., Liess, L., and H.
 Kaplan, "Requirements for an End-to-End Session
 Identification in IP-Based Multimedia Communication
 Networks", RFC 7206, DOI 10.17487/RFC7206, May 2014,
 <http://www.rfc-editor.org/info/rfc7206>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3261
http://www.rfc-editor.org/info/rfc3261
https://datatracker.ietf.org/doc/html/rfc3515
http://www.rfc-editor.org/info/rfc3515
https://datatracker.ietf.org/doc/html/rfc3891
http://www.rfc-editor.org/info/rfc3891
https://datatracker.ietf.org/doc/html/rfc4122
http://www.rfc-editor.org/info/rfc4122
https://datatracker.ietf.org/doc/html/bcp119
https://datatracker.ietf.org/doc/html/rfc4579
http://www.rfc-editor.org/info/rfc4579
https://datatracker.ietf.org/doc/html/rfc5234
http://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7206
http://www.rfc-editor.org/info/rfc7206

Jones, et al. Expires February 19, 2017 [Page 39]

Internet-Draft End-To-End Session ID August 2016

16.2. Informative References

 [H.323] International Telecommunications Union, "Recommendation
 ITU-T H.323, Packet-based multimedia communications
 systems", December 2009.

 [H.460.27]
 International Telecommunications Union, "Recommendation
 ITU-T H.460.27, End-to-End Session Identifier for H.323
 Systems", November 2015.

 [RFC2543] Handley, M., Schulzrinne, H., Schooler, E., and J.
 Rosenberg, "SIP: Session Initiation Protocol", RFC 2543,
 DOI 10.17487/RFC2543, March 1999,
 <http://www.rfc-editor.org/info/rfc2543>.

 [RFC3323] Peterson, J., "A Privacy Mechanism for the Session
 Initiation Protocol (SIP)", RFC 3323,
 DOI 10.17487/RFC3323, November 2002,
 <http://www.rfc-editor.org/info/rfc3323>.

 [RFC3550] Schulzrinne, H., Casner, S., Frederick, R., and V.
 Jacobson, "RTP: A Transport Protocol for Real-Time
 Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550,
 July 2003, <http://www.rfc-editor.org/info/rfc3550>.

 [RFC3725] Rosenberg, J., Peterson, J., Schulzrinne, H., and G.
 Camarillo, "Best Current Practices for Third Party Call
 Control (3pcc) in the Session Initiation Protocol (SIP)",

BCP 85, RFC 3725, DOI 10.17487/RFC3725, April 2004,
 <http://www.rfc-editor.org/info/rfc3725>.

 [RFC4353] Rosenberg, J., "A Framework for Conferencing with the
 Session Initiation Protocol (SIP)", RFC 4353,
 DOI 10.17487/RFC4353, February 2006,
 <http://www.rfc-editor.org/info/rfc4353>.

 [RFC5359] Johnston, A., Ed., Sparks, R., Cunningham, C., Donovan,
 S., and K. Summers, "Session Initiation Protocol Service
 Examples", BCP 144, RFC 5359, DOI 10.17487/RFC5359,
 October 2008, <http://www.rfc-editor.org/info/rfc5359>.

 [RFC5589] Sparks, R., Johnston, A., Ed., and D. Petrie, "Session
 Initiation Protocol (SIP) Call Control - Transfer",

BCP 149, RFC 5589, DOI 10.17487/RFC5589, June 2009,
 <http://www.rfc-editor.org/info/rfc5589>.

https://datatracker.ietf.org/doc/html/rfc2543
http://www.rfc-editor.org/info/rfc2543
https://datatracker.ietf.org/doc/html/rfc3323
http://www.rfc-editor.org/info/rfc3323
https://datatracker.ietf.org/doc/html/rfc3550
http://www.rfc-editor.org/info/rfc3550
https://datatracker.ietf.org/doc/html/bcp85
https://datatracker.ietf.org/doc/html/rfc3725
http://www.rfc-editor.org/info/rfc3725
https://datatracker.ietf.org/doc/html/rfc4353
http://www.rfc-editor.org/info/rfc4353
https://datatracker.ietf.org/doc/html/bcp144
https://datatracker.ietf.org/doc/html/rfc5359
http://www.rfc-editor.org/info/rfc5359
https://datatracker.ietf.org/doc/html/bcp149
https://datatracker.ietf.org/doc/html/rfc5589
http://www.rfc-editor.org/info/rfc5589

Jones, et al. Expires February 19, 2017 [Page 40]

Internet-Draft End-To-End Session ID August 2016

 [RFC6141] Camarillo, G., Ed., Holmberg, C., and Y. Gao, "Re-INVITE
 and Target-Refresh Request Handling in the Session
 Initiation Protocol (SIP)", RFC 6141,
 DOI 10.17487/RFC6141, March 2011,
 <http://www.rfc-editor.org/info/rfc6141>.

 [RFC6872] Gurbani, V., Ed., Burger, E., Ed., Anjali, T., Abdelnur,
 H., and O. Festor, "The Common Log Format (CLF) for the
 Session Initiation Protocol (SIP): Framework and
 Information Model", RFC 6872, DOI 10.17487/RFC6872,
 February 2013, <http://www.rfc-editor.org/info/rfc6872>.

 [RFC7092] Kaplan, H. and V. Pascual, "A Taxonomy of Session
 Initiation Protocol (SIP) Back-to-Back User Agents",

RFC 7092, DOI 10.17487/RFC7092, December 2013,
 <http://www.rfc-editor.org/info/rfc7092>.

 [RFC7329] Kaplan, H., "A Session Identifier for the Session
 Initiation Protocol (SIP)", RFC 7329,
 DOI 10.17487/RFC7329, August 2014,
 <http://www.rfc-editor.org/info/rfc7329>.

Authors' Addresses

 Paul E. Jones
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 476 2048
 Email: paulej@packetizer.com

 Gonzalo Salgueiro
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 392 3266
 Email: gsalguei@cisco.com

https://datatracker.ietf.org/doc/html/rfc6141
http://www.rfc-editor.org/info/rfc6141
https://datatracker.ietf.org/doc/html/rfc6872
http://www.rfc-editor.org/info/rfc6872
https://datatracker.ietf.org/doc/html/rfc7092
http://www.rfc-editor.org/info/rfc7092
https://datatracker.ietf.org/doc/html/rfc7329
http://www.rfc-editor.org/info/rfc7329

Jones, et al. Expires February 19, 2017 [Page 41]

Internet-Draft End-To-End Session ID August 2016

 Chris Pearce
 Cisco Systems, Inc.
 2300 East President George Bush Highway
 Richardson, TX 75082
 USA

 Phone: +1 972 813 5123
 Email: chrep@cisco.com

 Paul Giralt
 Cisco Systems, Inc.
 7025 Kit Creek Rd.
 Research Triangle Park, NC 27709
 USA

 Phone: +1 919 991 5644
 Email: pgiralt@cisco.com

Jones, et al. Expires February 19, 2017 [Page 42]

