
Internet Engineering Task Force Integrated Services WG
INTERNET-DRAFT S. Jamin/C. Jin/L. Breslau
draft-ietf-intserv-control-flow-01.txt UMich/UMich/Xerox
 Oct, 1997
 Expires: 4/15/98

 A Measurement Based Admission Control Algorithm for
 Controlled-Load Service with a Reference Implementation Framework

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 This document is a product of the Integrated Services working group
 of the Internet Engineering Task Force. Comments are solicited and
 should be addressed to the working group's mailing list at int-
 serv@isi.edu and/or the author(s).

Abstract

 Controlled-Load Service provides data flows with an enhanced quality
 of service, in the form of low packet delay and a low probability of
 packet loss even under congestion. A network element providing
 Controlled-Load Service can use an admission control algorithm to
 limit the number of data flows receiving the service. In this
 document we describe an admission control algorithm for Controlled-
 Load Service. This algorithm is not intended for IETF

Jamin/Jin/Breslau Expires 4/15/98 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow-01.txt

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 standardization. Rather, it is presented for informational purposes
 only.

 We also present a reference implementation framework for the
 measurement-based admission control algorithm. Our implementation
 separates the measurement from the actual admission control decision
 to provide the flexibility of using different algorithms in bandwidth
 estimation and admission control.

Introduction

 Controlled-Load Service (CL), as defined in [Wro95], is an enhanced
 quality of service intended to support applications requiring
 performance better than that provided by traditional best-effort
 service. Even under congestion, network elements offering CL are
 expected to provide flows with low delay and low packet loss.

 In order to provide this enhanced level of service, network elements
 must limit the number of flows receiving the service. This can be
 accomplished by requiring applications to make explicit requests for
 service. Explicit requests for service can be made using a
 reservation setup protocol, such as RSVP [B+96], or some other means.
 Each network element that receives a request for service can either
 accept or reject the request. We refer to this decision as
 "admission control."

 An application requesting CL presents the network element with a
 traffic descriptor to describe its data flow. This descriptor
 includes a token bucket filter and a peak rate. The token bucket
 parameters, a rate and bucket depth, represent a loose upper bound on
 the new data flow. A measurement based admission control algorithm
 (MBAC) admits or rejects a new flow based on measurements of existing
 traffic and the parameterized description of the new flow. The
 dependence of MBACs on traffic measurements makes the quality of the
 service they provide subject to statistical fluctuation of traffic.
 We expect MBACs to work well only when there is a high degree of
 statistical multiplexing of uncorrelated flows and traffic
 fluctuation is not dominated by a small number of flows. In this
 document, we describe one such MBAC designed for CL.

 Admission control is not an area appropriate for IETF
 standardization. Rather, vendors and service providers are free to
 implement and deploy any admission control algorithm that enables a
 network element to meet the service requirements of the Controlled-
 Load specification. Indeed, admission control can be seen as an area
 for product differentiation. Hence, the algorithm described here is

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 2]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 presented for informational purposes only, providing a single example
 of an MBAC that may be used as a reference algorithm.

 Various MBACs suitable for use with CL have been proposed in the
 academic literature. See, for example, algorithms described in
 [Flo96, JSD97, GK97]. The algorithm described here was first
 proposed in [JS97] and was shown to perform as well as several other
 MBACs. This algorithm is designed to be very simple to implement.
 We believe that it meets the requirements given in the CL
 specification, performs as well as other known algorithms, and
 provides sufficient configuration parameters to allow it to be
 deployed in a variety of settings. We refer the interested readers
 to the above references both for further details on the other MBACs
 and for more background on the MBAC described here.

 The remainder of this document is organized as follows. In the next
 section we describe the admission control algorithm. Next, we
 describe one measurement process that may be used to provide load
 estimates that are used as inputs to the admission control algorithm.
 After discussing the different tuning parameters that allow the
 algorithm to be used in various settings, we present a reference
 implementation framework of the algorithm.

The Admission Control Algorithm

 Our admission control algorithm takes as input L, a load estimate
 produced by the measurement process (described in the next section),
 C, the link bandwidth, upsilon, a user defined aggregate loading
 factor, kappa, a user defined new flow effect factor, and r, the
 token bucket rate of the new flow requesting admission. Whenever a
 new flow requests admittance under CL, the flow is admitted if the
 following inequality is satisfied:

 L < upsilon * C - kappa * r

 Otherwise the flow is rejected.

The Measurement Process

 The purpose of the measurement process is to compute an estimate of
 the network load attributed to data packets receiving Controlled-Load
 Service. This estimate, which we refer to as L, is used as input to
 the admission control algorithm. We describe a time window
 measurement process here. An alternative measurement process using

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 3]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 exponential averaging may be used instead [Flo96].

 The time window measurement process uses 2 parameters, T and S. T is
 the measurement window and S is the sampling period, with S <= T.

 During every sampling period, S, an average load is computed. This
 average load is simply the sum of bits in packets receiving CL
 divided by the length of the sampling period. We note that computing
 average load for a given sampling period is basic to most measurement
 processes advocated for use with MBAC.

 The only per-packet action required by the measurement process is to
 accumulate the bit-count of packets receiving CL service. All other
 processing occurs with low frequency. For performance enhancement, a
 router vendor may wish to implement the per-packet bit counting in
 hardware. At each operator-defined sampling period S, a software
 process reads and clears the hardware accumulator. The software
 process also performs the other low frequency processing to compute
 the load estimate.

 The load estimate, L, is updated as follows:

 1. At the end of every measurement window, T, L is set to the
 highest average load computed for any S during the previous window.

 2. If a newly computed average load for a given sampling period S is
 larger than the current value of L, L is set to the newly computed
 average.

 3. Whenever a new flow is admitted, the measurement estimate is
 immediately increased by r, the token bucket rate of the newly
 admitted flow.

The Parameters

 In this section we discuss how each of the parameters can be adjusted
 to control the behavior of the algorithm. The specific settings that
 are appropriate in any deployment environment depend on the
 characteristics of that environment (i.e., the traffic
 characteristics and link bandwidth), on how much Controlled-Load
 traffic a network operator wants to admit on a link, and on the level
 of risk the network operator is willing to take that the service
 requirements are occasionally violated.

 T -- Measurement Window

 Increasing T increases the amount of history remembered by the

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 4]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 measurement process. The values of T will be some integral multiple
 of the value of S.

 S -- Sampling Period

 For a fixed T, decreasing S makes this measurement process more
 sensitive to bursts of data. Appropriate values of S are likely to
 be on the order of thousands of packet transmission times.

 upsilon -- Aggregate Loading Factor

 Upsilon controls the amount of the link resources that can be used by
 CL traffic. Decreasing upsilon makes the admission control algorithm
 more conservative and reduces the number of CL flows admitted on a
 link. Network operator willing to commit all their link capacity to
 CL traffic might want to start off setting upsilon to 0.7. Depending
 on the burstiness of extant traffic, upsilon may be tuned to values
 higher than 1. Larger values of upsilon decreases the "safety
 margin" of slack bandwidth that may be used to accommodate sudden
 bursts in traffic. Hence network operators that operate their
 network with high upsilon run a higher risk of violating CL service
 description.

 kappa -- New Flow Effect Factor

 Kappa reflects the network operator's assessment of the effect new
 flows may have on traffic load. Kappa of 1 provides for the worst
 case where a new flow may send data at a constant bit rate consummate
 with its token rate.

 Network service providers should have the ability to control the
 settings of each of these parameters, conditioned upon the network
 link speed, extant traffic characteristics, and the providers' goals
 (i.e., the percentage of bandwidth set aside for other services such
 as best-effort, the degree of risk aversion, etc.). Network
 operators will need to monitor the performance of the algorithm over
 time and adjust these parameters to meet changing traffic
 characteristics and service requirements. Automatic tuning of these
 parameters is also possible [CKT96].

 We mentioned in the Introduction that MBAC works well only on links
 with high degree of statistical multiplexing where current traffic
 measurements are reasonable predictors of future load. For links
 with low degree of statistical multiplexing, the algorithm presented
 here may be used without the measurement part, for example by
 maintaining L as the sum of the token rates of all admitted flows,
 with the parameters upsilon and kappa both set to 1.

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 5]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

Reference Implementation Framework

 +-----------+
 | | +-------------+
 | Admission |<---| ADC Control |
 +=============+ | Control | +-------------+
 | Reservation |<--->| | +-------------------+
 +=============+ +-----------+ | Estimator Control |
 ^ +-------------------+
 | USER ^
 ***********V**************************************V********
 ^ KERNEL ^
 flow and | +-----V-----+
 class | +===========+ | Estimator |
 management| | | +-----------+
 +=====V======+ | Scheduler | ^
 | Classifier |---->| |---+ |
 +============+ +===========+ | +-----V-------+
 ^ | +-->| Measurement |
 | | +-------------+
 | V
 incoming packets outgoing packets

 Figure 1: Overview of the MBAC

 We present in this section a description of an implementation of
 MBAC. This description represents our on-going efforts to implement
 MBAC on several BSD-derived UNIX platforms. A guiding principle of
 our implementation is to put components of the architecture that
 require high-frequency updates in the UNIX kernel, leaving the rest
 in user space.

 Figure 1.0 is an abstraction of the implementation shown with the
 other integrated services modules, i.e. packet classifier, scheduler,
 and a reservation daemon, which we expect to be present on the
 system. Inside the kernel, the classifier intercepts each output
 packet and determines the output queue to which the packet belongs.
 The scheduler selects the next packet and dispatch it to the output
 interface whenever the interface is ready to transmit a new packet.
 The user level reservation daemon makes new bandwidth reservations or
 deletes existing ones. The remaining five functional units are part
 of the MBAC, consisting of a measurement unit and an estimator unit
 in the kernel, and the ADC (ADmission Control) unit on the user
 level. The measurement unit counts the total number of bits sent
 through each interface; the estimator unit computes bandwidth usage
 estimates for use in admission control equations. These two
 functions require access to low level network data structures and

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 6]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 need to make frequent computations, which introduces tremendous
 overhead if implemented on the user level. The user level module
 includes ADC, ADC Control, and Estimator Control. The ADC unit
 implements the actual admission control algorithm. The other two
 units, ADC Control and Estimator Control, allow users to tune the
 parameters of the admission control algorithm and bandwidth averaging
 techniques used in the kernel.

 The Measurement unit inside the kernel maintains an accounting of the
 number of bits sent through each interface. It adds to the count of
 bits sent whenever a packet is dispatched by the scheduler.

 +---------------------+ +-------------+
 | meas_readresetCLM() |<----?---->| |
 +---------------------+ | |
 +---------------------+ +-------------+
 | meas_updateCLMq() |---------->| CLM_entry |
 +---------------------+ +-------------+
 +---------------------+ | |
 | meas_newCLM() |---------->| |
 +---------------------+ +.............+

 Figure 2: the Measurement Unit

 The measurement unit consists of three interface functions and a data
 structure, CLMq (Controlled Load Measurement queue.) The details of
 this unit are shown in Figure 2. The CLMq maintains an entry for
 each Controlled Load class. In the simplest case there will be one
 CL class per interface. In the presence of link-sharing, each share
 can have its own CL class. The structure of each entry is shown as a
 CLM_entry type in C language:

 typedef struct _CLM{
 ClassID *cid;
 unsigned long bits_sent;
 unsigned int multiplier;
 } CLM_entry;

 The first member is a pointer to a ClassID by which the entries in
 the CLMq is addressed. The ClassID of a CLMq entry associates the
 entry with its respective CL queue the Scheduler maintains. Since
 the Scheduler is not part of our architecture, we assume no prior
 knowledge of the data structures it uses and hence keep only a
 pointer for a class ID. The member bits_sent is incremented by the
 packet size in bits whenever a packet belonging to the current class
 is dispatched by the scheduler; the member multiplier is provided as
 a safety factor in case the number of bits sent exceeds a 32 bit long
 integer. There is currently no support for queueing delay

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 7]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 measurement.

 The first interface function meas_updateCLMq is invoked by the
 scheduler after it sends a packet out to a network interface.
 meas_updateCLMq updates the CLMq entry according to the class of the
 packet. Function meas_readresetCLMq is provided to the rest of the
 system as an interface to access the CLMq; it reads, or reads and
 resets, members of a CLMq entry. The last of the three, meas_newCLM
 adds an entry for a new class to the end of the CLMq.

 +-----------------+ \ +-----------+
 +-->| est_estimator() | \ | |
 | +-----------------+ \ +-----------+
 | | est_readmeas() | > | est_entry |
 | +-----------------+ / +-----------+
 | | est_readest() | / | |
 | +-----------------+ / +-----------+
 |
 | +-----------------+ Estimator Queue
 +---------------| est_change_fp() |
 +-----------------+

 Figure 3: Estimator Unit inside the Kernel

 The Estimator inside the kernel is illustrated in Figure 3. It is
 invoked periodically to compute the sample and average bandwidth
 usage estimate. A function est_change_fp and an estimation queue
 constitute the estimator unit. The function est_changefp can change
 the estimation algorithm for any class; this is necessary since
 different classes may have different flow characteristics. The
 estimation queue is organized simply as an array. The structure of
 an entry in an estimation queue is shown as a structure in C
 language:

 typedef struct _est{
 ClassID * cid;
 unsigned long bandwidth_avg;
 unsigned long bandwidth_var;
 unsigned int *est_estimator(ClassID *, void *);
 unsigned int *est_readmeas(ClassID *, void *);
 unsigned int *est_readest(ClassID *, void *);
 } est_entry;

 Each entry in the queue stores the average and the variance of the
 bandwidth usage. The function pointer est_estimator points to the
 actual estimation routine that calculates quantities such as
 bandwidth usages or queueing delays. Currently only bandwidth usage
 estimation is supported, but we allow for extension to estimate other

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 8]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 flow characteristics in the implementation framework. The function
 est_readmeas allows access to the raw measurement samples and the
 function est_readest allows access to the estimate. The user level
 processes can thus access both results of estimation calculation and
 the raw data in the CLMq through a system call.

 +-----------------+
 | adc_changealgor |
 +--------^--------+
 |
 +-------------+ +--------V--------+ +-----------------+
 | Reservation |<->| adc_algorithm[] |<->| est_changeparam |
 +------^------+ +-----------------+ +------^----------+
 | |
 +---V---------------------------------------V-----+
 | KERNEL |
 +---+

 Figure 4: MBAC on the User Level

 The user level MBAC is shown in Figure 4. The ADC unit consists of an
 array of function pointers, adc_algorithm[], with one entry for each
 CL class. This design, again, allows for the flexibility of using a
 different admission control algorithms for each CL classes. The ADC
 Control unit is the function adc_changealgor, through which network
 administrators can select the admission control routine to use. The
 third unit, est_changeparam, is the Estimator Control unit for
 changing the estimation mechanism inside the kernel; this enables
 network administrators to tailor the averaging algorithm according to
 their specific needs.

Function Prototypes

 We provide a list of prototypes of the major proposed functions and a
 brief description of each function. Note that the ClassID argument
 tells each of these functions which CL class to operate on.

 Measurement unit:

 unsigned int meas_updateCLMq(ClassID *cid, unsigned long packet_size,
 unsigned int options); meas_updateCLMq updates the bits_sent member
 of a CLMq entry indexed by *cid.

 unsigned int meas_newCLM(ClassID *cid, char *options); meas_newCLM
 creates a new entry in the CLMq and initialize the storage for *cid.

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 9]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 CLM_entry *meas_readresetCLM(ClassID *cid, CLM_entry *resetvalue,
 unsigned int options); meas_readresetCLM reads or resets an entry in
 the CLMq indexed by cid. If the resetvalue is a null pointer, the
 function will read the entry indexed by *class and return it;
 otherwise the entry is set to *resetvalue, and the final entry is
 returned to the caller.

 Estimator unit:

 unsigned int est_changefp(ClassID *cid, unsigned int EstID, unsigned
 int options); est_changefp changes the estimation functions according
 to EstID for class *cid.

 ADC unit:

 unsigned int *adc_algorithm[](ClassID *cid, unsigned long flowBW,
 unsigned int options); adc_algorithm takes the class of the new flow
 *cid in this case) and the flow's bandwidth requirement. It returns
 a nonzero value if the flow can be admitted and 0 otherwise.

 ADC Control unit:

 unsigned int adc_changealgor(ClassID *cid, unsigned int AlgorID,
 unsigned int options); adc_changealgor changes the admission control
 algorithm of a particular class to the algorithm designated by
 AlgorID.

 Estimator Control unit:

 unsigned int est_changeparam(ClassID *cid, unsigned int EstID,
 unsigned int options); est_changeparam is the user level equivalent
 of est_changefp in the kernel.

Security Considerations

 Security considerations are not discussed in this memo.

References

 [B+96] R. Braden (ed.) et al. "Resource ReSerVation Protocol",
 Internet Draft, June 1996.

 [CKT96] C. Casetti, J. Kurose, and D. Towsley. "An Adaptive Algorithm
 for Measurement-based Admission Control in Integrated Services Packet

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 10]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 Networks", Proc. of the Protocols for High Speed Networks Workshop,
 Oct. 1996.

 [Flo96] S. Floyd. "Comments on Measurement-based Admissions Control
 for Controlled-Load Service", submitted for publication, 1996. Also
 available as ftp://ftp.ee.lbl.gov/papers/admit.ps.Z.

 [GK97] R.J. Gibbens and F.P. Kelly, "Measurement-Based Connection
 Admission Control", Proc. of the International Teletraffic Congress
 15, Jun. 1997.

 [JSD97] S. Jamin, S.J. Shenker, and P.B. Danzig, "Comparison of
 Measurement-based Admission Control Algorithms for Controlled-Load
 Service", Proc. of IEEE Infocom 97, Apr. 1997. Also available as

http://netweb.usc.edu/jamin/admctl/info97.ps.gz.

 [JS97] S. Jamin, S.J. Shenker, "Measurement-based Admission Control
 Algorithms for Controlled-Load Service: A Structural Examination",
 Univ. of Michigan, CSE-TR-333-97, Apr. 1997. Available as

http://irl.eecs.umich.edu/jamin/papers/mbac/clmbac.ps.gz

 [Wro95] J. Wroclawski. "Specification of Controlled-Load Network
 Element Service", Internet Draft, November 1995, <draft-ietf-

intserv-ctrl-load-svc-01.txt>.

Author's Address:

 Sugih Jamin
 University of Michigan
 CSE/EECS
 1301 Beal Ave.
 Ann Arbor, MI 48109-2122
 jamin@eecs.umich.edu
 +1 313 763 1583
 +1 313 763 1503 (FAX)

 Cheng Jin
 University of Michigan
 CSE/EECS
 1301 Beal Ave.
 Ann Arbor, MI 48109-2122
 chengjin@eecs.umich.edu
 +1 313 763 6131

 Lee Breslau
 Xerox PARC

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt
ftp://ftp.ee.lbl.gov/papers/admit.ps.Z
http://netweb.usc.edu/jamin/admctl/info97.ps.gz
http://irl.eecs.umich.edu/jamin/papers/mbac/clmbac.ps.gz
https://datatracker.ietf.org/doc/html/draft-ietf-intserv-ctrl-load-svc-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-intserv-ctrl-load-svc-01.txt

Jamin/Jin/Breslau Expires 4/15/98 [Page 11]

INTERNET-DRAFT draft-ietf-intserv-control-flow.txt October, 1997

 3333 Coyote Hill Road
 Palo Alto, CA 94304-1314
 breslau@parc.xerox.com
 +1 415 812 4402
 +1 415 812 4471 (FAX)

Jamin/Jin/Breslau Expires 4/15/98 [Page 12]

https://datatracker.ietf.org/doc/html/draft-ietf-intserv-control-flow.txt

