
Internetworking Over NBMA James V. Luciani
INTERNET-DRAFT (Bay Networks)
<draft-ietf-ion-scsp-04.txt> Grenville Armitage
 (Bellcore)
 Joel Halpern
 (Newbridge)
 Naganand Doraswamy
 (Bay Networks)
 Expires June 1998

Server Cache Synchronization Protocol (SCSP)

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net (US East Coast), nic.nordu.net
 (Europe), ftp.isi.edu (US West Coast), or munnari.oz.au (Pacific
 Rim).

Abstract

 This document describes the Server Cache Synchronization Protocol
 (SCSP) and is written in terms of SCSP's use within Non Broadcast
 Multiple Access (NBMA) networks; although, a somewhat straight
 forward usage is applicable to BMA networks. SCSP attempts to solve
 the generalized cache synchronization/cache-replication problem for
 distributed protocol entities. However, in this document, SCSP is
 couched in terms of the client/server paradigm in which distributed
 server entities, which are bound to a Server Group (SG) through some
 means, wish to synchronize the contents (or a portion thereof) of
 their caches which contain information about the state of clients
 being served.

1. Introduction

https://datatracker.ietf.org/doc/html/draft-ietf-ion-scsp-04.txt

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [10].

 It is perhaps an obvious goal for any protocol to not limit itself to
 a single point of failure such as having a single server in a
 client/server paradigm. Even when there are redundant servers, there
 still remains the problem of cache synchronization; i.e., when one
 server becomes aware of a change in state of cache information then
 that server must propagate the knowledge of the change in state to
 all servers which are actively mirroring that state information.
 Further, this must be done in a timely fashion without putting undue
 resource strains on the servers. Assuming that the state information
 kept in the server cache is the state of clients of the server, then
 in order to minimize the burden placed upon the client it is also
 highly desirable that clients need not have complete knowledge of all
 servers which they may use. However, any mechanism for
 synchronization should not preclude a client from having access to
 several (or all) servers. Of course, any solution must be reasonably
 scalable, capable of using some auto-configuration service, and lend
 itself to a wide range of authentication methodologies.

 This document describes the Server Cache Synchronization Protocol
 (SCSP). SCSP solves the generalized server synchronization/cache-
 replication problem while addressing the issues described above.
 SCSP synchronizes caches (or a portion of the caches) of a set of
 server entities of a particular protocol which are bound to a Server
 Group (SG) through some means (e.g., all NHRP servers belonging to a
 Logical IP Subnet (LIS)[1]). The client/server protocol which a
 particular server uses is identified by a Protocol ID (PID). SGs are
 identified by an ID which, not surprisingly, is called a SGID. Note,
 therefore, that the combination PID/SGID identifies both the
 client/server protocol for which the servers of the SG are being
 synchronized as well as the instance of that protocol. This implies
 that multiple instances of the same protocol may be in operation at
 the same time and have their servers synchronized independently of
 each other. An example of types of information that must be
 synchronized can be seen in NHRP[2] using IP where the information
 includes the registered clients' IP to NBMA mappings in the SG LIS.

 The simplest way to understand SCSP is to understand that the
 algorithm used here is quite similar to that used in OSPF[3]. In
 fact, if the reader wishes to understand more details of the
 tradeoffs and reliability aspects of SCSP, they should refer to the
 Hello, Database Synchronization, and Flooding Procedures in OSPF [3].

 As described later, the protocol goes through three phases. The
 first, very brief phase is the hello phase where two devices
 determine that they can talk to each other. Following that is
 database synchronization. The operation of SCSP assumes that up to
 the point when new information is received, two entities have the

 same data available. The database synchronization phase ensures
 this.

 In database synchronization, the two neighbors exchange summary
 information about each entry in their database. Summaries are used
 since the database itself is potentially quite large. Based on these
 summaries, the neighbors can determine if there is information that
 each needs from the other. If so, that is requested and provided.
 Therefore, at the end of this phase of operation, the two neighbors
 have the same data in their databases.

 After that, the entities enter and remain in flooding state. In
 flooding state, any new information that is learned is sent to all
 neighbors, except the one (if any) that the information was learned
 from. This causes all new information in the system to propagate to
 all nodes, thus restoring the state that everyone knows the same
 thing. Flooding is done reliably on each link, so no pattern of low
 rate packet loss will cause a disruption. (Obviously, a sufficiently
 high rate of packet loss will cause the entire neighbor relationship
 to come down, but if the link does not work, then that is what one
 wants.)

 Because the database synchronization procedure is run whenever a link
 comes up, the system robustly ensures that all participating nodes
 have all available information. It properly recovers from
 partitions, and copes with other failures.

 The SCSP specification is not useful as a stand alone protocol. It
 must be coupled with the use of an SCSP Protocol Specific
 specification which defines how a given protocol would make use of
 the synchronization primitives supplied by SCSP. Such specification
 will be done in separate documents; e.g., [8][9].

2. Overview

 SCSP places no topological requirements upon the SG. Obviously,
 however, the resultant graph must span the set of servers to be
 synchronized. SCSP borrows its cache distribution mechanism from the
 link state protocols [3,4]. However, unlike those technologies,
 there is no mandatory Shortest Path First (SPF) calculation, and SCSP
 imposes no additional memory requirements above and beyond that which
 is required to save the cached information which would exist
 regardless of the synchronization technology.

 In order to give a frame of reference for the following discussion,
 the terms Local Server (LS), Directly Connected Server (DCS), and
 Remote Server (RS) are introduced. The LS is the server under
 scrutiny; i.e., all statements are made from the perspective of the
 LS when discussing the SCSP protocol. The DCS is a server which is
 directly connected to the LS; e.g., there exists a VC between the LS

 and DCS. Thus, every server is a DCS from the point of view of every
 other server which connects to it directly, and every server is an LS
 which has zero or more DCSs directly connected to it. From the
 perspective of an LS, an RS is a server, separate from the LS, which
 is not directly connected to the LS (i.e., an RS is always two or
 more hops away from an LS whereas a DCS is always one hop away from
 an LS).

 SCSP contains three sub protocols: the "Hello" protocol, the "Cache
 Alignment" protocol, and the "Cache State Update" protocol. The
 "Hello" protocol is used to ascertain whether a DCS is operational
 and whether the connection between the LS and DCS is bidirectional,
 unidirectional, or non-functional. The "Cache Alignment" (CA)
 protocol allows an LS to synchronize its entire cache with that of
 the cache of its DCSs. The "Cache State Update" (CSU) protocol is
 used to update the state of cache entries in servers for a given SG.
 Sections 2.1, 2.2, and 2.3 contain a more in-depth explanation of the
 Hello, CA, and CSU protocols and the messages they use.

 SCSP based synchronization is performed on a per protocol instance
 basis. That is, a separate instance of SCSP is run for each instance
 of the given protocol running in a given box. The protocol is
 identified in SCSP via a Protocol ID and the instance of the protocol
 is identified by a Server Group ID (SGID). Thus the PID/SGID pair
 uniquely identify an instance of SCSP. In general, this is not an
 issue since it is seldom the case that many instances of a given
 protocol (which is distributed and needs cache synchronization) are
 running within the same physical box. However, when this is the
 case, there is a mechanism called the Family ID (described briefly in
 the Hello Protocol) which enables a substantial reduction in
 maintenance traffic at little real cost in terms of control. The use
 of the Family ID mechanism, when appropriate for a given protocol
 which is using SCSP, will be fully defined in the given SCSP protocol
 specific specification.

 +---------------+
 | |
 +------->| DOWN |<-------+
 | | | |
 | +---------------+ |
 | | ^ | |
 | | | |
 | | | |
 | | | |
 | @ | |
 | +---------------+ |
 | | | |
 | | WAITING | |
 | +--| |--+ |
 | | +---------------+ | |

 | | ^ ^ | | | |
 | | | | | |
 | @ | | @ |
 +---------------+ +---------------+
 | BIDIRECTIONAL |---->| UNIDIRECTIONAL|
 | | | |
 | CONNECTION |<----| CONNECTION |
 +---------------+ +---------------+

 Figure 1: Hello Finite State Machine (HFSM)

2.1 Hello Protocol

 "Hello" messages are used to ascertain whether a DCS is operational
 and whether the connections between the LS and DCS are bidirectional,
 unidirectional, or non-functional. In order to do this, every LS MUST
 periodically send a Hello message to its DCSs.

 An LS must be configured with a list of NBMA addresses which
 represent the addresses of peer servers in a SG to which the LS
 wishes to have a direct connection for the purpose of running SCSP;
 that is, these addresses are the addresses of would-be DCSs. The
 mechanism for the configuration of an LS with these NBMA address is
 beyond the scope of this document; although one possible mechanism
 would be an autoconfiguration server.

 An LS has a Hello Finite State Machine (HFSM) associated with each of
 its DCSs (see Figure 1) for a given SG, and the HFSM monitors the
 state of the connectivity between the servers.

 The HFSM starts in the "Down" State and transitions to the "Waiting"
 State after NBMA level connectivity has been established. Once in
 the Waiting State, the LS starts sending Hello messages to the DCS.
 The Hello message includes: a Sender ID which is set to the LS's ID
 (LSID), zero or more Receiver IDs which identify the DCSs from which
 the LS has recently heard a Hello message (as described below), and a
 HelloInterval and DeadFactor which will be described below. At this
 point, the DCS may or may not already be sending its own Hello
 messages to the LS.

 When the LS receives a Hello message from one of its DCSs, the LS
 checks to see if its LSID is in one of the Receiver ID fields of that
 message which it just received, and the LS saves the Sender ID from
 that Hello message. If the LSID is in one of the Receiver ID fields
 then the LS transitions the HFSM to the Bidirectional Connection
 state otherwise it transitions the HFSM into the Unidirectional
 Connection state. The Sender ID which was saved is the DCS's ID
 (DCSID). At some point before the next time that the LS sends its
 own Hello message to the DCS, the LS will check the saved DCSID

 against a list of Receiver IDs which the LS uses when sending the
 LS's own Hello messages. If the DCSID is not found in the list of
 Receiver IDs then it is added to that list before the LS sends its
 Hello message.

 Hello messages also contain a HelloInterval and a DeadFactor. The
 Hello interval advertises the time (in seconds) between sending of
 consecutive Hello messages by the server which is sending the
 "current" Hello message. That is, if the time between reception of
 Hello messages from a DCS exceeds the HelloInterval advertised by
 that DCS then the next Hello message is to be considered late by the
 LS. If the LS does not receive a Hello message, which contains the
 LS's LSID in one of the Receiver ID fields, within the interval
 HelloInterval*DeadFactor seconds (where DeadFactor was advertised by
 the DCS in a previous Hello message) then the LS MUST consider the
 DCS to be stalled. At which point one of two things will happen: 1)
 if any Hello messages have been received during the last
 HelloInterval*DeadFactor seconds then the LS should transition the
 HFSM for that DCS to the Unidirectional Connection State; otherwise,
 the LS should transition the HFSM for that DCS to the Waiting State
 and remove the DCSID from the Receiver ID list.

 Note that the Hello Protocol is on a per PID/SGID basis. Thus, for
 example, if there are two servers (one in SG A and the other in SG B)
 associated with an NBMA address X and another two servers (also one
 in SG A and the other in SG B) associated with NBMA address Y and
 there is a suitable point-to-point VC between the NBMA addresses then
 there are two HFSMs running on each side of the VC (one per
 PID/SGID).

 Hello messages contain a list of Receiver IDs instead of a single
 Receiver ID in order to make use of point to multipoint connections.
 While there is an HFSM per DCS, an LS MUST send only a single Hello
 message to its DCSs attached as leaves of a point to multipoint
 connection. The LS does this by including DCSIDs in the list of
 Receiver IDs when the LS's sends its next Hello message. Only the
 DCSIDs from non-stalled DCSs from which the LS has heard a Hello
 message are included.

 Any abnormal event, such as receiving a malformed SCSP message,
 causes the HFSM to transition to the Waiting State; however, a loss
 of NBMA connectivity causes the HFSM to transition to the Down State.
 Until the HFSM is in the Bidirectional Connection State, if any
 properly formed SCSP messages other than Hello messages are received
 then those messages MUST be ignored (this is for the case where, for
 example, there is a point to multipoint connection involved).

 +------------+
 | |
 +--->| DOWN |

 | | |
 | +------------+
 | |
 ^ |
 | @
 | +------------+
 | |Master/Slave|
 |-<--| |<---+
 | |Negotiation | |
 | +------------+ |
 | | |
 ^ | ^
 | @ |
 | +------------+ |
 | | Cache | |
 |-<--| |-->-|
 | | Summarize | |
 | +------------+ |
 | | |
 ^ | ^
 | @ |
 | +------------+ |
 | | Update | |
 |-<--| |-->-|
 | | Cache | |
 | +------------+ |
 | | |
 ^ | ^
 | @ |
 | +------------+ |
 | | | |
 +-<--| Aligned |-->-+
 | |
 +------------+

 Figure 2: Cache Alignment Finite State Machine

2.2 Cache Alignment Protocol

 "Cache Alignment" (CA) messages are used by an LS to synchronize its
 cache with that of the cache of each of its DCSs. That is, CA
 messages allow a booting LS to synchronize with each of its DCSs. A
 CA message contains a CA header followed by zero or more Cache State
 Advertisement Summary records (CSAS records).

 An LS has a Cache Alignment Finite State Machine (CAFSM) associated
 (see Figure 2) with each of its DCSs on a per PID/SGID basis, and the
 CAFSM monitors the state of the cache alignment between the servers.
 The CAFSM starts in the Down State. The CAFSM is associated with an

 HFSM, and when that HFSM reaches the Bidirectional State, the CAFSM
 transitions to the Master/Slave Negotiation State. The Master/Slave
 Negotiation State causes either the LS or DCS to take on the role of
 master over the cache alignment process. In a sense, the master
 server sets the tempo for the cache alignment.

 When the LS's CAFSM reaches the Master/Slave Negotiation State, the
 LS will send a CA message to the DCS associated with the CAFSM. The
 format of CA messages are described in Section B.2.1. The first CA
 message which the LS sends includes no CSAS records and a CA header
 which contains the LSID in the Sender ID field, the DCSID in the
 Receiver ID field, a CA sequence number, and three bits. These three
 bits are the M (Master/Slave) bit, the I (Initialization of master)
 bit, and the O (More) bit. In the first CA message sent by the LS to
 a particular DCS, the M, O, and I bits are set to one. If the LS
 does not receive a CA message from the DCS in CAReXmtInterval seconds
 then it resends the CA message it just sent. The LS continues to do
 this until the CAFSM transitions to the Cache Summarize State or
 until the HFSM transitions out of the Bidirectional State. Any time
 the HFSM transitions out of the Bidirectional State, the CAFSM
 transitions to the Down State.

2.2.1 Master Slave Negotiation State

 When the LS receives a CA message from the DCS while in the
 Master/Slave Negotiation State, the role the LS plays in the exchange
 depends on packet processing as follows:

 1) If the CA from the DCS has the M, I, and O bits set to one and there
 are no CSAS records in the CA message and the Sender ID as specified
 in the DCS's CA message is larger than the LSID then
 a) The timer counting down the CAReXmtInterval is stopped.
 b) The CAFSM corresponding to that DCS transitions to the
 Cache Summarize State and the LS takes on the role of slave.
 c) The LS adopts the CA sequence number it received in the CA message
 as its own CA sequence number.
 d) The LS sends a CA message to the DCS which is formated as follows:
 the M and I bits are set to zero, the Sender ID field is set to the
 LSID, the Receiver ID field is set to the DCSID, and the
 CA sequence number is set to the CA sequence number that appeared
 in the DCS's CA message. If there are CSAS records to be sent
 (i.e., if the LS's cache is not empty), and if all of them will not
 fit into this CA message then the O bit is set to one and the initial
 set of CSAS records are included in the CA message; otherwise the O bit
 is set to zero and if any CSAS Records need to be sent then those
 records are included in the CA message.

 2) If the CA message from the DCS has the M and I bits off and the
 Sender ID as specified in the DCS's CA message is smaller than
 the LSID then
 a) The timer counting down the CAReXmtInterval is stopped.

 b) The CAFSM corresponding to that DCS transitions to the
 Cache Summarize State and the LS takes on the role of master.
 c) The LS must process the received CA message.
 An explanation of CA message processing is given below.
 d) The LS sends a CA message to the DCS which is formated as follows:
 the M bit is set to one, I bit is set to zero, the Sender ID
 field is set to the LSID, the Receiver ID field is set to the DCSID,
 and the LS's current CA sequence number is incremented by one and
 placed in the CA message. If there are any CSAS records to be sent
 from the LS to the DCS (i.e., if the LS's cache is not empty) then
 the O bit is set to one and the initial set of CSAS records are
 included in the CA message that the LS is sending to the DCS.

 3) Otherwise, the packet must be ignored.

2.2.2 The Cache Summarize State

 At any given time, the master or slave have at most one outstanding
 CA message. Once the LS's CAFSM has transitioned to the Cache
 Summarize State the sequence of exchanges of CA messages occurs as
 follows.

 1) If the LS receives a CA message with the M bit set incorrectly
 (e.g., the M bit is set in the CA of the DCS and the LS is master)
 or if the I bit is set then the CAFSM transitions back to the
 Master/Slave Negotiation State.

 2) If the LS is master and the LS receives a CA message with a
 CA sequence number which is one less than the LS's current
 CA sequence number then the message is a duplicate and the message
 MUST be discarded.

 3) If the LS is master and the LS receives a CA message with a
 CA sequence number which is equal to the LS's current CA sequence
 number then the CA message MUST be processed. An explanation of
 "CA message processing" is given below. As a result of having
 received the CA message from the DCS the following will occur:
 a) The timer counting down the CAReXmtInterval is stopped.
 b) The LS must process any CSAS records in the received CA message.
 c) Increment the LS's CA sequence number by one.
 d) The cache exchange continues as follows:
 1) If the LS has no more CSAS records to send and the received CA
 message has the O bit off then the CAFSM transitions to the
 Update Cache State.
 2) If the LS has no more CSAS records to send and the received CA
 message has the O bit on then the LS sends back a CA message
 (with new CA sequence number) which contains no CSAS records and
 with the O bit off. Reset the timer counting down the
 CAReXmtInterval.
 3) If the LS has more CSAS records to send then the LS sends the
 next CA message with the LS's next set of CSAS records. If LS

 is sending its last set of CSAS records then the O bit is set
 off otherwise the O bit is set on. Reset the timer counting
 down the CAReXmtInterval.

 4) If the LS is slave and the LS receives a CA message with a
 CA sequence number which is equal to the LS's current
 CA sequence number then the CA message is a duplicate and the
 LS MUST resend the CA message which it had just sent to the DCS.

 5) If the LS is slave and the LS receives a CA message with a
 CA sequence number which is one more than the LS's current
 CA sequence number then the message is valid and MUST be
 processed. An explanation of "CA message processing" is given
 below. As a result of having received the CA message from the
 DCS the following will occur:

 a) The LS must process any CSAS records in the received CA message.
 b) Set the LS's CA sequence number to the CA sequence number in the CA
 message.
 c) The cache exchange continues as follows:
 1) If the LS had just sent a CA message with the O bit off and the
 received CA message has the O bit off then the CAFSM transitions
 to the Update Cache State and the LS sends a CA message with no
 CSAS records and with the O bit off.
 2) If the LS still has CSAS records to send then the LS MUST send
 a CA message with CSAS records in it.
 a) If the message being sent from the LS to the DCS does not contain
 the last CSAS records that the LS needs to send then the CA
 message is sent with the O bit on.
 b) If the message being sent from the LS to the DCS does contain
 the last CSAS records that the LS needs to send and
 the CA message just received from the DCS had the O bit off then
 the CA message is sent with the O bit off, and the LS transitions
 the CAFSM to the Update Cache State.
 c) If the message being sent from the LS to the DCS does contain
 the last CSAS records that the LS needs to send and
 the CA message just received from the DCS had the O bit on
 then the CA message is sent with the O bit off and the alignment
 process continues.

 6) If the LS is slave and the LS receives a CA message with a
 CA sequence number that is neither equal to nor one more than
 the current LS's CA sequence number then an error has occurred
 and the CAFSM transitions to the Master/Slave Negotiation State.

 Note that if the LS was slave during the CA process then the LS upon
 transitioning the CAFSM to the Update Cache state MUST keep a copy of
 the last CA message it sent and the LS SHOULD set a timer equal to
 CAReXmtInterval. If either the timer expires or the LS receives a CSU
 Solicit (CSUS) message (CSUS messages are described in Section 2.2.3)
 from the DCS then the LS releases the copy of the CA message. The

 reason for this is that if the DCS (which is master) loses the last
 CA message sent by the LS then the DCS will resend its previous CA
 message with the last CA Sequence number used. If that were to occur
 the LS would need to resend its last sent CA message as well.

2.2.2.1 "CA message processing":

 The LS makes a list of those cache entries which are more "up to
 date" in the DCS than the LS's own cache. This list is called the
 CSA Request List (CRL). See Section 2.4 for a description of what it
 means for a CSA (Client State Advertisement) record or CSAS record to
 be more "up to date" than an LS's cache entry.

2.2.3 The Update Cache State

 If the CRL of the associated CAFSM of the LS is empty upon transition
 into the Update Cache State then the CAFSM immediately transitions
 into the Aligned State.

 If the CRL is not empty upon transition into the Update Cache State
 then the LS solicits the DCS to send the CSA records corresponding to
 the summaries (i.e., CSAS records) which the LS holds in its CRL. The
 solicited CSA records will contain the entirety of the cached
 information held in the DCS's cache for the given cache entry. The
 LS solicits the relevant CSA records by forming CSU Solicit (CSUS)
 messages from the CRL. See Section B.2.4 for the description of the
 CSUS message format. The LS then sends the CSUS messages to the DCS.
 The DCS responds to the CSUS message by sending to the LS one or more
 CSU Request messages containing the entirety of newer cached
 information identified in the CSUS message. Upon receiving the CSU
 Request the LS will send one or more CSU Replies as described in

Section 2.3. Note that the LS may have at most one CSUS message
 outstanding at any given time.

 Just before the first CSUS message is sent from an LS to the DCS
 associated with the CAFSM, a timer is set to CSUSReXmtInterval
 seconds. If all the CSA records corresponding to the CSAS records in
 the CSUS message have not been received by the time that the timer
 expires then a new CSUS message will be created which contains all
 the CSAS records for which no appropriate CSA record has been
 received plus additional CSAS records not covered in the previous
 CSUS message. The new CSUS message is then sent to the DCS. If, at
 some point before the timer expires, all CSA record updates have been
 received for all the CSAS records included in the previously sent
 CSUS message then the timer is stopped. Once the timer is stopped,
 if there are additional CSAS records that were not covered in the
 previous CSUS message but were in the CRL then the timer is reset and
 a new CSUS message is created which contains only those CSAS records
 from the CRL which have not yet been sent to the DCS. This process
 continues until all the CSA records corresponding CSAS records that
 were in the CRL have been received by the LS. When the LS has a

 completely updated cache then the LS transitions CAFSM associated
 with the DCS to the Aligned State.

 If an LS receives a CSUS message or a CA message with a Receiver ID
 which is not the LS's LSID then the message must be discarded and
 ignored. This is necessary since an LS may be a leaf of a point to
 multipoint connection with other servers in the SG.

2.2.4 The Aligned State

 While in the Aligned state, an LS will perform the Cache State Update
 Protocol as described in Section 2.3.

 Note that an LS may receive a CSUS message while in the Aligned State
 and, the LS MUST respond to the CSUS message with the appropriate CSU
 Request message in a similar fashion to the method previously
 described in Section 2.2.3.

2.3 Cache State Update Protocol

 "Cache State Update" (CSU) messages are used to dynamically update
 the state of cache entries in servers on a given PID/SGID basis. CSU
 messages contain zero or more "Cache State Advertisement" (CSA)
 records each of which contains its own snapshot of the state of a
 particular cache entry. An LS may send/receive a CSU to/from a DCS
 only when the corresponding CAFSM is in either the Aligned State or
 the Update Cache State.

 There are two types of CSU messages: CSU Requests and CSU Replies.
 See Sections B.2.2 and B.2.3 respectively for message formats. A CSU
 Request message is sent from an LS to one or more DCSs for one of two
 reasons: either the LS has received a CSUS message and MUST respond
 only to the DCS which originated the CSUS message, or the LS has
 become aware of a change of state of a cache entry. An LS becomes
 aware of a change of state of a cache entry either through receiving
 a CSU Request from one of its DCSs or as a result of a change of
 state being observed in a cached entry originated by the LS. In the
 former case, the LS will send a CSU Request to each of its DCSs
 except the DCS from which the LS became aware of the change in state.
 In the latter case, the LS will send a CSU Request to each of its
 DCSs. The change in state of a particular cache entry is noted in a
 CSA record which is then appended to the end of the CSU Request
 message mandatory part. In this way, state changes are propagated
 throughout the SG.

 Examples of such changes in state are as follows:

 1) a server receives a request from a client to add an entry to its
 cache,
 2) a server receives a request from a client to remove an entry from
 its cache,

 3) a cache entry has timed out in the server's cache, has been
 refreshed in the server's cache, or has been administratively
 modified.

 When an LS receives a CSU Request from one of its DCSs, the LS
 acknowledges one or more CSA Records which were contained in the CSU
 Request by sending a CSU Reply. The CSU Reply contains one or more
 CSAS records which correspond to those CSA records which are being
 acknowledged. Thus, for example, if a CSA record is dropped (or
 delayed in processing) by the LS because there are insufficient
 resources to process it then a corresponding CSAS record is not
 included in the CSU Reply to the DCS.

 Note that an LS may send multiple CSU Request messages before
 receiving a CSU Reply acknowledging any of the CSA Records contained
 in the CSU Requests. Note also that a CSU Reply may contain
 acknowledgments for CSA Records from multiple CSU Requests. Thus,
 the terms "request" and "reply" may be a bit confusing.

 Note that a CSA Record contains a CSAS Record followed by
 client/server protocol specific information contained in a cache
 entry (see Section B.2.0.2 for CSAS record format information and
 Section B.2.2.1 for CSA record format information). When a CSA
 record is considered by the LS to represent cached information which
 is more "up to date" (see Section 2.4) than the cached information
 contained within the cache of the LS then two things happen: 1) the
 LS's cache is updated with the more up to date information, and 2)
 the LS sends a CSU Request containing the CSA Record to each of its
 DCSs except the one from which the CSA Record arrived. In this way,
 state changes are propagated within the PID/SGID. Of course, at some
 point, the LS will also acknowledge the reception of the CSA Record
 by sending the appropriate DCS a CSU Reply message containing the
 corresponding CSAS Record.

 When an LS sends a new CSU Request, the LS keeps track of the
 outstanding CSA records in that CSU Request and to which DCSs the LS
 sent the CSU Request. For each DCS to which the CSU Request was
 sent, a timer set to CSUReXmtInterval seconds is started just prior
 to sending the CSU Request. This timer is associated with the CSA
 Records contained in that CSU Request such that if that timer expires
 prior to having all CSA Records acknowledged from that DCS then (and
 only then) a CSU Request is re-sent by the LS to that DCS. However,
 the re-sent CSU Request only contains those CSA Records which have
 not yet been acknowledged. If all CSA Records associated with a
 timer becomes acknowledged then the timer is stopped. Note that the
 re-sent CSA Records follow the same time-out and retransmit rules as
 if they were new. Retransmission will occur a configured number of
 times for a given CSA Record and if acknowledgment fails to occur
 then an "abnormal event" has occurred at which point the then the
 HFSM associated with the DCS is transitioned to the Waiting State.

 A CSA Record instance is said to be on a "DCS retransmit queue" when
 it is associated with the previously mentioned timer. Only the most
 up-to-date CSA Record is permitted to be queued to a given DCS
 retransmit queue. Thus, if a less up-to-date CSA Record is queued to
 the DCS retransmit queue when a newer CSA Record instance is about to
 be queued to that DCS retransmit queue then the older CSA Record
 instance is dequeued and disassociated with its timer immediately
 prior to enqueuing the newer instance of the CSA Record.

 When an LS receives a CSU Reply from one of its DCSs then the LS
 checks each CSAS record in the CSU Reply against the CSAS Record
 portion of the CSA Records which are queued to the DCS retransmit
 queue.

 1) If there exists an exact match between the CSAS record portion
 of the CSA record and a CSAS Record in the CSU Reply then
 that CSA Record is considered to be acknowledged and is thus
 dequeued from the DCS retransmit queue and is
 disassociated with its timer.

 2) If there exists a match between the CSAS record portion
 of the CSA record and a CSAS Record in the CSU Reply except
 for the CSA Sequence number then
 a) If the CSA Record queued to the DCS retransmit queue has a
 CSA Sequence Number which is greater than the
 CSA Sequence Number in the CSAS Record of the the CSU Reply then
 the CSAS Record in the CSU Reply is ignored.
 b) If the CSA Record queued to the DCS retransmit queue has a
 CSA Sequence Number which is less than the
 CSA Sequence Number in the CSAS Record of the the CSU Reply then
 CSA Record which is queued to the DCS retransmit queue is
 dequeued and the CSA Record is disassociated with its timer.
 Further, a CSUS Message is sent to that DCS which sent the
 more up-to-date CSAS Record. All normal CSUS processing
 occurs as if the CSUS were sent as part of the CA protocol.

 When an LS receives a CSU Request message which contains a CSA Record
 which contains a CSA Sequence Number which is smaller than the CSA
 Sequence number of the cached CSA then the LS MUST acknowledge the
 CSA record in the CSU Request but it MUST do so by sending a CSU
 Reply message containing the CSAS Record portion of the CSA Record
 stored in the cache and not the CSAS Record portion of the CSA Record
 contained in the CSU Request.

 An LS responds to CSUS messages from its DCSs by sending CSU Request
 messages containing the appropriate CSA records to the DCS. If an LS
 receives a CSUS message containing a CSAS record for an entry which
 is no longer in its database (e.g., the entry timed out and was
 discarded after the Cache Alignment exchange completed but before the
 entry was requested through a CSUS message), then the LS will respond
 by copying the CSAS Record from the CSUS message into a CSU Request

 message and the LS will set the N bit signifying that this record is
 a NULL record since the cache entry no longer exists in the LS's
 cache. Note that in this case, the "CSA Record" included in the CSU
 Request to signify the NULL cache entry is literally only a CSAS
 Record since no client/server protocol specific information exists
 for the cache entry.

 If an LS receives a CSA Record in a CSU Request from a DCS for which
 the LS has an identical CSA record posted to the corresponding DCS's
 DCS retransmit queue then the CSA Record on the DCS retransmit queue
 is considered to be implicitly acknowledged. Thus, the CSA Record is
 dequeued from the DCS retransmit queue and is disassociated with its
 timer. The CSA Record sent by the DCS MUST still be acknowledged by
 the LS in a CSU Reply, however. This is useful in the case of point
 to multipoint connections where the rule that "when an LS receives a
 CSA record from a DCS, that LS floods the CSA Record to every DCS
 except the DCS from which it was received" might be broken.

 If an LS receives a CSU with a Receiver ID which is not equal to the
 LSID and is not set to all 0xFFs then the CSU must be discarded and
 ignored. This is necessary since the LS may be a leaf of a point to
 multipoint connection with other servers in the LS's SG.

 An LS MAY send a CSU Request to the all 0xFFs Receiver ID when the LS
 is a root of a point to multipoint connection with a set of its DCSs.
 If an LS receives a CSU Request with the all 0xFFs Receiver ID then
 it MUST use the Sender ID in the CSU Request as the Receiver ID of
 the CSU Reply (i.e., it MUST unicast its response to the sender of
 the request) when responding. If the LS wishes to send a CSU Request
 to the all 0xFFs Receiver ID then it MUST create a time-out and
 retransmit timer for each of the DCSs which are leaves of the point
 to multipoint connection prior to sending the CSU Request. If in
 this case, the time-out and retransmit timer expires for a given DCS
 prior to acknowledgment of a given CSA Record then the LS MUST use
 the specific DCSID as the Receiver ID rather than the all 0xFFs
 Receiver ID. Similarly, if it is necessary to re-send a CSA Record
 then the LS MUST specify the specific DCSID as the Receiver ID rather
 than the all 0xFFs Receiver ID.

 Note that if a set of servers are in a full mesh of point to
 multipoint connections, and one server of that mesh sends a CSU
 Request into that full mesh, and the sending server sends the CSA
 Records in the CSU Request to the all 0xFFs Receiver ID then it would
 not be necessary for every other server in the mesh to source their
 own CSU Request containing those CSA Records into the mesh in order
 to properly flood the CSA Records. This is because every server in
 the mesh would have heard the CSU Request and would have processed
 the included CSA Records as appropriate. Thus, a server in a full
 mesh could consider the mesh to be a single logical port and so the
 rule that "when an LS receives a CSA record from a DCS, that LS
 floods the CSA Record to every DCS except the DCS from which it was

 received" is not broken. A receiving server in the full mesh would
 still need to acknowledge the CSA records with CSU Reply messages
 which contain the LSID of the replying server as the Sender ID and
 the ID of the server which sent the CSU Request as the Receiver ID
 field. In the time out and retransmit case, the Receiver ID of the
 CSU Request would be set to the specific DCSID which did not
 acknowledge the CSA Record (as opposed to the all 0xFFs Receiver ID).
 Since a full mesh emulates a broadcast media for the servers attached
 to the full mesh, use of SCSP on a broadcast medium might use this
 technique as well. Further discussion of this use of a full mesh or
 use of a broadcast media is left to the client/server protocol
 specific documents.

2.4 The meaning of "More Up To Date"/"Newness"

 During the cache alignment process and during normal CSU processing,
 a CSAS Record is compared against the contents of an LS's cache entry
 to decide whether the information contained in the record is more "up
 to date" than the corresponding cache entry of the LS.

 There are three pieces of information which are used in determining
 whether a record contains information which is more "up to date" than
 the information contained in the cache entry of an LS which is
 processing the record: 1) the Cache Key, 2) the Originator which is
 described by an Originator ID (OID), and 3) the CSA Sequence number.
 See Section B.2.0.2 for more information on these fields.

 Given these three pieces of information, a CSAS record (be it part of
 a CSA Record or be it stand-alone) is considered to be more "up to
 date" than the information contained in the cache of an LS if all of
 the following are true:
 1) The Cache Key in the CSAS Record matches the stored Cache Key
 in the LS's cache entry,
 2) The OID in the CSAS Record matches the stored OID
 in the LS's cache entry,
 3) The CSA Sequence Number in the CSAS Record is greater than
 CSA Sequence Number in the LS's cache entry.

Discussion and conclusions

 While the above text is couched in terms of synchronizing the
 knowledge of the state of a client within the cache of servers
 contained in a SG, this solution generalizes easily to any number of
 database synchronization problems (e.g., LECS synchronization).

 SCSP defines a generic flooding protocol. There are a number of
 related issues relative to cache maintenance and topology maintenance
 which are more appropriately defined in the client/server protocol
 specific documents; for example, it might be desirable to define a

 generic cache entry time-out mechanism for a given protocol or to
 advertise adjacency information between servers so that one could
 obtain a topo-map of the servers in a SG. When mechanisms like these
 are desirable, they will be defined in the client/server protocol
 specific documents.

Appendix A: Terminology and Definitions

 CA Message - Cache Alignment Message
 These messages allow an LS to synchronize its entire cache with
 that of the cache of one of its DCSs.

 CAFSM - Cache Alignment Finite State Machine
 The CAFSM monitors the state of the cache alignment between an LS
 and a particular DCS. There exists one CAFSM per DCS as seen from
 an LS.

 CSA Record - Cache State Advertisement Record
 A CSA is a record within a CSU message which identifies an update
 to the status of a "particular" cache entry.

 CSAS Record - Cache State Advertisement Summary Record
 A CSAS contains a summary of the information in a CSA. A server
 will send CSAS records describing its cache entries to another
 server during the cache alignment process. CSAS records are also
 included in a CSUS messages when an LS wants to request the entire
 CSA from the DCS. The LS is requesting the CSA from the DCS
 because the LS believes that the DCS has a more recent view of the
 state of the cache entry in question.

 CSU Message - Cache State Update message
 This is a message sent from an LS to its DCSs when the LS becomes
 aware of a change in state of a cache entry.

 CSUS Message - Cache State Update Solicit Message
 This message is sent by an LS to its DCS after the LS and DCS have
 exchanged CA messages. The CSUS message contains one or more CSAS
 records which represent solicitations for entire CSA records (as
 opposed to just the summary information held in the CSAS).

 DCS - Directly Connected Server
 The DCS is a server which is directly connected to the LS; e.g.,
 there exists a VC between the LS and DCS. This term, along with the
 terms LS and RS, is used to give a frame of reference when talking
 about servers and their synchronization. Unless explicitly stated
 to the contrary, there is no implied difference in functionality
 between a DCS, LS, and RS.

 HFSM - Hello Finite State Machine
 An LS has a HFSM associated with each of its DCSs. The HFSM
 monitors the state of the connectivity between the LS and a

 particular DCS.

 LS - Local Server
 The LS is the server under scrutiny; i.e., all statements are made
 from the perspective of the LS. This term, along with the terms
 DCS and RS, is used to give a frame of reference when talking about
 servers and their synchronization. Unless explicitly stated to the
 contrary, there is no implied difference in functionality between a
 DCS, LS, and RS.

 LSID - Local Server ID
 The LSID is a unique token that identifies an LS. This value might
 be taken from the protocol address of the LS.

 PID - Protocol ID
 This field contains an identifier which identifies the
 client/server protocol which is making use of SCSP for the given
 message. The assignment of Protocol IDs for this field is given
 over to IANA as described in Section C.

 RS - Remote Server (RS)
 From the perspective of an LS, an RS is a server, separate from the
 LS, which is not directly connected to the LS (i.e., an RS is
 always two or more hops away from an LS whereas a DCS is always one
 hop away from an LS). Unless otherwise stated an RS refers to a
 server in the SG. This term, along with the terms LS and DCS, is
 used to give a frame of reference when talking about servers and
 their synchronization. Unless explicitly stated to the contrary,
 there is no implied difference in functionality between a DCS, LS,
 and RS.

 SG - Server Group
 The SCSP synchronizes caches (or a portion of the caches) of a set
 of server entities which are bound to a SG through some means
 (e.g., all servers belonging to a Logical IP Subnet (LIS)[1]).
 Thus an SG is just a grouping of servers around some commonality.

 SGID - Server Group ID
 This ID is a 16 bit identification field that uniquely identifies
 the instance client/server protocol for which the servers of the SG
 are being synchronized. This implies that multiple instances of
 the same protocol may be in operation at the same time and have
 their servers synchronized independently of each other.

Appendix B: SCSP Message Formats

 This section of the appendix includes the message formats for SCSP.
 SCSP protocols are LLC/SNAP encapsulated with an LLC=0xAA-AA-03 and
 OUI=0x00-00-5e and PID=0x00-05.

 SCSP has 3 parts to every packet: the fixed part, the mandatory part,

 and the extensions part. The fixed part of the message exists in
 every packet and is shown below. The mandatory part is specific to
 the particular message type (i.e., CA, CSU Request/Reply, Hello,
 CSUS) and, it includes (among other packet elements) a Mandatory
 Common Part and zero or more records each of which contains
 information pertinent to the state of a particular cache entry
 (except in the case of a Hello message) whose information is being
 synchronized within a SG. The extensions part contains the set of
 extensions for the SCSP message.

 In the following message formats, the fields marked as "unused" MUST
 be set to zero upon transmission of such a message and ignored upon
 receipt of such a message.

B.1 Fixed Part

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Version | Type Code | Packet Size |
 +-+
 | Checksum | Start Of Extensions |
 +-+

 Version
 This is the version of the SCSP protocol being used. The current
 version is 1.

 Type Code
 This is the code for the message type (e.g., Hello (5), CSU
 Request(2), CSU Reply(3), CSUS (4), CA (1)).

 Packet Size
 The total length of the SCSP packet, in octets (excluding link
 layer and/or other protocol encapsulation).

 Checksum
 The standard IP checksum over the entire SCSP packet starting at
 the fixed header. If the packet is an odd number of bytes in
 length then this calculation is performed as if a byte set to 0x00
 is appended to the end of the packet.

 Start Of Extensions
 This field is coded as zero when no extensions are present in the
 message. If extensions are present then this field will be coded
 with the offset from the top of the fixed header to the beginning
 of the first extension.

B.2.0 Mandatory Part

 The mandatory part of the SCSP packet contains the operation specific

 information for a given message type (e.g., SCSP Cache State Update
 Request/Reply, etc.), and it includes (among other packet elements) a
 Mandatory Common Part (described in Section B.2.0.1) and zero or more
 records each of which contains information pertinent to the state of
 a particular cache entry (except in the case of a Hello message)
 whose information is being synchronized within a SG. These records
 may, depending on the message type, be either Cache State
 Advertisement Summary (CSAS) Records (described in Section B.2.0.2)
 or Cache State Advertisement (CSA) Records (described in Section
 B.2.2.1). CSA Records contain a summary of a cache entry's
 information (i.e., a CSAS Record) plus some additional client/server
 protocol specific information. The mandatory common part format and
 CSAS Record format is shown immediately below, prior to showing their
 use in SCSP messages, in order to prevent replication within the
 message descriptions.

B.2.0.1 Mandatory Common Part

 Sections B.2.1 through B.2.5 have a substantial overlap in format.
 This overlapping format is called the mandatory common part and its
 format is shown below:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Protocol ID | Server Group ID |
 +-+
 | unused | Flags |
 +-+
 | Sender ID Len | Recvr ID Len | Number of Records |
 +-+
 | Sender ID (variable length) |
 +-+
 | Receiver ID (variable length) |
 +-+

 Protocol ID
 This field contains an identifier which identifies the
 client/server protocol which is making use of SCSP for the given
 message. The assignment of Protocol IDs for this field is given
 over to IANA as described in Section C. Protocols with current
 documents have the the following defined values:
 1 - ATMARP
 2 - NHRP
 3 - MARS
 4 - DHCP
 5 - LNNI

 Server Group ID
 This ID is uniquely identifies the instance of a given
 client/server protocol for which servers are being synchronized.

 Flags
 The Flags field is message specific, and its use will be described
 in the specific message format sections below.

 Sender ID Len
 This field holds the length in octets of the Sender ID.

 Recvr ID Len
 This field holds the length in octets of the Receiver ID.

 Number of Records
 This field contains the number of additional records associated
 with the given message. The exact format of these records is
 specific to the message and will be described for each message type
 in the sections below.

 Sender ID
 This is an identifier assigned to the server which is sending the
 given message. One possible assignment might be the protocol
 address of the sending server.

 Receiver ID
 This is an identifier assigned to the server which is to receive
 the given message. One possible assignment might be the protocol
 address of the server which is to receive the given message.

B.2.0.2 Cache State Advertisement Summary Record (CSAS record)

 CSAS records contain a summary of information contained in a cache
 entry of a given client/server database which is being synchronized
 through the use of SCSP. The summary includes enough information for
 SCSP to look into the client/server database for the appropriate
 database cache entry and then compare the "newness" of the summary
 against the "newness" of the cached entry.

 Note that CSAS records do not contain a Server Group ID (SGID) nor do
 they contain a Protocol ID. These IDs are necessary to identify
 which protocol and which instance of that protocol for which the
 summary is applicable. These IDs are present in the mandatory common
 part of each message.

 Note also that the values of the Hop Count and Record Length fields
 of a CSAS Record are dependent on whether the CSAS record exists as a
 "stand-alone" record or whether the CSAS record is "embedded" in CSA
 Record. This is further described below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop Count | Record Length |
 +-+

 | Cache Key Len | Orig ID Len |N| unused |
 +-+
 | CSA Sequence Number |
 +-+
 | Cache Key ... |
 +-+
 | Originator ID ... |
 +-+

 Hop Count
 This field represents the number of hops that the record may take
 before being dropped. Thus, at each server that the record
 traverses, the Hop Count is decremented. This field is set to 1
 when the CSAS record is a "stand-alone" record (i.e., it is not
 embedded within a CSA record) since summaries do not go beyond one
 hop during the cache alignment process. If a CSAS record is
 "embedded" within a CSA record then the Hop Count is set to an
 administratively defined value which is almost certainly greater
 than or equal to the the cardinality of the SG minus one. Note
 that an exception to the previous rule occurs when the CSA Record
 is carried within a CSU Request which was sent in response to a
 solicitation (i.e., in response to a CSAS Record which was sent in
 a CSUS message); in which case, the Hop Count SHOULD be set to 1.

 Record Length
 If the CSAS record is a "stand-alone" record then this value is
 12+"Cache Key Leng"+"Orig ID Len" in bytes; otherwise, this value
 is set to 12+"Cache Key Leng"+"Orig ID Len"+ sizeof("Client/Server
 Protocol Specific Part for cache entry"). The size of the
 Client/Server Protocol Specific Part may be obtained from the
 client/server protocol specific document for the given Protocol ID.

 Cache Key Len
 Length of the Cache Key field in bytes.

 Orig ID Len.
 Length of the Originator ID field in bytes.

 N
 The "N" bit signifies that this CSAS Record is actually a Null
 record. This bit is only used in a CSAS Record contained in a CSU
 Request/Reply which is sent in response to a CSUS message. It is
 possible that an LS may receive a solicitation for a CSA record
 when the cache entry represented by the solicited CSA Record no
 longer exists in the LS's cache (see Section 2.3 for details). In
 this case, the LS copies the CSAS Record directly from the CSUS
 message into the CSU Request, and the LS sets the N bit signifying
 that the cache entry does not exist any longer. The DCS which
 solicited the CSA record which no longer exists will still respond
 with a CSU Reply. This bit is usually set to zero.

 CSA Sequence Number
 This field contains a sequence number that identifies the "newness"
 of a CSA record instance being summarized. A "larger" sequence
 number means a more recent advertisement. Thus, if the state of
 part (or all) of a cache entry needs to be updated then the CSA
 record advertising the new state MUST contain a CSA Sequence Number
 which is larger than the one corresponding to the previous
 advertisement. This number is assigned by the originator of the
 CSA record. The CSA Sequence Number may be assigned by the
 originating server or by the client which caused its server to
 advertise its existence.

 The CSA Sequence Number is a signed 32 bit number. Within the CSA
 Sequence Number space, the number -2^31 (0x80000000) is reserved.
 Thus, the usable portion of the CSA Sequence Number space for a
 given Cache Key is between the numbers -2^31+1 (0x80000001) and
 2^31-1 (0x7fffffff). An LS uses -2^31+1 the first time it
 originates a CSA Record for a cache entry that it created. Each
 time the cache entry is modified in some manner and when that
 modification needs to be synchronized with the other servers in the
 SG, the LS increments the CSA Sequence number associated with the
 given Cache Key and uses that new CSA Sequence Number when
 advertising the update. If it is ever the case that a given CSA
 Sequence Number has reached 2^31-2 and the associated cache entry
 has been modified such that an update must be sent to the rest of
 the servers in the SG then the given cache entry MUST first be
 purged from the SG by the LS by sending a CSA Record which causes
 the cache entry to be removed from other servers and this CSA
 Record carries a CSA Sequence Number of 2^31-1. The exact packet
 format and mechanism by which a cache entry is purged is defined in
 the appropriate protocol specific document. After the purging CSA
 Record has been acknowledged by each DCS, an LS will then send a
 new CSA Record carrying the updated information, and this new CSA
 Record will carry a CSA Sequence Number of -2^31+1.

 After a restart occurs and after the restarting LS's CAFSM has
 achieved the Aligned state, if an update to an existing cache entry
 needs to be synchronized or a new cache entry needs to be
 synchronized then the ensuing CSA Record MUST contain a CSA
 Sequence Number which is unique within the SG for the given OID and
 Cache Key. The RECOMMENDED method of obtaining this number (unless
 explicitly stated to the contrary in the protocol specific
 document) is to set the CSA Sequence Number in the CSA Record to
 the CSA Sequence Number associated with the existing cache entry
 (if an out of date cache entry already exists and zero if not) plus
 a configured constant. Note that the protocol specific document
 may require that all cache entries containing the OID of the
 restarting LS be purged prior to updating the cache entries; in
 this case, the updating CSA Record will still contain a CSA
 Sequence Number set to the CSA Sequence Number associated with the
 previously existing cache entry plus a configured constant.

 Cache Key
 This is a database lookup key that uniquely identifies a piece of
 data which the originator of a CSA Record wishes to synchronize
 with its peers for a given "Protocol ID/Server Group ID" pair.
 This key will generally be a small opaque byte string which SCSP
 will associate with a given piece of data in a cache. Thus, for
 example, an originator might assign a particular 4 byte string to
 the binding of an IP address with that of an ATM address.
 Generally speaking, the originating server of a CSA record is
 responsible for generating a Cache Key for every element of data
 that the the given server originates and which the server wishes to
 synchronize with its peers in the SG.

 Originator ID
 This field contains an ID administratively assigned to the server
 which is the originator of CSA Records.

B.2.1 Cache Alignment (CA)

 The Cache Alignment (CA) message allows an LS to synchronize its
 entire cache with that of the cache of its DCSs within a server
 group. The CA message type code is 1. The CA message mandatory part
 format is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CA Sequence Number |
 +-+
 | Mandatory Common Part |
 +-+
 | CSAS Record |
 +-+

 +-+
 | CSAS Record |
 +-+

 CA Sequence Number
 A value which provides a unique identifier to aid in the sequencing
 of the cache alignment process. A "larger" sequence number means a
 more recent CA message. The slave server always copies the
 sequence number from the master server's previous CA message into
 its current CA message which it is sending and the the slave
 acknowledges the master's CA message. Since the initial CA process
 is lock-step, if the slave does not receive the same sequence
 number which it previously received then the information in the

 slave's previous CA message is implicitly acknowledged. Note that
 there is a separate CA Sequence Number space associated with each
 CAFSM.

 Whenever it is necessary to (re)start cache alignment and the CAFSM
 enters the Master/Slave Negotiation state, the CA Sequence Number
 should be set to a value not previously seen by the DCS. One
 possible scheme is to use the machine's time of day counter.

 Mandatory Common Part
 The mandatory common part is described in detail in Section
 B.2.0.1. There are two fields in the mandatory common part whose
 codings are specific to a given message type. These fields are the
 "Number of Records" field and the "Flags" field.

 Number of Records
 The Number of Records field of the mandatory common part for the
 CA message gives the number of CSAS Records appended to the CA
 message mandatory part.

 Flags
 The Flags field of the mandatory common part for the CA message
 has the following format:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |M|I|O| unused |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 M
 This bit is part of the negotiation process for the cache
 alignment. When this bit is set then the sender of the CA
 message is indicating that it wishes to lead the alignment
 process. This bit is the "Master/Slave bit".

 I
 When set, this bit indicates that the sender of the CA message
 believes that it is in a state where it is negotiating for the
 status of master or slave. This bit is the "Initialization
 bit".

 O
 This bit indicates that the sender of the CA message has more
 CSAS records to send. This implies that the cache alignment
 process must continue. This bit is the "mOre bit" despite its
 dubious name.

 All other fields of the mandatory common part are coded as
 described in Section B.2.0.1.

 CSAS record

 The CA message appends CSAS records to the end of its mandatory
 part. These CSAS records are NOT embedded in CSA records. See
 Section B.2.0.2 for details on CSAS records.

B.2.2 Cache State Update Request (CSU Request)

 The Cache State Update Request (CSU Request) message is used to
 update the state of cache entries in servers which are directly
 connected to the server sending the message. A CSU Request message
 is sent from one server (the LS) to directly connected server (the
 DCS) when the LS observes changes in the state of one or more cache
 entries. An LS observes such a change in state by either receiving a
 CSU request which causes an update to the LS's database or by
 observing a change of state of a cached entry originated by the LS.
 The change in state of a cache entry is noted in a CSU message by
 appending a "Cache State Advertisement" (CSA) record to the end of
 the mandatory part of the CSU Request as shown below.

 The CSU Request message type code is 2. The CSU Request message
 mandatory part format is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Mandatory Common Part |
 +-+
 | CSA Record |
 +-+

 +-+
 | CSA Record |
 +-+

 Mandatory Common Part
 The mandatory common part is described in detail in Section
 B.2.0.1. There are two fields in the mandatory common part whose
 codings are specific to a given message type. These fields are the
 "Number of Records" field and the "Flags" field.

 Number of Records
 The Number of Records field of the mandatory common part for the
 CSU Request message gives the number of CSA Records appended to
 the CSU Request message mandatory part.

 Flags
 Currently, there are no flags defined for the Flags field of the
 mandatory common part for the CSU Request message.

 All other fields of the mandatory common part are coded as
 described in Section B.2.0.1.

 CSA Record
 See Section B.2.2.1.

B.2.2.1 Cache State Advertisement Record (CSA record)

 CSA records contain the information necessary to relate the current
 state of a cache entry in an SG to the servers being synchronized.
 CSA records contain a CSAS Record header and a client/server protocol
 specific part. The CSAS Record includes enough information for SCSP
 to look into the client/server database for the appropriate database
 cache entry and then compare the "newness" of the summary against the
 "newness" of the cached entry. If the information contained in the
 CSA is more new than the cached entry of the receiving server then
 the cached entry is updated accordingly with the contents of the CSA
 Record. The client/server protocol specific part of the CSA Record
 is documented separately for each such protocol. Examples of the
 protocol specific parts for NHRP and ATMARP are shown in [8] and [9]
 respectively.

 The amount of information carried by a specific CSA record may exceed
 the size of a link layer PDU. Hence, such CSA records MUST be
 fragmented across a number of CSU Request messages. The method by
 which this is done, is client/server protocol specific and is
 documented in the appropriate protocol specific document.

 The content of a CSA record is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | CSAS Record |
 +-+
 | Client/Server Protocol Specific Part for cache entry ... |
 +-+

 CSAS Record
 See Section B.2.0.2 for rules and format for filling out a CSAS
 Record when it is "embedded" in a CSA Record.

 Client/Server Protocol Specific Part for cache entry
 This field contains the fields which are specific to the protocol
 specific portion of SCSP processing. The particular set of fields
 are defined in separate documents for each protocol user of SCSP.
 The Protocol ID, which identifies which protocol is using SCSP in
 the given packet, is located in the mandatory part of the message.

B.2.3 Cache State Update Reply (CSU Reply)

 The Cache State Update Reply (CSU Reply) message is sent from a DCS
 to an LS to acknowledge one or more CSA records which were received

 in a CSU Request. Reception of a CSA record in a CSU Request is
 acknowledged by including a CSAS record in the CSU Reply which
 corresponds to the CSA record being acknowledged. The CSU Reply
 message is the same in format as the CSU Request message except for
 the following: the type code is 3, only CSAS Records (rather than CSA
 records) are returned, and only those CSAS Records for which CSA
 Records are being acknowledged are returned. This implies that a
 given LS sending a CSU Request may not receive an acknowledgment in a
 single CSU Reply for all the CSA Records included in the CSU Request.

B.2.4 Cache State Update Solicit Message (CSUS message)
 This message allows one server (LS) to solicit the entirety of CSA
 record data stored in the cache of a directly connected server (DCS).
 The DCS responds with CSU Request messages containing the appropriate
 CSA records. The CSUS message type code is 4. The CSUS message
 format is the same as that of the CSU Reply message. CSUS messages
 solicit CSU Requests from only one server (the one identified by the
 Receiver ID in the Mandatory Part of the message).

B.2.5 Hello:

 The Hello message is used to check connectivity between the sending
 server (the LS) and one of its directly connected neighbor servers
 (the DCSs). The Hello message type code is 5. The Hello message
 mandatory part format is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | HelloInterval | DeadFactor |
 +-+
 | unused | Family ID |
 +-+
 | Mandatory Common Part |
 +-+
 | Additional Receiver ID Record |
 +-+

 +-+
 | Additional Receiver ID Record |
 +-+

 HelloInterval
 The hello interval advertises the time between sending of
 consecutive Hello Messages. If the LS does not receive a Hello
 message from the DCS (which contains the LSID as a Receiver ID)
 within the HelloInterval advertised by the DCS then the DCS's Hello
 is considered to be late. Also, the LS MUST send its own Hello
 message to a DCS within the HelloInterval which it advertised to

 the DCS in the LS's previous Hello message to that DCS (otherwise
 the DCS would consider the LS's Hello to be late).

 DeadFactor
 This is a multiplier to the HelloInterval. If an LS does not
 receive a Hello message which contains the LS's LSID as a Receiver
 ID within the interval HelloInterval*DeadFactor from a given DCS,
 which advertised the HelloInterval and DeadFactor in a previous
 Hello message, then the LS MUST consider the DCS to be stalled; at
 this point, one of two things MUST happen: 1) if the LS has
 received any Hello messages from the DCS during this time then the
 LS transitions the corresponding HFSM to the Unidirectional State;
 otherwise, 2) the LS transitions the corresponding HFSM to the
 Waiting State.

 Family ID
 This is an opaque bit string which is used to refer to an aggregate
 of Protocol ID/SGID pairs. Only a single HFSM is run for all
 Protocol ID/SGID pairs assigned to a Family ID. Thus, there is a
 one to many mapping between the single HFSM and the CAFSMs
 corresponding to each of the Protocol ID/SGID pairs. This might
 have the net effect of substantially reducing HFSM maintenance
 traffic. See the protocol specific SCSP documents for further
 details.

 Mandatory Common Part
 The mandatory common part is described in detail in Section
 B.2.0.1. There are two fields in the mandatory common part whose
 codings are specific to a given message type. These fields are the
 "Number of Records" field and the "Flags" field.

 Number of Records
 The Number of Records field of the mandatory common part for the
 Hello message contains the number of "Additional Receiver ID"
 records which are included in the Hello. Additional Receiver ID
 records contain a length field and a Receiver ID field. Note
 that the count in "Number of Records" does NOT include the
 Receiver ID which is included in the Mandatory Common Part.

 Flags
 Currently, there are no flags defined for the Flags field of the
 mandatory common part for the Hello message.

 All other fields of the mandatory common part are coded as
 described in Section B.2.0.1.

 Additional Receiver ID Record
 This record contains a length field followed by a Receiver ID.
 Since it is conceivable that the length of a given Receiver ID may
 vary even within an SG, each additional Receiver ID heard (beyond
 the first one) will have both its length in bytes and value encoded

 in an "Additional Receiver ID Record". Receiver IDs are IDs of a
 DCS from which the LS has heard a recent Hello (i.e., within
 DeadFactor*HelloInterval as advertised by the DCS in a previous
 Hello message).

 The format for this record is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Rec ID Len | Receiver ID |
 +-+

 If the LS has not heard from any DCS then the LS sets the Hello
 message fields as follows: Recvr ID Len is set to zero and no storage
 is allocated for the Receiver ID in the Common Mandatory Part,
 "Number of Records" is set to zero, and no storage is allocated for
 "Additional Receiver ID Records".

 If the LS has heard from exactly one DCS then the LS sets the Hello
 message fields as follows: the Receiver ID of the DCS which was heard
 and the length of that Receiver ID are encoded in the Common
 Mandatory Part, "Number of Records" is set to zero, and no storage is
 allocated for "Additional Receiver ID Records".

 If the LS has heard from two or more DCSs then the LS sets the Hello
 message fields as follows: the Receiver ID of the first DCS which was
 heard and the length of that Receiver ID are encoded in the Common
 Mandatory Part, "Number of Records" is set to the number of
 "Additional" DCSs heard, and for each additional DCS an "Additional
 Receiver ID Record" is formed and appended to the end of the Hello
 message.

B.3 Extensions Part

 The Extensions Part, if present, carries one or more extensions in
 {Type, Length, Value} triplets.

 Extensions have the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type | Length |
 +-+
 | Value... |
 +-+

 Type
 The extension type code (see below).

 Length
 The length in octets of the value (not including the Type and
 Length fields; a null extension will have only an extension header
 and a length of zero).

 When extensions exist, the extensions part is terminated by the End
 of Extensions extension, having Type = 0 and Length = 0.

 Extensions may occur in any order but any particular extension type
 may occur only once in an SCSP packet. An LS MUST NOT change the
 order of extensions.

B.3.0 The End Of Extensions

 Type = 0
 Length = 0

 When extensions exist, the extensions part is terminated by the End
 Of Extensions extension.

B.3.1 SCSP Authentication Extension

 Type = 1 Length = variable

 The SCSP Authentication Extension is carried in SCSP packets to
 convey the authentication information between an LS and a DCS in the
 same SG.

 Authentication is done pairwise on an LS to DCS basis; i.e., the
 authentication extension is generated at each LS. If a received
 packet fails the authentication test then an "abnormal event" has
 occurred. The packet is discarded and this event is logged.

 The presence or absence of authentication is a local matter.

B.3.1.1 Header Format

 The authentication header has the following format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Security Parameter Index (SPI) |
 +-+
 | |
 +-+-+-+-+-+-+-+-+-+-+ Authentication Data... -+-+-+-+-+-+-+-+-+-+
 | |
 +-+

 Security Parameter Index (SPI) can be thought of as an index into a
 table that maintains the keys and other information such as hash
 algorithm. LS and DCS communicate either off-line using manual keying
 or online using a key management protocol to populate this table. The
 receiving SCSP entity always allocates the SPI and the parameters
 associated with it.

 The authentication data field contains the MAC (Message
 Authentication Code) calculated over the entire SCSP payload. The
 length of this field is dependent on the hash algorithm used to
 calculate the MAC.

B.3.1.2 Supported Hash Algorithms

 The default hash algorithm to be supported is HMAC-MD5-128 [11]. HMAC
 is safer than normal keyed hashes. Other hash algorithms MAY be
 supported by def.

 IANA will assign the numbers to identify the algorithm being used as
 described in Section C.

B.3.1.3 SPI and Security Parameters Negotiation

 SPI's can be negotiated either manually or using an Internet Key
 Management protocol. Manual keying MUST be supported. The following
 parameters are associated with the tuple <SPI, DCS ID>- lifetime,
 Algorithm, Key. Lifetime indicates the duration in seconds for which
 the key is valid. In case of manual keying, this duration can be
 infinite. Also, in order to better support manual keying, there may
 be multiple tuples active at the same time (DCS ID being the same).

 Any Internet standard key management protocol MAY be used to
 negotiate the SPI and parameters.

B.3.1.4 Message Processing

 At the time of adding the authentication extension header, LS looks
 up in a table to fetch the SPI and the security parameters based on
 the DCS ID. If there are no entries in the table and if there is
 support for key management, the LS initiates the key management
 protocol to fetch the necessary parameters. The LS then calculates
 the hash by zeroing authentication data field before calculating the
 MAC on the sending end. The result replaces in the zeroed
 authentication data field. If key management is not supported and
 authentication is mandatory, the packet is dropped and this
 information is logged.

 When receiving traffic, an LS fetches the parameters based on the SPI
 and its ID. The authentication data field is extracted before zeroing

 out to calculate the hash. It computes the hash on the entire payload
 and if the hash does not match, then an "abnormal event" has
 occurred.

B.3.1.5 Security Considerations

 It is important that the keys chosen are strong as the security of
 the entire system depends on the keys being chosen properly and the
 correct implementation of the algorithms.

 SCSP has a peer to peer trust model. It is recommended to use an
 Internet standard key management protocol to negotiate the keys
 between the neighbors. Transmitting the keys in clear text, if other
 methods of negotiation is used, compromises the security completely.

 Data integrity covers the entire SCSP payload. This guarantees that
 the message was not modified and the source is authenticated as well.
 If authentication extension is not used or if the security is
 compromised, then SCSP servers are liable to both spoofing attacks,
 active attacks and passive attacks.

 There is no mechanism to encrypt the messages. It is assumed that a
 standard layer 3 confidentiality mechanism will be used to encrypt
 and decrypt messages. As integrity is calculated on an SCSP message
 and not on each record, there is an implied trust between all the
 servers in a domain. It is recommend to use the security extension
 between all the servers in a domain and not just a subset servers.

B.3.2 SCSP Vendor-Private Extension

 Type = 2
 Length = variable

 The SCSP Vendor-Private Extension is carried in SCSP packets to
 convey vendor-private information between an LS and a DCS in the same
 SG and is thus of limited use. If a finer granularity (e.g., CSA
 record level) is desired then then given client/server protocol
 specific SCSP document MUST define such a mechanism. Obviously,
 however, such a protocol specific mechanism might look exactly like
 this extension. The Vendor Private Extension MAY NOT appear more
 than once in an SCSP packet for a given Vendor ID value.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Vendor ID | Data.... |
 +-+

 Vendor ID
 802 Vendor ID as assigned by the IEEE [7].

 Data

 The remaining octets after the Vendor ID in the payload are
 vendor-dependent data.

 If the receiver does not handle this extension, or does not match the
 Vendor ID in the extension then the extension may be completely
 ignored by the receiver.

C. IANA Considerations
 IANA will take advice from James Luciani (see author information
 below for contact information), who is the Area Director appointed
 designated subject matter expert, in order to assign numbers from the
 various number spaces described herein. In the event that the Area
 Director appointed designated subject matter expert is unavailable,
 the relevant IESG Area Director will appoint another expert. Any and
 all requests for value assignment within a given number space will be
 accepted when the usage of the value assignment documented. Possible
 forms of documentantion include, but is not limited to, RFCs or the
 product of another cooperative standards body (e.g., the MPOA and
 LANE subworking group of the ATM Forum).

References

[1] "Classical IP and ARP over ATM", Laubach, RFC 1577.

[2] "NBMA Next Hop Resolution Protocol (NHRP)", Luciani, Katz, Piscitello,
 Cole, draft-ietf-rolc-nhrp-12.txt.

[3] "OSPF Version 2", Moy, RFC1583.

[4] "P-NNI V1", Dykeman, Goguen, 1996.

[5] "Support for Multicast over UNI 3.0/3.1 based ATM Networks.",
 Armitage, RFC2022.

[6] "LAN Emulation over ATM Version 2 - LNNI specification", Keene,
 btd-lane-lnni-02.08.

[7] "Assigned Numbers", Reynolds, Postel, RFC 1700.

[8] "A Distributed NHRP Service Using SCSP", Luciani,
draft-ietf-ion-scsp-nhrp-02.txt.

[9] "A Distributed ATMARP Service Using SCSP", Luciani,
 Work In Progress.

[10] "Key words for use in RFCs to Indicate Requirement Levels",
 S. Bradner, RFC 2119.

[11] "HMAC: Keyed Hashing for Message Authentication", Krawczyk, Bellare,

https://datatracker.ietf.org/doc/html/rfc1577
https://datatracker.ietf.org/doc/html/draft-ietf-rolc-nhrp-12.txt
https://datatracker.ietf.org/doc/html/rfc1583
https://datatracker.ietf.org/doc/html/rfc2022
https://datatracker.ietf.org/doc/html/rfc1700
https://datatracker.ietf.org/doc/html/draft-ietf-ion-scsp-nhrp-02.txt
https://datatracker.ietf.org/doc/html/rfc2119

 Canetti, RFC 2104.

Acknowledgments

 This I-D is a distillation of issues raised during private
 discussions, on the IP-ATM mailing list, and during the Dallas IETF
 (12/95). Thanks to all who have contributed but particular thanks to
 following people (in no particular order): Barbara Fox of Harris and
 Jeffries; Colin Verrilli of IBM; Raj Nair, and Matthew Doar of Ascom
 Nexion; Andy Malis of Cascade; Andre Fredette of Bay Networks; James
 Watt of Newbridge; and Carl Marcinik of Fore.

Author's Address

 James V. Luciani
 Bay Networks, Inc.
 3 Federal Street, BL3-03
 Billerica, MA 01821
 phone: +1-978-916-4734
 email: luciani@baynetworks.com

 Grenville Armitage
 Bell Labs Lucent Technologies
 101 Crawfords Corner Road
 Holmdel, NJ 07733
 Email: gja@lucent.com
 Ph. +1 201 829 2635

 Joel M. Halpern
 Newbridge Networks Corp.
 593 Herndon Parkway
 Herndon, VA 22070-5241
 Phone: +1-703-708-5954
 Email: jhalpern@Newbridge.COM

 Naganand Doraswamy
 Bay Networks, Inc.
 3 Federal St, BL3-03
 Billerice, MA 01821
 phone: +1-978-916-1323
 Email: naganand@baynetworks.com

https://datatracker.ietf.org/doc/html/rfc2104

