IPFIX Working Group
Internet-Draft
Intended status Standards Tree

Intended status: Standards Track

Expires: December 7, 2012

B. Claise
Cisco Systems, Inc.
A. Kobayashi
NTT
B. Trammell
ETH Zurich
June 5, 2012

Operation of the IP Flow Information Export (IPFIX) Protocol on IPFIX Mediators draft-ietf-ipfix-mediation-protocol-01.txt

Abstract

This document specifies the the operation of the IP Flow Information Export (IPFIX) protocol specific to IPFIX Mediators, including Template and Observation Point management, timing considerations, and other Mediator-specific concerns.

Status of this Memo

This Internet-Draft is submitted in full conformance with the provisions of \underline{BCP} 78 and \underline{BCP} 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on December 7, 2012.

Copyright Notice

Copyright (c) 2012 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to $\underline{\mathsf{BCP}\ 78}$ and the IETF Trust's Legal Provisions Relating to IETF Documents

(http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must

Internet-Draft IPFIX MED-PROTO June 2012

include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.

Table of Contents

$\underline{1}$. Introduction	. <u>3</u>
<u>1.1</u> . IPFIX Documents Overview	<u>3</u>
1.2. IPFIX Mediator Documents Overview	_
1.3. Relationship with IPFIX and PSAMP	<u>5</u>
<u>2</u> . Terminology	. <u>5</u>
3. Handling IPFIX Message Headers	<u>8</u>
$\underline{4}$. Template Management	<u>10</u>
4.1 . Passing Unmodified Templates through a Mediator \dots	<u> 10</u>
4.2. Creating New Templates at a Mediator	<u>14</u>
4.3. Information Element Ordering within Templates	<u>15</u>
4.4. Handling Unknown Information Elements	<u> 15</u>
5. Preserving Original Observation Point Information	<u>15</u>
<u>5.1</u> . originalExporterIPv4Address Information Element	<u> 17</u>
<u>5.2</u> . originalExporterIPv6Address Information Element	<u> 17</u>
6. Managing Observation Domain IDs	<u> 18</u>
$\underline{6.1}$. originalObservationDomainId Information Element	<u> 18</u>
7. Timing Considerations	<u> 19</u>
8. Transport Considerations	<u>20</u>
$\underline{9}$. Collecting Process Considerations	<u>20</u>
10. Specific Reporting Requirements	<u>20</u>
<u>10.1</u> . Protocol Statistics Options Templates	<u>21</u>
<u>10.2</u> . Flow Key Options Template	<u>22</u>
11. Configuration Management	<u>22</u>
12. Security Considerations	<u>23</u>
13. IANA Considerations	<u>23</u>
14. Acknowledgments	<u>24</u>
<u>15</u> . References	<u>24</u>
<u>15.1</u> . Normative References	<u>24</u>
<u>15.2</u> . Informative References	<u>25</u>
Authors' Addresses	<u> 26</u>

Claise, et al. Expires December 7, 2012 [Page 2]

1. Introduction

The IPFIX architectural components in [RFC5470] consist of IPFIX Devices and IPFIX Collectors communicating using the IPFIX protocol [I-D.ietf-ipfix-protocol-rfc5101bis], which specifies how to export IP Flow information. This protocol is designed to export information about IP traffic Flows and related measurement data, where a Flow is defined by a set of key attributes (e.g. source and destination IP address, source and destination port, etc.).

However, thanks to its Template mechanism, the IPFIX protocol can export any type of information, as long as the relevant Information Element is specified in the IPFIX Information Model [I-D.ietf-ipfix-information-model-rfc5102bis], registered with IANA, or specified as an enterprise-specific Information Element. The specifications in the IPFIX protocol [I-D.ietf-ipfix-protocol-rfc5101bis] have not been defined in the context of an IPFIX Mediator receiving, aggregating, correlating, anonymizing, etc... Flow Records from the one or multiple Exporters. Indeed, the IPFIX protocol must be adapted for Intermediate Processes, as defined in the IPFIX Mediation Reference Model as specified in Figure A of [RFC6183], which is based on the IPFIX Mediation Problem Statement [RFC5982].

This document specifies the IP Flow Information Export (IPFIX) protocol in the context of the implementation and deployment of IPFIX Mediators. The use of the IPFIX protocol within a Mediator -- a device which contains both as a Collecting Process and an Exporting Process -- has an impact on the technical details of the usage of the protocol. An overview of the technical problem is covered in section6 of [RFC5982]: loss of original exporter information, loss of base time information, transport sessions management, loss of Options Template Information, Template Id management, considerations for network considerations for aggregation.

The specifications in this document are based on the IPFIX protocol specifications [$\underline{\text{I-D.ietf-ipfix-protocol-rfc5101bis}}$] but adapted according to the IPFIX Mediation Framework [$\underline{\text{RFC6183}}$].

1.1. IPFIX Documents Overview

The IPFIX Protocol $[\underline{\text{I-D.ietf-ipfix-protocol-rfc5101bis}}]$ provides network administrators with access to IP Flow information.

The architecture for the export of measured IP Flow information out of an IPFIX Exporting Process to a Collecting Process is defined in the IPFIX Architecture [RFC5470], per the requirements defined in the IPFIX Requirement doc, [RFC3917].

Claise, et al. Expires December 7, 2012 [Page 3]

The IPFIX Architecture [RFC5470] specifies how IPFIX Data Records and Templates are carried via a congestion-aware transport protocol from IPFIX Exporting Processes to IPFIX Collecting Processes.

IPFIX has a formal description of IPFIX Information Elements, their name, type and additional semantic information, as specified in the IPFIX Information Model

[I-D.ietf-ipfix-information-model-rfc5102bis].

The IPFIX Applicability Statement [RFC5472] describes what type of applications can use the IPFIX protocol and how they can use the information provided. It furthermore shows how the IPFIX framework relates to other architectures and frameworks.

"IPFIX Mediation: Problem Statement" [RFC5982], describing the IPFIX Mediation applicability examples, along with some problems that network administrators have been facing, is the basis for the "IPFIX Mediation: Framework" [RFC6183]. This framework details the IPFIX Mediation reference model and the components of an IPFIX Mediator.

1.2. IPFIX Mediator Documents Overview

The "IPFIX Mediation: Problem Statement" [RFC5982] provides an overview of the applicability of Mediators, and defines requirements for Mediators in general terms. This document is of use largely to define the problems to be solved through the deployment of IPFIX Mediators, and to provide scope to the role of Mediators within an IPFIX collection infrastructure.

The "IPFIX Mediation: Framework" [RFC6183] provides more architectural details of the arrangement of Intermediate Processes within a Mediator.

The details of specific Intermediate Processes, when these have additional export specifications (e.g., metadata about the intermediate processing conveyed through IPFIX Options Templates), are each treated in their own document (e.g., the "IP Flow Anonymization Support" [RFC6235]). Documents specifying the operations of specific Intermediate Processes cover the operation of these Processes within the Mediator framework, and comply with the specifications given in this document; they may additionally specify the operation of the process independently, outside the context of a Mediator, when this is appropriate. As of today, these documents are:

 "IP Flow Anonymization Support", [RFC6235], which describes Anonymization techniques for IP flow data and the export of Anonymized data using the IPFIX protocol.

Claise, et al. Expires December 7, 2012 [Page 4]

- "Flow Selection Techniques" [I-D.ietf-ipfix-flow-selection-tech],
 which describes the process of selecting a subset of flows from
 all flows observed at an observation point, the flow selection
 motivations, and some specific flow selection techniques.
- 3. "Exporting Aggregated Flow Data using IP Flow Information Export" [I-D.ietf-ipfix-a9n] which describes Aggregated Flow export within the framework of IPFIX Mediators and defines an interoperable, implementation-independent method for Aggregated Flow export.

This document specifies the IP Flow Information Export (IPFIX) protocol specific to Mediation, i.e. the specifications that all Intermediate Processes type must comply to. Some extra specifications might be required per Intermediate Process type (In which case, the Intermediate Process specific document would cover those).

1.3. Relationship with IPFIX and PSAMP

The specification in this document applies to the IPFIX protocol specifications $[\underline{I-D.ietf-ipfix-protocol-rfc5101bis}]$. All specifications from $[\underline{I-D.ietf-ipfix-protocol-rfc5101bis}]$ apply unless specified otherwise in this document.

As the Packet Sampling (PSAMP) protocol specifications [RFC5476] are based on the IPFIX protocol specifications, the specifications in this document are also valid for the PSAMP protocol. Therefore, the method specified by this document also applies to PSAMP.

Terminology

[EDITOR'S NOTE: change to only define terms in this section that are actually used in the document.]

[EDITOR'S NOTE: Definition change proposal for the Intermediate Process, Intermediate Conversion Process, Intermediate Selection Process, Intermediate Anonymization Process, and IPFIX Mediator. See http://www.ietf.org/mail-archive/web/ipfix/current/msg05969.html. However, the definitions are copied over verbatim from https://www.ietf.org/mail-archive/web/ipfix/current/msg05969.html. Also note that Intermediate Anonymization Process in this document is not in line with the RFC6183. Also

IPFIX-specific terms, such as Observation Domain, Flow, Flow Key, Metering Process, Exporting Process, Exporter, IPFIX Device, Collecting Process, Collector, Template, IPFIX Message, Message Header, Template Record, Data Record, Options Template Record, Set,

Claise, et al. Expires December 7, 2012 [Page 5]

Data Set, Information Element, and Transport Session, used in this document are defined in [I-D.ietf-ipfix-protocol-rfc5101bis]. The PSAMP-specific terms used in this document, such as Filtering and Sampling, are defined in [RFC5476].

IPFIX Mediation terms related to aggregation, such as the Interval, Aggregated Flow, and Aggregated Function are defined in [I-D.ietf-ipfix-a9n].

The IPFIX Mediation-specific terminology used in this document is defined in "IPFIX Mediation: Problem Statement" [RFC5982], and reused in "IPFIX Mediation: Framework" [RFC6183]. However, since both of those documents are an informational RFCs, the definitions have been reproduced here along with additional definitions.

Similarly, since [RFC6235] is an experimental RFC, the Anonymization Record, Anonymized Data Record, and Intermediate Anonymization Process terms, specified in [RFC6235], are also reproduced here.

In this document, as in [I-D.ietf-ipfix-protocol-rfc5101bis], [RFC5476], [I-D.ietf-ipfix-a9n], and [RFC6235], the first letter of each IPFIX-specific and PSAMP-specific term is capitalized along with the IPFIX Mediation-specific term defined here. In this document, we call a stream of records carrying flow- or packet-based information a "record stream". The records may be encoded as IPFIX Data Records of any other format.

Transport Session Information: The Transport Session is specified in [I-D.ietf-ipfix-protocol-rfc5101bis]. In SCTP, the Transport Session Information is the SCTP association. In TCP and UDP, the Transport Session Information corresponds to a 5-tuple {Exporter IP address, Collector IP address, Exporter transport port, Collector transport port, transport protocol}.

Original Exporter: An Original Exporter is an IPFIX Device that hosts the Observation Points where the metered IP packets are observed.

Original Observation Point: An Observation Point of the Original Exporter. In the case of the Intermediate Aggregation Process on an IPFIX Mediator, the Original Observation Point can be composed of, but not limited to, a (set of) specific exporter(s), a (set of) specific interface(s) on an Exporter, a (set of) line card(s) on an Exporter, or any combinations of these.

Claise, et al. Expires December 7, 2012 [Page 6]

IPFIX Mediation: IPFIX Mediation is the manipulation and conversion of a record stream for subsequent export using the IPFIX protocol.

Template Mapping: A mapping from Template Records and/or Options
Template Records received by a Mediator to Template Records and/or
Options Template Records sent by that IPFIX Mediator. Each entry
in a Template Mapping is scoped by incoming or outgoing Transport
Session and Observation Domain, as with Templates and Options
Templates in the IPFIX Protocol.

Anonymization Record: A record that defines the properties of the anonymization applied to a single Information Element within a single Template or Options Template, as in [RFC6235].

Anonymized Data Record: A Data Record within a Data Set containing at least one Information Element with Anonymized values. The Information Element(s) within the Template or Options Template describing this Data Record SHOULD have a corresponding Anonymization Record, as in [RFC6235].

The following terms are used in this document to describe the architectural entities used by IPFIX Mediation.

Intermediate Process: An Intermediate Process takes a record stream as its input from Collecting Processes, Metering Processes, IPFIX File Readers, other Intermediate Processes, or other record sources; performs some transformations on this stream, based upon the content of each record, states maintained across multiple records, or other data sources; and passes the transformed record stream as its output to Exporting Processes, IPFIX File Writers, or other Intermediate Processes, in order to perform IPFIX Mediation. Typically, an Intermediate Process is hosted by an IPFIX Mediator. Alternatively, an Intermediate Process may be hosted by an Original Exporter.

IPFIX Mediator: An IPFIX Mediator is an IPFIX Device that provides IPFIX Mediation by receiving a record stream from some data sources, hosting one or more Intermediate Processes to transform that stream, and exporting the transformed record stream into IPFIX Messages via an Exporting Process. In the common case, an IPFIX Mediator receives a record stream from a Collecting Process, but it could also receive a record stream from data sources not encoded using IPFIX, e.g., in the case of conversion from the NetFlow V9 protocol [RFC3954] to IPFIX protocol.

Specific Intermediate Processes are described below. However, this is not an exhaustive list.

Claise, et al. Expires December 7, 2012 [Page 7]

- Intermediate Conversion Process: An Intermediate Conversion Process is an Intermediate Process that transforms non-IPFIX into IPFIX, or manages the relation among Templates and states of incoming/outgoing Transport Sessions (or equivalent for non IPFIX protocols) in the case of transport protocol conversion (e.g., from UDP to SCTP).
- Intermediate Aggregation Process: An Intermediate Aggregation Process is an Intermediate Process that aggregates records based upon a set of Flow Keys or functions applied to fields from the record (e.g., binning and subnet aggregation).
- Intermediate Correlation Process: An Intermediate Correlation Process is an Intermediate Process that adds information to records, noting correlations among them, or generates new records with correlated data from multiple records (e.g., the production of bidirectional flow records from unidirectional flow records).
- Intermediate Selection Process: An Intermediate Selection Process is an Intermediate Process that selects records from a sequence based upon criteria-evaluated record values and passes only those records that match the criteria (e.g., Filtering only records from a given network to a given Collector).
- Intermediate Anonymization Process: An Intermediate Anonymization Process is an Intermediate Process that transforms records in order to anonymize them, to protect the identity of the entities described by the records (e.g., by applying prefix-preserving pseudonymization of IP addresses).

3. Handling IPFIX Message Headers

The format of the IPFIX Message Header as exported by an IPFIX Mediator is shown in Figure 1. Note that the format is compatible with the IPFIX Message Header defined in [I-D.ietf-ipfix-protocol-rfc5101bis], with some field definitions (for the example, the Export Time) updated in the context of the IPFIX Mediator.

Claise, et al. Expires December 7, 2012 [Page 8]

Θ	1		2		3		
0 1 2 3	4 5 6 7 8 9 0 1	2 3 4 5 6 7 8	9 0 1 2 3	4 5 6 7 8	9 0 1		
+-+-+-+	-+-+-+-+-+-+-+	-+-+-+-+-+-	+-+-+-+-+	-+-+-+-	+-+-+		
	Version	1	Leng	th			
+-							
Export Time							
+-							
Sequence Number							
+-							
Observation Domain ID							
+-							

Figure 1: IP Message Header format

The header fields as exported by an IPFIX Mediator are describe below.

Version: Version of Flow Record format exported in this message. The value of this field is 0×0000 a for the current version, incrementing by one the version used in the NetFlow services export version 9 [RFC3954].

Length: Total length of the IPFIX Message, measured in octets, including Message Header and Set(s).

Export Time: Time at which the IPFIX Message Header leaves the Mediator, expressed in seconds since the UNIX epoch of 1 January 1970 at 00:00 UTC, encoded as an unsigned 32-bit integer. [EDITOR'S NOTE: change to be consistent with Timing Considerations below]

Sequence Number: Incremental sequence counter modulo 2^32 of all IPFIX Data Records sent on this PR-SCTP stream from the current Observation Domain by the Exporting Process. Check the specific meaning of this field in the sub-sections of section 10 when UDP or TCP is selected as the transport protocol. This value SHOULD be used by the Collecting Process to identify whether any IPFIX Data Records have been missed. Template and Options Template Records do not increase the Sequence Number. [EDITOR'S NOTE: change here and in 5101bis to handle multiple transports natively.]

Observation Domain ID: A 32-bit identifier of the Observation Domain that is locally unique to the Exporting Process. The Exporting Process uses the Observation Domain ID to uniquely identify to the Collecting Process the Observation Domain that metered the Flows. It is RECOMMENDED that this identifier is also unique per IPFIX Device. Collecting Processes SHOULD use the

Claise, et al. Expires December 7, 2012 [Page 9]

Transport Session and the Observation Domain ID field to separate different export streams originating from the same Exporting Process. The Observation Domain ID SHOULD be 0 when no specific Observation Domain ID is relevant for the entire IPFIX Message. For example, when exporting the Exporting Process Statistics, or in case of hierarchy of Collector when aggregated Data Records are exported. [EDITOR'S NOTE: make consistent with Observation Domain Management as discussed below]

4. Template Management

[EDITOR'S NOTE: verify this section is consistent with 5101bis, after simplified template management converges.]

How a Mediator handles the Templates it receives from the Original Exporter depends entirely on the nature of the Intermediate Process running on that Mediator. For Mediators which pass substantially the same Data Records from the Original Exporter downstream, (e.g., an Intermediate Selection Process), the templates can be passed unmodified as described in Section 4.1; this section describes a Template Mapping required to make this work in the general case. Mediators which export Data Records which are substantially changed from the Data Records received from the Original Exporter follow the guidelines in Section 4.1 instead.

Subsequent subsections deal with specific issues in Template management that may occur at Mediators.

4.1. Passing Unmodified Templates through a Mediator

[EDITOR'S NOTE: the definition of template mappings seems really implementation specific -- why not notionally just map IDs on each socket to a base template? on the other hand, if we're providing a real example, it should have concrete content in each field. reformatting is held off until this issue is resolved.]

The first case is a situation where the IPFIX Mediator doesn't modify the (Options) Template Record(s) content. A typical example is an Intermediate Selection Process acting as distributor, which collects Flow Records from one or more Exporters, and based on the Information Elements content, redirects the Flow Records to the appropriate Collector. This example is a typical case of a single network operation center managing multiple universities: an unique IPFIX Collector collects all Flow Records for the common infrastructure, but might be re-exporting specific university Flow Records to the responsible system administrator.

Claise, et al. Expires December 7, 2012 [Page 10]

As specified in [I-D.ietf-ipfix-protocol-rfc5101bis], the Template IDs are unique per Exporter, per Transport Session, and per Observation Domain. As there is no guarantee that, for similar Template Records, the Template IDs received on the incoming Transport Session and exported to the outgoing Transport Session would be same, the IPFIX Mediator MUST maintain a Template Mapping composed of related received and exported (Options) Template Records:

- o for each received (Options) Template Record: Template Record Flow Keys and non Flow Keys, Template ID, Observation Domain Id, and Transport Session Information
- o for each exported (Options) Template Record: Template Record Flow Keys and non Flow Keys, Template ID, Collector, Observation Domain Id, and Transport Session Information

If an IPFIX Mediator receives an IPFIX Withdrawal Message for a (Options) Template Record that is not used anymore in any other Template Mappings, the IPFIX Mediator SHOULD export the appropriate IPFIX Withdrawal Message(s) on the outgoing Transport Session, and remove the corresponding entry in the Template Mapping.

If a (Options) Template Record is not used anymore in an outgoing Transport Session, it MUST be withdrawn with an IPFIX Template Withdrawal Message on that specific outgoing Transport Session, and its entry MUST be removed from the Template Mapping.

If an incoming or outgoing Transport Session is gracefully shutdown or reset, the (Options) Template Records corresponding to that Transport Session MUST be removed from the Template Mapping.

For example, Figure 2 displays an example of an Intermediate Selection Process, re-distributing Data Records to Collectors on the basis of customer networks, i.e. the Route Distinguisher (RD). In this example, the Template Record received from the Exporter #1 is reused towards Collector #1, Collector #2, and Collector #3.

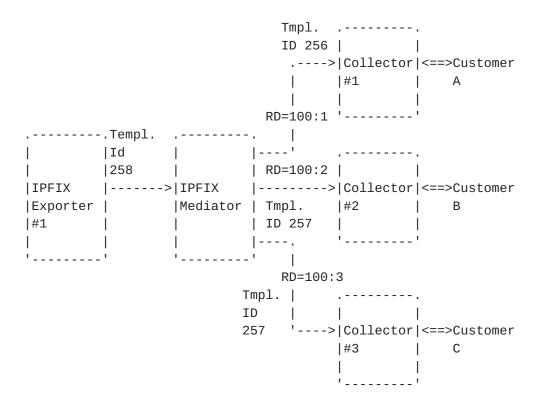


Figure 2: Intermediate Selection Process example

Figure 3 shows the Template Mapping for the system shown in Figure 2.

```
Template Entry A:
Incoming Transport Session Information (from Exporter#1):
  Source IP: <Exporter#1 export IP address>
  Destination IP: <IPFIX Mediator IP address>
  Protocol: SCTP
  Source Port: <source port>
  Destination Port: 4739 (IPFIX)
Observation Domain Id: <Observation Domain ID>
Template Id: 258
Flow Keys: <series of Flow Keys>
Non Flow Keys: <series of non Flow Keys>
Template Entry B:
Outgoing Transport Session Information (to Collector#1):
  Source IP: <IPFIX Mediator IP address>
  Destination IP: <IPFIX Collector#1 IP address>
 Protocol: SCTP
 Source Port: <source port>
  Destination Port: 4739 (IPFIX)
Observation Domain Id: <Observation Domain ID>
Template Id: 256
Flow Keys: <series of Flow Keys>
Non Flow Keys: <series of non Flow Keys>
Template Entry C:
Outgoing Transport Session Information (to Collector#2):
  Source IP: <IPFIX Mediator IP address>
  Destination IP: <IPFIX Collector#2 IP address>
 Protocol: SCTP
 Source Port: <source port>
  Destination Port: 4739 (IPFIX)
Observation Domain Id: <Observation Domain ID>
Template Id: 257
Flow Keys: <series of Flow Keys>
Non Flow Keys: <series of non Flow Keys>
Template Entry D:
Outgoing Transport Session Information (to Collector#3):
  Source IP: <IPFIX Mediator IP address>
  Destination IP: <IPFIX Collector#3 IP address>
 Protocol: SCTP
  Source Port: <source port>
  Destination Port: 4739 (IPFIX)
Observation Domain Id: <Observation Domain ID>
  Template Id: 257
Flow Keys: <series of Flow Keys>
Non Flow Keys: <series of non Flow Keys>
```

Claise, et al. Expires December 7, 2012 [Page 13]

Internet-Draft IPFIX MED-PROTO June 2012

Figure 3: Template Mapping example: templates

The Template Mapping corresponding to figure B can be displayed as:

```
Template Entry A <----> Template Entry B
Template Entry A <----> Template Entry C
Template Entry A <----> Template Entry D
```

Template Mapping example: mappings

Alternatively, the Template Mapping may be optimized as:

```
+--> Template Entry B

|
Template Entry A <--+--> Template Entry C

|
+--> Template Entry D
```

Template Mapping example: mappings

Note that all examples use Transport Sessions based on the SCTP protocol, as simplified use cases. However, the protocol would be important in situations such as an Intermediate Conversion Process doing transport protocol conversion.

4.2. Creating New Templates at a Mediator

The second case is a situation where the IPFIX Mediator generates new (Options) Template Records as a result of the Intermediate Process.

In this situation, the IPFIX Mediator doesn't need to maintain a Template Mapping, as it generates its own series of (Options)
Template Records. However, the following special case might still require a Template Mapping, i.e. a situation where the IPFIX Mediator, typically containing an Intermediate Conversion Process, Intermediate Aggregation Process [I-D.ietf-ipfix-a9n], or Intermediate Anonymization Process in case of black-marker Anonymization [RFC6235], generates new (Options) Template Records based on what it receives from the Exporter(s), and based on the Intermediate Process function. In such a case, it's important to keep the correlation between the received (Options) Template Records and exported Derived (Options) Template Records in the Template Mapping. These template mappings would be kept as in Section 4.1, except that the export template would not be identical to the collection template.

Claise, et al. Expires December 7, 2012 [Page 14]

4.3. Information Element Ordering within Templates

[EDITOR'S NOTE: address the following: What Paul Aikten would like to see in section 3.5 (See http://www.ietf.org/mail-archive/web/ipfix/current/msg05969.html): What about IE ordering? May an exporter re-order received fields? eg, two devices sending the same information, though with the fields in a different order. Or the mediator is extracting the same information from two sources. That seems to be a valid scenario. eg, this reduces the number of templates received at the collector.]

4.4. Handling Unknown Information Elements

[EDITOR'S NOTE: also from Paul Aitken: What should a mediator do with a field which it doesn't know/understand? Inevitably, exporters will be updated without mediators keeping in step. It's also very likely that mediators will see Enterprise-specific IEs. May a mediator reexport unknown IEs unchanged, or should it drop them? Presumably a mediator may report received Enterprise-specific IEs even from multiple different Enterprises. What if an unknown field depends on the field ordering? eg, it's a bitfield like flowKeyIndicator. Reordering, adding or removing fields breaks the meaning of this field, so it can't be passed on. It can only be used if the received fields are reported unchanged.]

5. Preserving Original Observation Point Information

[EDITOR'S NOTE: Decide whether we want to address export of observation point information without 6313. Review this section to make sure it adequately explains how original Observation Point information can get so complicated.]

Depending on the use case, the Collector in an Exporter - Mediator - Collector structure may need to receive information about the Original Observation Point(s), otherwise it may wrongly conclude that the IPFIX Device exporting the Flow Records, i.e. the IPFIX Mediator, directly observed the packets that generated the Flow Records. Two new Information Elements are introduced in the subsections below to address this use case: originalExporterIPv4Address and originalExporterIPv6Address. Practically, the Original Exporters will not exporting these Information Elements. Therefore, the Intermediate Process SHOULD report the Original Observation Point(s) to the best of its knowledge. Note that the Configuration Data Model for IPFIX and PSAMP [I-D.ietf-ipfix-configuration-model] may help.

In the IPFIX Mediator, the Observation Point(s) may be represented by:

Claise, et al. Expires December 7, 2012 [Page 15]

- A single Original Exporter (represented by the originalExporterIPv4Address or originalExporterIPv6Address Information Elements)
- o A list of Original Exporters (represented by the originalExporterIPv4Address or originalExporterIPv6Address Information Elements).
- o Any combination or list of Information Elements representing Observation Points. For example:
 - * A list of Original Exporter interface(s) (represented by the originalExporterIPv4Address or originalExporterIPv6Address, the ingressInterface and/or egressInterface Information Elements, respectively)
 - * A list of Original Exporter line card (represented by the originalExporterIPv4Address or originalExporterIPv6Address, the lineCardId Information Elements, respectively)

Some Information Elements characterizing the Observation Point may be added. For example, the flowDirection Information Element specifies the direction of the observation, and, as such, characterizes the Observation Point.

Any combination of the above representations is possible. For example, in case of an Intermediate Aggregation Process, an Original Observation Point could be composed of:

```
exporterIPv4Address 192.0.2.1
exporterIPv4Address 192.0.2.2,
  interface ethernet 0, direction ingress
  interface ethernet 1, direction ingress
  interface serial 1, direction egress
  interface serial 2, direction egress
exporterIPv4Address 192.0.2.3,
  lineCardId 1, direction ingress
```

Figure 4: Complex Observation Point Definition Example

If the Original Observation Point is composed of a list, then the IPFIX Structured Data $[\mbox{RFC6313}]$ MUST be used to export it from the IPFIX Mediator.

The most generic way to export the Original Observation Point is to use a subTemplateMultiList, with the semantic "exactlyOneOf". Taking the previous example, the following encoding can be used:

Claise, et al. Expires December 7, 2012 [Page 16]

Template Record 257: exporterIPv4Address
Template Record 258: exporterIPv4Address,

basicList of ingressInterface, flowDirection

Template Record 259: exporterIPv4Address, lineCardId, flowDirection

Figure 5: Complex Observation Point Definition Example: Templates

The Original Observation Point is modeled with the Data Records corresponding to either Template Record 1, Template Record 2, or Template Record 3 but not more than one of these ("exactlyOneOf" semantic). This implies that the Flow was observed at exactly one of the Observation Points reported.

When an IPFIX Mediator receives Flow Records containing the Original Observation Point Information Element, i.e. originalExporterIPv6Address or originalExporterIPv4Address, the IPFIX Mediator SHOULD NOT modify its value(s) when composing new Flow Records in the general case. Known exceptions include anonymization per [RFC6235] section 7.2.4 and an Intermediate Correlation Process rewriting addresses across NAT. In other words, the Original Observation Point should not be replaced with the IPFIX Mediator Observation Point. The daisy chain of (Exporter, Observation Point) representing the path the Flow Records took from the Exporter to the top Collector in the Exporter - Mediator(s) - Collector structure model is out of the scope of this specification.

<u>5.1</u>. originalExporterIPv4Address Information Element

Description: The IPv4 address used by the Exporting Process on an Original Exporter, as seen by the Collecting Process on an IPFIX Mediator. Used to provide information about the Original Observation Points to a downstream Collector.

Data Type: ipv4Address

ElementId: TBD1

<u>5.2</u>. originalExporterIPv6Address Information Element

Description: The IPv6 address used by the Exporting Process on an Original Exporter, as seen by the Collecting Process on an IPFIX Mediator. Used to provide information about the Original Observation Points to a downstream Collector.

Data Type: ipv6Address

Claise, et al. Expires December 7, 2012 [Page 17]

ElementId: TBD2

6. Managing Observation Domain IDs

In any case, the Observation Domain ID of any IPFIX Message containing Flow Records relevant to no particular Observation Domain, or to multiple Observation Domains, MUST have an Observation Domain ID of 0, as in Section 3 above, and section 3.1 of [I-D.ietf-ipfix-protocol-rfc5101bis].

IPFIX Mediators that do not change (Options) Template Records MUST maintain a Template Mapping, as detailed in <u>Section 4.1</u>, to ensure that the combination of Observation Domain IDs and Template IDs do not collide on export.

For IPFIX Mediators that export New (Options) Template Records, as in Section 4.2, there are two options for Observation Domain ID management. The first and simplest of these is to completely decouple exported Observation Domain IDs from received Observation Domain IDs; the IPFIX Mediator, in this case, comprises its own set of Observation Domain(s) independent of the Observation Domain(s) of the Original Exporters.

The second option is to provide or maintain a Template Mapping for received (Options) Template Records and exported inferred (Options) Template Records, along with the appropriate Observation Domain IDs per Transport Session, which ensures that the combination of Observation Domain IDs and Template IDs do not collide on export.

In some cases where the IPFIX Message Header can't contain a consistent Observation Domain for the entire IPFIX Message, but the Flow Records exported from the IPFIX Mediator should anyway contain the Observation Domain of the Original Exporter, the (Options) Template Record must contain the originalObservationDomainId Information Element. When an IPFIX Mediator receives Flow Records containing the originalObservationDomainId Information Element, the IPFIX Mediator MUST NOT modify its value(s) when composing new Flow Records with the originalObservationDomainId Information Element.

<u>6.1</u>. originalObservationDomainId Information Element

Description: The Observation Domain ID reported by the Exporting Process on an Original Exporter, as seen by the Collecting Process on an IPFIX Mediator. Used to provide information about the Original Observation Domain to a downstream Collector.

Claise, et al. Expires December 7, 2012 [Page 18]

Data Type: unsigned32

Data Type Semantics: identifier

ElementId: TBD3

7. Timing Considerations

The IPFIX Message Header "Export Time" field is the time in seconds since 0000 UTC Jan 1, 1970, at which the IPFIX Message leaves the IPFIX Mediator. However, in the specific case of an IPFIX Mediator containing an Intermediate Conversion Process, the IPFIX Mediator MAY keep the export time received from the incoming Transport Session.

It is RECOMMENDED that Mediators handle time using absolute timestamps (e.g. flowStartSeconds, flowStartMilliseconds, flowStartNanoseconds), which are specified relative to the UNIX epoch (00:00 UTC 1 Jan 1970), where possible, rather than relative timestamps (e.g. flowStartSysUpTime, flowStartDeltaMicroseconds), which are specified relative to protocol structures such as system initialization or message export time.

The latter are difficult to manage for two reasons. First, they require constant translation, as the system initialization time of an intermediate system and the export time of an intermediate message will change across mediation operations. Further, relative timestamps introduce range problems. For example, when using the flowStartDeltaMicroseconds and flowEndDeltaMicroseconds Information Elements [IANA-IPFIX], the Data Record must be exported within a maximum of 71 minutes after its creation. Otherwise, the 32-bit counter would not be sufficient to contain the flow start time offset. Those time constraints might be incompatible with some of the Intermediate Processes: Intermediate Aggregation Process (temporal) and Intermediate Correlation Process, for example.

When an Intermediate Aggregation Process aggregates information from different Flow Records, the typical reporting times SHOULD be the minimum of the start times and the maximum of the end times. However, if the Flow Records do not overlap, i.e. if there is a time gap between the times in the Flow Records, then the report may be inaccurate. The IPFIX Mediator is only reporting what it knows, on the basis of the information made available to it - and there may not have been any data to observe during the gap. Then again, if there is an overlap in timestamps, there's the potential of double-accounting: different Observation Points may have observed the same traffic simultaneously. Therefore, as there is not a single rule that fits all different situations, a complete specification of the

Claise, et al. Expires December 7, 2012 [Page 19]

precise rules of applying Flow Record timestamps at IPFIX Mediators is out of the scope of this document.

Note that [I-D.ietf-ipfix-a9n] provides additional specifications for handling of timestamps at an Intermediate Aggregation Process.

[EDITOR'S NOTE: What about temporal re-ordering? How should a mediator deal with out-of-order data coming from multiple devices? It can't expect all received data to be in time order.]

8. Transport Considerations

SCTP [RFC4960] using the PR-SCTP extension specified in [RFC3758] MUST be implemented by all compliant IPFIX Mediator implementations. TCP [RFC0793] MAY also be implemented by IPFIX Mediator compliant implementations. UDP [RFC0768] MAY also be implemented by compliant IPFIX Mediator implementations. Transport-specific considerations for IPFIX Exporters as specified in sections 8.3, 8.4, 9.1, 9.2, and 10 of [I-D.ietf-ipfix-protocol-rfc5101bis] apply to IPFIX Mediators as well.

PR-SCTP SHOULD be used in deployments where IPFIX Mediators and Collectors are communicating over links that are susceptible to congestion. PR-SCTP is capable of providing any required degree of reliability. TCP MAY be used in deployments where IPFIX Mediators and Collectors communicate over links that are susceptible to congestion, but PR-SCTP is preferred due to its ability to limit back pressure on Exporters and its message versus stream orientation. UDP MAY be used, although it is not a congestion-aware protocol. However, in this case, the IPFIX traffic between IPFIX Mediator and Collector MUST run in an environment where IPFIX traffic has been provisioned for, or is contained through some other means.

9. Collecting Process Considerations

Any Collecting Process compliant with
[I-D.ietf-ipfix-protocol-rfc5101bis] can receive IPFIX Messages from an IPFIX Mediator. If the IPFIX Mediator uses IPFIX Structured Data
[RFC6313] to export Original Exporter Information as in Section 5, the Collecting Process MUST support [RFC6313].

10. Specific Reporting Requirements

[EDITOR'S NOTE: edit this section for self-consistency.]

Claise, et al. Expires December 7, 2012 [Page 20]

There is no need for a specific Options Template for the IPFIX Mediator; instead, each Intermediate Process type requires some particular metadata. For example, a specification of IPFIX flow Anonymization including an Options Template for the export of metadata about Anonymized flows is described in [RFC6235]; when Anonymizing Flows Records, IPFIX Mediators SHOULD add the Options Template specified therein to annotate the exported data.

Some specific Options Templates and Options Template Records are provided by the IPFIX Protocol [I-D.ietf-ipfix-protocol-rfc5101bis] to report extra information about the Flow Records and about the Metering Process; these should be used by Exporting Processes at Mediators as well, as described in the subsectiond below.

10.1. Protocol Statistics Options Templates

The "Metering Process Statistics Options Template", "The Metering Process Reliability Statistics Options Template", and "The Exporting Process Reliability Statistics Options Template", as specified in [I-D.ietf-ipfix-protocol-rfc5101bis], SHOULD be implemented on the IPFIX Mediator.

Refer to the document specifying a particular Intermediate Process type for specific values for these Options Template Records. For example, in case of an Intermediate Aggregation Process, [I-D.ietf-ipfix-a9n] specifies which values to insert into the fields of "Metering Process Statistics Options Template", "The Metering Process Reliability Statistics Options Template", and "The Exporting Process Reliability Statistics Options Template" [EDITOR'S NOTE: no it doesn't, should it? consider removing this paragraph]

[EDITOR'S NOTE: Comment to solve Rahul Patel's issue: That makes sense in the MEDPROTO

(http://tools.ietf.org/html/draft-ietf-ipfix-mediation-protocol-00)

We would need to take as a basis the "The Metering Process

Reliability Statistics Options Template" from http://tools.ietf.org/http://tools.ietf.org/html/draft-ietf-ipfix-protocol-rfc5101bis-00#page-26, which solves already one issue compared to RC5101, by inserting the "meteringProcessId". See Benoit's comments in UPPER CASE:]

- (scope) observationDomainId An identifier of an Observation Domain that is locally unique to the Exporting Process. This Information Element MUST be defined as a Scope Field.
- (scope) meteringProcessId The identifier of the Metering Process for which lack of reliability is reported. This Information Element MUST be defined as a Scope Field. => NEED IAPPROCESSID

Claise, et al. Expires December 7, 2012 [Page 21]

- ignoredPacketTotalCount The total number of IP packets that the
 Metering Process did not process. => NEED SOMETHING SUCH AS
 IGNOREDFLOW..
- ignoredOctetTotalCount The total number of octets in observed IP
 packets that the Metering Process did not process. => DON'T NEED
 THIS ONE
- time first packet ignored The timestamp of the first IP packet that
 was ignored by the Metering Process. For this timestamp, any of
 the following timestamp can be used: observationTimeSeconds,
 observationTimeMilliseconds, observationTimeMicroseconds, or
 observationTimeNanoseconds. => THIS RELATES TO THE FLOW, BUT THE
 IE MIGHT BE THE SAME
- time last packet ignored The timestamp of the last IP packet that was ignored by the Metering Process. For this timestamp, any of the following timestamp can be used: observationTimeSeconds, observationTimeMilliseconds, observationTimeMilliseconds, or observationTimeNanoseconds. => THIS RELATES TO THE FLOW, BUT THE IE MIGHT BE THE SAME

10.2. Flow Key Options Template

The Flow Keys Option Template specifies the structure of a Data Record for reporting the Flow Keys of reported Flows. A Flow Keys Data Record extends a particular Template Record that is referenced by its templateId identifier. The Template Record is extended by specifying which of the Information Elements contained in the corresponding Data Records describe Flow properties that serve as Flow Keys of the reported Flow. This Options Template is defined in section 4.4 of [I-D.ietf-ipfix-protocol-rfc5101bis], and SHOULD be used by Mediators for export as defined there.

When an Intermediate Process exports Data Records containing different Flow Keys from those received from the Original Exporter, and the Original Exporter sent a Flow Keys Options record to the Mediator, the Mediator MUST export a Flow Keys Options record defining the the new set of Flow Keys.

11. Configuration Management

In general, using Mediators to combine information from multiple Original Exporters requires a consistent configuration of the Metering Processes behind these Original Exporters. The details of this consistency are specific to each Intermediate Process. Consistency of configuration should be verified out of band, with the

Claise, et al. Expires December 7, 2012 [Page 22]

MIB modules ([<u>I-D.ietf-ipfix-rfc5815bis</u>] and [<u>I-D.ietf-ipfix-psamp-mib</u>]) or with the Configuration Data Model for IPFIX and PSAMP [<u>I-D.ietf-ipfix-configuration-model</u>]

12. Security Considerations

As they act as both IPFIX Collecting Processes and Exporting Processes, the Security Considerations for IPFIX Protocol [I-D.ietf-ipfix-protocol-rfc5101bis] also apply to Mediators. The Security Considerations for IPFIX Files [RFC5655] also apply to IPFIX Mediators that write IPFIX Files or use them for internal storage. However, there are a few specific considerations that IPFIX Mediator implementations must also take into account.

By design, IPFIX Mediators are "men-in-the-middle": they intercede in the communication between an Original Exporter (or another upstream Mediator) and a downstream Collecting Process. This has two important implications for the level of confidentiality provided across an IPFIX Mediator, and the ability to protect data integrity and Original Exporter authenticity across a Mediator. These are addressed in more detail in the Security Considerations for Mediators in [RFC6183].

Note that, while Mediators can use the exporterCertificate and collectorCertificate Information Elements defined in [RFC5655] as described in section 9.3 of [RFC6183] to export information about X.509 identities in upstream TLS-protected Transport Sessions, this mechanism cannot be used to provide true end-to-end assertions about a chain of IPFIX Mediators: any Mediator in the chain can simply falsify the information about upstream Transport Sessions In situations where information about the chain of mediation is important, it must be determined out of band.

13. IANA Considerations

This document specifies three new IPFIX Information Elements, originalExporterIPv4Address in Section 5.1, originalExporterIPv6Address in Section 5.2, and originalObservationDomainId in Section 6.1, to be added to the IPFIX Information Element registry [iana-ipfix-assignments]. [IANA NOTE: please add the three Information Elements as specified in the references subsections, and change TBD1, TBD2, and TBD3 in this document to reflect the assigned identifiers.]

Claise, et al. Expires December 7, 2012 [Page 23]

14. Acknowledgments

We would like to thank the IPFIX contributors, and specifically Paul Aitken for his thorough review. This work is materially supported by the European Union Seventh Framework Programme under grant agreement 257315 (DEMONS).

15. References

15.1. Normative References

- [I-D.ietf-ipfix-protocol-rfc5101bis]
 Claise, B. and B. Trammell, "Specification of the IP Flow Information eXport (IPFIX) Protocol for the Exchange of Flow Information", draft-ietf-ipfix-protocol-rfc5101bis-01 (work in progress), March 2012.
- [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768, August 1980.
- [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981.
- [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", <u>BCP 14</u>, <u>RFC 2119</u>, March 1997.
- [RFC3758] Stewart, R., Ramalho, M., Xie, Q., Tuexen, M., and P. Conrad, "Stream Control Transmission Protocol (SCTP) Partial Reliability Extension", RFC 3758, May 2004.
- [RFC4960] Stewart, R., "Stream Control Transmission Protocol", RFC 4960, September 2007.
- [RFC5655] Trammell, B., Boschi, E., Mark, L., Zseby, T., and A. Wagner, "Specification of the IP Flow Information Export (IPFIX) File Format", RFC 5655, October 2009.
- [RFC6313] Claise, B., Dhandapani, G., Aitken, P., and S. Yates,
 "Export of Structured Data in IP Flow Information Export
 (IPFIX)", RFC 6313, July 2011.

Claise, et al. Expires December 7, 2012 [Page 24]

[I-D.ietf-ipfix-a9n]

Trammell, B., Wagner, A., and B. Claise, "Flow Aggregation for the IP Flow Information Export (IPFIX) Protocol", draft-ietf-ipfix-a9n-03 (work in progress), February 2012.

[I-D.ietf-ipfix-psamp-mib]

Dietz, T., Claise, B., and J. Quittek, "Definitions of Managed Objects for Packet Sampling", draft-ietf-ipfix-psamp-mib-04 (work in progress), October 2011.

[I-D.ietf-ipfix-configuration-model]

Muenz, G., Claise, B., and P. Aitken, "Configuration Data Model for IPFIX and PSAMP", draft-ietf-ipfix-configuration-model-10 (work in progress), July 2011.

[I-D.ietf-ipfix-rfc5815bis]

Dietz, T., Kobayashi, A., Claise, B., and G. Muenz, "Definitions of Managed Objects for IP Flow Information Export", draft-ietf-ipfix-rfc5815bis-03 (work in progress), March 2012.

15.2. Informative References

- [RFC3917] Quittek, J., Zseby, T., Claise, B., and S. Zander,
 "Requirements for IP Flow Information Export (IPFIX)",

 RFC 3917, October 2004.
- [RFC3954] Claise, B., "Cisco Systems NetFlow Services Export Version 9", RFC 3954, October 2004.
- [RFC5470] Sadasivan, G., Brownlee, N., Claise, B., and J. Quittek,
 "Architecture for IP Flow Information Export", RFC 5470,
 March 2009.
- [RFC5472] Zseby, T., Boschi, E., Brownlee, N., and B. Claise, "IP Flow Information Export (IPFIX) Applicability", RFC 5472, March 2009.
- [RFC5476] Claise, B., Johnson, A., and J. Quittek, "Packet Sampling (PSAMP) Protocol Specifications", <u>RFC 5476</u>, March 2009.

Claise, et al. Expires December 7, 2012 [Page 25]

[RFC6235] Boschi, E. and B. Trammell, "IP Flow Anonymization Support", RFC 6235, May 2011.

[iana-ipfix-assignments]

Internet Assigned Numbers Authority, "IP Flow Information
Export Information Elements
(http://www.iana.org/assignments/ipfix/ipfix.xml)".

Authors' Addresses

Benoit Claise Cisco Systems, Inc. De Kleetlaan 6a b1 1831 Diagem Belgium

Phone: +32 2 704 5622 Email: bclaise@cisco.com

Atsushi Kobayashi NTT Information Sharing Platform Laboratories 3-9-11 Midori-cho Musashino-shi, Tokyo 180-8585 Japan

Phone: +81 422 59 3978 Email: akoba@nttv6.net

Brian Trammell Swiss Federal Institute of Technology Zurich Gloriastrasse 35 8092 Zurich Switzerland

Phone: +41 44 632 70 13

Email: trammell@tik.ee.ethz.ch

Claise, et al. Expires December 7, 2012 [Page 26]