
Internet Engineering Task Force R. E. Gilligan (Freegate)
INTERNET-DRAFT S. Thomson (Bellcore)
 J. Bound (Digital)
 W. R. Stevens (Consultant)
 November 23, 1996

Basic Socket Interface Extensions for IPv6
<draft-ietf-ipngwg-bsd-api-06.txt>

Abstract

 The de facto standard application program interface (API) for TCP/IP
 applications is the "sockets" interface. Although this API was
 developed for Unix in the early 1980s it has also been implemented on
 a wide variety of non-Unix systems. TCP/IP applications written
 using the sockets API have in the past enjoyed a high degree of
 portability and we would like the same portability with IPv6
 applications. But changes are required to the sockets API to support
 IPv6 and this memo describes these changes. These include a new
 socket address structure to carry IPv6 addresses, new address
 conversion functions, and some new socket options. These extensions
 are designed to provide access to the basic IPv6 features required by
 TCP and UDP applications, including multicasting, while introducing a
 minimum of change into the system and providing complete
 compatibility for existing IPv4 applications. Additional extensions
 for advanced IPv6 features (raw sockets and access to the IPv6
 extension headers) are defined in another document [5].

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. This Internet Draft expires on May 23, 1997. Internet
 Drafts may be updated, replaced, or obsoleted by other documents at
 any time. It is not appropriate to use Internet Drafts as reference
 material or to cite them other than as a "working draft" or "work in
 progress."

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 Distribution of this memo is unlimited.

draft-ietf-ipngwg-bsd-api-06.txt [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

Table of Contents

1. Introduction ... 3

2. Design Considerations .. 3
2.1. What Needs to be Changed 3
2.2. Data Types ... 5

3. Socket Interface ... 5
3.1. IPv6 Address Family and Protocol Family 5
3.2. IPv6 Address Structure ... 5
3.3. Socket Address Structure for 4.3BSD-Based Systems 6
3.4. Socket Address Structure for 4.4BSD-Based Systems 7
3.5. The Socket Functions ... 8
3.6. Compatibility with IPv4 Applications 9
3.7. Compatibility with IPv4 Nodes 9
3.8. Flow Information ... 10
3.9. IPv6 Wildcard Address .. 12
3.10. IPv6 Loopback Address ... 13

4. Interface Identification ... 14
4.1. Name-to-Index .. 15
4.2. Index-to-Name .. 15
4.3. Return All Interface Names and Indexes 15

5. Socket Options ... 16
5.1. Changing Socket Type ... 16
5.2. Unicast Hop Limit .. 17
5.3. Sending and Receiving Multicast Packets 18

6. Library Functions .. 20
6.1. Hostname-to-Address Translation 20
6.2. Address To Hostname Translation 22
6.3. Protocol-Independent Hostname and Service Name Translation 23
6.4. Socket Address Structure to Hostname and Service Name 26
6.5. Address Conversion Functions 27
6.6. IPv4-Mapped Addresses .. 28

7. Security Considerations .. 29

8. Change History ... 29

9. Acknowledgments .. 33

10. References .. 33

11. Authors' Addresses .. 34

draft-ietf-ipngwg-bsd-api-06.txt [Page 2]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

1. Introduction

 While IPv4 addresses are 32 bits long, IPv6 nodes are identified by
 128-bit addresses. The socket interface make the size of an IP
 address quite visible to an application; virtually all TCP/IP
 applications for BSD-based systems have knowledge of the size of an
 IP address. Those parts of the API that expose the addresses must be
 changed to accommodate the larger IPv6 address size. IPv6 also
 introduces new features (e.g., flow label and priority), some of
 which must be made visible to applications via the API. This memo
 defines a set of extensions to the socket interface to support the
 larger address size and new features of IPv6.

2. Design Considerations

 There are a number of important considerations in designing changes
 to this well-worn API:

 - The API changes should provide both source and binary
 compatibility for programs written to the original API. That is,
 existing program binaries should continue to operate when run on
 a system supporting the new API. In addition, existing
 applications that are re-compiled and run on a system supporting
 the new API should continue to operate. Simply put, the API
 changes for IPv6 should not break existing programs.

 - The changes to the API should be as small as possible in order to
 simplify the task of converting existing IPv4 applications to
 IPv6.

 - Where possible, applications should be able to use this API to
 interoperate with both IPv6 and IPv4 hosts. Applications should
 not need to know which type of host they are communicating with.

 - IPv6 addresses carried in data structures should be 64-bit
 aligned. This is necessary in order to obtain optimum
 performance on 64-bit machine architectures.

 Because of the importance of providing IPv4 compatibility in the API,
 these extensions are explicitly designed to operate on machines that
 provide complete support for both IPv4 and IPv6. A subset of this
 API could probably be designed for operation on systems that support
 only IPv6. However, this is not addressed in this memo.

2.1. What Needs to be Changed

draft-ietf-ipngwg-bsd-api-06.txt [Page 3]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 The socket interface API consists of a few distinct components:

 - Core socket functions.

 - Address data structures.

 - Name-to-address translation functions.

 - Address conversion functions.

 The core socket functions -- those functions that deal with such
 things as setting up and tearing down TCP connections, and sending
 and receiving UDP packets -- were designed to be transport
 independent. Where protocol addresses are passed as function
 arguments, they are carried via opaque pointers. A protocol-specific
 address data structure is defined for each protocol that the socket
 functions support. Applications must cast pointers to these
 protocol-specific address structures into pointers to the generic
 "sockaddr" address structure when using the socket functions. These
 functions need not change for IPv6, but a new IPv6-specific address
 data structure is needed.

 The "sockaddr_in" structure is the protocol-specific data structure
 for IPv4. This data structure actually includes 8-octets of unused
 space, and it is tempting to try to use this space to adapt the
 sockaddr_in structure to IPv6. Unfortunately, the sockaddr_in
 structure is not large enough to hold the 16-octet IPv6 address as
 well as the other information (address family and port number) that
 is needed. So a new address data structure must be defined for IPv6.

 The name-to-address translation functions in the socket interface are
 gethostbyname() and gethostbyaddr(). These must be modified to
 support IPv6 and the semantics defined must provide 100% backward
 compatibility for all existing IPv4 applications, along with IPv6
 support for new applications. Additionally, the POSIX 1003.g draft
 [4] specifies a new hostname-to-address translation function which is
 protocol independent. This function can also be used with IPv6.

 The address conversion functions -- inet_ntoa() and inet_addr() --
 convert IPv4 addresses between binary and printable form. These
 functions are quite specific to 32-bit IPv4 addresses. We have
 designed two analogous functions that convert both IPv4 and IPv6
 addresses, and carry an address type parameter so that they can be
 extended to other protocol families as well.

 Finally, a few miscellaneous features are needed to support IPv6.
 New interfaces are needed to support the IPv6 flow label, priority,
 and hop limit header fields. New socket options are needed to

draft-ietf-ipngwg-bsd-api-06.txt [Page 4]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 control the sending and receiving of IPv6 multicast packets.

 The socket interface may be enhanced in the future to provide access
 to other IPv6 features. These extensions are described in [5].

2.2. Data Types

 The data types of the structure elements given in this memo are
 intended to be examples, not absolute requirements. Whenever
 possible, POSIX 1003.1g data types are used: u_intN_t means an
 unsigned integer of exactly N bits (e.g., u_int16_t) and u_intNm_t
 means an unsigned integer of at least N bits (e.g., u_int32m_t). We
 also assume the argument data types from 1003.1g when possible (e.g.,
 the final argument to setsockopt() is a size_t value). Whenever
 buffer sizes are specified, the POSIX 1003.1 size_t data type is used
 (e.g., the two length arguments to getnameinfo()).

3. Socket Interface

 This section specifies the socket interface changes for IPv6.

3.1. IPv6 Address Family and Protocol Family

 A new address family name, AF_INET6, is defined in <sys/socket.h>.
 The AF_INET6 definition distinguishes between the original
 sockaddr_in address data structure, and the new sockaddr_in6 data
 structure.

 A new protocol family name, PF_INET6, is defined in <sys/socket.h>.
 Like most of the other protocol family names, this will usually be
 defined to have the same value as the corresponding address family
 name:

 #define PF_INET6 AF_INET6

 The PF_INET6 is used in the first argument to the socket() function
 to indicate that an IPv6 socket is being created.

3.2. IPv6 Address Structure

 A new data structure to hold a single IPv6 address is defined as
 follows:

draft-ietf-ipngwg-bsd-api-06.txt [Page 5]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 struct in6_addr {
 u_char s6_addr[16]; /* IPv6 address */
 }

 This data structure contains an array of sixteen 8-bit elements,
 which make up one 128-bit IPv6 address. The IPv6 address is stored
 in network byte order.

 Applications obtain the declaration for this structure by including
 the header <netinet/in.h>.

3.3. Socket Address Structure for 4.3BSD-Based Systems

 In the socket interface, a different protocol-specific data structure
 is defined to carry the addresses for each protocol suite. Each
 protocol-specific data structure is designed so it can be cast into a
 protocol-independent data structure -- the "sockaddr" structure.
 Each has a "family" field that overlays the "sa_family" of the
 sockaddr data structure. This field identifies the type of the data
 structure.

 The sockaddr_in structure is the protocol-specific address data
 structure for IPv4. It is used to pass addresses between
 applications and the system in the socket functions. The following
 structure is defined to carry IPv6 addresses:

 struct sockaddr_in6 {
 u_int16m_t sin6_family; /* AF_INET6 */
 u_int16m_t sin6_port; /* transport layer port # */
 u_int32m_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 };

 This structure is designed to be compatible with the sockaddr data
 structure used in the 4.3BSD release.

 The sin6_family field identifies this as a sockaddr_in6 structure.
 This field overlays the sa_family field when the buffer is cast to a
 sockaddr data structure. The value of this field must be AF_INET6.

 The sin6_port field contains the 16-bit UDP or TCP port number. This
 field is used in the same way as the sin_port field of the
 sockaddr_in structure. The port number is stored in network byte
 order.

 The sin6_flowinfo field is a 32-bit field that contains two pieces of

draft-ietf-ipngwg-bsd-api-06.txt [Page 6]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 information: the 24-bit IPv6 flow label and the 4-bit priority field.
 The IPv6 flow label is represented as the low-order 24 bits of the
 32-bit field. The priority is represented in the next 4 bits above
 this. The high-order 4 bits of this field are reserved. The
 sin6_flowinfo field is stored in network byte order. The use of the
 flow label and priority fields are explained in Section 3.8.

 The sin6_addr field is a single in6_addr structure (defined in the
 previous section). This field holds one 128-bit IPv6 address. The
 address is stored in network byte order.

 The ordering of elements in this structure is specifically designed
 so that the sin6_addr field will be aligned on a 64-bit boundary.
 This is done for optimum performance on 64-bit architectures.

 Applications obtain the declaration of the sockaddr_in6 structure by
 including the header <netinet/in.h>.

3.4. Socket Address Structure for 4.4BSD-Based Systems

 The 4.4BSD release includes a small, but incompatible change to the
 socket interface. The "sa_family" field of the sockaddr data
 structure was changed from a 16-bit value to an 8-bit value, and the
 space saved used to hold a length field, named "sa_len". The
 sockaddr_in6 data structure given in the previous section cannot be
 correctly cast into the newer sockaddr data structure. For this
 reason, the following alternative IPv6 address data structure is
 provided to be used on systems based on 4.4BSD:

 #define SIN6_LEN

 struct sockaddr_in6 {
 u_char sin6_len; /* length of this struct */
 u_char sin6_family; /* AF_INET6 */
 u_int16m_t sin6_port; /* Transport layer port # */
 u_int32m_t sin6_flowinfo; /* IPv6 flow information */
 struct in6_addr sin6_addr; /* IPv6 address */
 };

 The only differences between this data structure and the 4.3BSD
 variant are the inclusion of the length field, and the change of the
 family field to a 8-bit data type. The definitions of all the other
 fields are identical to the structure defined in the previous
 section.

 Systems that provide this version of the sockaddr_in6 data structure
 must also declare SIN6_LEN as a result of including the

draft-ietf-ipngwg-bsd-api-06.txt [Page 7]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 <netinet/in.h> header. This macro allows applications to determine
 whether they are being built on a system that supports the 4.3BSD or
 4.4BSD variants of the data structure.

 Note that the size of the sockaddr_in6 structure is larger than the
 size of the sockaddr structure. Applications that use the
 sockaddr_in6 structure need to be aware that they cannot use
 sizeof(sockaddr) to allocate a buffer to hold a sockaddr_in6
 structure. They should use sizeof(sockaddr_in6) instead.

3.5. The Socket Functions

 Applications call the socket() function to create a socket descriptor
 that represents a communication endpoint. The arguments to the
 socket() function tell the system which protocol to use, and what
 format address structure will be used in subsequent functions. For
 example, to create an IPv4/TCP socket, applications make the call:

 s = socket(PF_INET, SOCK_STREAM, 0);

 To create an IPv4/UDP socket, applications make the call:

 s = socket(PF_INET, SOCK_DGRAM, 0);

 Applications may create IPv6/TCP and IPv6/UDP sockets by simply using
 the constant PF_INET6 instead of PF_INET in the first argument. For
 example, to create an IPv6/TCP socket, applications make the call:

 s = socket(PF_INET6, SOCK_STREAM, 0);

 To create an IPv6/UDP socket, applications make the call:

 s = socket(PF_INET6, SOCK_DGRAM, 0);

 Once the application has created a PF_INET6 socket, it must use the
 sockaddr_in6 address structure when passing addresses in to the
 system. The functions that the application uses to pass addresses
 into the system are:

 bind()
 connect()
 sendmsg()
 sendto()

 The system will use the sockaddr_in6 address structure to return
 addresses to applications that are using PF_INET6 sockets. The
 functions that return an address from the system to an application

draft-ietf-ipngwg-bsd-api-06.txt [Page 8]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 are:

 accept()
 recvfrom()
 recvmsg()
 getpeername()
 getsockname()

 No changes to the syntax of the socket functions are needed to
 support IPv6, since the all of the "address carrying" functions use
 an opaque address pointer, and carry an address length as a function
 argument.

3.6. Compatibility with IPv4 Applications

 In order to support the large base of applications using the original
 API, system implementations must provide complete source and binary
 compatibility with the original API. This means that systems must
 continue to support PF_INET sockets and the sockaddr_in address
 structure. Applications must be able to create IPv4/TCP and IPv4/UDP
 sockets using the PF_INET constant in the socket() function, as
 described in the previous section. Applications should be able to
 hold a combination of IPv4/TCP, IPv4/UDP, IPv6/TCP and IPv6/UDP
 sockets simultaneously within the same process.

 Applications using the original API should continue to operate as
 they did on systems supporting only IPv4. That is, they should
 continue to interoperate with IPv4 nodes.

3.7. Compatibility with IPv4 Nodes

 The API also provides a different type of compatibility: the ability
 for IPv6 applications to interoperate with IPv4 applications. This
 feature uses the IPv4-mapped IPv6 address format defined in the IPv6
 addressing architecture specification [2]. This address format
 allows the IPv4 address of an IPv4 node to be represented as an IPv6
 address. The IPv4 address is encoded into the low-order 32 bits of
 the IPv6 address, and the high-order 96 bits hold the fixed prefix
 0:0:0:0:0:FFFF. IPv4-mapped addresses are written as follows:

 ::FFFF:<IPv4-address>

 These addresses are often generated automatically by the
 gethostbyname() function when the specified host has only IPv4
 addresses (as described in Section 6.1).

draft-ietf-ipngwg-bsd-api-06.txt [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 Applications may use PF_INET6 sockets to open TCP connections to IPv4
 nodes, or send UDP packets to IPv4 nodes, by simply encoding the
 destination's IPv4 address as an IPv4-mapped IPv6 address, and
 passing that address, within a sockaddr_in6 structure, in the
 connect() or sendto() call. When applications use PF_INET6 sockets
 to accept TCP connections from IPv4 nodes, or receive UDP packets
 from IPv4 nodes, the system returns the peer's address to the
 application in the accept(), recvfrom(), or getpeername() call using
 a sockaddr_in6 structure encoded this way.

 Few applications will likely need to know which type of node they are
 interoperating with. However, for those applications that do need to
 know, the inet6_isipv4mapped() function, defined in Section 6.6, is
 provided.

3.8. Flow Information

 The IPv6 header has a 24-bit field to hold a "flow label", and a 4-
 bit field to hold a "priority" value. Applications must have control
 over what values for these fields are used in packets that they
 originate, and must have access to the field values of packets that
 they receive.

 The sin6_flowinfo field of the sockaddr_in6 structure encodes two
 pieces of information: IPv6 flow label and IPv6 priority.
 Applications use this field to set the flow label and priority in
 IPv6 headers of packets they generate, and to retrieve the flow label
 and priority from the packets they receive. The header fields of an
 actively opened TCP connection are set by assigning in the
 sin6_flowinfo field of the destination address sockaddr_in6 structure
 passed in the connect() function. The same technique can be used
 with the sockaddr_in6 structure passed to the sendto() or sendmsg()
 function to set the flow label and priority fields of UDP packets.
 Similarly, the flow label and priority values of received UDP packets
 and accepted TCP connections are reflected in the sin6_flowinfo field
 of the sockaddr_in6 structure returned to the application by the
 recvfrom(), recvmsg(), and accept() functions. An application may
 specify the flow label and priority to use in transmitted packets of
 a passively accepted TCP connection, by setting the sin6_flowinfo
 field of the address passed to the bind() function.

 Implementations provide two bitmask constant declarations to help
 applications select out the flow label and priority fields. These
 constants are:

 IPV6_FLOWINFO_FLOWLABEL
 IPV6_FLOWINFO_PRIORITY

draft-ietf-ipngwg-bsd-api-06.txt [Page 10]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 These constants can be applied to the sin6_flowinfo field of
 addresses returned to the application, for example:

 int recv_flow; /* host byte ordered, 0-0x00ffffff */
 int recv_prio; /* host byte ordered, 0-15 */
 struct sockaddr_in6 sin6;
 . . .
 recvfrom(s, buf, buflen, flags, (struct sockaddr *) &sin6, &fromlen);
 . . .
 recv_flow = ntohl(sin6.sin6_flowinfo & IPV6_FLOWINFO_FLOWLABEL);
 recv_prio = ntohl(sin6.sin6_flowinfo & IPV6_FLOWINFO_PRIORITY) >> 24;
 printf("flow = %d, prio = %d\n", recv_flow, recv_prio);

 Recall that sin6_flowinfo is network byte ordered, as are the two
 IPV6_FLOWINFO_xxx constants.

 On the sending side, applications are responsible for selecting the
 flow label value and specifying a priority. The headers provide
 constant declarations for the 16 IPv6 priority values defined in the
 IPv6 specification [1]. These constants are:

 IPV6_PRIORITY_UNCHARACTERIZED
 IPV6_PRIORITY_FILLER
 IPV6_PRIORITY_UNATTENDED
 IPV6_PRIORITY_RESERVED1
 IPV6_PRIORITY_BULK
 IPV6_PRIORITY_RESERVED2
 IPV6_PRIORITY_INTERACTIVE
 IPV6_PRIORITY_CONTROL
 IPV6_PRIORITY_8
 IPV6_PRIORITY_9
 IPV6_PRIORITY_10
 IPV6_PRIORITY_11
 IPV6_PRIORITY_12
 IPV6_PRIORITY_13
 IPV6_PRIORITY_14
 IPV6_PRIORITY_15

 Most applications will use these constants (e.g.,
 IPV6_PRIORITY_INTERACTIVE can be built into Telnet clients and
 servers). Since these constants are defined in network byte order an
 example is:

draft-ietf-ipngwg-bsd-api-06.txt [Page 11]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 int send_flow; /* host byte ordered, 0-0x00ffffff */
 struct sockaddr_in6 sin6;

 send_flow = /* undefined at this time; perhaps a system call */
 sin6.sin6_flowinfo = htonl(send_flow) & IPV6_FLOWINFO_FLOWLABEL |
 IPV6_PRIORITY_INTERACTIVE;
 . . .
 connect(...)

 Some applications may specify the priority as a value between 0 and
 15 (perhaps a command-line argument) and the following example shows
 the required byte ordering and shifting:

 int send_flow; /* host byte ordered, 0-0x00ffffff */
 int send_prio; /* host byte ordered, 0-15 */
 struct sockaddr_in6 sin6;

 send_flow = /* undefined at this time; perhaps a system call */
 send_prio = 12; /* or some other host byte ordered value, 0-15 */
 sin6.sin6_flowinfo = htonl(send_flow) & IPV6_FLOWINFO_FLOWLABEL |
 htonl(send_prio << 24) & IPV6_FLOWINFO_PRIORITY;
 . . .
 sendto(...)

 The declarations for these constants are obtained by including the
 header <netinet/in.h>.

3.9. IPv6 Wildcard Address

 While the bind() function allows applications to select the source IP
 address of UDP packets and TCP connections, applications often want
 the system select the source address for them. With IPv4, one
 specifies the address as the symbolic constant INADDR_ANY (called the
 "wildcard" address) in the bind() call, or simply omits the bind()
 entirely.

 Since the IPv6 address type is a structure (struct in6_addr), a
 symbolic constant can be used to initialize an IPv6 address variable,
 but cannot be used in an assignment. Therefore systems provide the
 IPv6 wildcard address in two forms.

 The first version is a global variable named "in6addr_any" that is an
 in6_addr structure. The extern declaration for this variable is:

 extern const struct in6_addr in6addr_any;

draft-ietf-ipngwg-bsd-api-06.txt [Page 12]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 Applications use in6addr_any similarly to the way they use INADDR_ANY
 in IPv4. For example, to bind a socket to port number 23, but let
 the system select the source address, an application could use the
 following code:

 struct sockaddr_in6 sin6;
 . . .
 sin6.sin6_family = AF_INET6;
 sin6.sin6_flowinfo = 0;
 sin6.sin6_port = htons(23);
 sin6.sin6_addr = in6addr_any; /* structure assignment */
 . . .
 if (bind(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)
 . . .

 The other version is a symbolic constant named IN6ADDR_ANY_INIT.
 This constant can be used to initialize an in6_addr structure:

 struct in6_addr anyaddr = IN6ADDR_ANY_INIT;

 Note that this constant can be used ONLY at declaration type. It can
 not be used to assign a previously declared in6_addr structure. For
 example, the following code will not work:

 /* This is the WRONG way to assign an unspecified address */
 struct sockaddr_in6 sin6;
 . . .
 sin6.sin6_addr = IN6ADDR_ANY_INIT; /* Will NOT compile */

 The extern declaration for in6addr_any and the declaration for
 IN6ADDR_ANY_INIT are obtained by including the header <netinet/in.h>.

 Be aware that the IPv4 INADDR_xxx constants are all defined in host
 byte order but the IPv6 IN6ADDR_xxx constants and the IPv6
 in6addr_xxx externals are defined in network byte order.

3.10. IPv6 Loopback Address

 Applications may need to send UDP packets to, or originate TCP
 connections to, services residing on the local node. In IPv4, they
 can do this by using the constant IPv4 address INADDR_LOOPBACK in
 their connect(), sendto(), or sendmsg() call.

 IPv6 also provides a loopback address to contact local TCP and UDP
 services. Like the unspecified address, the IPv6 loopback address is
 provided in two forms -- a global variable and a symbolic constant.

draft-ietf-ipngwg-bsd-api-06.txt [Page 13]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 The global variable is an in6_addr structure named
 "in6addr_loopback." The extern declaration for this variable is:

 extern const struct in6_addr in6addr_loopback;

 Applications use in6addr_loopback as they would use INADDR_LOOPBACK
 in IPv4 applications (but beware of the byte ordering difference
 mentioned at the end of the previous section). For example, to open
 a TCP connection to the local telnet server, an application could use
 the following code:

 struct sockaddr_in6 sin6;
 . . .
 sin6.sin6_family = AF_INET6;
 sin6.sin6_flowinfo = 0;
 sin6.sin6_port = htons(23);
 sin6.sin6_addr = in6addr_loopback; /* structure assignment */
 . . .
 if (connect(s, (struct sockaddr *) &sin6, sizeof(sin6)) == -1)
 . . .

 The symbolic constant is named IN6ADDR_LOOPBACK_INIT. It can be used
 at declaration time ONLY; for example:

 struct in6_addr loopbackaddr = IN6ADDR_LOOPBACK_INIT;

 Like IN6ADDR_ANY_INIT, this constant cannot be used in an assignment
 to a previously declared IPv6 address variable.

 The extern declaration for in6addr_loopback and the declaration for
 IN6ADDR_LOOPBACK_INIT are obtained by including the header
 <netinet/in.h>.

4. Interface Identification

 This API uses an interface index (a small positive integer) to
 identify the local interface on which a multicast group is joined
 (Section 5.3). Additionally, the advanced API [5] uses these same
 interface indexes to identify the interface on which a datagram is
 received, or to specify the interface on which a datagram is to be
 sent.

 Interfaces are normally known by names such as "le0", "sl1", "ppp2",
 and the like. On Berkeley-derived implementations, when an interface
 is made known to the system, the kernel assigns a unique positive
 integer value (called the interface index) to that interface. These
 are small positive integers that start at 1. (Note that 0 is never

draft-ietf-ipngwg-bsd-api-06.txt [Page 14]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 used for an interface index.) There may be gaps so that there is no
 current interface for a particular positive interface index.

 This API defines two functions that map between an interface name and
 index, and a third function that returns all the interface names and
 indexes. How these three functions are implemented is left up to the
 implementation. 4.4BSD implementations can implement all three
 functions using the existing sysctl() function with the NET_RT_LIST
 command. Other implementations may wish to use ioctl() for this
 purpose. The function prototypes for these three functions, the
 constant IF_MAXNAME, and the if_nameindex structure are defined as a
 result of including the <sys/socket.h> header.

4.1. Name-to-Index

 The first function maps an interface names into its corresponding
 index.

 unsigned int if_nametoindex(const char *ifname);

 If the specified interface does not exist, the return value is 0.

4.2. Index-to-Name

 The second function maps an interface index into its corresponding
 name.

 char *if_indextoname(unsigned int ifindex, char *ifname);

 The ifname argument must point to a buffer of at least IF_MAXNAME
 bytes into which the interface name corresponding to the specified
 index is returned. This pointer is also the return value of the
 function. If there is no interface corresponding to the specified
 index, NULL is returned and the buffer pointed to by ifname is not
 modified.

4.3. Return All Interface Names and Indexes

 The final function returns an array of if_nameindex structures, one
 structure per interface.

draft-ietf-ipngwg-bsd-api-06.txt [Page 15]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 struct if_nameindex {
 unsigned int if_index; /* 1, 2, ... */
 char *if_name; /* null terminated name: "le0", ... */
 };

 struct if_nameindex *if_nameindex(void);

 The end of the array of structures is indicated by a structure with
 an if_index of 0 and an if_name of NULL. The memory used for this
 array of structures along with the interface names pointed to by the
 if_name members is obtained using one call to malloc() and can be
 returned by calling free() with an argument that is the pointer
 returned by if_nameindex().

5. Socket Options

 A number of new socket options are defined for IPv6. All of these
 new options are at the IPPROTO_IPV6 level. That is, the "level"
 parameter in the getsockopt() and setsockopt() calls is IPPROTO_IPV6
 when using these options. The constant name prefix IPV6_ is used in
 all of the new socket options. This serves to clearly identify these
 options as applying to IPv6.

 The declaration for IPPROTO_IPV6, the new IPv6 socket options, and
 related constants defined in this section are obtained by including
 the header <netinet/in.h>.

5.1. Changing Socket Type

 Unix allows open sockets to be passed between processes via the
 exec() call and other means. It is a relatively common application
 practice to pass open sockets across exec() calls. Thus it is
 possible for an application using the original API to pass an open
 PF_INET socket to an application that is expecting to receive a
 PF_INET6 socket. Similarly, it is possible for an application using
 the extended API to pass an open PF_INET6 socket to an application
 using the original API, which would be equipped only to deal with
 PF_INET sockets. Either of these cases could cause problems, because
 the application that is passed the open socket might not know how to
 decode the address structures returned in subsequent socket
 functions.

 To remedy this problem, a new setsockopt() option is defined that
 allows an application to "convert" a PF_INET6 socket into a PF_INET
 socket and vice versa.

draft-ietf-ipngwg-bsd-api-06.txt [Page 16]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 An IPv6 application that is passed an open socket from an unknown
 process may use the IPV6_ADDRFORM setsockopt() option to "convert"
 the socket to PF_INET6. Once that has been done, the system will
 return sockaddr_in6 address structures in subsequent socket
 functions.

 An IPv6 application that is about to pass an open PF_INET6 socket to
 a program that is not be IPv6 capable can "downgrade" the socket to
 PF_INET before calling exec(). After that, the system will return
 sockaddr_in address structures to the application that was exec()'ed.
 Be aware that you cannot downgrade an IPv6 socket to an IPv4 socket
 unless all nonwildcard addresses already associated with the IPv6
 socket are IPv4-mapped IPv6 addresses.

 The IPV6_ADDRFORM option is valid at both the IPPROTO_IP and
 IPPROTO_IPV6 levels. The only valid option values are PF_INET6 and
 PF_INET. For example, to convert a PF_INET6 socket to PF_INET, a
 program would call:

 int addrform = PF_INET;

 if (setsockopt(s, IPPROTO_IPV6, IPV6_ADDRFORM,
 (char *) &addrform, sizeof(addrform)) == -1)
 perror("setsockopt IPV6_ADDRFORM");

 An application may use IPV6_ADDRFORM with getsockopt() to learn
 whether an open socket is a PF_INET of PF_INET6 socket. For example:

 int addrform;
 size_t len = sizeof(addrform);

 if (getsockopt(s, IPPROTO_IPV6, IPV6_ADDRFORM,
 (char *) &addrform, &len) == -1)
 perror("getsockopt IPV6_ADDRFORM");
 else if (addrform == PF_INET)
 printf("This is an IPv4 socket.\n");
 else if (addrform == PF_INET6)
 printf("This is an IPv6 socket.\n");
 else
 printf("This system is broken.\n");

5.2. Unicast Hop Limit

 A new setsockopt() option controls the hop limit used in outgoing
 unicast IPv6 packets. The name of this option is IPV6_UNICAST_HOPS,
 and it is used at the IPPROTO_IPV6 layer. The following example

draft-ietf-ipngwg-bsd-api-06.txt [Page 17]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 illustrates how it is used:

 int hoplimit = 10;

 if (setsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
 (char *) &hoplimit, sizeof(hoplimit)) == -1)
 perror("setsockopt IPV6_UNICAST_HOPS");

 When the IPV6_UNICAST_HOPS option is set with setsockopt(), the
 option value given is used as the hop limit for all subsequent
 unicast packets sent via that socket. If the option is not set, the
 system selects a default value.

 The IPV6_UNICAST_HOPS option may be used with getsockopt() to
 determine the hop limit value that the system will use for subsequent
 unicast packets sent via that socket. For example:

 int hoplimit;
 size_t len = sizeof(hoplimit);

 if (getsockopt(s, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
 (char *) &hoplimit, &len) == -1)
 perror("getsockopt IPV6_UNICAST_HOPS");
 else
 printf("Using %d for hop limit.\n", hoplimit);

5.3. Sending and Receiving Multicast Packets

 IPv6 applications may send UDP multicast packets by simply specifying
 an IPv6 multicast address in the address argument of the sendto()
 function.

 Three socket options at the IPPROTO_IPV6 layer control some of the
 parameters for sending multicast packets. Setting these options is
 not required: applications may send multicast packets without using
 these options. The setsockopt() options for controlling the sending
 of multicast packets are summarized below:

draft-ietf-ipngwg-bsd-api-06.txt [Page 18]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 IPV6_MULTICAST_IF

 Set the interface to use for outgoing multicast packets. The
 argument is the index of the interface to use.

 Argument type: unsigned int

 IPV6_MULTICAST_HOPS

 Set the hop limit to use for outgoing multicast packets.
 (Note a separate option - IPV6_UNICAST_HOPS - is provided to
 set the hop limit to use for outgoing unicast packets.)

 Argument type: unsigned int

 IPV6_MULTICAST_LOOP

 Controls whether outgoing multicast packets sent should be
 delivered back to the local application. A toggle. If the
 option is set to 1, multicast packets are looped back. If it
 is set to 0, they are not.

 Argument type: unsigned int

 The reception of multicast packets is controlled by the two
 setsockopt() options summarized below:

 IPV6_ADD_MEMBERSHIP

 Join a multicast group on a specified local interface. If
 the interface index is specified as 0, the kernel chooses the
 local interface by looking up the multicast group in the
 normal IPv6 routing table and using the resulting interface.

 Argument type: struct ipv6_mreq

 IPV6_DROP_MEMBERSHIP

 Leave a multicast group on a specified interface.

 Argument type: struct ipv6_mreq

 The argument type of both of these options is the ipv6_mreq
 structure, defined as follows:

draft-ietf-ipngwg-bsd-api-06.txt [Page 19]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 struct ipv6_mreq {
 struct in6_addr ipv6mr_multiaddr; /* IPv6 multicast addr */
 unsigned int ipv6mr_interface; /* interface index */
 };

 Note that to receive multicast datagrams a process must join the
 multicast group and bind the UDP port to which datagrams will be
 sent. Some processes also bind the multicast group address to the
 socket, in addition to the port, to prevent other datagrams destined
 to that same port from being delivered to the socket.

6. Library Functions

 New library functions are needed to perform a variety of operations
 with IPv6 addresses. Functions are needed to lookup IPv6 addresses
 in the Domain Name System (DNS). Both forward lookup (hostname-to-
 address translation) and reverse lookup (address-to-hostname
 translation) need to be supported. Functions are also needed to
 convert IPv6 addresses between their binary and textual form.

6.1. Hostname-to-Address Translation

 The commonly used function gethostbyname() remains unchanged as does
 the hostent structure to which it returns a pointer. Existing
 applications that call this function continue to receive only IPv4
 addresses that are the result of a query in the DNS for A records.
 (We assume the DNS is being used; some environments may be using a
 hosts file or some other name resolution system, either of which may
 impede renumbering.)

 Two new changes are made to support IPv6 addresses. First the
 following function is new:

 struct hostent *gethostbyname2(const char *name, int af);

 The af argument specifies the address family. The default operation
 of this function is simple:

 - If the af argument is AF_INET, then a query is made for A
 records. If successful, IPv4 addresses are returned and the
 h_length member of the hostent structure will be 4, else the
 function returns a NULL pointer.

 - If the af argument is AF_INET6, then a query is made for AAAA

draft-ietf-ipngwg-bsd-api-06.txt [Page 20]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 records. If successful, IPv6 addresses are returned and the
 h_length member of the hostent structure will be 16, else the
 function returns a NULL pointer.

 The second change, that provides additional functionality, is a new
 resolver option RES_USE_INET6, which is defined as a result of
 including the <resolv.h> header. (This option is provided starting
 with the BIND 4.9.4 release.) There are three ways to set this
 option.

 - The first way is

 res_init();
 _res.options |= RES_USE_INET6;

 and then call either gethostbyname() or gethostbyname2(). This
 option then affects only the process that is calling the
 resolver.

 - The second way to set this option is to set the environment
 variable RES_OPTIONS, as in RES_OPTIONS=inet6. This method
 affects any processes that see this environment variable.

 - The third way is to set this option in the resolver configuration
 file (normally /etc/resolv.conf) and the option then affects all
 applications on the host. This final method should not be done
 until all applications on the host are capable of dealing with
 IPv6 addresses.

 When the RES_USE_INET6 option is set, two changes occur:

 - gethostbyname(host) first calls gethostbyname2(host, AF_INET6)
 looking for AAAA records, and if this fails it then calls
 gethostbyname2(host, AF_INET) looking for A records.

 - gethostbyname2(host, AF_INET) always returns IPv4-mapped IPv6
 addresses with the h_length member of the hostent structure set
 to 16.

 An application must not enable the RES_USE_INET6 option until it is
 prepared to deal with 16-byte addresses in the returned hostent
 structure.

 The following table summarizes the operation of the existing
 gethostbyname() function, the new function gethostbyname2(), along
 with the new resolver option RES_USE_INET6.

draft-ietf-ipngwg-bsd-api-06.txt [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 +------------------+---+
 | | RES_USE_INET6 option |
 | +-------------------------+-------------------------+
 | | off | on |
 +------------------+-------------------------+-------------------------+
	Search for A records.	Search for AAAA records.
gethostbyname	If found, return IPv4	If found, return IPv6
(host)	addresses (h_length=4).	addresses (h_length=16).
	Else error.	Else search for A
		records. If found,
	Provides backward	return IPv4-mapped IPv6
	compatibility with all	addresses (h_length=16).
	existing IPv4 appls.	Else error.
+------------------+-------------------------+-------------------------+		
	Search for A records.	Search for A records.
gethostbyname2	If found, return IPv4	If found, return
(host, AF_INET)	addresses (h_length=4).	IPv4-mapped IPv6
	Else error.	addresses (h_length=16).
		Else error.
+------------------+-------------------------+-------------------------+		
	Search for AAAA records.	Search for AAAA records.
gethostbyname2	If found, return IPv6	If found, return IPv6
(host, AF_INET6)	addresses (h_length=16).	addresses (h_length=16).
	Else error.	Else error.
 +------------------+-------------------------+-------------------------+

 It is expected that when a typical naive application that calls
 gethostbyname() today is modified to use IPv6, it simply changes the
 program to use IPv6 sockets and then enables the RES_USE_INET6
 resolver option before calling gethostbyname(). This application
 will then work with either IPv4 or IPv6 peers.

 Note that gethostbyname() and gethostbyname2() are not thread-safe,
 since both return a pointer to a static hostent structure. But
 several vendors have defined a thread-safe gethostbyname_r() function
 that requires four additional arguments. We expect these vendors to
 also define a gethostbyname2_r() function.

6.2. Address To Hostname Translation

 The existing gethostbyaddr() function already requires an address
 family argument and can therefore work with IPv6 addresses:

 struct hostent *gethostbyaddr(const char *src, int len, int af);

draft-ietf-ipngwg-bsd-api-06.txt [Page 22]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 One possible source of confusion is the handling of IPv4-mapped IPv6
 addresses and IPv4-compatible IPv6 addresses. Current thinking
 involves the following logic:

 - If af is AF_INET6, and if len equals 16, and if the IPv6 address
 is an IPv4-mapped IPv6 address or an IPv4-compatible IPv6
 address, then skip over the first 12 bytes of the IPv6 address,
 set af to AF_INET, and set len to 4.

 - If af is AF_INET, then query for a PTR record in the in-addr.arpa
 domain.

 - If af is AF_INET6, then query for a PTR record in the ip6.int
 domain.

 - If the function is returning success, and if af equals AF_INET,
 and if the RES_USE_INET6 option was set, then the single address
 that is returned in the hostent structure (a copy of the first
 argument to the function) is returned as an IPv4-mapped IPv6
 address and the h_length member is set to 16.

 The same caveats regarding a thread-safe version of gethostbyname()
 that were made at the end of the previous section apply here as well.

6.3. Protocol-Independent Hostname and Service Name Translation

 Hostname-to-address translation is done in a protocol-independent
 fashion using the getaddrinfo() function that is taken from the
 Institute of Electrical and Electronic Engineers (IEEE) POSIX 1003.1g
 (Protocol Independent Interfaces) draft specification [4].

 The official specification for this function will be the final POSIX
 standard. We are providing this independent description of the
 function because POSIX standards are not freely available (as are
 IETF documents). Should there be any discrepancies between this
 description and the POSIX description, the POSIX description takes
 precedence.

 #include <sys/socket.h>
 #include <netdb.h>

 int getaddrinfo(const char *hostname, const char *servname,
 const struct addrinfo *hints,
 struct addrinfo **res);

 The addrinfo structure is defined as:

draft-ietf-ipngwg-bsd-api-06.txt [Page 23]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 struct addrinfo {
 int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
 int ai_family; /* PF_xxx */
 int ai_socktype; /* SOCK_xxx */
 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
 size_t ai_addrlen; /* length of ai_addr */
 char *ai_canonname; /* canonical name for hostname */
 struct sockaddr *ai_addr; /* binary address */
 struct addrinfo *ai_next; /* next structure in linked list */
 };

 The return value from the function is 0 upon success or a nonzero
 error code. The following names are the nonzero error codes from
 getaddrinfo():

 EAI_ADDRFAMILY address family for hostname not supported
 EAI_AGAIN temporary failure in name resolution
 EAI_BADFLAGS invalid value for ai_flags
 EAI_FAIL non-recoverable failure in name resolution
 EAI_FAMILY ai_family not supported
 EAI_MEMORY memory allocation failure
 EAI_NODATA no address associated with hostname
 EAI_NONAME hostname nor servname provided, or not known
 EAI_SERVICE servname not supported for ai_socktype
 EAI_SOCKTYPE ai_socktype not supported
 EAI_SYSTEM system error returned in errno

 The hostname and servname arguments are pointers to null-terminated
 strings or NULL. One or both of these two arguments must be a non-
 NULL pointer. In the normal client scenario, both the hostname and
 servname are specified. In the normal server scenario, only the
 servname is specified. A non-NULL hostname string can be either a
 host name or a numeric host address string (i.e., a dotted-decimal
 IPv4 address or an IPv6 hex address). A non-NULL servname string can
 be either a service name or a decimal port number.

 The caller can optionally pass an addrinfo structure, pointed to by
 the third argument, to provide hints concerning the type of socket
 that the caller supports. In this hints structure all members other
 than ai_flags, ai_family, ai_socktype, and ai_protocol must be zero
 or a NULL pointer. A value of PF_UNSPEC for ai_family means the
 caller will accept any protocol family. A value of 0 for ai_socktype
 means the caller will accept any socket type. A value of 0 for
 ai_protocol means the caller will accept any protocol. For example,
 if the caller handles only TCP and not UDP, then the ai_socktype
 member of the hints structure should be set to SOCK_STREAM when
 getaddrinfo() is called. If the caller handles only IPv4 and not

draft-ietf-ipngwg-bsd-api-06.txt [Page 24]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 IPv6, then the ai_family member of the hints structure should be set
 to PF_INET when getaddrinfo() is called. If the third argument to
 getaddrinfo() is a NULL pointer, this is the same as if the caller
 had filled in an addrinfo structure initialized to zero with
 ai_family set to PF_UNSPEC.

 Upon successful return a pointer to a linked list of one or more
 addrinfo structures is returned through the final argument. The
 caller can process each addrinfo structure in this list by following
 the ai_next pointer, until a NULL pointer is encountered. In each
 returned addrinfo structure the three members ai_family, ai_socktype,
 and ai_protocol are the corresponding arguments for a call to the
 socket() function. In each addrinfo structure the ai_addr member
 points to a filled-in socket address structure whose length is
 specified by the ai_addrlen member.

 If the AI_PASSIVE bit is set in the ai_flags member of the hints
 structure, then the caller plans to use the returned socket address
 structure in a call to bind(). In this case, if the hostname
 argument is a NULL pointer, then the IP address portion of the socket
 address structure will be set to INADDR_ANY for an IPv4 address or
 IN6ADDR_ANY_INIT for an IPv6 address. Notice that if the AI_PASSIVE
 bit is set and the hostname argument is a NULL pointer then the
 caller must also specify a nonzero ai_family, otherwise getaddrinfo()
 is unable to allocate and initialize a socket address structure of
 the correct type.

 If the AI_PASSIVE bit is not set in the ai_flags member of the hints
 structure, then the returned socket address structure will be ready
 for a call to connect() (for a connection-oriented protocol) or
 either connect(), sendto(), or sendmsg() (for a connectionless
 protocol). In this case, if the hostname argument is a NULL pointer,
 then the IP address portion of the socket address structure will be
 set to the loopback address.

 If the AI_CANONNAME bit is set in the ai_flags member of the hints
 structure, then upon successful return the ai_canonname member of the
 first addrinfo structure in the linked list will point to a null-
 terminated string containing the canonical name of the specified
 hostname.

 All of the information returned by getaddrinfo() is dynamically
 allocated: the addrinfo structures, and the socket address structures
 and canonical host name strings pointed to by the addrinfo
 structures. To return this information to the system the function
 freeaddrinfo() is called:

draft-ietf-ipngwg-bsd-api-06.txt [Page 25]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 #include <sys/socket.h>
 #include <netdb.h>

 void freeaddrinfo(struct addrinfo *ai);

 The addrinfo structure pointed to by the ai argument is freed, along
 with any dynamic storage pointed to by the structure. This operation
 is repeated until a NULL ai_next pointer is encountered.

6.4. Socket Address Structure to Hostname and Service Name

 The POSIX 1003.1g specification includes no function to perform the
 reverse conversion from getaddrinfo(): to look up a hostname and
 service name, given the binary address and port. Therefore, we
 define the following function:

 #include <sys/socket.h>
 #include <netdb.h>

 int getnameinfo(const struct sockaddr *sa, size_t salen,
 char *host, size_t hostlen,
 char *serv, size_t servlen);

 This function looks up an IP address and port number provided by the
 caller in the DNS and system-specific database, and returns text
 strings for both in buffers provided by the caller. The first
 argument, sa, points to either a sockaddr_in structure (for IPv4) or
 a sockaddr_in6 structure (for IPv6) that holds the IP address and
 port number. The salen argument gives the length of the sockaddr_in
 or sockaddr_in6 structure. The function returns the hostname
 associated with the IP address in the buffer pointed to by the host
 argument. The caller provides the size of this buffer via the
 hostlen argument. The service name associated with the port number
 is returned in the buffer pointed to by serv, and the servlen
 argument gives the length of this buffer. The caller specifies not
 to return either string by providing a zero value for the hostlen or
 servlen arguments. Otherwise, the caller must provide buffers large
 enough to hold the fully qualified domain hostname, and the full
 service name, including the terminating null character. The function
 indicates successful completion by a zero return value; a non-zero
 return value indicates failure.

 Note that this function does not know the protocol of the socket
 address structure. Normally this is not a problem because the same
 port is assigned to a given service for both TCP and UDP. But there
 exist historical artifacts that violate this rule (e.g., ports 512,

draft-ietf-ipngwg-bsd-api-06.txt [Page 26]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 513, and 514).

6.5. Address Conversion Functions

 The two functions inet_addr() and inet_ntoa() convert an IPv4 address
 between binary and text form. IPv6 applications need similar
 functions. The following two functions convert both IPv6 and IPv4
 addresses:

 int inet_pton(int af, const char *src, void *dst);

 and

 const char *inet_ntop(int af, const void *src,
 char *dst, size_t size);

 The inet_pton() function converts an address in its standard text
 presentation form into its numeric binary form. The af argument
 specifies the family of the address. Currently the AF_INET and
 AF_INET6 address families are supported. The src argument points to
 the string being passed in. The dst argument points to a buffer into
 which the function stores the numeric address. The address is
 returned in network byte order. Inet_pton() returns 1 if the
 conversion succeeds, 0 if the input is not a valid IPv4 dotted-
 decimal string or a valid IPv6 address string, or -1 with errno set
 to EAFNOSUPPORT if the af argument is unknown. The function does not
 modify the buffer pointed to by dst if the conversion fails. The
 calling application must ensure that the buffer referred to by dst is
 large enough to hold the numeric address (e.g., 4 bytes for AF_INET
 or 16 bytes for AF_INET6).

 If the af argument is AF_INET, the function accepts a string in the
 standard IPv4 dotted-decimal form:

 ddd.ddd.ddd.ddd

 where ddd is a one to three digit decimal number between 0 and 255.

 If the af argument is AF_INET6, then the function accepts a string in
 one of the standard IPv6 text forms defined in Section 2.2 of the
 addressing architecture specification [2].

 The inet_ntop() function converts a numeric address into a text
 string suitable for presentation. The af argument specifies the
 family of the address. This can be AF_INET or AF_INET6. The src

draft-ietf-ipngwg-bsd-api-06.txt [Page 27]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 argument points to a buffer holding an IPv4 address if the af
 argument is AF_INET, or an IPv6 address if the af argument is
 AF_INET6. The dst argument points to a buffer where the function
 will store the resulting text string. The size argument specifies
 the size of this buffer. The application must specify a non-NULL dst
 argument. For IPv6 addresses, the buffer must be at least 46-octets.
 For IPv4 addresses, the buffer must be at least 16-octets. In order
 to allow applications to easily declare buffers of the proper size to
 store IPv4 and IPv6 addresses in string form, implementations should
 provide the following constants, made available to applications that
 include <netinet/in.h>:

 #define INET_ADDRSTRLEN 16
 #define INET6_ADDRSTRLEN 46

 The inet_ntop() function returns a pointer to the buffer containing
 the text string if the conversion succeeds, and NULL otherwise. Upon
 failure, errno is set to EAFNOSUPPORT if the af argument is invalid
 or ENOSPC if the size of the result buffer is inadequate. The
 function does not modify the storage pointed to by dst if the
 conversion fails.

 Applications obtain the prototype declarations for inet_ntop() and
 inet_pton() by including the header <arpa/inet.h>.

6.6. IPv4-Mapped Addresses

 The IPv4-mapped IPv6 address format represents IPv4 addresses as IPv6
 addresses. Most applications should be able to manipulate IPv6
 addresses as opaque 16-octet quantities, without needing to know
 whether they represent IPv4 addresses. However, a few applications
 may need to determine whether an IPv6 address is an IPv4-mapped
 address or not. The following function is provided for those
 applications:

 int inet6_isipv4mapped(const struct in6_addr *addr);

 The "addr" argument to this function points to a buffer holding an
 IPv6 address in network byte order. The function returns non-zero if
 that address is an IPv4-mapped address, and returns 0 otherwise.

 This function could be used by server applications to determine
 whether the peer is an IPv4 node or an IPv6 node. After accepting a
 TCP connection via accept(), or receiving a UDP packet via
 recvfrom(), the application can apply the inet6_isipv4mapped()
 function to the returned address.

draft-ietf-ipngwg-bsd-api-06.txt [Page 28]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 Applications obtain the prototype for this function by including the
 header <arpa/inet.h>.

7. Security Considerations

 IPv6 provides a number of new security mechanisms, many of which need
 to be accessible to applications. A companion memo detailing the
 extensions to the socket interfaces to support IPv6 security is being
 written [3].

8. Change History

 Changes from the April 1996 Edition (-05 draft)

 - Rewrote Abstract.

 - Added Table of Contents.

 - New Section 2.2 (Data Types).

 - Removed the example from Section 3.4 (Socket Address Structure
 for 4.4BSD-Based Systems) implying that the process must set the
 sin6_len field. This field need not be set by the process before
 passing a socket address structure to the kernel: bind(),
 connect(), sendto(), and sendmsg().

 - The examples in Section 3.8 (Flow Information) on setting and
 fetching the flow label and priority have been expanded, since
 the byte ordering and shifting required to set and fetch these
 fields can be confusing. It is also explicitly stated that the
 two IPV6_FLOWLABEL_xxx constants and the 16 IPV6_PRIORITY_xxx
 constants are all network byte ordered.

 - Warning placed at the end of Section 3.9 concerning the byte
 ordering of the IPv4 INADDR_xxx constants versus the IPv6
 IN6ADDR_xxx constants and in6addr_xxx externals.

 - Added a new Section 4 (Interface Identification). This provides
 functions to map between an interface name and an interface
 index.

 - In Section 5.1 (Changing Socket Type) the qualifier was added
 that you cannot downgrade an IPv6 socket to an IPv4 socket unless
 all nonwildcard addresses already associated with the IPv6 socket
 are IPv4-mapped IPv6 addresses.

draft-ietf-ipngwg-bsd-api-06.txt [Page 29]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 - In Section 5.3 (Sending and Receiving Multicast Packets) the
 method of specifying the local interface was changed from using a
 local IPv6 address to using the interface index. This changes
 the argument type for IPV6_MULTICAST_IF and the second member of
 the ipv6_mreq structure.

 - In Section 5.3 (Sending and Receiving Multicast Packets) the
 IPV6_ADD_MEMBERSHIP socket option description was corrected. A
 note was also added at the end of this section concerning joining
 the group versus binding the group address to the socket.

 - The old Sections 5.1, 5.2, and 5.3 are gone, and new Sections
 6.1, 6.2, 6.3, 6.4, and 6.5 are provided. The new sections
 describe the BIND 4.9.4 implementation of the name-to-address
 functions (which support IPv6), a POSIX-free description of the
 getaddrinfo() function, a description of the new getnameinfo()
 function, and the inet_ntop() and inet_pton() functions. The old

Section 5.4 (Embedded IPv4 addresses) is now Section 6.6 (IPv4-
 Mapped Addresses).

 - Renamed inet6_isipv4addr() to inet6_isipv4mapped() so the name
 better describes the function.

 - Section 8 (Open Issues) was removed.

 Changes from the January 1996 Edition (-04 draft)

 - Re-arranged the ipv6_hostent_addr structure, placing the IPv6
 address element first.

 Changes from the November 1995 Edition (-03 draft)

 - Added the symbolic constants IN6ADDR_ANY_INIT and
 IN6ADDR_LOOPBACK_INIT for applications to use for
 initializations.

 - Eliminated restrictions on the value of ipv6addr_any. Systems
 may now choose any value, including all-zeros.

 - Added a mechanism for returning time to live with the address in
 the name-to-address translation functions.

 - Added a mechanism for applications to specify the interface in
 the setsockopt() options to join and leave a multicast group.

 Changes from the July 1995 Edition

 - Changed u_long and u_short types in structures to u_int32_t and

draft-ietf-ipngwg-bsd-api-06.txt [Page 30]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 u_int16_t for consistency and clarity.

 - Added implementation-provided constants for IPv4 and IPv6 text
 address buffer length.

 - Defined a set of constants for subfields of sin6_flowid and for
 priority values.

 - Defined constants for getting and setting the source route flag.

 - Define where ansi prototypes for hostname2addr(),
 addr2hostname(), addr2ascii(), ascii2addr(), and
 ipv6_isipv4addr() reside.

 - Clarified the include file requirements. Say that the structure
 definitions are defined as a result of including the header
 <netinet/in.h>, not that the structures are necessarily defined
 there.

 - Removed underscore chars from is_ipv4_addr() function name for
 BSD compatibility.

 - Added inet6_ prefix to is_ipv4_addr() function name to avoid name
 space conflicts.

 - Changes setsockopt option naming convention to use IPV6_ prefix
 instead of IP_ so that there is clearly no ambiguity with IPv4
 options. Also, use level IPPROTO_IPV6 for these options.

 - Made hostname2addr() and addr2hostname() functions thread-safe.

 - Added support for sendmsg() and recvmsg() in source routing
 section.

 - Changed in_addr6 to in6_addr for consistency.

 - Re-structured document into sub-sections.

 - Deleted the implementation experience section. It was too wordy.

 - Added argument types to multicast socket options.

 - Added constant for largest source route array buffer.

 - Added the freehostent() function.

 - Added receiving interface determination and sending interface
 selection options.

draft-ietf-ipngwg-bsd-api-06.txt [Page 31]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 - Added definitions of ipv6addr_any and ipv6addr_loopback.

 - Added text making the lookup of IPv4 addresses by hostname2addr()
 optional.

 Changes from the June 1995 Edition

 - Added capability for application to select loose or strict source
 routing.

 Changes from the March 1995 Edition

 - Changed the definition of the ipv6_addr structure to be an array
 of sixteen chars instead of four longs. This change is necessary
 to support machines that implement the socket interface, but do
 not have a 32-bit addressable word. Virtually all machines that
 provide the socket interface do support an 8-bit addressable data
 type.

 - Added a more detailed explanation that the data types defined in
 this documented are not intended to be hard and fast
 requirements. Systems may use other data types if they wish.

 - Added a note flagging the fact that the sockaddr_in6 structure is
 not the same size as the sockaddr structure.

 - Changed the sin6_flowlabel field to sin6_flowinfo to accommodate
 the addition of the priority field to the IPv6 header.

 Changes from the October 1994 Edition

 - Added variant of sockaddr_in6 for 4.4BSD-based systems (sa_len
 compatibility).

 - Removed references to SIT transition specification, and added
 reference to addressing architecture document, for definition of
 IPv4-mapped addresses.

 - Added a solution to the problem of the application not providing
 enough buffer space to hold a received source route.

 - Moved discussion of IPv4 applications interoperating with IPv6
 nodes to open issues section.

 - Added length parameter to addr2ascii() function to be consistent
 with addr2hostname().

 - Changed IP_MULTICAST_TTL to IP_MULTICAST_HOPS to match IPv6

draft-ietf-ipngwg-bsd-api-06.txt [Page 32]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 terminology, and added IP_UNICAST_HOPS option to match
 IP_MULTICAST_HOPS.

 - Removed specification of numeric values for AF_INET6,
 IP_ADDRFORM, and IP_RCVSRCRT, since they need not be the same on
 different implementations.

 - Added a definition for the in_addr6 IPv6 address data structure.
 Added this so that applications could use sizeof(struct in_addr6)
 to get the size of an IPv6 address, and so that a structured type
 could be used in the is_ipv4_addr().

9. Acknowledgments

 Thanks to the many people who made suggestions and provided feedback
 to to the numerous revisions of this document, including: Werner
 Almesberger, Ran Atkinson, Fred Baker, Dave Borman, Andrew Cherenson,
 Alex Conta, Alan Cox, Steve Deering, Francis Dupont, Robert Elz, Marc
 Hasson, Tom Herbert, Christian Huitema, Wan-Yen Hsu, Alan Lloyd,
 Charles Lynn, Dan McDonald, Craig Metz, Erik Nordmark, Josh Osborne,
 Craig Partridge, Matt Thomas, Dean D. Throop, Glenn Trewitt, Paul
 Vixie, David Waitzman, and Carl Williams.

 The getaddrinfo() and getnameinfo() functions are taken from an
 earlier Internet Draft by Keith Sklower. As noted in that draft,
 William Durst, Steven Wise, Michael Karels, and Eric Allman provided
 many useful discussions on the subject of protocol-independent name-
 to-address translation, and reviewed early versions of Keith
 Sklower's original proposal. Eric Allman implemented the first
 prototype of getaddrinfo(). The observation that specifying the pair
 of name and service would suffice for connecting to a service
 independent of protocol details was made by Marshall Rose in a
 proposal to X/Open for a "Uniform Network Interface".

 Ramesh Govindan made a number of contributions and co-authored an
 earlier version of this memo.

10. References

 [1] S. Deering, R. Hinden, "Internet Protocol, Version 6 (IPv6)
 Specification", RFC 1883, December 1995.

 [2] R. Hinden, S. Deering, "IP Version 6 Addressing Architecture",
RFC 1884, December 1995.

https://datatracker.ietf.org/doc/html/rfc1883
https://datatracker.ietf.org/doc/html/rfc1884

draft-ietf-ipngwg-bsd-api-06.txt [Page 33]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

INTERNET-DRAFT IPv6 Socket Interface Extensions November 23, 1996

 [3] D. McDonald, "A Simple IP Security API Extension to BSD Sockets",
 Internet-Draft, <draft-mcdonald-simple-ipsec-api-00.txt>,
 November 1996.

 [4] IEEE, "Protocol Independent Interfaces", IEEE Std 1003.1g, DRAFT
 6.3, November 1995.

 [5] W. R. Stevens, M. Thomas, "Advanced Sockets API for IPv6",
 Internet-Draft, <draft-stevens-advanced-api-00.txt>, October
 1996.

11. Authors' Addresses

 Robert E. Gilligan
 Freegate Corporation
 710 Lakeway Dr. STE 230
 Sunnyvale, CA 94086
 Phone: +1 408 524 4804
 Email: gilligan@freegate.net

 Susan Thomson
 Bell Communications Research
 MRE 2P-343, 445 South Street
 Morristown, NJ 07960
 Telephone: +1 201 829 4514
 Email: set@thumper.bellcore.com

 Jim Bound
 Digital Equipment Corporation
 110 Spitbrook Road ZK3-3/U14
 Nashua, NH 03062-2698
 Phone: +1 603 881 0400
 Email: bound@zk3.dec.com

 W. Richard Stevens
 1202 E. Paseo del Zorro
 Tucson, AZ 85718-2826
 Phone: +1 520 297 9416
 Email: rstevens@kohala.com

https://datatracker.ietf.org/doc/html/draft-mcdonald-simple-ipsec-api-00.txt
https://datatracker.ietf.org/doc/html/draft-stevens-advanced-api-00.txt

draft-ietf-ipngwg-bsd-api-06.txt [Page 34]

https://datatracker.ietf.org/doc/html/draft-ietf-ipngwg-bsd-api-06.txt

