INTERNET-DRAFT Document: draft-ietf-ipo-carrier-requirements-05.txt Category: Informational (Editor) Expiration Date: June, 2003 WorldCom, Inc

December 2002

Optical Network Service Requirements

Status of This Memo This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or rendered obsolete by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress". The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt. The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html. Abstract This Internet Draft describes the major carrier's optical service requirements for the Automatically Switched Optical Networks (ASON) from both an end-user's as well as an operator's perspectives. Its focus is on the description of the service building blocks and service-related control plane functional requirements. The management functions for the optical services and their underlying networks are beyond the scope of this document. Table of Contents 1. Introduction 2 1.1 Conventions used in this document 3 1.2 Value Statement 3 1.3 Scope of This Document 4 2. Contributing Authors 5

3. Abbreviations	6
4. General Requirements	6
4.1 Separation of Networking Functions	7
4.2 Separation of Call and Connection Control	8
4.3 Network and Service Scalability	8
4.4 Transport Network Technology	9
4.5 Service Building Blocks	9
5. Service Models and Applications	9
5.1 Service and Connection Types	10
5.2 Examples of Common Service Models	11

draft-ietf-i	<u>po-carrier-requirements-05.txt</u>	[Page 1]

Y. Xue et a	Υ.	xue	eτ	a
-------------	----	-----	----	---

6. Network Reference Model	12
6.1 Optical Networks and Subnetworks	12
6.2 Network Interfaces	12
6.3 Intra-Carrier Network Model	15
6.4 Inter-Carrier Network Model	16
6.5 Implied Control Constraints	16
7. Optical Service User Requirements	16
7.1 Common Optical Services	17
7.2 Bearer Interface Types	17
7.3 Optical Service Invocation	18
7.4 Optical Connection Granularity	20
7.5 Other Service Parameters and Requirements	20
8. Optical Service Provider Requirements	21
8.1 Access Methods to Optical Networks	22
8.2 Dual Homing and Network Interconnections	22
8.3 Inter-domain connectivity	22
8.4 Names and Address Management	23
8.5 Policy-Based Service Management Framework	24
9. Control Plane Functional Requirements for Optical	
Services	24
9.1 Control Plane Capabilities and Functions	24
9.2 Control Message Transport Network	26
9.3 Control Plane Interface to Data Plane	27
9.4 Management Plane Interface to Data Plane	28
9.5 Control Plane Interface to Management Plane	28
9.6 IP and Optical Control Plane Interconnection	29
10. Requirements for Signaling, Routing and Discovery	29
10.1 Requirements for information sharing over UNI,	
I-NNI and E-NNI	29
10.2 Signaling Functions	30
10.3 Routing Functions	30
10.4 Requirements for path selection	32
10.5 Discovery Functions	32
11. Requirements for service and control plane	
resiliency	33
11.1 Service resiliency	34
11.2 Control plane resiliency	35
12. Security Considerations	36
12.1 Optical Network Security Concerns	36
12.2 Service Access Control	36
13. Acknowledgements	37
14. References	38
Authors' Addresses	39
Appendix: Interconnection of Control Planes	41

1. Introduction

Optical transport networks are evolving from the current TDM-based SONET/SDH optical networks as defined by ANSI T1.105 and ITU Rec.

G.803 [<u>ansi-sonet</u>, <u>itu-sdh</u>] to emerging WDM-based optical transport networks (OTN) as defined by ITU Rec. G.872 in [<u>itu-otn</u>]. Therefore in

draft-ietf-ipo-carrier-requirements-05.txt [page 2]

	Y. Xue et al Informational
to	the near future, carrier optical transport networks are expected
to	consist of a mixture of the SONET/SDH-based sub-networks and the
WDM- networks	based wavelength or fiber switched OTN sub-networks. The OTN
functions	can be either transparent or opaque depending upon if O-E-O
	are utilized within the optical networks. Optical networking encompasses the functionalities for the establishment,
transmission TDM	n, multiplexing and switching of optical connections carrying a wide range of user signals of varying formats and bit rate. The optical connections in this document include switched optical path using
IDM	channel, WADM wavelength or fiber links.
rapidly	Some of the challenges for the carriers are efficient bandwidth management and fast service provisioning in a multi-technology and possibly multi-vendor networking environment. The emerging and
	evolving Automatically Switched Optical Network (ASON) technology [itu-astn, itu-ason] is aimed at providing optical networks with intelligent networking functions and capabilities in its control
plane	to enable rapid optical connection provisioning, dynamic rerouting
as	well as multiplexing and switching at different granularity
levels,	including fiber, wavelength and TDM channel. The ASON control plane should
not well.	only enable the new networking functions and capabilities for the emerging OTN networks, but significantly enhance the service provisioning capabilities for the existing SONET/SDH networks as
	The ultimate goals should be to allow the carriers to automate
network 	resource and topology discovery, to quickly and dynamically
provision	network resources and circuits, and to support assorted network survivability using ring and mesh-based protection and restoration techniques. The carriers see that this new networking platform
will	create tremendous business opportunities for the network operators
and	service providers to offer new services to the market, and in the
long	

run to reduce their network operation cost (OpEx saving), and to improve their network utilization efficiency (CapEx saving).

1.1 Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL"

in

this document are to be interpreted as described in <u>RFC 2119</u>.

1.2 Value Statement

By deploying ASON technology, a carrier expects to achieve the following benefits from both technical and business perspectives: Automated Discovery: ASON technology will enable automatic network inventory management, topology and resource discovery which

eliminates

the manual or semi-manual process for maintaining the network information database that exist in most carrier environment.

draft-ietf-ipo-carrier-requirements-05.txt [page 3]

	Y. Xue et al Informational
dynamic	Rapid Circuit Provisioning: ASON technology will enable the
-	end-to-end provisioning of the optical connections across the
optical	network by using standard routing and signaling protocols.
	Enhanced Protection and Restoration: ASON technology will enable
the	network to dynamically reroute an optical connection in case of failure using mesh-based network protection and restoration techniques, which greatly improves the cost-effectiveness compared
to network.	the current line and ring protection schemes in the SONET/SDH
	- Service Flexibility: ASON technology will support provisioning
of an	assortment of existing and new services such as protocol and bit-
rate	independent transparent network services, and bandwidth-on-demand services.
plane	- Enhanced Interoperability: ASON technology will use a control
and	utilizing industry and international standards-based architecture
	protocols, which facilitate the interoperability of the optical network equipment from different vendors.
potential	In addition, the ASON control plane may offer the following
potentiai	value-added benefits:
network	- Reactive traffic engineering at optical layer that allows
	resources to be dynamically allocated to traffic flow.
service	- Reduce the need for service providers to develop new operational support systems (OSS) software for the network control and new
deployment	provisioning on the optical network, thus speeding up the
аертоушент	of the optical network technology and reducing the software development and maintenance cost.
usod	- Potential development of a unified control plane that can be
used	for different transport technologies including OTN, SONET/SDH, ATM

and	
	PDH.
	1.3. Scope of this document
perspective,	This document is intended to provide, from the carriers a
the	service framework and some associated requirements in relation to
	optical transport services to be offered in the next generation optical transport networking environment and their service control
and	
	management functions. As such, this document concentrates on the requirements driving the work towards realization of automatically switched optical networks. This document is intended to be
protocol-	
	neutral, but the specific goals include providing the requirements
to	guide the control protocol development and enhancement within IETF
in	terms of reuse of IP-centric control protocols in the optical transport network.

draft-ietf-ipo-carrier-requirements-05.txt [page 4]

Y. Xue et al Informational Every carrier's needs are different. The objective of this document is NOT to define some specific service models. Instead, some major service building blocks are identified that will enable the carriers to use them in order to create the best service platform most suitable to their business model. These building blocks include generic service types, service enabling control mechanisms and service control and management functions. The Optical Internetworking Forum (OIF) carrier group has developed a comprehensive set of control plane requirements for both UNI and NNI [oif-carrier, oif-nnireq] and they have been used as the base line input to this document. The fundamental principles and basic set of requirements for the control plane of the automatic switched optical networks have been provided in a series of ITU Recommendations under the umbrella of ITU ASTN/ASON architectural and functional requirements as listed below: Architecture: - ITU-T Rec. G.8070/Y.1301 (2001), Requirements for the Automatic Switched Transport Network (ASTN)[itu-astn] - ITU-T Rec. G.8080/Y.1304 (2001), Architecture of the Automatic Switched Optical Network (ASON)[itu-ason] Signaling: - ITU-T Rec. G.7713/Y.1704 (2001), Distributed Call and Connection Management (DCM)[itu-dcm] Routing: - ITU-T Draft Rec. G.7715/Y.1706 (2002), Architecture and Requirements for Routing in the Automatically Switched Optical Network [iturtg] Discovery: - ITU-T Rec. G.7714/Y.1705 (2001), Generalized Automatic Discovery [<u>itu-disc</u>] Signaling Communication Network:

of	- ITU-T Rec. G.7712/Y.1703 (2001), Architecture and Specification
	Data Communication Network [itu-dcn]
	This document provides further detailed requirements based on the ASTN/ASON framework. In addition, even though for IP over Optical
we document,	consider IP as a major client to the optical network in this
to	the same requirements and principles should be equally applicable
The	non-IP clients such as SONET/SDH, ATM, ITU G.709, Ethernet, etc.
over	general architecture for IP over Optical is described in the IP
	Optical framework document [ipo-frame]
	2. Contributing Authors

draft-ietf-ipo-carrier-requirements-05.txt [page 5]

	Y. Xue e	t al	Informational	L	
£ - 11	This docu	ment was the co	mbined effort	of the editors and the	
following	Monica Jennif Dongme Ananth Hiroka Olga A	ho contributed Lazer er Yates i Wang Nagarajan zu Ishimatsu paricio Wright	to this docume	ent:	
	3. Acrony	ms			
	APON ASON ASTN CAC EPON ESCON FC FICON NNI UNI I-NNI E-NNI NE OTN CNE OLS PI PDH CI SLA SCN SONET SDH	ATM Passive Op Automatic Swit Automatic Swit Connection Adm Ethernet Passi Enterprise Sto Fiber Channel Fiber Connecti Node-to-Node I User-to-Networ Internal NNI External NNI External NNI Network Elemen Optical Transp Customer/Clien Optical Line S Physical Inter Plesiosynchron Control Interf Service Level Signaling Comm Synchronous Di Synchronous Op	ched Optical N ched Transport dission Control ve Optical Net orage Connectiv vity interface k Interface k Interface k Element system face ous Digital Hi face Agreement unication Netw	nent Lerarchy	
		l Requirements	carriors with	flovibility and control	of
the				flexibility and control	
are	essential		JELOWEING SEE OF		51103
		ration of Netwo	orking Functior	IS	

A fundamental architectural principle of the ASON network is to segregate the networking functions within each layer network into

	three logical functional planes: control plane, data plane and
	management plane. They are responsible for providing network
control	
	functions, data transmission functions and network management functions respectively. The crux of the ASON network is the
networking	

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 6]

Y. Xue et al Informational intelligence that contains automatic routing, signaling and discovery functions to automate the network control functions. Control Plane: includes the functions related to networking control capabilities such as routing, signaling, and policy control, as well as resource and service discovery. These functions are automated. Data Plane (Transport Plane): includes the functions related to bearer channels and signal transmission. Management Plane: includes the functions related to the management functions of network element, networks and network resources and services. These functions are less automated as compared to control plane functions. Each plane consists of a set of interconnected functional or control entities, physical or logical, responsible for providing the networking or control functions defined for that network layer. Each plane has clearly defined functional responsibilities. However, the management plane is responsible for the management of both control and data planes, thus playing an authoritative role in overall control and management functions as discussed in <u>Section 9</u>. The separation of the control plane from both the data and management plane is beneficial to the carriers in that it: - Allows equipment vendors to have a modular system design that will be more reliable and maintainable. - Allows carriers to have the flexibility to choose a third party vendor control plane software systems as the control plane solution for its switched optical network. - Allows carriers to deploy a unified control plane and OSS/ management systems to manage and control different types of transport

networks it

owns.

- Allows carriers to use a separate control network specially designed

and engineered for the control plane communications.

The separation of control, management and transport function is required and it shall accommodate both logical and physical level separation. The logical separation refers to functional separation while physical separation refers to the case where the control, management and transport functions physically reside in different equipment or locations.

Note that it is in contrast to the IP network where the control messages and user traffic are routed and switched based on the

same

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 7]

	Y. Xue et al Informational
the	network topology due to the associated in-band signaling nature of
	IP network.
	When the physical separation is allowed between the control and
data	plane, a standardized interface and control protocol (e.g. GSMP
[ietf-	gsmp]) should be supported.
	4.2. Separation of call and connection control
bandwidth	To support many enhanced optical services, such as scheduled
Danuwiuth	on demand, diverse circuit provisioning and bundled connections, a call model based on the separation of call control and connection control is essential.
while	The call control is responsible for the end-to-end session negotiation, call admission control and call state maintenance
	connection control is responsible for setting up the connections associated with a call across the network. A call can correspond
to connections	zero, one or more connections depending upon the number of
	needed to support the call.
	The existence of the connection depends upon the existence of its associated call session and connection can be deleted and re- established while still keeping the call session up.
port definition].	The call control shall be provided at an ingress port or gateway
	to the network such as UNI and E-NNI [see <u>Section 6</u> for
	The connection control is provided at the originating node of the circuit as well as on each link along the path.
	The control plane shall support the separation of the call control from the connection control.
setup	The control plane shall support call admission control on call
Secup	and connection admission control on connection setup.
	4.3. Network and Service Scalability
	Although some specific applications or networks may be on a small scale, the control plane protocol and functional capabilities

shall	
	support large-scale networks.
network,	In terms of the scale and complexity of the future optical
scalability	the following assumption can be made when considering the
	and performance that are required of the optical control and management functions. - There may be up to thousands of OXC nodes and the same or higher order of magnitude of OADMs per carrier network.
OXC	- There may be up to thousands of terminating ports/wavelength per
UNC	node.
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 8]

Y. Xue et al Info	rmational	
-------------------	-----------	--

	- There may be up to hundreds of parallel fibers between a pair of
OXC	nodes.
on	- There may be up to hundreds of wavelength channels transmitted
	each fiber.
	As for the frequency and duration of the optical connections:
in	- The expected end-to-end connection setup/teardown time should be
TI	the order of seconds, preferably less.
	- The expected connection holding times should be in the order of minutes or greater.
	- There may be up to millions of simultaneous optical connections switched across a single carrier network.
	4.4. Transport Network Technology
	Optical services can be offered over different types of underlying optical transport technologies including both TDM-based SONET/SDH network and WDM-based OTN networks.
	Standards-based transport technologies SONET/SDH as defined in the
ITU G.709	Rec. G.803 and OTN implementation framing as defined in ITU Rec.
G.709	[<u>itu-g709</u>] shall be supported.
aropulority	Note that the service characteristics such as bandwidth
granularity	and signaling framing hierarchy to a large degree will be
determined	by the capabilities and constraints of the server layer network.
	4.5. Service Building Blocks
	One of the goals of this document is to identify a set of basic service building blocks the carriers can use to create the best suitable service models that serve their business needs.
	The service building blocks are comprised of a well-defined set of capabilities and a basic set of control and management functions. These capabilities and functions should support a basic set of services and enable a carrier to build enhanced services through

extensions and customizations. Examples of the building blocks

include	
policy	the connection types, provisioning methods, control interfaces,
	control functions, and domain internetworking mechanisms, etc.
	5. Service Model and Applications
models.	A carrier's optical network supports multiple types of service
	Each service model may have its own service operations, target markets, and service management requirements.

draft-ietf-ipo-carrier-requirements-05.txt [page 9]

	Y. Xue et al Informational
	5.1. Service and Connection Types
fixed	The optical network is primarily offering optical paths that are
fixed IP	bandwidth connections between two client network elements, such as
	routers or ATM switches, established across the optical network. A connection is also defined by its demarcation from ingress access point, across the optical network, to egress access point of the optical network.
	The following connection capability topologies must be supported:
	- Bi-directional point-to-point connection
	- Uni-directional point-to-point connection
	- Uni-directional point-to-multipoint connection
	The point-to-point connections are the primary concerns of the carriers. In this case, the following three types of network connections based on different connection set-up control methods
shall	be supported: - Permanent connection (PC): Established hop-by-hop directly on
each and	ONE along a specified path without relying on the network routing
	signaling capability. The connection has two fixed end-points and fixed cross-connect configuration along the path and stays up
until it is	is deleted. This is similar to the concept of PVC in ATM and there
	no automatic re-routing capability.
to	- Switched connection (SC): Established through UNI signaling interface and the connection is dynamically established by network using the network routing and signaling functions. This is similar
	the concept of SVC in ATM.
PC at	- Soft permanent connection (SPC): Established by specifying two
PC at connection	end-points and let the network dynamically establishes a SC
	in between. This is similar to the SPVC concept in ATM.
	The PC and SPC connections should be provisioned via management

plane

via	to control interface and the SC connection should be	e provisioned
	signaled UNI interface.	
provisioning	Note that even though automated rapid optical conner	ction
	is required, the carriers expect the majority of pr	ovisioned
circuits, months to	at least in short term, to have a long lifespan ran	ging from
months to	years.	
perform	In terms of service provisioning, some carriers may	choose to
	testing prior to turning over to the customer.	
	5.2. Examples of Common Service Models	
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u>	[page 10]

	Y. Xue et al Informational
	Each carrier may define its own service model based on it business strategy and environment. The following are example service models that carriers may use.
	5.2.1. Provisioned Bandwidth Service (PBS)
or interface	The PBS model provides enhanced leased/private line services provisioned via service management interface (MI) using either PC
	SPC type of connection. The provisioning can be real-time or near real-time. It has the following characteristics: - Connection request goes through a well-defined management
	- Client/Server relationship between clients and optical network.
	- Clients have no optical network visibility and depend on network intelligence or operator for optical connection setup.
	5.2.2. Bandwidth on Demand Service (BDS)
services	The BDS model provides bandwidth-on-demand dynamic connection
real-	via signaled user-network interface (UNI). The provisioning is
following	time and is using SC type of optical connection. It has the
	characteristics: - Signaled connection request via UNI directly from the user or
its	proxy.
policy.	- Customer has no or limited network visibility depending upon the control interconnection model used and network administrative
layer	- Relies on network or client intelligence for connection set-up depending upon the control plane interconnection model used.
	5.2.3. Optical Virtual Private Network (OVPN)
	The OVPN model provides virtual private network at the optical
	between a specified set of user sites. It has the following characteristics:
	- Customers contract for specific set of network resources such as optical connection ports, wavelengths, etc.

- Closed User Group (CUG) concept is supported as in normal VPN.

- Optical connection can be of PC, SPC or SC type depending upon provisioning method used.

- An OVPN site can request dynamic reconfiguration of the connections between sites within the same CUG.

the

draft-ietf-ipo-carrier-requirements-05.txt [page 11]

	Y. Xue et al Informational
up	- A customer may have visibility and control of network resources
	to the extent allowed by the customer service contract.
	At a minimum, the PBS, BDS and OVPN service models described above shall be supported by the control functions.
	6. Network Reference Model
components	This section discusses major architectural and functional
reference	of a generic carrier optical network, which will provide a
	model for describing the requirements for the control and
management	of carrier optical services.
	6.1. Optical Networks and Sub-networks
that	As mentioned before, there are two main types of optical networks
ITU	are currently under consideration: SDH/SONET network as defined in
110	Rec. G.803, and OTN as defined in ITU Rec. G.872.
connects assume	In the current SONET/SDH-based optical network, digital cross-
	(DXC) and add-drop multiplexer (ADM) and line multiplexer terminal (LMT) are connected in ring or linear topology. Similarly, we
	an OTN is composed of a set of optical cross-connects (OXC) and optical add-drop multiplexer (OADM) which is interconnected in a general mesh topology using DWDM optical line systems (OLS).
troat on	It is often convenient for easy discussion and description to
treat an	optical network as an sub-network cloud, in which the details of
the	network become less important, instead focus is on the function
and	the interfaces the optical network provides. In general, a
subnetwork	can be defined as a set of access points on the network boundary
and a	set of point-to-point optical connections between those access
points.	

6.2. Control Domains and Interfaces A generic carrier network reference model describes a multi-

carrier	
further	network environment. Each individual carrier network can be
rui chei	partitioned into sub-networks or administrative domains based on administrative, technological or architectural reasons. This
partition	een he requireive. Cimilerly, e network een he pertitioned into
control	can be recursive. Similarly, a network can be partitioned into
by a	domains that match the administrative domains and are controlled
by a	single administrative policy. The control domains can be
recursively	divided into sub-domains to form control hierarchy for
scalability.	The control domain concept can be applied to routing, signaling
anu	protection & restoration to form an autonomous control function domain.
and	The demarcation between domains can be either logical or physical
	consists of a set of reference points identifiable in the optical network. From the control plane perspective, these reference
points	define a set of control interfaces in terms of optical control and management functionality as illustrated in Figure 1.
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 12]

+----+ | Single carrier network +----+ | |Customer | | +----+ +----+ | |IP |Network +-UNI|- + Optical +--UNI--+CarrierÆs IP| | | | Subnetwork | | network | | 1 +---+ | | (Domain A) +--+ | +----+ +----+ +----+ I-NNI E-NNI UNI +----+ | |Customer | | +----+ | +----+

 |IP
 +-UNI|- +
 | +---+
 |

 |Network
 |
 | 0ptical
 |

 |Network
 |
 | 0ptical
 |

 |
 |
 | Subnetwork +-E-NNI-+ Subnetwork
 |

 | | Subnetwork +-E-NNI-+ Subnetwork | +---+ | | (Domain A) | | (Domain B) | | | +----+ +---+ +----UNI E-NNI 1 +----+ 1 | Other Client | | Other Carrier | |Network | | Network | (ATM/SONET) | | +----+

Figure 1 Generic Carrier Network Reference Model

The network interfaces encompass two aspects of the networking functions: user data plane interface and control plane interface. The former concerns about user data transmission across the physical network interface and the latter concerns about the control message exchange across the network interface such as signaling, routing, etc. We call the former physical interface (PI) and the latter control interface (CI). Unless otherwise stated, the CI is assumed in the remaining of this document. 6.2.1. Control Plane Interfaces The Control Interface defines the relationship between two connected network entities on both sides of the interface. For each control interface, we need to define the architectural function that each side plays and a controlled set of information that can be exchanged across the interface. The information flowing over this logical interface may include, but not limited to: - Interface endpoint name and address

draft-ietf-ipo-carrier-requirements-05.txt [page 13]

	Y. Xue et al Informational
	- Reachability/summarized network address information
	- Topology/routing information
	- Authentication and connection admission control information
	- Connection management signaling messages
	- Network resource control information
	Different types of interfaces can be defined for network control
and points	architectural purposes and can be used as the network reference
·	in the control plane. In this document, the following set of interfaces is defined as shown in Figure 1. User-Network Interface (UNI): is a bi-directional control
interface The	between service requester and service provider control entities.
me	service request control entity resides outside the carrier network control domain.
	Network-Network/Node-Node Interface (NNI): is a bi-directional signaling interface between two optical network elements or sub- networks.
NNI)	We differentiate between internal NNI (I-NNI) and external NNI (E-
NN1)	as follows: - E-NNI: A NNI between two control plane entities belonging to different control domains.
	- I-NNI: A NNI between two control plane entities within the same control domain in the carrier network.
di 66 ment	Different types of interface, internal vs. external, have
different	implied trust relationship for security and access control
purposes.	The trust relationship is not binary. Instead a policy-based
control on	mechanism need to be in place to restrict the type and amount of information that can flow cross each type of interfaces depending
	the carrier's service and business requirements.
	Generally, two networks have a fully trusted relationship if they belong to the same administrative domain. In this case, the

control

should	information exchanged across the control interface between them
constrained	be unlimited. Otherwise, the type and amount of the control information that can go across the information should be
construined	by the administrative policy.
optical	An example of fully trusted interface is an I-NNI between two
optical	network elements in a single control domain. Non-trusted interface examples include an E-NNI between two different carriers or a UNI interface between a carrier optical network and its customers. The trust level can be different for the non-trusted UNI or E-NNI
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 14]

	Y. Xue et al Informational
general, NNI.	interface depending upon if it within the carrier or not. In intra-carrier E-NNI has higher trust level than inter-carrier E-
described type shall be	The control plane shall support the UNI and NNI interface above and the interfaces shall be configurable in terms of the and amount of control information exchange and their behavior consistent with the configuration (i.e., external versus internal interfaces).
and	6.3. Intra-Carrier Network ModelIntra-carrier network model concerns the network service controlmanagement issues within networks owned by a single carrier.6.3.1. Multiple Sub-networks
optical many the across network.	<pre>Without loss of generality, the optical network owned by a carrier service operator can be depicted as consisting of one or more sub-networks interconnected by direct optical links. There may be different reasons for more than one optical sub-network. It may be result of using hierarchical layering, different technologies access, metro and long haul (as discussed below), or a result of business mergers and acquisitions or incremental optical network technology deployment by the carrier using different vendors or technologies. A sub-network may be a single vendor and single technology But in general, the carrier's optical network is heterogeneous in</pre>
Even networks.	<pre>terms of equipment vendor and the technology utilized in each sub- network. 6.3.2. Access, Metro and Long-haul networks Few carriers have end-to-end ownership of the optical networks. if they do, access, metro and long-haul networks often belong to different administrative divisions as separate optical sub-</pre>

Therefore Inter-(sub)-networks interconnection is essential in terms of supporting the end-to-end optical service provisioning and management. The access, metro and long-haul networks may use different technologies and architectures, and as such may have different network properties. In general, end-to-end optical connectivity may easily cross multiple sub-networks with the following possible scenarios: Access -- Metro -- Access Access - Metro -- Long Haul -- Metro - Access 6.4. Inter-Carrier Network Model The inter-carrier model focuses on the service and control aspects

between different carrier networks and describes the internetworking

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 15]

Y. Xue et al Informational

relationship between them. The inter-carrier connection is often

not

end

only constrained technical and business requirements, but by the government regulations as well,

Inter-carrier interconnection provides for connectivity between optical network operators. To provide globally reachable end-to-

optical services, optical service control and management between different carrier networks becomes essential. For example, it is possible to support distributed peering within the IP client layer network where the connectivity between two distant IP routers can

be

achieved via an inter-carrier optical transport connection.

6.5. Implied Control Constraints

The intra-carrier and inter-carrier models have different implied control constraints. For example, in the intra-carrier model, the address for routing and signaling only need to be unique with the carrier while the inter-carrier model requires the address to be globally unique.

In the intra-carrier network model, the network itself forms the largest control domain within the carrier network. This domain is usually partitioned into multiple sub-domains, either flat or hierarchical. The UNI and E-NNI interfaces are internal to the

direct signaling between domains and summarized topology and

- carrier network, therefore higher trust level is assumed. Because of this,
- resource

intra-

is

the

- information exchanged can be allowed across the internal UNI or
 - carrier E-NNI interfaces.

In the inter-carrier network model, each carrier's optical network

- a separate administrative domain. Both the UNI interface between
 - user and the carrier network and the NNI interface between two carrier's networks are crossing the carrier's administrative
- boundary

and therefore are external interfaces by definition.

In terms of control information exchange, the topology information shall not be allowed to cross both E-NNI and UNI interfaces.

7. Optical Service User Requirements

reflect	This section describes the user requirements for optical services, which in turn impose the requirements on service control and management for the network operators. The user requirements
	the perception of the optical service from a user's point of view.
	7.1. Common Optical Services
services	The basic unit of an optical transport service is fixed-bandwidth optical connectivity between applications. However different
bit	are created based on its supported signal characteristics (format,
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 16]

	Y. Xue et al Informational
associated	rate, etc), the service invocation methods and possibly the
	Service Level Agreement (SLA) provided by the service provider.
in	At present, the following are the major optical services provided
	the industry: - SONET/SDH, with different degrees of transparency
	- Optical wavelength services, transparent or opaque
	- Ethernet at 10Mbps, 100Mbps, 1 Gbps and 10 Gbps
(FICON),	- Storage Area Networks (SANs) based on Fiber Connectivity
	Enterprise Storage Connectivity (ESCON) and Fiber Channel (FC).
	Optical Wavelength Service refers to transport services where
signal	framing is negotiated between the client and the network operator (framing and bit-rate dependent), and only the payload is carried transparently. SONET/SDH transport is most widely used for
network- in	wide transport. Different levels of transparency can be achieved
	the SONET/SDH transmission.
are mapping)	Ethernet Services, specifically 1Gb/s and 10Gbs Ethernet services,
	gaining more popularity due to the lower costs of the customers' premises equipment and its simplified management requirements (compared to SONET or SDH).
	Ethernet services may be carried over either SONET/SDH (GFP
	or WDM networks. The Ethernet service requests will require some service specific parameters: priority class, VLAN ID/Tag, traffic aggregation parameters.
SDH	ESCON and FICON are proprietary versions of the SAN service, while Fiber Channel is the standard alternative. As is the case with Ethernet services, SAN services may be carried over either SONET/
	(using GFP mapping) or WDM networks.
listed	The control plane shall provide the carrier with the capability functionality to provision, control and manage all the services
	above.

7.2. Bearer Interface Types

All the bearer interfaces implemented in the ONE shall be supported by

the control plane and associated signaling protocols.

The signaling shall support the following interface types

protocol:

- SDH/SONET

- Ethernet
- FC-N for Fiber Channel services
- OTN (G.709)
- PDH (Plesiosynchronous Digital Hierarchy)

draft-ietf-ipo-carrier-requirements-05.txt [page 17]

	Y. Xue et al Informational
	- Passive Optical Network (PON) based on ATM (APON) and Ethernet (EPON) - ESCON and FICON
	7.3. Optical Service Invocation As mentioned earlier, the methods of service invocation play an important role in defining different services.
	7.3.1. Provider-Initiated Service Provisioning
provider	In this scenario, users forward their service request to the
	via a well-defined service management interface. All connection management operations, including set-up, release, query, or modification shall be invoked from the management plane. This provisioning method is for PC and SPC connections.
	7.3.2. User-Initiated Service Provisioning
	In this scenario, users forward their service request to the
provider	via a well-defined UNI interface in the control plane (including
proxy	signaling). All connection management operation requests,
including directly	set-up, release, query, or modification shall be invoked from
ullectly	connected user devices, or its signaling proxy. This provisioning method is for SC connection.
been	7.3.3. Call set-up requirements In summary the following requirements for the control plane have
	identified: - The control plane shall support action result codes as responses
to	any requests over the control interfaces.
subject to	- The control plane shall support requests for call set-up,
	policies in effect between the user and the network.
	- The control plane shall support the destination client device's decision to accept or reject call set-up requests from the source client's device.
	- The control plane shall support requests for call set-up and deletion across multiple (sub)networks.
	- NNI signaling shall support requests for call set-up, subject to

policies in effect between the (sub)networks.

- Call set-up shall be supported for both uni-directional and bidirectional connections.

- Upon call request initiation, the control plane shall generate a network unique Call-ID associated with the connection, to be used

for

information retrieval or other activities related to that

connection.

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 18]

		Y. Xue et al Informational
	T 4	- CAC shall be provided as part of the call control functionality.
	It authenticati	is the role of the CAC function to determine if the call can be allowed to proceed based on resource availability and on.
	shall	- Negotiation for call set-up for multiple service level options
		be supported.
	setup	- The policy management system must determine what kinds of call
	Secup	requests can be authorized.
	pace)	- The control plane elements need the ability to rate limit (or
	pace)	call setup attempts into the network.
		- The control plane shall report to the management plane, the success/failures of a call request.
	roport to	- Upon a connection request failure, the control plane shall
	report to	the management plane a cause code identifying the reason for the failure and all allocated resources shall be released. A negative acknowledgment shall be returned to the source.
	shall bo	- Upon a connection request success a positive acknowledgment
	shall be	returned to the source when a connection has been successfully established.
	Call-	- The control plane shall support requests for call release by
		ID.
	nada	- The control plane shall allow any end point or any intermediate
	node	to initiate call release procedures.
	call	- Upon call release completion all resources associated with the
		shall become available for access for new requests.
	connections	- The management plane shall be able to release calls or
	CONNECTIONS	established by the control plane both gracefully and forcibly on demand.

- Partially deleted calls or connections shall not remain within

network.

- End-to-end acknowledgments shall be used for connection deletion requests.

- Connection deletion shall not result in either restoration or protection being initiated.

- The control plane shall support management plane and neighboring device requests for status query.

draft-ietf-ipo-carrier-requirements-05.txt [page 19]

the

	Y. Xue et al Informational
client	- The UNI shall support initial registration and updates of the
0110110	with the network via the control plane.
	7.4. Optical Connection granularity
the	The service granularity is determined by the specific technology, framing and bit rate of the physical interface between the ONE and
provided	client at the edge and by the capabilities of the ONE. The control plane needs to support signaling and routing for all the services supported by the ONE. In general, there should not be a one-to-one correspondence imposed between the granularity of the service
provided	and the maximum capacity of the interface to the user.
	The control plane shall support the ITU Rec. G.709 connection granularity for the OTN network.
granularity.	The control plane shall support the SDH/SONET connection
as VT	The optical control plane shall support sub-rate interfaces such
	/TU granularity (as low as 1.5 Mb/s).
equipment:	The following fiber channel interfaces shall be supported by the control plane if the given interfaces are available on the
	- FC-12 - FC-50 - FC-100 - FC-200
2011	Encoding of service types in the protocols used shall be such that
new objects.	service types can be added by adding new code point values or
	7.5. Other Service Parameters and Requirements
	7.5.1 Classes of Service
characteristi	We use "service level" to describe priority related .cs of connections, such as holding priority, set-up priority, or
restoration the	priority. The intent currently is to allow each carrier to define

restoration	actual service level in terms of priority, protection, and
	options. Therefore, individual carriers will determine mapping of individual service levels to a specific set of quality features.
options.	The control plane shall be capable of mapping individual service classes into specific priority or protection and restoration
	7.5.2. Diverse Routing Attributes
K00011K0000	Diversity refers to the fact that a disjoint set of network
resources optical	(links and nodes) is utilized to provision multiple parallel
operour	connections terminated between a pair of ingress and egress ports.
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 20]

Y. Xue et al Informational There are different levels of diversity based on link, node or administrative policy as described below. In the simple node and link diversity case: - Two optical connections are said to be node-disjoint diverse, if the two connections do not share any node along the path except the ingress and egress nodes. - Two optical connections are said to be link-disjoint diverse, if the two connections do not share any link along the path. A more general concept of diversity is the Shared Risk Group (SRG) that is based on a risk-sharing model and allows the definition of administrative policy-based diversity. A SRG is defined as a group of links or nodes that share a common risk component, whose failure can potentially cause the failure of all the links or nodes in the group. When the SRG is applied to the link resource, it is referred to as shared risk link group (SRLG). For example, all fiber links that go through a common conduit under the ground belong to the same SRLG group, because the conduit is a shared risk component whose failure, such as a cut, may cause all fibers in the conduit to break. Note that SRLG is a relation defined within a group of links based upon a specific risk factor that can be defined based on various technical or administrative grounds such as ôsharing a conduitö, ôwithin 10 miles of distance proximityö etc. Please see ITU-T G.7715 for more discussion [<u>itu-rtg</u>]. Therefore, two optical connections are said to be SRG-disjoint diverse if the two connections do not have any links or nodes that belong to the same SRG along the path. The ability to route service paths diversely is a required control feature. Diverse routing is one of the connection parameters and is specified at the time of the connection creation. The control plane routing algorithms shall be able to route an optical

	connection diversely from a previously routed connection in terms
of	link disjoint path, node disjoint path and SRG disjoint path.
	8. Optical Service Provider Requirements
	This section discusses specific service control and management requirements from the service provider's point of view.
	8.1. Service Access Methods to Optical Networks
	In order to have access to the optical network service, a customer needs to be physically connected to the service provider network
on	the transport plane. The control plane connection may or may not
be the	required depending upon the service invocation model provided to
direct or	customer: provisioned vs. signaled. For the signaled, either
proxy	indirect signaling methods can be used depending upon if the UNI

draft-ietf-ipo-carrier-requirements-05.txt [page 21]

		Y. Xue et al Informational	
		is utilized on the client side. The de signaling methods is in [<u>oif-uni</u>].	etailed discussion on the UNI
		Multiple access methods blow shall be	supported:
		- Cross-office access (CNE co-located	with ONE)
		- Direct remote access (Dedicated link	as to the user)
		- Remote access via access sub-network multiplexing/distribution sub-network)	•
		8.2. Dual Homing and Network Intercor	nections
	davriana	Dual homing is a special case of the a	access network. Client
	devices	can be dual homed to the same or diffe	erent hub, the same or
	different	access network, the same or different different carriers. The different lev	
	connectivity	result in many different combinations objective for dual homing is for enhar	-
		Dual homing must be supported. Dual ho	oming shall not require the
	use	of multiple addresses for the same cli	ent device.
		8.3. Inter-domain connectivity	
	dicouccos	A domain is a portion of a network, or controlled by a single control plane e	
	discusses	the various requirements for connectin	ng domains.
		8.3.1. Multi-Level Hierarchy	
		Traditionally current transport networ	ks are divided into core
	inter-	city long haul networks, regional intr	a-city metro networks and
	access	networks. Due to the differences in tr service, and multiplexing needs, the t served by different types of network e	hree types of networks are
	different through	capabilities. The network hierarchy i	s usually implemented
		the control domain hierarchy.	
		When control domains exists for routir	ng and signaling purpose,
			• •

there	
	will be intra-domain routing/signaling and inter-domain routing/signaling. In general, domain-based routing/signaling
autonomy	Touting/signating. In general, domain-based routing/signating
domain	is desired and the intra-domain routing/signaling and the inter-
uomain	routing/signaling should be agnostic to each other.
aupported	Routing and signaling for multi-level hierarchies shall be
supported	to allow carriers to configure their networks as needed.
	8.3.2. Network Interconnections

draft-ietf-ipo-carrier-requirements-05.txt [page 22]

Y. Xue et al Informational

Sub-networks may have multiple points of inter-connections. All relevant NNI functions, such as routing, reachability information exchanges, and inter-connection topology discovery must recognize and support multiple points of inter-connections between subnetworks. Dual inter-connection is often used as a survivable architecture. The control plane shall provide support for routing and signaling for subnetworks having multiple points of interconnection. 8.4. Names and Address Management 8.4.1. Address Space Separation To ensure the scalability of and smooth migration toward to the optical switched network, the separation of three address spaces are required as discussed in [<u>oif-addr</u>]: - Internal transport network addresses: This is used for routing control plane messages within the transport network. For example, if GMPLS is used then IP address should be used. - Transport Network Assigned (TNA) address: This is a routable address in the optical transport network and is assigned by the network. - Client addresses: This address has significance in the client layer. For example, if the clients are ATM switches, the NSAP address can be used. If the clients are IP router, then IP address should be used. 8.4.2. Directory Services Directory Services shall support address resolution and translation between various user/client device names or address and the corresponding TNA addresses. UNI shall use the user naming schemes for connection request. The directory service is essential for the implementation of overlay model.

8.4.3. Network element Identification

Each control domain and each network element within a carrier

shall be uniquely identifiable. Similarly all the service access points shall be uniquely identifiable.

8.5. Policy-Based Service Management Framework

network

The optical service must be supported by a robust policy-based management system to be able to make important decisions.

Examples of policy decisions include: - What types of connections can be set up for a given UNI?

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 23]

	Y. Xue et al Informational
	- What information can be shared and what information must be restricted in automatic discovery functions?
	- What are the security policies over signaling interfaces?
_	- What routing policies should be applied in the path selection?
E.g	The definition of the link diversity.
	Requirements: - Service and network policies related to configuration and provisioning, admission control, and support of Service Level Agreements (SLAs) must be flexible, and at the same time simple
and	scalable.
standards-	- The policy-based management framework must be based on
stanuarus-	based policy systems (e.g., IETF COPS [<u>rfc2784</u>]).
h a	- In addition, the IPO service management system must support and
be	backwards compatible with legacy service management systems.
	9. Control Plane Functional Requirements for Optical Services This section addresses the requirements for the optical control
plane	in support of service provisioning.
interfaces	The scope of the control plane includes the control of the
	and network resources within an optical network and the interfaces between the optical network and its client networks. In other
words,	it should include both NNI and UNI aspects.
	9.1. Control Plane Capabilities and Functions
	The control capabilities are supported by the underlying control functions and protocols built in the control plane.
	9.1.1. Network Control Capabilities
plane	The following capabilities are required in the network control
services:	to successfully deliver automated provisioning for optical
361 VICES.	- Network resource discovery
	- Address assignment and resolution

- Routing information propagation and dissemination
- Path calculation and selection
- Connection management

These capabilities may be supported by a combination of functions across the control and the management planes.

draft-ietf-ipo-carrier-requirements-05.txt [page 24]

		Y. Xue et al Informational
		9.1.2. Control Plane Functions for Network Control
		The following are essential functions needed to support network control capabilities: - Signaling - Routing
		- Automatic resource, service and neighbor discovery
		Specific requirements for signaling, routing and discovery are addressed in <u>Section 10</u> .
	support	The general requirements for the control plane functions to
		optical networking and service functions include:
	teardown	- The control plane must have the capability to establish,
	connection	and maintain the end-to-end connection, and the hop-by-hop
		segments between any two end-points.
		- The control plane must have the capability to support optical traffic-engineering (e.g. wavelength management) requirements including resource discovery and dissemination, constraint-based routing and path computation.
	code	- The control plane shall support network status or action result
		responses to any requests over the control interfaces.
	and	- The control plane shall support call admission control on UNI
		connection-admission control on NNI.
	connection	- The control plane shall support graceful release of network resources associated with the connection after a successful
		teardown or failed connection.
		- The control plane shall support management plane request for connection attributes/status query.
		- The control plane must have the capability to support various protection and restoration schemes.
	shall	- Control plane failures shall not affect active connections and
		not adversely impact the transport and data planes.
		- The control plane should support separation of control function

allow	entities including routing, signaling and discovery and should
	different control distributions of those functionalities,
including	centralized, distributed or hybrid.
	- The control plane should support physical separation of the
control	plane from the transport plane to support either tightly coupled
or	loosely coupled control plane solutions.

draft-ietf-ipo-carrier-requirements-05.txt [page 25]

	Y. Xue et al Informational
to	- The control plane should support the routing and signaling proxy
and	participate in the normal routing and signaling message exchange
anu	processing.
and	- Resilience and security are crucial issues for the control plane
respectively	will be addressed in <u>Section 11</u> and 12 of this document
	9.2. Signaling Communication Network (SCN)
control	The signaling communication network is a transport network for
	plane messages and it consists of a set of control channels that interconnects the nodes within the control plane. Therefore, the signaling communication network must be accessible by each of the communicating nodes (e.g., OXCs). If an out-of-band IP-based
control	message transport network is an overlay network built on top of
the IP	data network using some tunneling technologies, these tunnels must
be	standards-based such as IPSec, GRE, etc.
the	- The signaling communication network must terminate at each of
	nodes in the transport plane.
the	- The signaling communication network shall not be assumed to have
control	same topology as the data plane, nor shall the data plane and
	plane traffic be assumed to be congruently routed.
control	A control channel is the communication path for transporting
the	messages between network nodes, and over the UNI (i.e., between
side).	UNI entity on the user side and the UNI entity on the network
information	The control messages include signaling messages, routing
	messages, and other control maintenance protocol messages such as neighbor and service discovery.
shall be	The following three types of signaling in the control channel

supported:

logical	- In-band signaling: The signaling messages are carried over a
or	communication channel embedded in the data-carrying optical link
	channel. For example, using the overhead bytes in SONET data
framing	as a logical communication channel falls into the in-band
signaling	methods.
	- In fiber, Out-of-band signaling: The signaling messages are
carried	over a dedicated communication channel separate from the optical
data- dedicated	bearing channels, but within the same fiber. For example, a
dedicated	wavelength or TDM channel may be used within the same fiber as the data channels.
	- Out-of-fiber signaling: The signaling messages are carried over
a	dedicated communication channel or path within different fibers to those used by the optical data-bearing channels. For example, dedicated optical fiber links or communication path via separate
and	

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 26]

	Y. Xue et al Informational
	independent IP-based network infrastructure are both classified as out-of-fiber signaling.
	The UNI control channel and proxy signaling defined in the OIF UNI
1.0	[<u>oif-uni]</u> shall be supported.
mechanisms	The signaling communication network provides communication
	between entities in the control plane.
	- The signaling communication network shall support reliable
message	transfer.
	- The signaling communication network shall have its own OAM mechanisms.
	- The signaling communication network shall use protocols that
support	congestion control mechanisms.
01/07	In addition, the signaling communication network should support message priorities. Message prioritization allows time critical messages, such as those used for restoration, to have priority
over	other messages, such as other connection signaling messages and topology and resource discovery messages.
	The signaling communication network shall be highly reliable and implement failure recovery.
	9.3 Control Plane Interface to Data Plane
	In the situation where the control plane and data plane are
decoupled,	this interface needs to be standardized. Requirements for a
standard	control-data plane interface are under study. The specification of
a	control plane interface to the data plane is outside the scope of
this	document.
	Control plane should support a standards based interface to
configure	switching fabrics and port functions via the management plane.
and	Data plane shall monitor and detect the failure (LOL, LOS, etc.)

and

	quality degradation (high BER, etc.) of the signals and be able to provide signal-failure and signal-degrade alarms to the control
plane	accordingly to trigger proper mitigation actions in the control
plane.	9.4. Management Plane Interface to Data Plane
c	The management plane shall be responsible for the network resource management in the data plane. It should be able to partition the network resources and control the allocation and the deallocation
of	the resource for use by the control plane.

draft-ietf-ipo-carrier-requirements-05.txt [page 27]

Y. Xue et al Informational

Data plane shall monitor and detect the failure and quality degradation of the signals and be able to provide signal-failure and signal-degrade alarms plus associated detailed fault information to the management plane to trigger and enable the management for fault location and repair. Management plane failures shall not affect the normal operation of а configured and operational control plane or data plane. 9.5. Control Plane Interface to Management Plane The control plane is considered a managed entity within a network. Therefore, it is subject to management requirements just as other managed entities in the network are subject to such requirements. The control plane should be able to service the requests from the management plane for end-to-end connection provisioning (e.g. SPC connection) and control plane database information query (e.g. topology database) The control plane shall report all control plane faults to the management plane with detailed fault information The control, management and transport plane each has its welldefined network functions. Those functions are orthogonal to each other. However, this does not imply total independency. Since the management plane is responsible for the management of both control plane and transport plane, the management plane plays an authoritative role In general, the management plane shall have authority over the control plane. Management plane should be able to configure the routing, signaling and discovery control parameters such as hold-down timers, hello-interval, etc. to affect the behavior of the control plane. In the case of network failure, both the management plane and the control plane need fault information at the same priority. The control plane shall be responsible for providing necessary statistic data such as call counts and traffic stats to the management plane. They should

be available upon query from the management plane. The management plane shall be able to tear down connections established by the control plane both gracefully and forcibly on demand. 9.6. IP and Optical Control Plane Interconnection The control plane interconnection model defines how two control networks can be interconnected in terms of controlling relationship and control information flow allowed between them. There are three basic types of control plane network interconnection models: overlay, peer and hybrid, which are defined in the IETF IPO WG document [ipoframe]. See <u>Appendix A</u> for more discussion.

draft-ietf-ipo-carrier-requirements-05.txt [page 28]

	Y. Xue et al Informational
	Choosing the level of coupling depends upon a number of different factors, some of which are: - Variety of clients using the optical network
	- Relationship between the client and optical network
	- Operating model of the carrier
	Overlay model (UNI like model) shall be supported for client to optical control plane interconnection.
	Other models are optional for client to optical control plane interconnection.
madala	For optical to optical control plane interconnection all three
models	shall be supported. In general, the priority for support of interconnection models should be overlay, hybrid and peer, in decreasing order.
	10. Requirements for Signaling, Routing and Discovery
NNI	10.1. Requirements for information sharing over UNI, I-NNI and E-
and	Different types of interfaces shall impose different requirements
and	functionality due to their different trust relationships. Specifically:
carrier E-	- Topology information shall not be exchanged across inter-
Carrier E-	NNI and UNI.
	- The control plane shall allow the carrier to configure the type
and	extent of control information exchange across various interfaces.
	- Address resolution exchange over UNI is needed if an addressing directory service is not available.
	10.2. Signaling Functions
used	Call and connection control and management signaling messages are
	for the establishment, modification, status query and release of
an word	end-to-end optical connection. Unless otherwise specified, the
	"signaling" refers to both inter-domain and intra-domain

signaling.

- The inter-domain signaling protocol shall be agnostic to the intradomain signaling protocol for all the domains within the network.

- Signaling shall support both strict and loose routing.

- Signaling shall support individual as well as groups of connection requests.

- Signaling shall support fault notifications.

draft-ietf-ipo-carrier-requirements-05.txt [page 29]

Y. Xue et al Informational

unique well-	- Inter-domain signaling shall support per connection, globally
	identifiers for all connection management primitives based on a
	defined naming scheme.
	- Inter-domain signaling shall support crank-back and rerouting.
	10.3. Routing Functions
	Routing includes reachability information propagation, network topology/resource information dissemination and path computation. Network topology/resource information dissemination is to provide
each	node in the network with information about the carrier network
such selection.	that a single node is able to support constraint-based path
	A mixture of hop-by-hop routing, explicit/source routing and hierarchical routing will likely be used within future transport networks.
	All three mechanisms (Hop-by-hop routing, explicit / source-based routing and hierarchical routing) must be supported. Messages crossing untrusted boundaries must not contain information
regarding	the details of an internal network topology.
	Requirements for routing information dissemination: - The inter-domain routing protocol shall be agnostic to the
intra- network.	domain routing protocol within any of the domains within the
	 The exchange of the following types of information shall be supported by inter-domain routing protocols: Inter-domain topology Per-domain topology abstraction Per domain reachability summarization
	Major concerns for routing protocol performance are scalability
and	stability, which impose the following requirement on the routing protocols: - The routing protocol shall scale with the size of the network
	The routing protocols shall support following requirements:
	- Routing protocol shall support hierarchical routing information

dissemination, including topology information aggregation and summarization.
 - The routing protocol(s) shall minimize global information and keep
 information locally significant as much as possible. Over external interfaces only reachability information, next routing hop and service
 capability information should be exchanged. Any other network
 related
 information shall not leak out to other networks.

draft-ietf-ipo-carrier-requirements-05.txt [page 30]

	Y. Xue et al Informational
information (e.g.,	- The routing protocol shall be able to minimize global
	and keep information locally significant as much as possible
	information local to a node, a sub-network, a domain, etc). For example, a single optical node may have thousands of ports. The
ports individually	with common characteristics need not to be advertised
information	- The routing protocol shall distinguish static routing
	and dynamic routing information. The routing protocol operation
shall	update dynamic and static routing information differently. Only dynamic routing information shall be updated in real time.
information	- Routing protocol shall be able to control the dynamic
types of	updating frequency through different types of thresholds. Two
Lypes of	thresholds could be defined: absolute threshold and relative threshold.
based	- The routing protocol shall support trigger-based and timeout-
buscu	information update.
	- Inter-domain routing protocol shall support policy-based routing information exchange.
of	- The routing protocol shall be able to support different levels
of are	protection/restoration and other resiliency requirements. These
	discussed in <u>Section 11</u> .
routing	All the scalability techniques will impact the network resource representation accuracy. The tradeoff between accuracy of the
	information and the routing protocol scalability is an important consideration to be made by network operators.
	10.4. Requirements for path selection
	The following are functional requirements for path selection: - Path selection shall support shortest path routing.
least	- Path selection shall also support constraint-based routing. At

the following constraints shall be supported:

- Cost
- Link utilization
- Diversity
- Service Class

- Path selection shall be able to include/exclude some specific network resources, based on policy.

- Path selection shall be able to support different levels of diversity, including node, link, SRLG and SRG.

- Path selection algorithms shall provide carriers the ability to support a wide range of services and multiple levels of service

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 31]

Y. Xue et al Informational classes. Parameters such as service type, transparency, bandwidth, latency, bit error rate, etc. may be relevant. Constraint-based routing in the optical network in significantly complex Compared to the IP network. There are many optical layer constraints to consider such as wavelength, diversity, optical layer impairments, etc. A detailed discussion on the routing constraints at the optical layer is in [ietf-olr]. 10.5. Discovery Functions The discovery functions include neighbor, resource and service discovery. The control plane shall support both manual configuration and automatic discovery 10.5.1. Neighbor discovery Neighbor Discovery can be described as an instance of autodiscovery that is used for associating two network entities within a layer network based on a specified adjacency relation. The control plane shall support the following neighbor discovery capabilities as described in [itu-disc]: - Physical media adjacency that detects and verifies the physical layer network connectivity between two connected network element ports. - Logical network adjacency that detects and verifies the logical network layer connection above the physical layer between network layer specific ports. - Control adjacency that detects and verifies the logical neighboring relation between two control entities associated with data plane network elements that form either physical or logical adjacency. The control plane shall support manual neighbor adjacency configuration to either overwrite or supplement the automatic neighbor discovery function. 10.5.2. Resource Discovery Resource discovery is concerned with the ability to verify physical connectivity between two ports on adjacent network elements, improve inventory management of network resources, detect configuration

mismatches between adjacent ports, associating port characteristics of

adjacent network elements, etc. Resource discovery shall be supported.

Resource discovery can be achieved through either manual provisioning

or automated procedures. The procedures are generic while the specific mechanisms and control information can be technology dependent.

draft-ietf-ipo-carrier-requirements-05.txt [page 32]

	Y. Xue et al Informational
must be	After neighbor discovery, resource verification and monitoring
	performed periodically to verify physical attributes to ensure compatibility.
	10.5.3. Service Discovery
discovery	Service Discovery can be described as an instance of auto-
	that is used for verifying and exchanging service capabilities of
a	network. Service discovery can only happen after neighbor
discovery.	Since service capabilities of a network can dynamically change, service discovery may need to be repeated. Service discovery is required for all the optical services supported.
	11. Requirements for service and control plane resiliency
undor	Resiliency is a network capability to continue its operations
under	the condition of failures within the network. The automatic
switched those	optical network assumes the separation of control plane and data plane. Therefore the failures in the network can be divided into
data	affecting the data plane and those affecting the control plane. To provide enhanced optical services, resiliency measures in both
	plane and control plane should be implemented. The following
failure-	handling principles shall be supported.
and	The control plane shall provide optical service failure detection
and	recovery functions such that the failures in the data plane within
the	control plane coverage can be quickly mitigated.
tho	The failure of control plane shall not in any way adversely affect
the	normal functioning of existing optical connections in the data
plane.	In general, there shall be no single point of failure for all
major control	In general, there shall be no single point of failure for all
	control plane functions, including signaling, routing etc. The
	plane shall provide reliable transfer of signaling messages and

flow	control mechanisms for easing any congestion within the control	
plane.	control meenanisms for casing any congestion within the control	
	11.1. Service resiliency	
reliability the	In circuit-switched transport networks, the quality and	
	the established optical connections in the transport plane can be enhanced by the protection and restoration mechanisms provided by	
	control plane functions. Rapid recovery is required by transport network providers to protect service and also to support stringent Service Level Agreements (SLAs) that dictate high reliability and availability for customer connectivity.	t
the switch	The protection and restoration actions are usually in reaction to	
	failure in the networks. However, during the network maintenance affecting the protected connections, a network operator needs to proactively force the traffic on the protected connections to	
	to its protection connection. Therefore in order to support easy	
	<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 33]	

Y. Xue et al Informational network maintenance, it is required that management initiated protection and restoration be supported. The failure and signal degradation in the transport plane is usually technology specific and therefore shall be monitored and detected by the transport plane. The transport plane shall report both physical level failure and signal degradation to the control plane in the form of the signal failure alarm and signal degrade alarm. The control plane shall support both alarm-triggered and hold-down timers based protection switching and dynamic restoration for failure recovery. Clients will have different requirements for connection availability. These requirements can be expressed in terms of the "service level", which can be mapped to different restoration and protection options and priority related connection characteristics, such as holding priority (e.g. pre-emptable or not), set-up priority, or restoration priority. However, how the mapping of individual service levels to а specific set of protection/restoration options and individual carriers will determine connection priorities. In order for the network to support multiple grades of service, the control plane must support differing protection and restoration options on a per connection basis. In order for the network to support multiple grades of service, the control plane must support setup priority, restoration priority and holding priority on a per connection basis. In general, the following protection schemes shall be considered for all protection cases within the network:

- Dedicated protection: 1+1 and 1:1

- Shared protection: 1:N and M:N.

- Unprotected

The control plane shall support "extra-traffic" capability, which allows unprotected traffic to be transmitted on the protection circuit.

The control plane shall support both trunk-side and drop-side protection switching.

The following restoration schemes should be supported:

- Restorable

end

- Un-restorable

Protection and restoration shall be supported on both an end-to-

basis and a link-by-link basis.

draft-ietf-ipo-carrier-requirements-05.txt [page 34]

Y. Xue et al Informational Protection and restoration configuration should be based on software only. The control plane shall allow the modification of protection and restoration attributes on a per-connection basis. The control plane shall support mechanisms for reserving bandwidth resources for restoration. The control plane shall support mechanisms for normalizing connection routing (reversion) after failure repair. Normal connection management operations (e.g., connection deletion) shall not result in protection/restoration being initiated. 11.2. Control plane resiliency The control plane may be affected by failures in signaling network connectivity and by software failures (e.g., signaling, topology and resource discovery modules). The control plane should implement signaling message priorities to ensure that restoration messages receive preferential treatment, resulting in faster restoration. The optical control plane signaling network shall support protection and restoration options to enable it to be self-healing in case of failures within the control plane. Control network failure detection mechanisms shall distinguish between control channel and software process failures. The control plane failure shall only impact the capability to provision new services. Fault localization techniques for the isolation of failed control resources shall be supported. Recovery from control plane failures shall result in complete recovery and re-synchronization of the network. There shall not be a single point of failure in the control plane

systems design.

Partial or total failure of the control plane shall not affect the existing established connections. It should only lose the

capability

to accept the new connection requests.

12. Security Considerations

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 35]

	Y. Xue et al Informational
optical	In this section, security considerations and requirements for
	services and associated control plane requirements are described.
	12.1. Optical Network Security Concerns
stringent	Since optical service is directly related to the physical network, which is fundamental to a telecommunications infrastructure,
	security assurance mechanism should be implemented in optical networks.
aspects. itself	In terms of security, an optical connection consists of two
	One is security of the data plane where an optical connection
	belongs, and the other is security of the control plane.
	12.1.1. Data Plane Security
data, it	- Misconnection shall be avoided in order to keep the user's data confidential. For enhancing integrity and confidentiality of
	may be helpful to support scrambling of data at layer 2 or
encryption	of data at a higher layer.
	12.1.2. Control Plane Security
	It is desirable to decouple the control plane from the data plane physically.
short should	Restoration shall not result in miss-connections (connections established to a destination other than that intended), even for
	periods of time (e.g., during contention resolution). For example, signaling messages, used to restore connectivity after failure,
	not be forwarded by a node before contention has been resolved.
with information	Additional security mechanisms should be provided to guard against intrusions on the signaling network. Some of these may be done
	the help of the management plane. - Network information shall not be advertised across external interfaces (UNI or E-NNI). The advertisement of network
	across the E-NNI shall be controlled and limited in a configurable

policy based fashion. The advertisement of network information

shall

be isolated and managed separately by each administration.

- The signaling network itself shall be secure, blocking all unauthorized access. The signaling network topology and addresses shall not be advertised outside a carrier's domain of trust.

- Identification, authentication and access control shall be rigorously used by network operators for providing access to the control plane.

<u>draft-ietf-ipo-carrier-requirements-05.txt</u> [page 36]

	Y. Xue et al	Informational
be		including neighbor discovery, service very and reachability information should
	exchanged in a secure way	<i>'</i> .
the	-	r-relevant events occurring in the control t operations performed or attempted in
the	control plane shall be lo	gged in the management plane.
		all be able to analyze and exploit logged they violate or threat security of the
		be able to generate alarm notifications rents to the management plane in an
adjustable	and selectable fashion.	
	- The control plane shall attempted intrusion attac	support recovery from successful and ks.
	12.2. Service Access Cor	trol
	from unauthorized accesse entities. Service access	ve, network resources should be protected s and should not be used by unauthorized control is the mechanism that limits and to access network resources. Especially
on	the UNI and E-NNI, Connec	tion Admission Control (CAC) functions
should	resources through the UNI	ng security features: o any entity that tries to access network (or E-NNI). CAC should include an of an entity in order to prevent
masquerade		fraudulent use of network resources by ent entity. An authenticated entity
should be	given a service access le	evel on a configurable policy basis.
	- The UNI and NNI should	provide optional mechanisms to ensure
origin		e integrity for connection management tear-down and modify and connection
signaling	attacks. The UNI and E-NM	nt in order to prevent Denial of Service II should also include mechanisms, such as I on CAC, to ensure non-repudiation of

connection management messages.

according	- Each entity should be authorized to use network resources
	to the administrative policy set by the operator.

13. Acknowledgements The authors of this document would like to extend our special appreciation to John Strand for his initial contributions to the carrier requirements. We also want to acknowledge the valuable

inputs from, Yangguang Xu, Zhiwei Lin, Eve Verma, Daniel Awduche, James

draft-ietf-ipo-carrier-requirements-05.txt [page 37]

	Y. Xue et al Informational
and	Luciani, Deborah Brunhard, Lynn Neir, Wesam Alanqar, Tammy Ferris,
anu	Mark Jones.
	14. References 14.1 Normative References
2 1	[rfc2026] S. Bradner, "The Internet Standards Process Revision
3,"	<u>BCP 9</u> , <u>RFC 2026</u> , IETF October 1996.
	[rfc2119] S. Bradner, ôKey words for use in RFC to indicate requirement levelsö, <u>BCP 14</u> , <u>RFC 2119</u> , 1997 [itu-astn] ITU-T Rec. G.8070/Y.1301 (2001), ôRequirements for the Automatic Switched Transport Network (ASTN)ö.
	[itu-ason] ITU-T Rec. G.8080/Y.1304 (2001), ôArchitecture of the Automatic Switched Optical Network (ASON)ö.
	[itu-dcm] ITU-T Rec. G.7713/Y.1704 (2001), ôDistributed Call and Connection Management (DCM)ö.
Networksö.	[itu-rtg] ITU-T Rec. G.7715/Y.1706 (2002), ôArchitecture and Requirements for Routing in the Automatic Switched Optical
	[itu-disc] ITU-T Rec. G.7714/Y.1705 (2001), ôGeneralized Automatic Discovery Techniques.
	14.2 Informative References
	[itu-otn] ITU-T G.872 (2000) û ôArchitecture of Optical Transport Networksö.
- · · ·	[itu-g709] ITU-T G.709 (2001)û ôNetwork Node Interface for the
Optical	Transport Networkö.
Networks	[itu-sdh] ITU-T Rec. G.803 (2000), ôArchitecture of Transport
	based on the Synchronous Digital Hierarchyö
	[ipo-frw] B. Rajagopalan, et. al ôIP over Optical Networks: A Frameworkö, work in progress, IETF
	[oif-addr] M. Lazer, "High Level Requirements on Optical Network Addressing", oif2001.196, 2001
	[oif-carrier] Y. Xue and M. Lazer, et al, ôCarrier Optical Service Framework and Associated Requirements for UNIö, OIF2000.155, 2000

[oif-nnireq] M. Lazer et al, ôCarrier NNI Requirementsö, OIF2002.229,

2002

[ipo-olr] A Chiu and J. Strand et al., "Impairments and Other Constraints on Optical Layer Routing", work in progress, IETF

draft-ietf-ipo-carrier-requirements-05.txt [page 38]

Y. Xue et al Informational

[ietf-gsmp] A. Doria, et al ôGeneral Switch Management Protocol V3ö, work in progress, IETF, 2002 [rfc2748] D. Durham, et al, ôThe COPS (Common Open Policy Services) Protocolö, RFC 2748, Jan. 2000 [oif-uni] Optical Internetworking Forum (OIF), "UNI 1.0 Signaling Specification," December, 2001. [ansi-sonet] ANSI T1.105-2001, ôSynchronous Optical Network (SONET) -Basic Description including Multiplex Structure, Rates and Formatsö, 2001 [itu-dcn]ITU-T Rec. G.7712/Y.1703 (2001), ôArchitecture and Specification of Data Communication Networkö. 14 Author's Addresses Yong Xue UUNET/WorldCom 22001 Loudoun County Parkway Ashburn, VA 20147 Email: yxue@cox.net Monica Lazer AT&T 900 ROUTE 202/206N PO BX 752 BEDMINSTER, NJ 07921-0000 mlazer@att.com Jennifer Yates AT&T Labs 180 PARK AVE, P.O. BOX 971 FLORHAM PARK, NJ 07932-0000 jyates@research.att.com Dongmei Wang AT&T Labs Room B180, Building 103 180 Park Avenue Florham Park, NJ 07932 mei@research.att.com Ananth Nagarajan

Sprint 6220 Sprint Parkway Overland Park, KS 66251, USA ananth.nagarajan@mail.sprint.com

<u>draft-ietf-ipo-carrier-requirements-05.txt</u>

[page 39]

	Y. Xue et al	Informational
	Hirokazu Ishimatsu Japan Telecom Co., LTD 2-9-1 Hatchobori, Chuo-ku Tokyo 104-0032 Japan Phone: +81 3 5540 8493 Fax: +81 3 5540 8485 hirokazu.ishimatsu@japan	
	Olga Aparicio Cable & Wireless Global 11700 Plaza America Drive Reston, VA 20191 Phone: 703-292-2022 Email: olga.aparicio@cwus	
	Steven Wright Science & Technology BellSouth Telecommunicat: 41G70 BSC 675 West Peachtree St. NB Atlanta, GA 30375 Phone +1 (404) 332-2194 Email: steven.wright@snt	Ξ.
	<u>Appendix A</u> : Interconnect:	ion of Control Planes
roquirod		ne IP router (client) and optical control n a number of ways depending on the
required model two determines information		control planes can be loosely or tightly is generally referred to as the overlay
		Ferred to as the peer model. Additionally odel that is somewhat in between the other
	models but more akin to t	the peer model. The model selected
	the following: - The details of the topo	ology, resource and reachability
	advertised between the c	lient and optical networks
	- The level of control If across the optical netwo	P routers can exercise in selecting paths k
the	The next three sections of	discuss these models in more details and
	last section describes th	ne coupling requirements from a carrier's

perspective.

Peer Model (I-NNI like model)

Under the peer model, the IP router clients act as peers of the optical transport network, such that single routing protocol instance runs over both the IP and optical domains. In this regard the optical network elements are treated just like any other router as far as the

draft-ietf-ipo-carrier-requirements-05.txt [page 40]

	Y. Xue et al Informational
an	control plane is concerned. The peer model, although not strictly
	internal NNI, behaves like an I-NNI in the sense that there is
sharing	of resource and topology information.
ha	Presumably a common IGP such as OSPF or IS-IS, with appropriate extensions, will be used to distribute topology information. One tacit assumption here is that a common addressing scheme will also
be	used for the optical and IP networks. A common address space can
be	trivially realized by using IP addresses in both IP and optical domains. Thus, the optical networks elements become IP
addressable	entities.
The	The obvious advantage of the peer model is the seamless interconnection between the client and optical transport networks.
	tradeoff is that the tight integration and the optical specific routing information that must be known to the IP clients.
	The discussion above has focused on the client to optical control plane inter-connection. The discussion applies equally well to
inter-	connecting two optical control planes.
	Overlay (UNI-like model)
distribution model	Under the overlay model, the IP client routing, topology
	, and signaling protocols are independent of the routing, topology distribution, and signaling protocols at the optical layer. This
	is conceptually similar to the classical IP over ATM model, but applied to an optical sub-network directly.
network	Though the overlay model dictates that the client and optical
	are independent this still allows the optical network to re-use IP layer protocols to perform the routing and signaling functions.
scheme the	In addition to the protocols being independent the addressing
	used between the client and optical network must be independent in
clients	overlay model. That is, the use of IP layer addressing in the

	must not place any specific requirement upon the addressing used within the optical control plane.
through information	The overlay model would provide a UNI to the client networks
	which the clients could request to add, delete or modify optical connections. The optical network would additionally provide reachability information to the clients but no topology
	would be provided across the UNI.
	Augmented model (E-NNI like model)
For	Under the augmented model, there are actually separate routing instances in the IP and optical domains, but information from one routing instance is passed through the other routing instance.
	example, external IP addresses could be carried within the optical
	<pre>draft-ietf-ipo-carrier-requirements-05.txt [page 41]</pre>

	Y. Xue et al Informational
	routing protocols to allow reachability information to be passed
to IP	clients. A typical implementation would use BGP between the IP
client	and optical network.
he he we e	The augmented model, although not strictly an external NNI,
behaves	like an E-NNI in that there is limited sharing of information.
	Generally in a carrier environment there will be more than just IP routers connected to the optical network. Some other examples of clients could be ATM switches or SONET ADM equipment. This may
drive	the decision towards loose coupling to prevent undue burdens upon
non-	IP router clients. Also, loose coupling would ensure that future clients are not hampered by legacy technologies.
	Additionally, a carrier may for business reasons want a separation between the client and optical networks. For example, the ISP business unit may not want to be tightly coupled with the optical network business unit. Another reason for separation might be
just	pure politics that play out in a large carrier. That is, it would
same	seem unlikely to force the optical transport network to run that
same	set of protocols as the IP router networks. Also, by forcing the
	set of protocols in both networks the evolution of the networks is directly tied together. That is, it would seem you could not
upgrade	the optical transport network protocols without taking into consideration the impact on the IP router network (and vice
versa).	
coupling.	Operating models also play a role in deciding the level of
	Four main operating models envisioned for an optical transport network:
including	Category 1: ISP owning all of its own infrastructure (i.e.
	fiber and duct to the customer premises)
	Category 2: ISP leasing some or all of its capacity from a third party
	Category 3: Carriers carrier providing layer 1 services

Category 4: Service provider offering multiple layer 1, 2, and 3 services over a common infrastructure

Although relatively few, if any, ISPs fall into category 1 it

seem the mostly likely of the four to use the peer model. The

operating models would lend themselves more likely to choose an overlay model. Most carriers would fall into category 4 and thus would most likely choose an overlay model architecture.

Full Copyright Statement

would

other

Copyright (C) The Internet Society (2002). All Rights Reserved.

draft-ietf-ipo-carrier-requirements-05.txt [page 42]

Y. Xue et al Informational

to	This document and translations of it may be copied and furnished
it	others, and derivative works that comment on or otherwise explain
	or assist in its implementation may be prepared, copied, published
and removing other developing defined to be an ENGINEERING	or assist in its implementation may be prepared, copied, published distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by the copyright notice or references to the Internet Society or Internet organizations, except as needed for the purpose of Internet standards in which case the procedures for copyrights in the Internet Standards process must be followed, or as required translate it into languages other than English. The limited permissions granted above are perpetual and will not revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET
DUT	TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT	NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

draft-ietf-ipo-carrier-requirements-05.txt [page 43]