
Internet Engineering Task Force Mark Allman
INTERNET DRAFT BBN/NASA GRC
File: draft-ietf-ippm-btc-cap-00.txt February, 2001
 Expires: August, 2001

A Bulk Transfer Capacity Methodology for
Cooperating Hosts

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document specifies a specific Bulk Transfer Capacity (BTC)
 metric based on the BTC framework outlined in [MA00].

1 Introduction

 This document specifies a methodology that performs Bulk Transfer
 Capacity (BTC) measurements based on the BTC framework outlined in
 [MA00]. This particular methodology assumes cooperating processes
 on the sender and receiver. As outlined in [MA00], there are a
 number of considerations that need to be made when writing a
 particular BTC metric. This document specifies these items for a
 BTC methodology that uses cooperating processes on the sender and
 receiver.

 Readers are assumed to be familiar with [MA00] and [RFC2581]. The
 terminology used to describe the congestion control algorithms in
 this document is taken from [RFC2581].

 We implemented this methodology in two programs, cap and capd. The

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-cap-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

 discussion in this document is conducted in terms of these two
 programs. However, alternate programs can be written that conform
 to this BTC methodology.

Expires: August 2001 [Page 1]

draft-ietf-ippm-btc-cap-00.txt February 2001

2 Congestion Control Algorithm Specifications

 As specified in section 2 of [MA00], each BTC document must tightly
 specify several details of the congestion control algorithms that
 are not tightly specified in [RFC2581]. The following is the
 specification of those details for the sender's behavior in the
 defined methodology:

 * Window Increase During Congestion Avoidance: During congestion
 avoidance, cap counts the number of packets that are
 acknowledged (ACKed) by the cumulative acknowledgment, denoted
 SA. When SA becomes greater than or equal to the current value
 of the congestion window (cwnd), SA is decreased by the current
 value of cwnd and cwnd is increased by 1 segment unless the
 increase is not possible due to the configured advertised window
 size.

 * When To Enter Congestion Avoidance. [RFC2581] allows TCP to
 use either slow start or congestion avoidance when cwnd equals
 ssthresh. Cap uses congestion avoidance.

 * Cap uses a segment size of 1500 bytes by default. The segment
 size can be changed using a command-line option. Cap does not
 use Path MTU Discovery [RFC1191].

 * By default, cap assumes 40 bytes of header are prepended to
 each segment (default TCP and IP headers). When using
 timestamps [RFC1323] the header size is increased by 12 bytes.
 Additionally, when using selective acknowledgments (SACKs)
 [RFC2018] the header size on returning ACKs depends on the
 number of SACK blocks being returned (per [RFC2018]).

 * The algorithm for calculating the retransmission timeout (RTO)
 is similar to the algorithm outlined in [RFC2988]. The
 algorithm is fully specified in section 3.

 [MA00] recommends each BTC take a number of ancillary metrics, in
 addition to a simple BTC measurement. Cap does not perform any of
 these ancillary metrics, but can produce a segment trace which may
 be used to derive these metrics via post-processing.

3 Calculating the Retransmission Timeout

 The RTO used in this BTC methodology is generally outlined in
 [RFC2988]. The following is a sketch of the initial conditions, as
 well as a discussion of how our estimator differs from the one
 outlined in [RFC2988]. The reader is assumed familiar with
 [RFC2988].

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-cap-00.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

 Cap takes high-precision round-trip time (RTT) measurements and
 converts these into a retransmission timeout (RTO) based on a clock
 with a given granularity. The RTO is initialized as follows:

Expires: August 2001 [Page 2]

draft-ietf-ippm-btc-cap-00.txt February 2001

 * The default clock granularity, G, is 500 ms. However, the clock
 granularity may be changed via a command-line option.

 * The initial RTO in clock ticks is: (int)(3 seconds / G).

 * When cap is started, the first heartbeat is determined by
 generating a uniform random number between 0-G and subtracting
 the obtained value from the current time. The time of the first
 heartbeat is denoted HB_FIRST.

 * We define bounds on the RTO, as follows:

 MIN_TICKS = ceil (1.0 / G)
 MAX_TICKS = ceil (64.0 / G)

 The RTO is calculated based on RTT measurements. We derive RTT
 measurements in one of two ways. When the timestamp option is
 enabled by the user, we use the timestamps in incoming ACKs to take
 RTT measurements. Otherwise, we time one segment and its
 corresponding ACK per RTT, as outlined in [RFC2988]. We update the
 SRTT and RTTVAR upon taking each sample as defined in [RFC2988].

 The timer is armed in the situations outlined in [RFC2988]. Each
 time we are the timer the following algorithm is used to convert the
 fine-grained SRTT and RTTVAR values to a course-grained RTO
 estimate.

 now = get_current_time;
 if (!SRTT)
 ticks = 3.0 / G
 else
 rto = SRTT + (4 * RTTVAR)
 ticks = ceil (rto / G)
 ticks *= BACKOFF
 if (ticks < MIN_TICKS)
 ticks = MIN_TICKS
 else if (ticks > MAX_TICKS)
 ticks = MAX_TICKS
 so_far = now - HB_FIRST;
 so_far_ticks = (int)(so_far / G)
 gone = so_far - (so_far_ticks * G)
 partial = G - gone;
 full = (ticks - 1) * G
 real_rto = full + partial
 arm_timer (real_rto)

4 Receiver Specification

 The receiving process, capd, sends ``ACKs'', UDP datagrams, to
 the sender with the following properties.

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-cap-00.txt
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988
https://datatracker.ietf.org/doc/html/rfc2988

 * Each ACK contains a cumulative sequence number, as done in TCP.

 * The default size of an ACK is 40 bytes.

Expires: August 2001 [Page 3]

draft-ietf-ippm-btc-cap-00.txt February 2001

 * In the case when capd echoes the timestamp sent by cap the ACK
 consists of 52 bytes.

 * By default ACKs are sent in response to every incoming data
 segment.

 * The user may enable the use of delayed ACKs [RFC1122,RFC2581]
 via a command-line option.

5 Conclusion

 This document specifies a BTC methodology involving two processes
 based on the framework outlined in [MA00]. This methodology has
 been shown to accurately gauge the BTC of a given network path over
 various network conditions [All01].

6 Security Considerations

 The BTC methodology outlined in this document does not pose security
 problems beyond those expressed in the BTC framework document [MA00].

Acknowledgments

 Thanks to Vern Paxson for encouraging the development of cap.

References

 [All01] Mark Allman Measuring End-to-End Bulk Transfer Capacity,
 February 2001. Under review.

 [MA00] Matt Mathis, Mark Allman. A Framework for Defining Empirical
 Bulk Transfer Capacity Metrics, February 2001. Internet-Draft

draft-ietf-ippm-btc-framework-05.txt (work in progress).

 [RFC1191] Jeff Mogul, Steve Deering, "Path MTU Discovery", RFC 1191,
 November 1990.

 [RFC1323] Van Jacobson, Robert Braden, David Borman, "TCP Extensions
 for High Performance", RFC 1323, May 1992.

 [RFC2018] Matt Mathis, Jamshid Mahdavi, Sally Floyd, Allyn Romanow,
 "TCP Selective Acknowledgment Options", RFC 2018, 1996.

 [RFC2581] Mark Allman, Vern Paxson, W. Richard Stevens, "TCP
 Congestion Control", RFC 2581, April 1999.

 [RFC2988] Vern Paxson, Mark Allman, "Computing TCP's Retransmission
 Timer", RFC 2988, November 2000.

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-cap-00.txt
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-framework-05.txt
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2988

Expires: August 2001 [Page 4]

draft-ietf-ippm-btc-cap-00.txt February 2001

Author's Address:

 Mark Allman
 BBN Technologies/NASA Glenn Research Center
 Lewis Field
 21000 Brookpark Rd. MS 54-5
 Cleveland, OH 44135
 Phone: 216-433-6586
 Fax: 216-433-8705
 mallman@bbn.com

http://roland.grc.nasa.gov/~mallman

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-cap-00.txt
http://roland.grc.nasa.gov/~mallman

Expires: August 2001 [Page 5]

