
 INTERNET-DRAFT Expires May 2001 INTERNET-DRAFT

 Network Working Group Matt Mathis
 INTERNET-DRAFT Pittsburgh Supercomputing Center
 Expiration Date: May 2001 Mark Allman
 NASA Glenn/BBN
 December, 2000

A Framework for Defining Empirical Bulk Transfer Capacity Metrics

 < draft-ietf-ippm-btc-framework-04.txt >

Status of this Document

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as ``work in
 progress.''

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 Bulk Transport Capacity (BTC) is a measure of a network's ability to
 transfer significant quantities of data with a single
 congestion-aware transport connection (e.g., TCP). The intuitive
 definition of BTC is the expected long term average data rate (bits
 per second) of a single ideal TCP implementation over the path in
 question. However, there are many congestion control algorithms
 (and hence transport implementations) permitted by IETF standards.
 This diversity in transport algorithms creates a difficulty for
 standardizing BTC metrics because the allowed diversity is
 sufficient to lead to situations where different implementations
 will yield non-comparable measures -- and potentially fail the
 formal tests for being a metric.

 This document defines a framework for standardizing multiple BTC
 metrics that parallel the permitted transport diversity. Two

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-btc-framework-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 approaches are used. First, each BTC metric must be much more
 tightly specified than the typical IETF protocol. Pseudo-code or
 reference implementations are expected to be the norm. Second, each
 BTC methodology is expected to collect some ancillary metrics which
 are potentially useful to support analytical models of BTC.

1 Introduction

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119]. Although
 [RFC2119] was written with protocols in mind, the key words are used
 in this document for similar reasons. They are used to ensure that
 each BTC methodology defined contains specific pieces of
 information.

 Bulk Transport Capacity (BTC) is a measure of a network's ability to
 transfer significant quantities of data with a single
 congestion-aware transport connection (e.g., TCP). For many
 applications the BTC of the underlying network dominates the overall
 elapsed time for the application to run and thus dominates the
 performance as perceived by a user. Examples of such applications
 include FTP, and the world wide web when delivering large images or
 documents. The intuitive definition of BTC is the expected long
 term average data rate (bits per second) of a single ideal TCP
 implementation over the path in question. The specific definition
 of the bulk transfer capacity that MUST be reported by a BTC tool is:

 BTC = data_sent / elapsed_time

 where ``data_sent'' represents the unique ``data'' bytes transfered
 (i.e., not including header bytes or emulated header bytes). Also
 note that the amount of data sent should only include the unique
 number of bytes transmitted (i.e., if a particular packet is
 retransmitted the data it contains should be counted only once).

 Central to the notion of bulk transport capacity is the idea that
 all transport protocols should have similar responses to congestion
 in the Internet. Indeed the only form of equity significantly
 deployed in the Internet today is that the vast majority of all
 traffic is carried by TCP implementations sharing common congestion
 control algorithms largely due to a shared developmental heritage.

 [RFC2581] specifies the standard congestion control algorithms used
 by TCP implementations. Even though this document is a (proposed)
 standard, it permits considerable latitude in implementation. This
 latitude is by design, to encourage ongoing evolution in congestion
 control algorithms.

 This legal diversity in congestion control algorithms creates a
 difficulty for standardizing BTC metrics because the allowed

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

 diversity is sufficient to lead to situations where different
 implementations will yield non-comparable measures -- and
 potentially fail the formal tests for being a metric.

 There is also evidence that most TCP implementations exhibit
 non-linear performance over some portion of their operating region.
 It is possible to construct simple simulation examples where
 incremental improvements to a path (such as raising the link data
 rate) results in lower overall TCP throughput (or BTC) [Mat98].

 We believe that such non-linearity reflects weakness in our current
 understanding of congestion control and is present to some extent in
 all TCP implementations and BTC metrics. Note that such
 non-linearity (in either TCP or a BTC metric) is potentially
 problematic in the market because investment in capacity might
 actually reduce the perceived quality of the network. Ongoing
 research in congestion dynamics has some hope of mitigating or
 modeling the these non-linearities.

 Related areas, including Integrated services
 [RFC1633,RFC2216], differentiated services [RFC2475] and Internet
 traffic analysis [MSMO97,PFTK98,Pax97b,LM97] are all currently
 receiving significant attention from the research community. It is
 likely that we will see new experimental congestion control
 algorithms in the near future. In addition, Explicit Congestion
 Notification (ECN) [RFC2481] is being tested for Internet
 deployment. We do not yet know how any of these developments might
 affect BTC metrics, and thus the BTC framework and metrics may need
 to be revisited in the future.

 This document defines a framework for standardizing multiple BTC
 metrics that parallel the permitted transport diversity. Two
 approaches are used. First, each BTC metric must be much more
 tightly specified than the typical IETF transport protocol.
 Pseudo-code or reference implementations are expected to be the
 norm. Second, each BTC methodology is expected to collect some
 ancillary metrics which are potentially useful to support analytical
 models of BTC. If a BTC methodology does not collect these
 ancillary metrics, it should collect enough information such that
 these metrics can be derived (for instance a segment trace file).

 As an example, the models in [PFTK98, MSMO97, OKM96a, Lak94] all
 predict bulk transfer performance based on path properties such as
 loss rate and round trip time. A BTC methodology that also provides
 ancillary measures of these properties is stronger because agreement
 with the analytical models can be used to corroborate the direct BTC
 measurement results.

 More importantly the ancillary metrics are expected to be useful for
 resolving disparity between different BTC methodologies. For
 example, a path that predominantly experiences clustered packet

https://datatracker.ietf.org/doc/html/rfc2216
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2481

 losses is likely to exhibit vastly different measures from BTC
 metrics that mimic Tahoe, Reno, NewReno, and SACK TCP algorithms
 [FF96]. The differences in the BTC metrics over such a path might
 be diagnosed by an ancillary measure of loss clustering.

 There are some path properties which are best measured as ancillary
 metrics to a transport protocol. Examples of such properties
 include bottleneck queue limits or the tendency to reorder packets.
 These are difficult or impossible to measure at low rates and unsafe
 to measure at rates higher than the bulk transport capacity of the
 path.

 It is expected that at some point in the future there will exist an
 A-frame [RFC2330] which will unify all simple path metrics (e.g.,
 segment loss rates, round trip time) and BTC ancillary metrics
 (e.g., queue size and packet reordering) with different versions of
 BTC metrics (e.g., that parallel Reno or SACK TCP).

2 Congestion Control Algorithms

 Nearly all TCP implementations in use today utilize the congestion
 control algorithms published in [Jac88] and further refined in
 [RFC2581]. In addition to using the basic notion of using an ACK
 clock, TCP (and therefore BTC) implements five standard congestion
 control algorithms: Congestion Avoidance, Retransmission timeouts,
 Slow-start, Fast Retransmit and Fast Recovery. All BTC
 implementations MUST implement slow start and congestion avoidance,
 as specified in [RFC2581] (with extra details also specified, as
 outlined below). All BTC methodologies SHOULD implement fast
 retransmit and fast recovery as outlined in [RFC2581]. Finally, all
 BTC methodologies MUST implement a retransmission timeout.

 The algorithms specified in [RFC2581] give implementers some choices
 in the details of the implementation. The following is a list of
 details about the congestion control algorithms that are either
 underspecified in [RFC2581] or very important to define when
 constructing a BTC methodology. These details MUST be specifically
 defined in each BTC methodology.

 * [RFC2581] does not standardize a specific algorithm for
 increasing cwnd during congestion avoidance. Several candidate
 algorithms are given in [RFC2581].

 * [RFC2581] does not specify which cwnd increase algorithm (slow
 start or congestion avoidance) should be used when cwnd equals
 ssthresh.

 * [RFC2581] allows TCPs to use advanced loss recovery mechanism
 such as NewReno [RFC2582,FF96,Hoe96] and SACK-based algorithms
 [FF96,MM96a,MM96b]. If used in a BTC implementation, such an
 algorithm MUST be fully defined.

https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2582

 * The actual segment size, or method of choosing a segment size
 (e.g., path MTU discovery [RFC1191]) and the number of header
 bytes assumed to be prepended to each segment MUST be specified.
 In addition, if the segment size is artificially limited to less
 than the path MTU this MUST be indicated.

 * TCP includes a retransmission timeout (RTO) to trigger
 retransmissions of segments that have not been acknowledged
 within an appropriate amount of time and have not been
 retransmitted via some more advanced loss recovery algorithm. A
 BTC implementation MUST include a retransmission timer.
 Calculating the RTO is subject to a number of details that MUST
 be defined for each BTC metric. In addition, a BTC metric MUST
 define when the clock is set and the granularity of the clock.

 [RFC2988] specifies the behavior of the retransmission timer.
 However, there are several details left to the implementer which
 MUST be specified for each BTC metric defined.

 Note that as new congestion control algorithms are placed on the
 standards track they may be incorporated into BTC metrics (e.g., the
 Limited Transmit algorithm [ABF00]). However, any implementation
 decisions provided by the relevant RFCs should be fully specified in
 the particular BTC metric.

3 Ancillary Metrics

 The following ancillary metrics can provide additional information
 about the network and the behavior of the implemented congestion
 control algorithms in response to the behavior of the network path.
 It is RECOMMENDED that these metrics be built into each BTC
 methodology. Alternatively, it is RECOMMENDED that the BTC
 implementation provide enough information such that the ancillary
 metrics can be derived via post-processing (e.g., by providing a
 segment trace of the connection).

3.1 Congestion Avoidance Capacity

 The "Congestion Avoidance Capacity" (CAC) metric is the data rate
 (bits per second) of a fully specified implementation of the
 Congestion Avoidance algorithm, subject to the restriction that the
 Retransmission Timeout and Slow-Start algorithms are not invoked.
 The CAC metric is defined to have no meaning across Retransmission
 Timeouts or Slow-Start periods (except the single segment Slow-Start
 that is permitted to follow recovery, as discussed in section 2.3).

 In principle a CAC metric would be an ideal BTC metric, as it
 captures what should be TCP's steady state behavior. But, there is
 a rather substantial difficulty with using it as such. The
 Self-Clocking of the Congestion Avoidance algorithm can be very

https://datatracker.ietf.org/doc/html/rfc1191

 fragile, depending on the specific details of the Fast Retransmit,
 Fast Recovery or advanced recovery algorithms chosen. It has been
 found that timeouts and periods of slow start loss recovery are
 prevalent in traffic on the Internet [LK98,BPS+97] and therefore these
 should be captured by the BTC metric.

 When TCP loses Self-Clock it is re-established through a
 retransmission timeout and Slow-Start. These algorithms nearly
 always require more time than Congestion Avoidance would have taken.
 It is easily observed that unless the network loses an entire window
 of data (which would clearly require a retransmit timeout) TCP
 likely missed some opportunity to safely transmit data. That is, if TCP
 experiences a timeout after losing a partial window of data, it must
 have received at least one ACK that was generated after some of the
 partial data was delivered, but did not trigger the transmission of
 new data. Recent research in congestion control (e.g., FACK
 [MM96a], NewReno [FF96,RFC2582], rate-halving [MSML99]) can be
 characterized as making TCP's Self-Clock more tenacious, while
 preserving fairness under adverse conditions. This work is
 motivated by how poorly current TCP implementations perform under
 some conditions, often due to repeated clock loss. Since this is an
 active research area, different TCP implementations have rather
 considerable differences in their ability to preserve Self-Clock.

3.2 Preservation of Self-Clock

 Losing the ACK clock can have a large effect on the overall BTC, and
 the clock is itself fragile in ways that are dependent on the loss
 recovery algorithm. Therefore, the transition between timer driven
 and Self-Clocked operation SHOULD be instrumented.

3.2.1 Lost Transmission Opportunities

 If the last event before a timeout was the receipt of an ACK that
 did not trigger a transmission, the possibility exists that an
 alternate congestion control algorithm would have successfully
 preserved the Self-Clock. A BTC SHOULD instrument key items in the
 BTC state (such as the congestion window) in the hopes that this may
 lead to further improvements in congestion control algorithms.

 Note that in the absence of knowledge about the future, it is not
 possible to design an algorithm that never misses transmission
 opportunities. However, there are ever more subtle ways to gauge
 network state, and to estimate if a given ACK is likely to be the
 last.

3.2.2 Loosing an Entire Window

 If an entire window of data (or ACKs) is lost, there will be no
 returning ACKs to clock out additional data. This condition can
 be detected if the last event before a timeout was a data

https://datatracker.ietf.org/doc/html/rfc2582

 transmission triggered by an ACK. The loss of an entire window
 of data/ACKs forces recovery to be via a Retransmission Timeout and
 Slow-Start.

 Losing an entire window of data implies an outage with a duration at
 least as long as a round trip time. Such an outage can not be
 diagnosed with low rate metrics and is unsafe to diagnose at higher
 rates than the BTC. Therefore all BTC metrics SHOULD instrument and
 report losses of an entire window of data.

 Note that there are some conditions, such as when operating with a
 very small window, in which there is a significant probability that
 an entire window can be lost through individual random losses (again
 highlighting the importance of instrumenting cwnd).

3.2.3 Heroic Clock Preservation

 All algorithms that permit a given BTC to sustain Self-Clock when
 other algorithms might not, SHOULD be instrumented. Furthermore,
 the details of the algorithms used MUST be fully documented (as
 discussed in section 2).

 BTC metrics that can sustain Self-Clock in the presence of multiple
 losses within one round trip SHOULD instrument the loss
 distribution, such that the performance of alternate congestion
 control algorithms may be estimated (e.g., Reno style).

3.2.4 False Timeouts

 All false timeouts, (where the retransmission timer expires before
 the ACK for some previously transmitted data arrives) SHOULD be
 instrumented when possible. Note that depending upon how the BTC
 metric implements sequence numbers, this may be difficult to detect.

3.3 Ancillary Metrics Relating to Flow Based Path Properties

 All BTC metrics provide unique vantage points for observing certain
 path properties relating to closely spaced packets. As in the case
 of RTT duration outages, these can be impossible to diagnose at low
 rates (less than 1 packet per RTT) and inappropriate to test at
 rates above the BTC of the network path.

 All BTC metrics SHOULD instrument packet reordering. The frequency
 and distance out-of-sequence SHOULD be instrumented for all
 out-of-order packets. The severity of the reordering can be
 classified as one of three different cases, each of which SHOULD be
 reported.

 Segments that are only slightly out-of-order should not trigger
 the fast retransmit algorithm, but they may affect the window
 calculation. BTC metrics SHOULD document how slightly
 out-of-order segments affect the congestion window calculation.

 If segments are sufficiently out-of-order, the Fast Retransmit
 algorithm will be invoked in advance of the delayed packet's
 late arrival. These events SHOULD be instrumented. Even though
 the the late arriving packet will complete recovery, the the
 window will still be reduced by half.

 Under some rare conditions segments have been observed that are
 far out of order - sometimes many seconds late [Pax97b]. These
 SHOULD always be instrumented.

 BTC implementations SHOULD instrument the maximum cwnd observed
 during congestion avoidance and slow start. A TCP running over the
 same path as the BTC metric must have sufficient sender buffer space
 and receiver window (and window shift [RFC1323]) to cover this cwnd
 in order to expect the same performance.

 There are several other path properties that one might measure
 within a BTC metric. For example, with an embedded one-way delay
 metric it may be possible to measure how queueing delay and and
 (RED) drop probabilities are correlated to window size. These are
 open research questions.

3.4 Ancillary Metrics as Calibration Checks

 Unlike low rate metrics, BTC SHOULD include explicit checks that the
 test platform is not the bottleneck.

 Any detected dropped packets within the sending host MUST be reported.
 Unless the sending interface is the path bottleneck, any dropped
 packets probably indicates a measurement failure.

 The maximum queue lengths within the sending host SHOULD be
 instrumented. Any significant queue may indicate that the sending
 host has insufficient burst data rate, and is smoothing the data
 being transmitted into the network.

3.5 Ancillary Metrics Relating to the Need for Advanced TCP Features

 If TCP would require advanced TCP extensions to match BTC
 performance (such as RFC 1323 or RFC 2018 features), it SHOULD be
 reported.

3.6 Validate Reverse Path Load

 To the extent possible, the BTC metric SHOULD distinguish between
 the properties of the forward and reverse paths.

 BTC methodologies which rely on non-cooperating receivers may only
 be able to measure round trip path properties and may not be able to
 independently differentiate between the properties of the forward
 and reverse paths. In this case the load on the reverse path

https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc1323
https://datatracker.ietf.org/doc/html/rfc2018

 contributed by the BTC metric SHOULD be instrumented (or computed)
 to permit other means of gauge the proportion of the round trip path
 properties attributed to the the forward and reverse paths.

 To the extent possible, BTC methodologies that rely on cooperating
 receivers SHOULD support separate ancillary metrics for the forward
 and reverse paths.

4 Security Considerations

 The framework for specifying BTC metrics outlined in this document
 does not pose any threat to Internet security. The BTC metrics
 defined based on this specification will be as ``network friendly''
 as current TCP connections.

5 Acknowledgments

 Thanks to Jeff Semke for numerous clarifications.

6 References

 [ABF00] Mark Allman, Hari Balakrishnan, Sally Floyd. Enhancing
 TCP's Loss Recovery Using Limited Transmit, August
 2000. Internet-Draft draft-ietf-tsvwg-limited-xmit-00.txt (work
 in progress).

 [BPS+97] Hari Balakrishnan, Venkata Padmanabhan, Srinivasan Seshan,
 Mark Stemm, and Randy Katz. TCP Behavior of a Busy Web Server:
 Analysis and Improvements. Technical Report UCB/CSD-97-966,
 August 1997. Available from

http://nms.lcs.mit.edu/~hari/papers/csd-97-966.ps. (Also in
 Proc. IEEE INFOCOM Conf., San Francisco, CA, March 1998.)

 [FF96] Fall, K., Floyd, S.. "Simulation-based Comparisons of Tahoe,
 Reno and SACK TCP". Computer Communication Review, July 1996.

ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z.

 [Flo95] Floyd, S., "TCP and successive fast retransmits", March
 1995, Obtain via ftp://ftp.ee.lbl.gov/papers/fastretrans.ps.

 [Hoe96] Hoe, J., "Improving the start-up behavior of a congestion
 control scheme for TCP, Proceedings of ACM SIGCOMM '96, August
 1996.

 [Hoe95] Hoe, J., "Startup dynamics of TCP's congestion control and
 avoidance schemes". Master's thesis, Massachusetts Institute of
 Technology, June 1995.

 [Jac88] Jacobson, V., "Congestion Avoidance and Control",
 Proceedings of SIGCOMM '88, Stanford, CA., August 1988.

 [Lak94] Lakshman, Effects of random loss

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-limited-xmit-00.txt
http://nms.lcs.mit.edu/~hari/papers/csd-97-966.ps
ftp://ftp.ee.lbl.gov/papers/sacks.ps.Z
ftp://ftp.ee.lbl.gov/papers/fastretrans.ps

 [LK98] Lin, D. and Kung, H.T., "TCP Fast Recovery Strategies:
 Analysis and Improvements", Proceedings of InfoCom, March 1998.

 [LM97] T.V.Lakshman and U.Madhow. "The Performance of TCP/IP for
 Networks with High Bandwidth-Delay Products and Random Loss".
 IEEE/ACM Transactions on Networking, Vol. 5, No. 3, June 1997,
 pp.336-350.

 [Mat98] Mathis, M., "Empirical Bulk Transfer Capacity", IP
 Performance Metrics Working Group report in Proceedings of the
 Forty Third Internet Engineering Task Force, Orlando, FL,
 December 1988. Available from

http://www.ietf.org/proceedings/98dec/43rd-ietf-98dec-122.html
 and

http://www.ietf.org/proceedings/98dec/slides/ippm-mathis-98dec.pdf.

 [MM96a] Mathis, M. and Mahdavi, J. "Forward acknowledgment: Refining
 TCP congestion control", Proceedings of ACM SIGCOMM '96,
 Stanford, CA., August 1996.

 [MM96b] M. Mathis, J. Mahdavi, "TCP Rate-Halving with Bounding
 Parameters" Available from

http://www.psc.edu/networking/papers/FACKnotes/current.

 [MSML99] Mathis, M., Semke, J., Mahdavi, J., Lahey, K., "The
 Rate-Halving Algorithm for TCP Congestion Control", June 1999.
 Internet-Draft draft-mathis-tcp-ratehalving-00.txt (work in
 progress).

 [MSMO97] Mathis, M., Semke, J., Mahdavi, J., Ott, T., "The
 Macroscopic Behavior of the TCP Congestion Avoidance Algorithm",
 Computer Communications Review, 27(3), July 1997.

 [OKM96a], Ott, T., Kemperman, J., Mathis, M., "The Stationary
 Behavior of Ideal TCP Congestion Avoidance", In progress, August
 1996. Obtain via pub/tjo/TCPwindow.ps using anonymous ftp to
 ftp.bellcore.com

 [OKM96b], Ott, T., Kemperman, J., Mathis, M., "Window Size Behavior
 in TCP/IP with Constant Loss Probability", DIMACS Special Year
 on Networks, Workshop on Performance of Real-Time Applications
 on the Internet, Nov 1996.

 [Pax97a] Paxson, V., "Automated Packet Trace Analysis of TCP
 Implementations", Proceedings of ACM SIGCOMM '97, August 1997.

 [Pax97b] Paxson, V., "End-to-End Internet Packet Dynamics,"
 Proceedings of SIGCOMM '97, Cannes, France, Sep. 1997.

 [PFTK98] Padhye, J., Firoiu. V., Towsley, D., and Kurose, J., "TCP
 Throughput: A Simple Model and its Empirical Validation",

http://www.ietf.org/proceedings/98dec/43rd-ietf-98dec-122.html
http://www.ietf.org/proceedings/98dec/slides/ippm-mathis-98dec.pdf
http://www.psc.edu/networking/papers/FACKnotes/current
https://datatracker.ietf.org/doc/html/draft-mathis-tcp-ratehalving-00.txt

 Proceedings of ACM SIGCOMM '98, August 1998.

 [RFC793] Postel, J., "Transmission Control Protocol", 1981, Obtain
 via: ftp://ds.internic.net/rfc/rfc793.txt

 [RFC1191] Mogul, J., Deering, S., "Path MTU Discovery", November
 1990, Obtain via: ftp://ds.internic.net/rfc/rfc1191.txt

 [RFC1323] Jacobson, V., Braden, R., Borman, D., "TCP Extensions for
 High Performance", May 1992, Obtain via:

ftp://ds.internic.net/rfc/rfc1323.txt

 [RFC1633] Braden R., Clark D., Shenker S., "Integrated Services in
 the Internet Architecture: an Overview"., 1994.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance, Fast
 Retransmit, and Fast Recovery Algorithms", 1997, Obtain via:

ftp://ds.internic.net/rfc/rfc2001.txt

 [RFC2018] Mathis, M., Mahdavi, J. Floyd, S., Romanow, A., "TCP
 Selective Acknowledgment Options", 1996, Obtain via:

ftp://ds.internic.net/rfc/rfc2018.txt

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", 1997, Obtain via:

ftp://ds.internic.net/rfc/rfc2119.txt

 [RFC2216] Shenker, S., Wroclawski, J., "Network Element Service
 Specification Template", 1997, Obtain via:

ftp://ds.internic.net/rfc/rfc2216.txt

 [RFC2330] Paxson, V., Almes, G., Mahdavi, J., Mathis, M., "Framework
 for IP Performance Metrics" , 1998, Obtain via:

ftp://ds.internic.net/rfc/rfc2330.txt

 [RFC2475] Black D., Blake S., Carlson M., Davies E., Wang Z., Weiss
 W., "An Architecture for Differentiated Services"., 1998.

 [RFC2481] K. Ramakrishnan, S. Floyd, "A Proposal to add Explicit
 Congestion Notification (ECN) to IP", 1999, Obtain via:

ftp://ds.internic.net/rfc/rfc2481.txt

 [RFC2525] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner,
 I. Heavens, K. Lahey, J. Semke, B. Volz, "Known TCP
 Implementation Problems", 1999, Obtain via:

ftp://ds.internic.net/rfc/rfc2525.txt

 [RFC2581] Allman, M., Paxson, V., Stevens, W., "TCP Congestion
 Control"., 1999, Obtain via:

ftp://ds.internic.net/rfc/rfc2581.txt

 [RFC2582] Floyd, S., Henderson, T., "The NewReno Modification to

ftp://ds.internic.net/rfc/rfc793.txt
ftp://ds.internic.net/rfc/rfc1191.txt
ftp://ds.internic.net/rfc/rfc1323.txt
ftp://ds.internic.net/rfc/rfc2001.txt
ftp://ds.internic.net/rfc/rfc2018.txt
ftp://ds.internic.net/rfc/rfc2119.txt
ftp://ds.internic.net/rfc/rfc2216.txt
ftp://ds.internic.net/rfc/rfc2330.txt
ftp://ds.internic.net/rfc/rfc2481.txt
ftp://ds.internic.net/rfc/rfc2525.txt
ftp://ds.internic.net/rfc/rfc2581.txt

 TCP's Fast Recovery Algorithm", 1999, Obtain via:
ftp://ds.internic.net/rfc/rfc2582.txt

 [RFC2988] Paxson, V., Allman, M., "Computing TCP's Retransmission
 Timer", November 2000, Obtain via:

ftp://ds.internic.net/rfc/rfc2988.txt

 [Ste94] Stevens, W., "TCP/IP Illustrated, Volume 1: The Protocols",
 Addison-Wesley, 1994.

 [WS95] Wright, G., Stevens, W., "TCP/IP Illustrated Volume II: The
 Implementation", Addison-Wesley, 1995.

Author's Addresses

 Matt Mathis
 Pittsburgh Supercomputing Center
 4400 Fifth Ave.
 Pittsburgh PA 15213
 mathis@psc.edu

http://www.psc.edu/~mathis

 Mark Allman
 NASA Glenn Research Center/BBN Technologies
 Lewis Field
 21000 Brookpark Rd. MS 54-2
 Cleveland, OH 44135
 216-433-6586
 mallman@grc.nasa.gov

http://roland.grc.nasa.gov/~mallman

ftp://ds.internic.net/rfc/rfc2582.txt
ftp://ds.internic.net/rfc/rfc2988.txt
http://www.psc.edu/~mathis
http://roland.grc.nasa.gov/~mallman

