
Workgroup: Network Working Group

Internet-Draft:

draft-ietf-ippm-capacity-protocol-01

Published: 25 February 2022

Intended Status: Standards Track

Expires: 29 August 2022

Authors: L. Ciavattone

AT&T Labs

A. Morton

AT&T Labs

Test Protocol for One-way IP Capacity Measurement

Abstract

This memo addresses the problem of protocol support for measuring

Network Capacity metrics in RFC 9097, where the method deploys a

feedback channel from the receiver to control the sender's

transmission rate in near-real-time. This memo defines a simple

protocol to perform the RFC 9097 (and other) measurements.

See Section 10: The authors seek feedback to determine what

additional features will be necessary for an IETF Standards Track

Protocol, beyond what is present in the running code available now.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

2. Scope, Goals, and Applicability

3. Protocol Overview

4. General Parameters and Definitions

5. Setup Request and Response Exchange

5.1. Setup Response Processing at the Client

6. Test Activation Request and Response

6.1. Test Activation Request at the client

6.2. Test Activation Response

6.3. Test Activation Response action at the client

7. Test Stream Transmission and Measurement Feedback Messages

7.1. Test Packet PDU and Roles

7.2. Status PDU

8. Stopping the Test

9. Method of Measurement

9.1. Running Code

10. Security Considerations

11. IANA Considerations

12. Acknowledgments

13. References

13.1. Normative References

13.2. Informative References

Authors' Addresses

1. Introduction

The IETF's efforts to define Network and Bulk Transport Capacity

have been chartered and finally progressed after over twenty years.

Over that time, the performance community has seen development of

Informative definitions in [RFC3148] for Framework for Bulk

Transport Capacity (BTC), RFC 5136 for Network Capacity and Maximum

IP-layer Capacity, and the Experimental metric definitions and

methods in [RFC8337], Model-Based Metrics for BTC.

This memo looks at the problem of measuring Network Capacity metrics

defined in [RFC9097] where the method deploys a feedback channel

from the receiver to control the sender's transmission rate in near-

real-time.

¶

¶

¶

¶

Although there are several test protocol already available for

support and manage active measurements, this protocol is a major

departure from their operation:

UDP transport is used for all setup, test activation, and

control messages, and for results feedback (not TCP),

simplifying operations.

TWAMP [RFC5357] and STAMP [RFC8762] use the philosophy that one

host is a Session-Reflector, sending test packets every time

they receive a test packet. This protocol supports a one-way

test with periodic status messages returned to the sender.

These messages are also a basis for on-path Round-trip delay

measurements, which are a key input to the load adjustment

search algorithm.

OWAMP [RFC4656] supports one-way testing with results Fetch at

the end of the test session. This protocol supports a one-way

test and requires periodic status messages returned to the

sender to support the load adjustment search algorithm.

The security features of OWAMP [RFC4656] and TWAMP [RFC5357]

have been described as "unusual", to the point that IESG

approved their use while also asking that these methods not be

used again. Further, the common OWAMP [RFC4656] and TWAMP

[RFC5357] approach to security is over 15 years old at this

time.

Note: the -00 update of this draft will be the last that describes

version 8 of the protocol in the running code. Future updates of the

draft will correspond to protocol version 9 and higher versions.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14[RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Scope, Goals, and Applicability

The scope of this memo is to define a protocol to measure the

Maximum IP-Layer Capacity metric and according to the standardized

method.

The continued goal is to harmonize the specified metric and method

across the industry, and this protocol supports the specifications

of IETF and other Standards Development Organizations.

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

¶

¶

¶

All active testing protocols currently defined by the IPPM WG are

UDP-based, but this protocol specifies both control and test

protocols using UDP transport. Also, the control protocol continues

operating during testing to convey results and dynamic

configurations.

The primary application of the protocol described here is the same

as in Section 2 of [RFC7497] where:

The access portion of the network is the focus of this problem

statement. The user typically subscribes to a service with

bidirectional access partly described by rates in bits per

second.

3. Protocol Overview

This section gives an informative overview of the communication

protocol between two test end-points (without expressing

requirements: later sections provide details and requirements).

One end-point takes the role of server, awaiting connection requests

on a well-known port from the other end-point, the client.

The client requires configuration of a test direction parameter

(upstream or downstream test, where the client performs the role of

sender or receiver, respectively) as well as the hostname or IP

address of the server in order to begin the setup and configuration

exchanges with the server.

The protocol uses UDP transport and has four phases:

Setup Request and Response Exchange: The client requests to

begin a test by communicating its protocol version, intended

security mode, and jumbo datagram support. The server either

confirms matching configuration or rejects the connection. The

server also communicates the ephemeral port for further

communication when accepting the client's request.

Test Activation Request and Response: the client composes a

request conveying parameters such as the testing direction, the

duration of the test interval and test sub-intervals, and

various thresholds. The server then chooses to accept, ignore

or modify any of the test parameters, and communicates the set

that will be used unless the client rejects the modifications.

Note that the client assumes that the Test Activation exchange

has opened any co-located firewalls and network address/port

translators for the test connection (in response to the Request

packet on the ephemeral port) and the traffic that follows. If

the Test Activation Request is rejected or fails, the client

assumes that the firewall will close the address/port

¶

¶

*

¶

¶

¶

¶

¶

1.

¶

2.

combination after the firewall's configured idle traffic time-

out.

Test Stream Transmission and Measurement Feedback Messages:

Testing proceeds with one end-point sending load PDUs and the

other end-point receiving the load PDUs and sending frequent

status messages to communicate status and transmission

conditions there. The feedback messsages are input to a load-

control algorithm at the server, which controls future sending

rates at either end-point as needed. The choice to locate the

load-control algorithm at the server, regardlesss of

transmiision direction, means that the algorithm can be updated

more easily at a host within the network, and at a fewer number

of hosts than the number of clients.

Stopping the Test: When the specified test duration has been

reached, the server initiates the phase to stop the test by

setting the STOP1 indication in load PDUs or status feedback

messages. The client acknowledges by setting the STOP2 in

further load PDUs or messages, and a graceful connection

termination at each end-point follows. (Since the load PDUs and

feedback messages are used, this phase is kind of a sub-phase

of 3.) If the Test traffic stops or the communication path

fails, the client assumes that the firewall will close the

address/port combination after the firewall's configured idle

traffic time-out.

4. General Parameters and Definitions

For Parameters related to the Maximum IP-Layer Capacity Metric and

Method, please see Section 4 of [RFC9097].

5. Setup Request and Response Exchange

All messages defined in this section SHALL use UDP transport. The

hosts SHALL calculate and include the UDP checksum, or check the UDP

checksum as neccessary.

The client SHALL begin the Control protocol connection by sending a

Setup Request message to the server's control port.

The client SHALL simultaneously start a test initiation timer so

that if the control protocol fails to complete all exchanges in the

allocated time, the client software SHALL exit (close the UDP socket

and indicate an error message to the user).

(Note: in version 8, the watchdog time-out is configured, in

udpst.h, as #define WARNING_NOTRAFFIC 1 // Receive traffic stopped

warning threshold (sec) #define TIMEOUT_NOTRAFFIC (WARNING_NOTRAFFIC

+ 4) or 5 seconds)

¶

3.

¶

4.

¶

¶

¶

¶

¶

¶

The Setup Request message PDU SHALL be organized as follows:

The UDP PDU format layout SHALL be as follows (big-endian AB):

When the server receives the Setup Request it SHALL validate the

request by checking the protocol version, the maxBandwidth requested

for the test, the modifierBitmap for use of options such as Jumbo

datagram status and traditional MTU (1500 bytes), and the

authentication data if utilized. If the client has selected options

for:

Jumbo datagram support status (modifierBitmap),

Traditional MTU (modifierBitmap),

Authentication mode, and

¶

 uint16_t controlId; // Control ID = 0xACE1

 uint16_t protocolVer; // Protocol version = 0x08

 uint8_t cmdRequest; // Command request = 1 (request)

 uint8_t cmdResponse; // Command response = 0

* uint16_t maxBandwidth;// Required bandwidth (added in v9)

 uint16_t testPort; // Test port on server (=0 for Request)

* uint8_t modifierBitmap;// Modifier bitmap (replaced jumboStatus in v9)

 uint8_t authMode; // Authentication mode

 uint32_t authUnixTime;// Authentication time stamp

 unsigned char authDigest[AUTH_DIGEST_LENGTH] // SHA256_DIGEST_LENGTH = 32 oct

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | controlId | protocolVer |

 +-+

 | cmdRequest | cmdResponse | maxBandwidth |

 +-+

 | testPort |modifierBitmap | authMode |

 +-+

 | authUnixTime |

 +-+

 | |

 | |

 | |

 | |

 | authDigest[AUTH_DIGEST_LENGTH](256 bits) |

 | |

 | |

 | |

 +-+

¶

¶

* ¶

* ¶

* ¶

Authentication time stamp

that do not match the server configuration, the server MUST reject

the Setup Request. Note that a server implemenation of protocol

version 9 allows backward compatibility with version 8 when in use

by the client.

(Note: in version 8, the watchdog time is configured, in udpst.h, as

#define WARNING_NOTRAFFIC 1 // Receive traffic stopped warning

threshold (sec) #define TIMEOUT_NOTRAFFIC (WARNING_NOTRAFFIC + 4) or

5 seconds)

If the Setup Request must be rejected (due to any of the reasons in

the Command response codes listed below), a Setup Response SHALL be

sent back to the client with a corresponding command response value

indicating the reason for the rejection.

* ¶

¶

¶

¶

 uint16_t controlId; // Control ID = 0xACE1

 uint16_t protocolVer; // Protocol version = 0x08

 uint8_t cmdRequest; // Command request = 2 (reply)

 uint8_t cmdResponse; // Command response = <see table below>

 uint16_t maxBandwidth;// Required bandwidth (added in v9)

 uint16_t testPort; // Test port on server (available port in Response)

 uint8_t modifierBitmap;// Modifier bitmap (replaced jumboStatus, table below)

 uint8_t authMode; // Authentication mode

 uint32_t authUnixTime;// Authentication time stamp

 unsigned char authDigest[AUTH_DIGEST_LENGTH] // 32 octets, MBZ

cmdResponse Code Field: Command Server Response Codes (CSRP)

CHSR_CRSP_NONE 0 = None

CHSR_CRSP_ACKOK 1 = Acknowledgement

CHSR_CRSP_BADVER 2 = Bad Protocol Version

CHSR_CRSP_BADJS 3 = Invalid Jumbo datagram option

CHSR_CRSP_AUTHNC 4 = Unexpected Authentication in Setup Request

CHSR_CRSP_AUTHREQ 5 = Authentication missing in Setup Request

CHSR_CRSP_AUTHINV 6 = Invalid authentication method

CHSR_CRSP_AUTHFAIL 7 = Authentication failure

CHSR_CRSP_AUTHTIME 8 = Authentication time is invalid in Setup Request

CHSR_CRSP_NOMAXBW 9 = No Maximum test Bit rate specified

CHSR_CRSP_CAPEXC 10 = Server Maximum Bit rate exceeded

CHSR_CRSP_BADTMTU 11 = MTU option does not match Server

maxBandwidth Field MSB Code Bit:

CHSR_USDIR_BIT 0x8000 Bandwidth upstream direction bit, Set for Upstream

modifierBitmap Code Field: Setup

CHSR_JUMBO_STATUS 0x01 = set when Jumbo frames allowed > 1Gbps

CHSR_TRADITIONAL_MTU 0x02 = set to use datagrams for 1500 byte packets

¶

@@@@ To Do: How do we communicate multiple errors when the server

sends the Setup Response? This is the current practice, and more

codes have been added in v9. Is an error hierarchy sufficient, where

Bad Protocol Version means that none of the other aspects (higher

error numbers) were checked?

@@@@ Given that the list of error codes grows with the

functionality, a hierarchy is no longer possible. New text to

address this issue appears below:

There is a set of Command Response codes, beginning with: "2 = Bad

Protocol Version", one of which SHOULD be communicated to indicate

the cause when an error condition detected and testing cannot

proceed:

The exceptional circumstances when a server would not communicate

the appropriate Command Response Code for an error condition are

when

the Setup Request PDU size is not correct (for supported

versions of the protocol),

the control ID is invalid, or

a directed attack has been detected,

in which case the server will allow setup attempts to terminate

silently. Attack detection is beyond the scope of this

specification.

When indicating a Bad Protocol Version error, the server SHALL

update the protocolVer field in the Setup Response to indicate the

current version supported.

@@@@ - end text for discussion -

If the server finds that the Setup Request matches its configuration

and is otherwise acceptable, the server SHALL initiate a new

connection for the client, using a new UDP socket allocated from the

¶

¶

¶

2 = Bad Protocol Version

3 = Invalid Jumbo datagram option

5 = Authentication missing in Setup Request

4 = Unexpected Authentication in Setup Request

6 = Invalid authentication method (SHA-256 not used)

7 = Authentication failure (both shared secret and time)

8 = Authentication time is invalid in Setup Request (replay attack)

9 = No Maximum test Bit rate specified

10 = Server Maximum Bit rate exceeded

11 = MTU option does not match Server

¶

¶

1.

¶

2. ¶

3. ¶

¶

¶

¶

UDP ephemeral port range. Then, the server SHALL start a watchdog

timer (to terminate the connection in case the client goes silent),

and sends the Setup Response back to the client (see below for

composition).

When the Setup Request is accepted by the server, a Setup Response

SHALL be sent back to the client with a corresponding command

response value indicating 1 = Acknowledgement.

(Note: in version 8, the watchdog time-out is configured at 5

seconds)

The Setup Response SHALL include the port number at the server for

the new socket, and this UDP port-pair SHALL be used for all

subsequent communication. The server SHALL confirm the values of:

Jumbo datagram support status (modifierBitmap),

Traditional MTU (modifierBitmap),

Authentication mode, and

Authentication time stamp

for the client's use on the new connection in its Setup Response,

and the authentication digest MUST Be Zero (MBZ).

Finally, the new UDP connection associated with the new socket and

port number is opened, and the server awaits communication there.

If a Test Activation Request is not subsequently received from the

client on this new port number before the watchdog timer expires,

the server SHALL close the socket and deallocate the port.

5.1. Setup Response Processing at the Client

When the client receives the Setup response from the server it first

checks the cmdResponse value. If this value indicates an error the

client SHALL display/report a relevant message to the user or

¶

¶

 uint16_t controlId; // Control ID = 0xACE1

 uint16_t protocolVer; // Protocol version = 0x08

 uint8_t cmdRequest; // Command request = 2 (reply)

 uint8_t cmdResponse; // Command response = 1 (Acknowledgement)

 uint16_t maxBandwidth;// Required bandwidth (added in v9)

 uint16_t testPort; // Test port on server (available port in Response)

 uint8_t modifierBitmap;// Modifier bitmap (replaced jumboStatus for v9)

 uint8_t authMode; // Authentication mode

 uint32_t authUnixTime;// Authentication time stamp

 unsigned char authDigest[AUTH_DIGEST_LENGTH] // 32 octets, MBZ

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

management process and exit. If the client receives a Command Server

Response code (CRSP) that is not equal to one of the codes defined

above, then the client MUST terminate the connection and terminate

operation of the current Setup Request. If the Command Server

Response code (CRSP) value indicates success the client SHALL

compose a Test Activation Request with all the test parameters it

desires, such as the test direction, the test duration, etc.

6. Test Activation Request and Response

This section is divided according to the sending and processing of

the client, server, and again at the client.

All messages defined in this section SHALL use UDP transport. The

hosts SHALL calculate and include the UDP checksum, or check the UDP

checksum as neccessary.

6.1. Test Activation Request at the client

Upon a successful setup, the client SHALL then send the Test

Activation Request to the UDP port number the server communicated in

the Setup Response.

The client SHALL compose Test Activation Request as follows:

¶

¶

¶

¶

¶

Note: uint16_t srIndexConf is the table index of the configured

fixed or starting send rate (depending on whether CHTA_SRIDX_ISSTART

is cleared or set respectively).

The server MAY allow the client to specify any fixed or starting

send rate.

Otherwise, the server MAY enforce a maximum of the fixed or starting

send rate which the client can successfully request. If the client's

Test Activation Request exceeds the server's configured maximum, the

 uint16_t controlId; // Control ID

 uint16_t protocolVer; // Protocol version

 uint8_t cmdRequest; // Command request, 1 = upstream, 2 = downstream

 uint8_t cmdResponse; // Command response (set to 0)

 uint16_t lowThresh; // Low delay variation threshold

 uint16_t upperThresh; // Upper delay variation threshold

 uint16_t trialInt; // Status feedback/trial interval (ms)

 uint16_t testIntTime; // Test interval time (sec)

 uint8_t subIntPeriod; // Sub-interval period (sec)

 uint8_t ipTosByte; // IP ToS byte for testing

 uint16_t srIndexConf; // Configured sending rate index (see Note below)

 uint8_t useOwDelVar; // Use one-way delay instead of RTT

 uint8_t highSpeedDelta; // High-speed row adjustment delta

 uint16_t slowAdjThresh; // Slow rate adjustment threshold

 uint16_t seqErrThresh; // Sequence error threshold

 uint8_t ignoreOooDup; // Ignore Out-of-Order/Duplicate datagrams

* uint8_t modifierBitmap; // Modifier bitmap (replaced reserved1 in v9)

* uint8_t rateAdjAlgo; // Rate adjust. algo. (replaced reserved2 in v9)

* uint8_t reserved1; // (Alignment) (replaced reserved2 in v9)

Control Header Test Activation Command Request Values:

CHTA_CREQ_NONE 0 = No Request

CHTA_CREQ_TESTACTUS 1 = Request test in Upstream direction (client to server, client takes the role of sending test packets)

CHTA_CREQ_TESTACTDS 2 = Request test in Downstream direction (server to client, client takes the role of receiving test packets)

modifierBitmap Code Field: Test Activation

CHTA_SRIDX_ISSTART 0x01 = Set when srIndexConf IS START rate for search

CHTA_RAND_PAYLOAD 0x02 = Set for RANDOMIZED UDP payload

rateAdjAlgo Values:

CHTA_RA_ALGO_B = 0 // 0 = Algo. B, allows Algo. expansion

CHTA_RA_ALGO_MIN = CHTA_RA_ALGO_B // Limit check (with Algo B only)

CHTA_RA_ALGO_MAX = CHTA_RA_ALGO_B // Limit check (with Algo B only)

Control Header Test Activation Command Response Values:

CHTA_CRSP_NONE 0 = Used by client when making a Request

CHTA_CRSP_ACKOK 1 = Used by Server in affirmative Response

CHTA_CRSP_BADPARAM 2 = Used by Server to indicate an error; bad parameter; reject;

¶

¶

¶

server MUST either reject the request, or coerce the value to the

configured maximum, and communicate that maximum to the client in

the Test Activation Response. The client can of course choose to end

the test, as appropriate.

The UDP PDU format of the Test Activation Request is as follows

(big-endian AB):

The client SHALL use the configuration for

Jumbo datagram support status,

Traditional MTU,

Authentication mode, and

Authentication time stamp

requested in the Setup Request and confirmed by the server in the

Setup Response.

6.2. Test Activation Response

After the server receives the Test Activation Request on the new

connection, it MUST choose to accept, ignore or modify any of the

test parameters.

When the server sends the Test Activation Response, it SHALL set the

cmd Response field to:

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | controlId | protocolVer |

 +-+

 | cmdRequest | cmdResponse | lowThresh |

 +-+

 | upperThresh | trialInt |

 +-+

 | testIntTime | subIntPeriod | ipTosByte |

 +-+

 | srIndexConf | useOwDelVar |highSpeedDelta |

 +-+

 | slowAdjThresh | seqErrThresh |

 +-+

 | ignoreOooDup |modifierBitmap | rateAdjAlgo | reserved1 |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Note: This is only 28 octets of the 56 octet PDU sent, the rest are MBZ

for a Test Activation Request.

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

uint8_t cmdResponse;// Command response (set to 1, ACK, or 2 error)

The server SHALL repeat all test parameters to indicate changes to

the client.

If the client has requested an upstream test, the server SHALL

include the transmission parameters from the first row of the

sending rate table in the Sending Rate Structure (defined below),

OR

use the parameters from the configured send rate index

(srIndexConf) of the sending rate table, or starting rate index

(indicated in the Test Activation modifierBitmap) when these

options are present.

The remaining 28 octets of the Test Activation Response (normally

read from the first row of the sending rate table) are called the

Sending Rate Structure, and SHALL be organized as follows:

with

Note that the server additionally has the option of completely

rejecting the request and sending back an appropriate command

response value:

¶

¶

¶

*

¶

*

¶

¶

 uint32_t txInterval1; // Transmit interval (us)

 uint32_t udpPayload1; // UDP payload (bytes)

 uint32_t burstSize1; // UDP burst size per interval

 uint32_t txInterval2; // Transmit interval (us)

 uint32_t udpPayload2; // UDP payload (bytes)

 uint32_t burstSize2; // UDP burst size per interval

 uint32_t udpAddon2; // UDP add-on (bytes)

¶

¶

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | txInterval1 |

 +-+

 | udpPayload1 |

 +-+

 | burstSize1 |

 +-+

 | txInterval2 |

 +-+

 | udpPayload2 |

 +-+

 | burstSize2 |

 +-+

 | udpAdddon2 |

 +-+

¶

¶

uint8_t cmdResponse; // Command response (set to 2, error)

If activation continues, the new connection is prepared for an

upstream OR downstream test.

In the case of a downstream test, the server SHALL prepare to send

with either a single timer to send status PDUs at the specified

interval OR dual timers to send load PDUs based on

the transmission parameters from the first row of the sending

rate table in the Sending Rate Structure, OR

the transmission parameters of the configured send rate index

(srIndexConf) of the sending rate table, or starting rate index

(indicated in the Test Activation modifierBitmap) when these

options are present.

The server SHALL then send a Test Activation Response back to the

client, update the watchdog timer with a new time-out value, and set

a test duration timer to eventually stop the test.

The new connection is now ready for testing.

6.3. Test Activation Response action at the client

When the client receives the Test Activation Response, it first

checks the command response value.

If the client receives a Test Activation Command Response value that

indicates an error, the client SHALL display/report a relevant

message to the user or management process and exit.

If the client receives a Test Activation Command Response value that

is not equal to one of the codes defined above, then the client MUST

terminate the connection and terminate operation of the current

Setup Request.

If the client receives a Test Activation Command Response value that

indicates success (CHTA_CRSP_ACKOK) the client SHALL update its

configuration to use any test parameters modified by the server.

Next, the client SHALL prepare its connection for either an upstream

test with dual timers set to send load PDUs (based on the starting

transmission parameters sent by the server), OR a downstream test

with a single timer to send status PDUs at the specified interval.

Then, the client SHALL stop the test initiation timer, set a new

time-out value for the watchdog timer, and start the timer (in case

the server goes quiet).

¶

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

The connection is now ready for testing.

7. Test Stream Transmission and Measurement Feedback Messages

This section describes the testing phase of the protocol. The roles

of sender and receiver vary depending whether the direction of

testing is from server to client, or the reverse.

All messages defined in this section SHALL use UDP transport. The

hosts SHALL calculate and include the UDP checksum, or check the

received UDP checksum before further processing, as neccessary.

7.1. Test Packet PDU and Roles

Testing proceeds with one end point sending load PDUs, based on

transmission parameters from the sending rate table, and the other

end point receiving the load PDUs and sending status messages to

communicate the traffic conditions at the receiver.

The watchdog timer at the receiver SHALL be reset each time a test

PDU is received. See non-graceful test stop in Section 8 for

handling the watchdog/NOTRAFFIC time-out expiration at each end-

point.

When the server is sending Load PDUs in the role of sender, it SHALL

use the transmission parameters directly from the sending rate table

via the index that is currently selected (which was based on the

feedback in its received status messages).

However, when the client is sending load PDUs in the role of sender,

it SHALL use the discreet transmission parameters that were

communicated by the server in its periodic status messages (and not

referencing a sending rate table). This approach allows the server

to control the individual sending rates as well as the algorithm

used to decide when and how to adjust the rate.

The server uses a load adjustment algorithm which evaluates

measurements, either it's own or the contents of received feedback

messages. This algorithm is unique to udpst; it provides the ability

to search for the Maximum IP Capacity that is absent from other

testing tools. Although the algorithm depends on the protocol, it is

not part of the protocol per se.

The current algorithm (B) has three paths to its decision on the

next sending rate:

When there are no impairments present (no sequence errors, low

delay variation), resulting in sending rate increase.

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

When there are low impairments present (no sequence errors but

higher levels of delay variation), so the same sending rate is

retained.

When the impairment levels are above the thresholds set for

this purpose and "congestion" is inferred, resulting in sending

rate decrease.

The algorithm also has two modes for increasing/decreasing the

sending rate:

A high-speed mode to achieve high sending rates quickly, but also

back-off quickly when "congestion" is inferred from the

measurements. Any two consecutive feedback intervals that have a

sequence number anomaly and/or contain an upper delay variation

threshold exception in both of the two consecutive intervals,

count as the two consecutive feedback measurements required to

declare "congestion" within a test.

A single-step mode where all rate adjustments use the minimum

increase or decrease of one step in the sending rate table. The

single step mode continues after the first inference of

"congestion" from measured impairments.

On the other hand, the test configuration MAY use a fixed sending

rate requested by the client, using the field below:

uint16_t srIndexConf; // Configured sending rate index

The client MAY communicate the desired fixed rate in its activation

request. The reasons to conduct a fixed-rate test include stable

measurement at the maximum determined by the load adjustment

(search) algorithm, or the desire to test at a known subscribed rate

without searching.

The Load PDU SHALL have the following format and field definitions:

2.

¶

3.

¶

¶

*

¶

*

¶

¶

¶

¶

¶

The Test Load UDP PDU format is as follows (big-endian AB):

 uint16_t loadId; // Load ID (=0xBEEF for the LOad PDU)

 uint8_t testAction; // Test action (= 0x00 normally, until test stop)

 uint8_t rxStopped; // Receive traffic stopped indicator (BOOL)

 uint32_t lpduSeqNo; // Load PDU sequence number (starts at 1)

 uint16_t udpPayload; // UDP payload LENGTH(bytes)

 uint16_t spduSeqErr; // Status PDU sequence error count

 //

 uint32_t spduTime_sec; // Send time in last received status PDU

 uint32_t spduTime_nsec; // Send time in last received status PDU

 uint32_t lpduTime_sec; // Send time of this load PDU

 uint32_t lpduTime_nsec; // Send time of this load PDU

Test Action Codes

TEST_ACT_TEST 0 // normal

TEST_ACT_STOP1 1 // normal stop at end of test: server sends in STATUS or Test PDU

TEST_ACT_STOP2 2 // ACK of STOP1: sent by client in STATUS or Test PDU

¶

¶

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | loadId | testAction | rxStopped |

 +-+

 | lpduSeqNo |

 +-+

 | udpPayload | spduSeqErr |

 +-+

 | spduTime_sec |

 +-+

 | spduTime_nsec |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-|-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | lpduTime_sec |

 +-+

 | lpduTime_nsec |

 +-+

 . MBZ = udpPayload - 28 octets .

 +-+

 . .

 +-+

 . .

 +-+

 . .

 +-+

 . .

¶

7.2. Status PDU

The receiver SHALL send a Status PDU to the sender during a test at

the configured feedback interval.

The watchdog timer at the test PDU sender SHALL be reset each time a

Status PDU is received. See non-graceful test stop in Section 8 for

handling the watchdog/NOTRAFFIC time-out expiration at each end-

point.

@@@@ To Do: What protections from bit errors (checksum) or on-path

attacks (something stronger) are warrented for teh Status PDUs?

These PDUs are a key part of the server-client control loop. Added a

requirement to calculate and include/check the UDP checksum.

The Status Header PDU SHALL have the following format and field

definitions:

¶

¶

¶

¶

The Status feedback UDP payload PDUs format is as follows (big-

endian AB):

// Status feedback header for UDP payload of status PDUs

//

 uint16_t statusId; // Status ID = 0xFEED

 uint8_t testAction; // Test action

 uint8_t rxStopped; // Receive traffic stopped indicator (BOOL)

 uint32_t spduSeqNo; // Status PDU sequence number (starts at 1)

 //

 struct sendingRate srStruct; // Sending Rate Structure (28 octets)

 //

 uint32_t subIntSeqNo; // Sub-interval sequence number

 struct subIntStats sisSav; // Sub-interval Saved Stats Structure (52 octets)

 //

 uint32_t seqErrLoss; // Loss sum

 uint32_t seqErrOoo; // Out-of-Order sum

 uint32_t seqErrDup; // Duplicate sum

 //

 uint32_t clockDeltaMin; // Clock delta minimum (either RTT or 1-way delay)

 uint32_t delayVarMin; // Delay variation minimum

 uint32_t delayVarMax; // Delay variation maximum

 uint32_t delayVarSum; // Delay variation sum

 uint32_t delayVarCnt; // Delay variation count

 uint32_t rttMinimum; // Minimum round-trip time sampled

 uint32_t rttSample; // Last round-trip time sample

 uint8_t delayMinUpd; // Delay minimum(s) updated observed, communicated in both directions.

 uint8_t reserved2; // (alignment)

 uint16_t reserved3; // (alignment)

 //

 uint32_t tiDeltaTime; // Trial interval delta time

 uint32_t tiRxDatagrams; // Trial interval receive datagrams

 uint32_t tiRxBytes; // Trial interval receive bytes

 //

 uint32_t spduTime_sec; // Send time of this status PDU

 uint32_t spduTime_nsec; // Send time of this status PDU

¶

¶

Note that the Sending Rate Structure (28 octets) is defined in the

Test Activation section.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | statusId | testAction | rxStopped |

 +-+

 | spduSeqNo |

 +-+

 . Sending Rate Structure (28 octets) .

 +-+

 | subIntSeqNo |

 +-+

 . Sub-interval Saved Stats Structure (52 octets) .

 +-+

 | seqErrLoss |

 +-+

 | seqErrOoo |

 +-+

 | seqErrDup |

 +-+

 | clockDeltaMin |

 +-+

 | delayVarMin |

 +-+

 | delayVarMax |

 +-+

 | delayVarSum |

 +-+

 | delayVarCnt |

 +-+

 | rttMinimum |

 +-+

 | rttSample |

 +-+

 | delayMinUpd | reserved2 | reserved3 |

 +-+

 | tiDeltaTime |

 +-+

 | tiRxDatagrams |

 +-+

 | tiRxBytes |

 +-+

 | spduTime_sec |

 +-+

 | spduTime_nsec |

 +-+

¶

¶

Also note that the Sub-interval Saved Stats Structure (52 octets)

SHALL be included (and populated as required when the server is in

the receiver role) as defined below.

The Sub-interval saved statistics structure for received traffic

measurements SHALL be organized and formatted as follows:

¶

¶

Note that the 52 octet saved statistics structure above has slight

differences from the 40 octets that follow in the status feedback

PDU, particularly the time-related fields.

 uint32_t rxDatagrams; // Received datagrams

 uint32_t rxBytes; // Received bytes

 uint32_t deltaTime; // Time delta

 uint32_t seqErrLoss; // Loss sum

 uint32_t seqErrOoo; // Out-of-Order sum

 uint32_t seqErrDup; // Duplicate sum

 uint32_t delayVarMin; // Delay variation minimum

 uint32_t delayVarMax; // Delay variation maximum

 uint32_t delayVarSum; // Delay variation sum

 uint32_t delayVarCnt; // Delay variation count

 uint32_t rttMinimum; // Minimum round-trip time

 uint32_t rttMaximum; // Maximum round-trip time

 uint32_t accumTime; // Accumulated time

--

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | rxDatagrams |

 +-+

 | rxBytes |

 +-+

 | deltaTime |

 +-+

 | seqErrLoss |

 +-+

 | seqErrOoo |

 +-+

 | seqErrDup |

 +-+

 | delayVarMin |

 +-+

 | delayVarMax |

 +-+

 | delayVarSum |

 +-+

 | delayVarCnt |

 +-+

 | rttMinimum |

 +-+

 | rttMaximum |

 +-+

 | accumTime |

 +-+

¶

¶

Upon receiving the Status Feedback PDU or expiration of the feedback

interval, the server SHALL perform calculations required by the Load

adjustment algorithm and adjust its sending rate, or signal that the

client do so in its role as as sender.

@@@@ To Do: Additional measurements, like interface byte counters

from a client at a residential gateway, would change the Status

Feedback PDU (and the protocol version number as a result).

Interface byte counters seem useful for specific circumstances, such

as when the client application has acces to an interface that sees

all traffic to/from a service subscriber's location.

8. Stopping the Test

When the test duration timer on the server expires, it SHALL set the

connection test action to STOP and mark all outgoing load or status

PDUs with a test action of STOP1.

uint8_t testAction; // Test action (server sets STOP1)

This is simply a non-reversible state for all future messages sent

from the server.

When the client receives a load or status PDU with the STOP1

indication, it SHALL finalize testing, display the test results, and

also mark its connection with a test action of STOP (so that any

PDUs received subsequent to the STOP1 are ignored).

With the test action of the client's connection set to STOP, the

very next expiry of a send timer for either a load or status PDU

SHALL cause the client to schedule an immediate end time to exit.

The client SHALL then send all subsequent load or status PDUs with a

test action of STOP2

uint8_t testAction; // Test action (client sets STOP2)

as confirmation to the server, and a graceful termination of the

test can begin.

When the server receives the STOP2 confirmation in the load or

status PDU, the server SHALL schedule an immediate end time for the

connection which closes the socket and deallocates it.

In a non-graceful test stop, the watchdog/NOTRAFFIC time-outs at

each end-point will expire (sometimes at one end-point first),

notifications in logs, STDOUT, and/or formateed output SHALL be

made, and the test action of each end-point's connection SHALL be

set to STOP.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

9. Method of Measurement

The architecture of the method REQUIRES two cooperating hosts

operating in the roles of Src (test packet sender) and Dst

(receiver), with a measured path and return path between them.

The duration of a test duration, parameter I, MUST be constrained in

a production network, since this is an active test method and it

will likely cause congestion on the Src to Dst host path during a

test.

9.1. Running Code

This section is for the benefit of the Document Shepherd's form, and

will be deleted prior to final review.

Much of the development of the method and comparisons with existing

methods conducted at IETF Hackathons and elsewhere have been based

on the example udpst Linux measurement tool (which is a working

reference for further development) [udpst]. The current project:

is a utility that can function as a client or server daemon

requires a successful client-initiated setup handshake between

cooperating hosts and allows firewalls to control inbound

unsolicited UDP which either go to a control port [expected and

w/authentication] or to ephemeral ports that are only created as

needed. Firewalls protecting each host can both continue to do

their job normally. This aspect is similar to many other test

utilities available.

is written in C, and built with gcc (release 9.3) and its

standard run-time libraries

allows configuration of most of the parameters described in

Sections 4 and 7.

supports IPv4 and IPv6 address families.

supports IP-layer packet marking.

10. Security Considerations

Active metrics and measurements have a long history of security

considerations. The security considerations that apply to any active

measurement of live paths are relevant here. See [RFC4656] and

[RFC5357].

When considering privacy of those involved in measurement or those

whose traffic is measured, the sensitive information available to

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

¶

potential observers is greatly reduced when using active techniques

which are within this scope of work. Passive observations of user

traffic for measurement purposes raise many privacy issues. We refer

the reader to the privacy considerations described in the Large

Scale Measurement of Broadband Performance (LMAP) Framework

[RFC7594], which covers active and passive techniques.

There are some new considerations for Capacity measurement as

described in this memo.

Cooperating source and destination hosts and agreements to test

the path between the hosts are REQUIRED. Hosts perform in

either the Src or Dst roles.

It is REQUIRED to have a user client-initiated setup handshake

between cooperating hosts that allows firewalls to control

inbound unsolicited UDP traffic which either goes to a control

port [expected and w/authentication] or to ephemeral ports that

are only created as needed. Firewalls protecting each host can

both continue to do their job normally.

Client-server authentication and integrity protection for

feedback messages conveying measurements is RECOMMENDED. To

accomodate different host limitations and testing

circumstances, different modes of operation are recommended:

¶

¶

1.

¶

2.

¶

3.

¶

Hosts MUST limit the number of simultaneous tests to avoid

resource exhaustion and inaccurate results.

Senders MUST be rate-limited. This can be accomplished using a

pre-built table defining all the offered load rates that will

be supported (Section 8.1). The recommended load-control search

algorithm results in "ramp up" from the lowest rate in the

table.

WG ver 01 proposal below:

A. Unauthenticated mode (for all phases)

AND

B. OPTIONAL Authenticated set-up only

SHA-256 HMAC time-window verification (5 min time stamp verification)

(could add silent failure option)

 -=-=-=-=-=-=-=-=-=- Above options exist in Running Code -=-=-=-=-=-

C. Encrypted Setup Exchange in a tunnel to well-known port:

(remaining transmissions are on a new UDP port-pair, in the clear)

D. Encrypt "all the things"

(Reduce the options, provide the required protocol protection)

Pre-WG 00 proposal below:

A. Unauthenticated mode (for all phases)

AND

B. OPTIONAL Authenticated set-up only

SHA-256 HMAC time-window verification (5 min time stamp verification)

(could add silent failure option)

 -=-=-=-=-=-=-=-=-=-Above options exist in Running Code -=-=-=-=-=-

 C. Encrypted setup and test-activation

(currently using OpenSSL Library, so KISS, but may be too slow for

test packets)

 -=-=-=-=--=- Old/lowpower host performance impacts -=-=-=-=-=-=-

 D. Encrypted feedback messages (maybe split into Integrity and encrypt?)

 E. Integrity protection for test packets SHA-256 HMAC

 F. Encrypted test packets (maybe also valuable to defeat compression on links)

¶

4.

¶

5.

¶

[I-D.ietf-ippm-capacity-metric-method]

[RFC2119]

[RFC2330]

[RFC2681]

[RFC6438]

Service subscribers with limited data volumes who conduct

extensive capacity testing might experience the effects of

Service Provider controls on their service. Testing with the

Service Provider's measurement hosts SHOULD be limited in

frequency and/or overall volume of test traffic (for example,

the range of I duration values SHOULD be limited).

The exact specification of these features was hopefully accomplished

during this protocol development.

11. IANA Considerations

This memo requests IANA to assign a UDP port.

12. Acknowledgments

Thanks to Ruediger Geib, Lincoln Lavoie, Can Desem, and Greg Mirsky

for reviewing this draft and providing helpful suggestions and areas

for further development. Ken Kerpez and Chen Li have provided

helpful reviews.

13. References

13.1. Normative References

Morton, A., Geib, R., and L.

Ciavattone, "Metrics and Methods for One-Way IP

Capacity", Work in Progress, Internet-Draft, draft-ietf-

ippm-capacity-metric-method-12, 9 June 2021, <https://

www.ietf.org/archive/id/draft-ietf-ippm-capacity-metric-

method-12.txt>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,

"Framework for IP Performance Metrics", RFC 2330, DOI

10.17487/RFC2330, May 1998, <https://www.rfc-editor.org/

info/rfc2330>.

Almes, G., Kalidindi, S., and M. Zekauskas, "A Round-trip

Delay Metric for IPPM", RFC 2681, DOI 10.17487/RFC2681,

September 1999, <https://www.rfc-editor.org/info/

rfc2681>.

Carpenter, B. and S. Amante, "Using the IPv6 Flow Label

for Equal Cost Multipath Routing and Link Aggregation in

6.

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-ippm-capacity-metric-method-12.txt
https://www.ietf.org/archive/id/draft-ietf-ippm-capacity-metric-method-12.txt
https://www.ietf.org/archive/id/draft-ietf-ippm-capacity-metric-method-12.txt
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2330
https://www.rfc-editor.org/info/rfc2330
https://www.rfc-editor.org/info/rfc2681
https://www.rfc-editor.org/info/rfc2681

[RFC7497]

[RFC7680]

[RFC8174]

[RFC8468]

[RFC9097]

[copycat]

[LS-SG12-A]

[LS-SG12-B]

[RFC2544]

Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011,

<https://www.rfc-editor.org/info/rfc6438>.

Morton, A., "Rate Measurement Test Protocol Problem

Statement and Requirements", RFC 7497, DOI 10.17487/

RFC7497, April 2015, <https://www.rfc-editor.org/info/

rfc7497>.

Almes, G., Kalidindi, S., Zekauskas, M., and A. Morton,

Ed., "A One-Way Loss Metric for IP Performance Metrics

(IPPM)", STD 82, RFC 7680, DOI 10.17487/RFC7680, January

2016, <https://www.rfc-editor.org/info/rfc7680>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Morton, A., Fabini, J., Elkins, N., Ackermann, M., and V.

Hegde, "IPv4, IPv6, and IPv4-IPv6 Coexistence: Updates

for the IP Performance Metrics (IPPM) Framework", RFC

8468, DOI 10.17487/RFC8468, November 2018, <https://

www.rfc-editor.org/info/rfc8468>.

Morton, A., Geib, R., and L. Ciavattone, "Metrics and

Methods for One-Way IP Capacity", RFC 9097, DOI 10.17487/

RFC9097, November 2021, <https://www.rfc-editor.org/info/

rfc9097>.

13.2. Informative References

Edleine, K., Kuhlewind, K., Trammell, B., and B. Donnet,

"copycat: Testing Differential Treatment of New Transport

Protocols in the Wild (ANRW '17)", 15 July 2017,

<https://irtf.org/anrw/2017/anrw17-final5.pdf>.

12, I. S., "LS - Harmonization of IP Capacity and

Latency Parameters: Revision of Draft Rec. Y.1540 on IP

packet transfer performance parameters and New Annex A

with Lab Evaluation Plan", May 2019, <https://

datatracker.ietf.org/liaison/1632/>.

12, I. S., "LS on harmonization of IP Capacity and

Latency Parameters: Consent of Draft Rec. Y.1540 on IP

packet transfer performance parameters and New Annex A

with Lab & Field Evaluation Plans", March 2019, <https://

datatracker.ietf.org/liaison/1645/>.

Bradner, S. and J. McQuaid, "Benchmarking Methodology for

Network Interconnect Devices", RFC 2544, DOI 10.17487/

https://www.rfc-editor.org/info/rfc6438
https://www.rfc-editor.org/info/rfc7497
https://www.rfc-editor.org/info/rfc7497
https://www.rfc-editor.org/info/rfc7680
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8468
https://www.rfc-editor.org/info/rfc8468
https://www.rfc-editor.org/info/rfc9097
https://www.rfc-editor.org/info/rfc9097
https://irtf.org/anrw/2017/anrw17-final5.pdf
https://datatracker.ietf.org/liaison/1632/
https://datatracker.ietf.org/liaison/1632/
https://datatracker.ietf.org/liaison/1645/
https://datatracker.ietf.org/liaison/1645/

[RFC3148]

[RFC4656]

[RFC5136]

[RFC5357]

[RFC6815]

[RFC7312]

[RFC7594]

[RFC7799]

[RFC8337]

[RFC8762]

RFC2544, March 1999, <https://www.rfc-editor.org/info/

rfc2544>.

Mathis, M. and M. Allman, "A Framework for Defining

Empirical Bulk Transfer Capacity Metrics", RFC 3148, DOI

10.17487/RFC3148, July 2001, <https://www.rfc-editor.org/

info/rfc3148>.

Shalunov, S., Teitelbaum, B., Karp, A., Boote, J., and M.

Zekauskas, "A One-way Active Measurement Protocol

(OWAMP)", RFC 4656, DOI 10.17487/RFC4656, September 2006,

<https://www.rfc-editor.org/info/rfc4656>.

Chimento, P. and J. Ishac, "Defining Network Capacity",

RFC 5136, DOI 10.17487/RFC5136, February 2008, <https://

www.rfc-editor.org/info/rfc5136>.

Hedayat, K., Krzanowski, R., Morton, A., Yum, K., and J.

Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)",

RFC 5357, DOI 10.17487/RFC5357, October 2008, <https://

www.rfc-editor.org/info/rfc5357>.

Bradner, S., Dubray, K., McQuaid, J., and A. Morton,

"Applicability Statement for RFC 2544: Use on Production

Networks Considered Harmful", RFC 6815, DOI 10.17487/

RFC6815, November 2012, <https://www.rfc-editor.org/info/

rfc6815>.

Fabini, J. and A. Morton, "Advanced Stream and Sampling

Framework for IP Performance Metrics (IPPM)", RFC 7312,

DOI 10.17487/RFC7312, August 2014, <https://www.rfc-

editor.org/info/rfc7312>.

Eardley, P., Morton, A., Bagnulo, M., Burbridge, T.,

Aitken, P., and A. Akhter, "A Framework for Large-Scale

Measurement of Broadband Performance (LMAP)", RFC 7594,

DOI 10.17487/RFC7594, September 2015, <https://www.rfc-

editor.org/info/rfc7594>.

Morton, A., "Active and Passive Metrics and Methods (with

Hybrid Types In-Between)", RFC 7799, DOI 10.17487/

RFC7799, May 2016, <https://www.rfc-editor.org/info/

rfc7799>.

Mathis, M. and A. Morton, "Model-Based Metrics for Bulk

Transport Capacity", RFC 8337, DOI 10.17487/RFC8337,

March 2018, <https://www.rfc-editor.org/info/rfc8337>.

Mirsky, G., Jun, G., Nydell, H., and R. Foote, "Simple

Two-Way Active Measurement Protocol", RFC 8762, DOI

https://www.rfc-editor.org/info/rfc2544
https://www.rfc-editor.org/info/rfc2544
https://www.rfc-editor.org/info/rfc3148
https://www.rfc-editor.org/info/rfc3148
https://www.rfc-editor.org/info/rfc4656
https://www.rfc-editor.org/info/rfc5136
https://www.rfc-editor.org/info/rfc5136
https://www.rfc-editor.org/info/rfc5357
https://www.rfc-editor.org/info/rfc5357
https://www.rfc-editor.org/info/rfc6815
https://www.rfc-editor.org/info/rfc6815
https://www.rfc-editor.org/info/rfc7312
https://www.rfc-editor.org/info/rfc7312
https://www.rfc-editor.org/info/rfc7594
https://www.rfc-editor.org/info/rfc7594
https://www.rfc-editor.org/info/rfc7799
https://www.rfc-editor.org/info/rfc7799
https://www.rfc-editor.org/info/rfc8337

[RFC8972]

[TR-471]

[udpst]

[Y.1540]

[Y.Sup60]

10.17487/RFC8762, March 2020, <https://www.rfc-

editor.org/info/rfc8762>.

Mirsky, G., Min, X., Nydell, H., Foote, R., Masputra, A.,

and E. Ruffini, "Simple Two-Way Active Measurement

Protocol Optional Extensions", RFC 8972, DOI 10.17487/

RFC8972, January 2021, <https://www.rfc-editor.org/info/

rfc8972>.

Morton, A., "Broadband Forum TR-471: IP Layer Capacity

Metrics and Measurement", 10 July 2020, <https://

www.broadband-forum.org/technical/download/TR-471.pdf>.

udpst Project Collaborators, "UDP Speed Test Open

Broadband project", December 2020, <https://github.com/

BroadbandForum/obudpst>.

Y.1540, I. R., "Internet protocol data communication

service - IP packet transfer and availability performance

parameters", December 2019, <https://www.itu.int/rec/T-

REC-Y.1540-201912-I/en>.

Morton, A., Rapporteur., "Recommendation Y.Sup60, (09/20)

Interpreting ITU-T Y.1540 maximum IP-layer capacity

measurements", 11 September 2020, <https://www.itu.int/

rec/T-REC-Y.Sup60/en>.

Authors' Addresses

Len Ciavattone

AT&T Labs

200 Laurel Avenue South

Middletown,, NJ 07748

United States of America

Email: lencia@att.com

Al Morton

AT&T Labs

Chicago,, IL 60660

United States of America

Phone: +1 732 420 1571

Email: acmorton@att.com

https://www.rfc-editor.org/info/rfc8762
https://www.rfc-editor.org/info/rfc8762
https://www.rfc-editor.org/info/rfc8972
https://www.rfc-editor.org/info/rfc8972
https://www.broadband-forum.org/technical/download/TR-471.pdf
https://www.broadband-forum.org/technical/download/TR-471.pdf
https://github.com/BroadbandForum/obudpst
https://github.com/BroadbandForum/obudpst
https://www.itu.int/rec/T-REC-Y.1540-201912-I/en
https://www.itu.int/rec/T-REC-Y.1540-201912-I/en
https://www.itu.int/rec/T-REC-Y.Sup60/en
https://www.itu.int/rec/T-REC-Y.Sup60/en
mailto:lencia@att.com
tel:+1%20732%20420%201571
mailto:acmorton@att.com

	Test Protocol for One-way IP Capacity Measurement
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language

	2. Scope, Goals, and Applicability
	3. Protocol Overview
	4. General Parameters and Definitions
	5. Setup Request and Response Exchange
	5.1. Setup Response Processing at the Client

	6. Test Activation Request and Response
	6.1. Test Activation Request at the client
	6.2. Test Activation Response
	6.3. Test Activation Response action at the client

	7. Test Stream Transmission and Measurement Feedback Messages
	7.1. Test Packet PDU and Roles
	7.2. Status PDU

	8. Stopping the Test
	9. Method of Measurement
	9.1. Running Code

	10. Security Considerations
	11. IANA Considerations
	12. Acknowledgments
	13. References
	13.1. Normative References
	13.2. Informative References

	Authors' Addresses

