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1. Status of this Memo

   This document is an Internet  Draft.   Internet  Drafts  are  working
   documents  of  the Internet Engineering Task Force (IETF), its areas,
   and its working groups.  Note that other groups may  also  distribute
   working documents as Internet Drafts.

   Internet Drafts are draft  documents  valid  for  a  maximum  of  six
   months, and may be updated, replaced, or obsoleted by other documents
   at any time.  It is inappropriate to use Internet Drafts as reference
   material or to cite them other than as ``work in progress''.

   To learn the current status of any Internet Draft, please  check  the
   ``1id-abstracts.txt'' listing contained in the Internet Drafts shadow
   directories  on  ftp.is.co.za   (Africa),   nic.nordu.net   (Europe),
   munnari.oz.au  (Pacific  Rim),  ds.internic.net  (US  East Coast), or
   ftp.isi.edu (US West Coast).

   This memo provides information for the Internet community.  This memo
   does  not  specify an Internet standard of any kind.  Distribution of
   this memo is unlimited.

2. Introduction

   The purpose of this  memo  is  to  define  a  general  framework  for
   particular  metrics  to  be  developed  by  the IETF's IP Performance
   Metrics effort, begun by the Benchmarking Methodology  Working  Group
   (BMWG)  of  the Operational Requirements Area, and being continued by
   the IP Performance Metrics Working  Group  (IPPM)  of  the  Transport
   Area.

   We begin by laying out several  criteria  for  the  metrics  that  we
   adopt.   These  criteria  are designed to promote an IPPM effort that
   will maximize an accurate common understanding by Internet users  and
   Internet  providers  of  the performance and reliability both of end-
   to-end paths through the Internet and of specific  'IP  clouds'  that
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   comprise portions of those paths.

   We next define some Internet vocabulary that will allow us  to  speak
   clearly about Internet components such as routers, paths, and clouds.

   We then define the fundamental concepts of 'metric' and  'measurement
   methodology',  which  allow  us  to  speak  clearly about measurement
   issues.  Given these concepts, we proceed to  discuss  the  important
   issue  of  measurement  uncertainties  and errors, and develop a key,
   somewhat subtle notion of how they relate to the analytical framework
   shared  by  many  aspects of the Internet engineering discipline.  We
   then introduce the notion of empirically defined metrics, and  finish
   this  part  of  the document with a general discussion of how metrics
   can be 'composed'.

   The remainder of the document deals with a variety of issues  related
   to  defining  sound  metrics  and  methodologies:   how  to deal with
   imperfect clocks; the notion of 'wire time' as  distinct  from  'host
   time';  how  to  aggregate sets of singleton metrics into samples and
   derive sound statistics from those samples; why it is recommended  to
   avoid thinking about Internet properties in probabilistic terms (such
   as the probability that a packet is dropped), since these terms often
   include  implicit  assumptions  about  how  the  network behaves; the
   utility of defining metrics in terms of packets of  a  generic  type;
   the  benefits  of  preferring IP addresses to DNS host names; and the
   notion of  'standard-formed'  packets.   An  appendix  discusses  the
   Anderson-Darling  test  for gauging whether a set of values matches a
   given  statistical  distribution,   and   gives   C   code   for   an
   implementation of the test.

   In some sections of the memo, we will surround some  commentary  text
   with the brackets {Comment: ... }.  We stress that this commentary is
   only commentary, and is not itself part of the framework document  or
   a proposal of particular metrics.  In some cases this commentary will
   discuss some of the properties of metrics that might  be  envisioned,
   but  the  reader  should  assume that any such discussion is intended
   only to shed light on points made in the framework document, and  not
   to suggest any specific metrics.
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3. Criteria for IP Performance Metrics

   The overarching goal of the  IP  Performance  Metrics  effort  is  to
   achieve  a  situation  in  which  users  and  providers  of  Internet
   transport service  have  an  accurate  common  understanding  of  the
   performance  and  reliability of the Internet component 'clouds' that
   they use/provide.

   To achieve  this,  performance  and  reliability  metrics  for  paths
   through  the  Internet  must  be developed.  In several IETF meetings
   criteria for these metrics have been specified:
 +    The metrics must be concrete and well-defined,
 +    A methodology for a metric should have the  property  that  it  is
      repeatable:  if  the  methodology  is  used  multiple  times under
      identical conditions, the same measurements should result  in  the
      same measurements.
 +    The metrics must exhibit no bias for IP  clouds  implemented  with
      identical technology,
 +    The metrics must exhibit understood and fair bias  for  IP  clouds
      implemented with non-identical technology,
 +    The metrics must be useful to users and providers in understanding
      the performance they experience or provide,
 +    The metrics must avoid inducing artificial performance goals.

4. Terminology for Paths and Clouds

   The following list defines terms that  need  to  be  precise  in  the
   development  of  path  metrics.  We begin with low-level notions of a
   path into relevant pieces.

   host A computer capable of communicating using  the  Internet  proto-
        cols; includes "routers".

   link A single link-level connection  between  two  (or  more)  hosts;
        includes leased lines, ethernets, frame relay clouds, etc.

   routerA host which facilitates  network-level  communication  between
        hosts by forwarding IP packets.

   path A sequence of the form < h0, l1, h1, ..., ln, hn >, where  n  >=
        0,  each  hi  is  a host, each li is a link between hi-1 and hi,
        each h1...hn-1 is a router.  A pair <li, hi> is termed a  'hop'.
        In  an  appropriate  operational  configuration,  the  links and
        routers in the path facilitate  network-layer  communication  of
        packets  from h0 to hn.  Note that path is a unidirectional con-
        cept.
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   subpath
        Given a path, a subpath is any subsequence  of  the  given  path
        which  is itself a path.  (Thus, the first and last element of a
        subpath is a host.)

   cloudAn undirected (possibly cyclic) graph whose vertices are routers
        and  whose  edges are links that connect pairs of routers.  For-
        mally, ethernets, frame relay clouds, and other links that  con-
        nect  more  than  two  routers  are  modelled as fully-connected
        meshes of graph edges.  Note that to connect to a cloud means to
        connect  to  a router of the cloud over a link; this link is not
        itself part of the cloud.

   exchange
        A special case of a link, an exchange directly connects either a
        host to a cloud and/or one cloud to another cloud.

   cloud subpath
        A subpath of a given path, all of whose hosts are routers  of  a
        given cloud.

   path digest
        A sequence of the form < h0, e1, C1, ..., en, hn >, where  n  >=
        0,  h0 and hn are hosts, each e1 ... en is an exchange, and each
        C1 ... Cn-1 is a cloud subpath.

5. Fundamental Concepts

5.1. Metrics

   In the operational Internet, there are several quantities related  to
   the  performance  and  reliability  of the Internet that we'd like to
   know the value of.  When such a quantity is carefully  specified,  we
   term  the  quantity  a  metric.   We  anticipate  that  there will be
   separate RFCs for each metric (or for each closely related  group  of
   metrics).

   In some cases, there might be no obvious means to effectively measure
   the metric; this is allowed, and even understood to be very useful in
   some cases.  It is required, however, that the specification  of  the
   metric  be  as  clear as possible about what quantity is being speci-
   fied.   Thus,  difficulty  in  practical  measurement  is   sometimes
   allowed, but ambiguity in meaning is not.

   Each metric will be defined in terms of standard  units  of  measure-
   ment.   The  international  metric  system  will  be  used,  with the
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   following points specifically noted:
 +    When a unit is expressed in simple meters (for distance/length) or
      seconds   (for  duration),  appropriate  related  units  based  on
      thousands or  thousandths  of  acceptable  units  are  acceptable.
      Thus,  distances expressed in kilometers (km), durations expressed
      in milliseconds (ms), or microseconds (us) are  allowed,  but  not
      centimeters  (because  the  prefix is not in terms of thousands or
      thousandths).
 +    When a unit is expressed in a combination  of  units,  appropriate
      related  units  based  on  thousands  or thousandths of acceptable
      units are acceptable, but all such thousands/thousandths  must  be
      grouped  at the beginning.  Thus, kilo-meters per second (km/s) is
      allowed, but meters per millisecond is not.
 +    The unit of information is the bit.
 +    When metric prefixes are  used  with  bits  or  with  combinations
      including  bits,  those  prefixes  will  have their metric meaning
      (related to decimal 1000), and not the meaning  conventional  with
      computer  storage  (related  to  decimal  1024).   In any RFC that
      defines a metric whose units include bits, this convention will be
      followed and will be repeated to ensure clarity for the reader.
 +    When a time is given, it will be expressed in UTC.
   Note that these points apply to the specifications  for  metrics  and
   not,  for example, to packet formats where octets will likely be used
   in preference/addition to bits.

   Finally, we note that some metrics may be defined purely in terms  of
   other metrics; such metrics are call 'derived metrics'.

5.2. Measurement Methodology

   For a given set of well-defined metrics, a number of  distinct  meas-
   urement methodologies may exist.  A partial list includes:
 +    Direct measurement of a performance  metric  using  injected  test
      traffic.   Example:  measurement  of the round-trip delay of an IP
      packet of a given size over a given route at a given time.
 +    Projection of a metric from  lower-level  measurements.   Example:
      given accurate measurements of propagation delay and bandwidth for
      each step along a path, projection of the complete delay  for  the
      path for an IP packet of a given size.
 +    Estimation of a consituent metric from a set  of  more  aggregated
      measurements.  Example: given accurate measurements of delay for a
      given one-hop path for IP packets of different  sizes,  estimation
      of propagation delay for the link of that one-hop path.
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 +    Estimation of a given metric at one time from  a  set  of  related
      metrics at other times.  Example: given an accurate measurement of
      flow capacity at a past time, together  with  a  set  of  accurate
      delay  measurements  for  that past time and the current time, and
      given a model of flow dynamics, estimate the  flow  capacity  that
      would be observed at the current time.
   This list is by no means exhaustive.  The purpose is to point out the
   variety of measurement techniques.

   When a given metric is specified, a given measurement approach  might
   be noted and discussed.  That approach, however, is not formally part
   of the specification.

   A methodology for a metric  should  have  the  property  that  it  is
   repeatable: if the methodology is used multiple times under identical
   conditions, it should result in consistent measurements.

   Backing off a little from the word 'identical' in the previous  para-
   graph, we could more accurately use the word 'continuity' to describe
   a property of a given methodology: a methodology for a  given  metric
   exhibits  continuity  if,  for  small  variations  in  conditions, it
   results in small variations in the resulting measurements.   Slightly
   more  precisely,  for every positive epsilon, there exists a positive
   delta, such that if two sets of conditions are within delta  of  each
   other, then the resulting measurements will be within epsilon of each
   other.  At this point, this should be taken as  a  heuristic  driving
   our  intuition about one kind of robustness property rather than as a
   precise notion.

   A metric that has at least one methodology that  exhibits  continuity
   is said itself to exhibit continuity.

   Note that some metrics, such as hop-count along a path, are  integer-
   valued  and  therefore  cannot  exhibit continuity in quite the sense
   given above.

   Note further that, in practice, it may not be practical to  know  (or
   be  able  to  quantify) the conditions relevant to a measurement at a
   given time.  For example, since the instantaneous load (in packets to
   be  served)  at  a given router in a high-speed wide-area network can
   vary widely over relatively brief periods and will be very  hard  for
   an  external  observer  to  quantify,  various  statistics of a given
   metric may be more repeatable, or may better exhibit continuity.   In
   that  case  those  particular statistics should be specified when the
   metric is specified.

   Finally, some measurement methodologies may be 'conservative' in  the
   sense  that  the act of measurement does not modify, or only slightly
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   modifies,  the  value  of  the  performance  metric  the  methodology
   attempts to measure.  {Comment: for example, in a wide-are high-speed
   network under modest load, a test using several small 'ping'  packets
   to  measure  delay  would  likely not interfere (much) with the delay
   properties of that network as observed by others.  The  corresponding
   statement  about  tests  using  a large flow to measure flow capacity
   would likely fail.}

5.3. Measurements, Uncertainties, and Errors

   Even the very best measurement methodologies for the very  most  well
   behaved metrics will exhibit errors.  Those who develop such measure-
   ment methodologies, however, should strive to:
 +    minimize their uncertainties/errors,
 +    understand and document the sources of uncertainty/error, and
 +    quantify the amounts of uncertainty/error.

   For example, when developing a method for measuring delay, understand
   how  any errors in your clocks introduce errors into your delay meas-
   urement, and quantify this effect as well as you can.  In some cases,
   this  will  result  in a requirement that a clock be at least up to a
   certain quality if it is to be used to make a certain measurement.

   As a second example, consider the timing  error  due  to  measurement
   overheads  within  the computer making the measurement, as opposed to
   delays due to the Internet component being measured.  The former is a
   measurement  error, while the latter reflects the metric of interest.
   Note that one technique that can help avoid this overhead is the  use
   of  a  packet  filter/sniffer,  running  on  a separate computer that
   records network packets and timestamps them accurately (see the  dis-
   cussion  of  'wire  time'  below).   The  resulting trace can then be
   analysed to assess the test traffic, minimising the effect  of  meas-
   urement  host  delays,  or  at  least  allowing  those  delays  to be
   accounted for.  We note that this technique may prove beneficial even
   if  the  packet filter/sniffer runs on the same machine, because such
   measurements generally provide 'kernel-level' timestamping as opposed
   to less-accurate 'application-level' timestamping.

   Finally, we note that derived metrics (defined above) or metrics that
   exhibit spatial or temporal composition (defined below) offer partic-
   ular occasion for the analysis of measurement  uncertainties,  namely
   how  the uncertainties propagate (conceptually) due to the derivation
   or composition.
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6. Metrics and the Analytical Framework

   As the Internet has evolved from the early  packet-switching  studies
   of the 1960s, the Internet engineering community has evolved a common
   analytical framework of concepts.  This analytical framework,  or  A-
   frame,  used  by  designers  and  implementers of protocols, by those
   involved in measurement, and by those who study computer network per-
   formance using the tools of simulation and analysis, has great advan-
   tage to our work.  A major objective  here  is  to  generate  network
   characterizations  that are consistent in both analytical and practi-
   cal settings, since this will maximize the chances that non-empirical
   network  study can be better correlated with, and used to further our
   understanding of, real network behavior.

   Whenever possible, therefore, we would like to develop  and  leverage
   off  of  the  A-frame.   Thus,  whenever  a metric to be specified is
   understood to be closely related to concepts within the  A-frame,  we
   will attempt to specify the metric in the A-frame's terms.  In such a
   specification we will develop the A-frame by precisely  defining  the
   concepts  needed  for the metric, then leverage off of the A-frame by
   defining the metric in terms of those concepts.

   Such a metric will be called an 'analytically specified  metric'  or,
   more simply, an analytical metric.

   {Comment: Examples of such analytical metrics might include:

propagation time of a link
     The time, in seconds, required by a single bit to travel  from  the
     output  port  on  one Internet host across a single link to another
     Internet host.

bandwidth of a link for packets of size k
     The capacity, in bits/second, where  only  those  bits  of  the  IP
     packet are counted, for packets of size k bytes.

routeThe path, as defined in Section 4, from A to B at a given time.

hop count of a route
     The value 'n' of the route path.
     }

     Note that we make no a priori list of just  what  A-frame  concepts
     will  emerge in these specifications, but we do encourage their use
     and urge that they be carefully specified so that, as  our  set  of
     metrics  develops,  so  will  a  specified  set of A-frame concepts
     technically consistent with each other and consonent with the  com-
     mon  understanding  of  those  concepts within the general Internet
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     community.

     These A-frame concepts will be intended  to  abstract  from  actual
     Internet components in such a way that:
 +    the essential function of the component is retained,
 +    properties of the component relevant to  the  metrics  we  aim  to
      create are retained,
 +    a subset of these component properties are potentially defined  as
      analytical metrics, and
 +    those properties of actual Internet  components  not  relevant  to
      defining the metrics we aim to create are dropped.

   For example, when considering a router in the context of packet  for-
   warding, we might model the router as a component that receives pack-
   ets on an input link, queues them on a FIFO packet  queue  of  finite
   size,  employs  tail-drop when the packet queue is full, and forwards
   them on an output link.  The transmission speed (in  bits/second)  of
   the  input  and output links, the latency in the router (in seconds),
   and the maximum size of the  packet  queue  (in  bits)  are  relevant
   analytical metrics.

   In some cases, such analytical metrics used in relation to  a  router
   will  be  very closely related to specific metrics of the performance
   of Internet paths.  For example, an obvious formula (L + P/B) involv-
   ing the latency in the router (L), the packet size (in bits) (P), and
   the transmission speed of the output link (B) might closely  approxi-
   mate  the  increase  in  packet delay due to the insertion of a given
   router along a path.

   We stress, however, that well-chosen and well-specified A-frame  con-
   cepts  and  their analytical metrics will support more general metric
   creation efforts in less obvious ways.

   {Comment: for example, when considering the flow capacity of a  path,
   it may be of real value to be able to model each of the routers along
   the path as packet forwarders as above.   Techniques  for  estimating
   the  flow  capacity of a path might use the maximum packet queue size
   as a parameter in decidedly non-obvious ways.  For  example,  as  the
   maximum  queue  size  increases, so will the ability of the router to
   continuously move traffic along an output link  despite  fluctuations
   in  traffic  from  an input link.  Estimating this increase, however,
   remains a research topic.}

   Note that, when we specify A-frame concepts and  analytical  metrics,
   we  will  inevitably  make  simplifying assumptions.  The key role of
   these concepts is to abstract the properties  of  the  Internet  com-
   ponents  relevant  to  given metrics.  Judgement is required to avoid
   making assumptions that bias the modeling and  metric  effort  toward
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   one kind of design.

   {Comment: for example, routers might not use tail-drop,  even  though
   tail-drop might be easier to model analytically.}

   Finally, note that different elements of the A-frame might well  make
   different simplifying assumptions.  For example, the abstraction of a
   router used to further the definition of path delay might  treat  the
   router's  packet queue as a single FIFO queue, but the abstraction of
   a router used to further the definition of the handling of  an  RSVP-
   enabled  packet  might  treat the router's packet queue as supporting
   bounded delay -- a contradictory assumption.  This is not to say that
   we make contradictory assumptions at the same time, but that two dif-
   ferent parts of our work might refine the simpler base concept in two
   divergent ways for different purposes.

   {Comment: in more mathematical terms, we would say that  the  A-frame
   taken  as  a  whole need not be consistent; but the set of particular
   A-frame elements used to define a particular metric must be.}

7. Empirically Specified Metrics

   There are useful performance and reliability metrics that do not  fit
   so  neatly  into  the  A-frame, usually because the A-frame lacks the
   detail or power for dealing with them.  For example, "the  best  flow
   capacity  achievable  along  a  path using an RFC-2001-compliant TCP"
   would be good to be able to measure, but we have no analytical frame-
   work of sufficient richness to allow us to cast that flow capacity as
   an analytical metric.

   These notions can still be well specified  by  instead  describing  a
   reference methodology for measuring them.

   Such a metric will be called an 'empirically  specified  metric',  or
   more simply, an empirical metric.

   Such empirical metrics should have three properties:
 +    we should have a clear definition for each in  terms  of  Internet
      components,
 +    we should have at least one effective means to measure them, and
 +    to the extent possible, we should have an (necessarily incomplete)
      understanding of the metric in terms of the A-frame so that we can
      use our measurements to reason about the performance and reliabil-
      ity  of  A-frame  components  and  of aggregations of A-frame com-
      ponents.

https://datatracker.ietf.org/doc/html/rfc2001
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8. Two Forms of Composition

8.1. Spatial Composition of Metrics

   In some cases, it may be realistic and useful to  define  metrics  in
   such a fashion that they exhibit spatial composition.

   By spatial  composition,  we  mean  a  characteristic  of  some  path
   metrics, in which the metric as applied to a (complete) path can also
   be defined for various subpaths, and in which the appropriate A-frame
   concepts  for  the  metric  suggest  useful relationships between the
   metric applied to these  various  subpaths  (including  the  complete
   path,  the  various  cloud  subpaths of a given path digest, and even
   single routers along the path).  The effectiveness of spatial  compo-
   sition depends:
 +    on the usefulness in analysis of these relationships as applied to
      the relevant A-frame components, and
 +    on the practical use of the corresponding relationships as applied
      to metrics and to measurement methodologies.

   {Comment: for example, consider some metric for delay of  a  100-byte
   packet  across  a path P, and consider further a path digest <h0, e1,
   C1, ..., en, hn> of P.  The definition of such a metric might include
   a  conjecture  that  the delay across P is very nearly the sum of the
   corresponding metric across the exhanges (ei) and clouds (Ci) of  the
   given  path  digest.   The definition would further include a note on
   how a corresponding relation applies to relevant A-frame  components,
   both for the path P and for the exchanges and clouds of the path dig-
   est.}

   When the definition of a metric includes a conjecture that the metric
   across  the  path is related to the metric across the subpaths of the
   path, that conjecture constitutes a claim that  the  metric  exhibits
   spatial composition.  The definition should then include:
 +    the specific conjecture applied to the metric,
 +    a justification of the practical utility  of  the  composition  in
      terms of making accurate measurements of the metric on the path,
 +    a justification of the usefulness of the composition in  terms  of
      making analysis of the path using A-frame concepts more effective,
      and
 +    an analysis of how the conjecture could be incorrect.
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8.2. Temporal Composition of Formal Models and Empirical Metrics

   In some cases, it may be realistic and useful to  define  metrics  in
   such a fashion that they exhibit temporal composition.

   By temporal composition,  we  mean  a  characteristic  of  some  path
   metric, in which the metric as applied to a path at a given time T is
   also defined for various times t0 < t1 < ... < tn < T, and  in  which
   the appropriate A-frame concepts for the metric suggests useful rela-
   tionships between the metric applied at times t0,  ...,  tn  and  the
   metric  applied at time T.  The effectiveness of temporal composition
   depends:
 +    on the usefulness in analysis of these relationships as applied to
      the relevant A-frame components, and
 +    on the practical use of the corresponding relationships as applied
      to metrics and to measurement methodologies.

   {Comment: for example, consider a  metric for the expected flow capa-
   city  across  a  path P during the five-minute period surrounding the
   time T, and suppose further that we have the corresponding values for
   each  of  the  four  previous five-minute periods t0, t1, t2, and t3.
   The definition of such a metric might include a conjecture  that  the
   flow  capacity  at  time  T  can  be estimated from a certain kind of
   extrapolation from the values of t0, ..., t3.  The  definition  would
   further  include  a  note  on how a corresponding relation applies to
   relevant A-frame components.

   Note: any (spatial or temporal) compositions involving flow  capacity
   are likely to be subtle, and temporal compositions are generally more
   subtle than spatial compositions, so  the  reader  should  understand
   that the foregoing example is intentionally naive.}

   When the definition of a metric includes a conjecture that the metric
   across the path at a given time T is related to the metric across the
   path for a set of other times, that conjecture  constitutes  a  claim
   that the metric exhibits temporal composition.  The definition should
   then include:
 +    the specific conjecture applied to the metric,
 +    a justification of the practical utility  of  the  composition  in
      terms  of  making accurate measurements of the metric on the path,
      and
 +    a justification of the usefulness of the composition in  terms  of
      making analysis of the path using A-frame concepts more effective.
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9. Issues related to Time

9.1. Clock Issues

   Measurements of time lie at  the  heart  of  many  Internet  metrics.
   Because  of this, it will often be crucial when designing a methodol-
   ogy for measuring a metric  to  understand  the  different  types  of
   errors  and  uncertainties  introduced  by imperfect clocks.  In this
   section we define terminology for discussing the  characteristics  of
   clocks  and  touch  upon  related measurement issues which need to be
   addressed by any sound methodology.

   The Network Time Protocol (NTP; RFC 1305) defines a nomenclature  for
   discussing  clock  characteristics,  which  we  will  also  use  when
   appropriate [Mi92].  The main goal of  NTP  is  to  provide  accurate
   timekeeping  over  fairly  long time scales, such as minutes to days,
   while for measurement  purposes  often  what  is  more  important  is
   short-term accuracy, between the beginning of the measurement and the
   end, or over the course of gathering a body of measurements  (a  sam-
   ple).   This difference in goals sometimes leads to different defini-
   tions of terminology as well, as discussed below.

   To begin, we define a clock's "offset" at a particular moment as  the
   difference between the time reported by the clock and the "true" time
   as defined by UTC.  If the clock reports a time Tc and the true  time
   is Tt, then the clock's offset is Tc - Tt.

   We will refer to a clock as "accurate" at a particular moment if  the
   clock's  offset  is  zero, and more generally a clock's "accuracy" is
   how close the absolute value of the offset  is  to  zero.   For  NTP,
   accuracy  also  includes  a notion of the frequency of the clock; for
   our purposes, we instead incorporate this notion into that of "skew",
   because we define accuracy in terms of a single moment in time rather
   than over an interval of time.

   A clock's "skew" at a particular moment is the  frequency  difference
   (first  derivative  of  its offset with respect to true time) between
   the clock and true time.

   As noted in RFC 1305, real clocks exhibit  some  variation  in  skew.
   That  is, the second derivative of the clock's offset with respect to
   true time is generally non-zero.  In keeping with RFC 1305, we define
   this quantity as the clock's "drift".

   A clock's "resolution" is the smallest unit by which the clock's time
   is  updated.   It  gives  a  lower  bound on the clock's uncertainty.
   (Note that clocks can have very fine resolutions and  yet  be  wildly

https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1305
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   inaccurate.)   Resolution  is  defined in terms of seconds.  However,
   resolution is relative to the clock's reported time and not  to  true
   time,  so for example a resolution of 10 ms only means that the clock
   updates its notion of time in 0.01 second increments, not  that  this
   is the true amount of time between updates.

   {Comment: Systems differ on how an application interface to the clock
   reports  the  time on subsequent calls during which the clock has not
   advanced.  Some systems simply return  the  same  unchanged  time  as
   given  for  previous  calls.  Others may add a small increment to the
   reported time to maintain monotonic increasing timestamps.  For  sys-
   tems  that do the latter, we do *not* consider these small increments
   when defining the clock's resolution.  They are instead an impediment
   to assessing the clock's resolution, since a natural method for doing
   so is to repeatedly query the clock to determine  the  smallest  non-
   zero difference in reported times.}

   It is expected that a clock's resolution  changes  only  rarely  (for
   example, due to a hardware upgrade).

   There are a number of interesting  metrics  for  which  some  natural
   measurement  methodologies  involve  comparing  times reported by two
   different clocks.  An example is one-way packet delay  (currently  an
   Internet  Draft  [AK96]).   Here,  the  time required for a packet to
   travel through the network is measured by comparing the time reported
   by a clock at one end of the packet's path, corresponding to when the
   packet first entered the network, with the time reported by  a  clock
   at  the  other end of the path, corresponding to when the packet fin-
   ished traversing the network.

   We are thus also interested in terminology  for  describing  how  two
   clocks  C1  and  C2 compare.  To do so, we introduce terms related to
   those above in which the notion of "true time"  is  replaced  by  the
   time  as  reported by clock C1.  For example, clock C2's offset rela-
   tive to C1 at a particular moment is Tc2  -  Tc1,  the  instantaneous
   difference  in  time  reported by C2 and C1.  To disambiguate between
   the use of the terms to compare two clocks  versus  the  use  of  the
   terms  to  compare  to  true time, we will in the former case use the
   phrase "relative".  So the offset defined earlier in  this  paragraph
   is the "relative offset" between C2 and C1.

   When comparing clocks, the analog of "resolution"  is  not  "relative
   resolution",  but instead "joint resolution", which is the sum of the
   resolutions of C1 and C2.  The joint resolution then indicates a con-
   servative  lower bound on the accuracy of any time intervals computed
   by subtracting timestamps generated by one clock from those generated
   by the other.
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   If two clocks are "accurate" with respect to one another (their rela-
   tive  offset  is  zero), we will refer to the pair of clocks as "syn-
   chronized".  Note that clocks can be highly  synchronized  yet  arbi-
   trarily  inaccurate  in  terms of how well they tell true time.  This
   point is important because for many Internet measurements, synchroni-
   zation  between two clocks is more important than the accuracy of the
   clocks.  The is somewhat true of skew, too: as long as  the  absolute
   skew  is not too great, then minimal relative skew is more important,
   as it can induce systematic trends in packet transit  times  measured
   by comparing timestamps produced by the two clocks.

   These distinctions arise because for  Internet  measurement  what  is
   often most important are differences in time as computed by comparing
   the output of two clocks.  The process of  computing  the  difference
   removes  any  error  due  to  clock inaccuracies with respect to true
   time; but it is crucial that the  differences  themselves  accurately
   reflect differences in true time.

   Measurement methodologies will often begin with the step of  assuring
   that  two  clocks  are  synchronized and have minimal skew and drift.
   {Comment: An effective way to assure these conditions (and also clock
   accuracy) is by using clocks that derive their notion of time from an
   external source, rather than only the host computer's clock.   (These
   latter  are  often subject to large errors.) It is further preferable
   that the clocks directly derive their time,  for  example  by  having
   immediate access to a GPS (Global Positioning System) unit.}

   Two important concerns arise if the clocks  indirectly  derive  their
   time using a network time synchronization protocol such as NTP:
 +    First, NTP's accuracy depends in part on the properties  (particu-
      larly  delay)  of  the  Internet  paths used by the NTP peers, and
      these might be exactly the properties that we wish to measure,  so
      it would be unsound to use NTP to calibrate such measurements.
 +    Second, NTP focuses on clock  accuracy,  which  can  come  at  the
      expense  of  short-term clock skew and drift.  For example, when a
      host's clock is indirectly synchronized to a time source,  if  the
      synchronization  intervals  occur infrequently, then the host will
      sometimes be faced with the problem of how to adjust its  current,
      incorrect  time,  Ti, with a considerably different, more accurate
      time it has just learned, Ta.  Two general ways in which  this  is
      done  are  to either immediately set the current time to Ta, or to
      adjust the local clock's update frequency  (hence,  its  skew)  so
      that  at  some  point  in the future the local time Ti' will agree
      with the more accurate time Ta'.  The first  mechanism  introduces
      discontinuities  and  can  also  violate  common  assumptions that
      timestamps are monotone increasing.  If the host's  clock  is  set
      backward  in  time, sometimes this can be easily detected.  If the
      clock is set forward in time, this can be harder to  detect.   The
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      skew  induced  by  the  second  mechanism can lead to considerable
      inaccuracies when computing  differences  in  time,  as  discussed
      above.

   To illustrate why skew is a  crucial  concern,  consider  samples  of
   one-way  delays  between two Internet hosts made at one minute inter-
   vals.  The true transmission delay between the hosts might  plausibly
   be  on  the  order of 50 ms for a transcontinental path.  If the skew
   between the two clocks is 0.01%, that is,  1  part  in  10,000,  then
   after  10  minutes of observation the error introduced into the meas-
   urement is 60 ms.  Unless corrected, this error  is  enough  to  com-
   pletely  wipe out any accuracy in the transmission delay measurement.
   Finally, we note that assessing skew  errors  between  unsynchronized
   network  clocks  is an open research area.  (See [Pa97] for a discus-
   sion of detecting and compensating for these sorts of  errors.)  This
   shortcoming  makes  use  of a solid, independent clock source such as
   GPS especially desirable.

9.2. The Notion of "Wire Time"

   Internet measurement is often complicated  by  the  use  of  Internet
   hosts  themselves to perform the measurement.  These hosts can intro-
   duce delays, bottlenecks, and the like that are due  to  hardware  or
   operating  system  effects  and  have  nothing to do with the network
   behavior we would like to  measure.   This  problem  is  particularly
   acute  when  timestamping of network events occurs at the application
   level.

   In order to provide a general way of talking about these effects,  we
   introduce two notions of "wire time".  These notions are only defined
   in terms of an Internet host H observing an Internet link L at a par-
   ticular location:
 +    For a given packet P, the 'wire arrival time' of P at H  on  L  is
      the  first time T at which any bit of P has appeared at H's obser-
      vational position on L.
 +    For a given packet P, the 'wire exit time' of P at H on L  is  the
      first  time  T  at  which  all  the bits of P have appeared at H's
      observational position on L.
   Note that intrinsic to the definition is the notion of where  on  the
   link  we  are  observing.   This distinction is important because for
   large-latency links, we may obtain very different times depending  on
   exactly where we are observing the link.  We could allow the observa-
   tional position to be an arbitrary location along the link;  however,
   we define it to be in terms of an Internet host because we anticipate
   in practice that, for IPPM metrics, all  such  timing  will  be  con-
   strained  to  be performed by Internet hosts, rather than specialized
   hardware devices that might be able to monitor a  link  at  locations
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   where  a host cannot.  This definition also takes care of the problem
   of links that are comprised of multiple physical  channels.   Because
   these  multiple channels are not visible at the IP layer, they cannot
   be individually observed in terms of the above definitions.

   It is possible, though one hopes uncommon, that a packet P might make
   multiple  trips  over  a particular link L, due to a forwarding loop.
   These trips might even overlap, depending  on  the  link  technology.
   Whenever  this occurs, we define a separate wire time associated with
   each instance of P seen at H's position on the link.  This definition
   is  worth  making  because  it serves as a reminder that notions like
   *the* unique time a  packet  passes  a  point  in  the  Internet  are
   inherently slippery.

   The term wire time has historically been used to loosely  denote  the
   time at which a packet appeared on a link, without exactly specifying
   whether this refers to the first bit, the last  bit,  or  some  other
   consideration.   This  informal  definition is generally already very
   useful, as it is usually used to make a distinction between when  the
   packet's  propagation delays begin and cease to be due to the network
   rather than the endpoint hosts.

   When appropriate, metrics should be defined in terms  of  wire  times
   rather  than  host  endpoint  times,  so that the metric's definition
   highlights the issue of separating delays due to the host from  those
   due to the network.

   We note that one potential difficulty when dealing  with  wire  times
   concerns  IP  fragments.   It may be the case that, due to fragmenta-
   tion, only a portion of a particular packet passes by  H's  location.
   Such  fragments  are  themselves  legitimate  packets  and have well-
   defined wire times associated with them; but  the  larger  IP  packet
   corresponding to their aggregate may not.

   We also note that these notions have not, to our knowledge, been pre-
   viously  defined  in exact terms for Internet traffic.  Consequently,
   we may find with  experience  that  these  definitions  require  some
   adjustment in the future.

   {Comment: It can sometimes be difficult to measure wire  times.   One
   technique  is  to  use  a packet filter to monitor traffic on a link.
   The architecture of these filters often attempts  to  associate  with
   each  packet  a  timestamp as close to the wire time as possible.  We
   note however that one common source of error is  to  run  the  packet
   filter  on  one  of  the  endpoint  hosts.  In this case, it has been
   observed that some packet filters receive for some packets timestamps
   corresponding  to when the packet was *scheduled* to be injected into
   the network, rather than when it actually was  *sent*  out  onto  the
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   network  (wire  time).  There can be a substantial difference between
   these two times.  A technique for dealing with this problem is to run
   the  packet  filter  on  a  separate host that passively monitors the
   given link.  This can be problematic however for some link  technolo-
   gies.   See  [Pa97]  for  a  discussion of the sorts of errors packet
   filters can exhibit.  Finally, we note that packet filters will often
   only capture the first fragment of a fragmented IP packet, due to the
   use of filtering on fields in the IP and transport protocol  headers.
   As  we  generally  desire  our measurement methodologies to avoid the
   complexity of creating fragmented traffic, one strategy  for  dealing
   with  their  presence  as detected by a packet filter is to flag that
   the measured traffic has an unusual form and abandon further analysis
   of the packet timing.}

10. Singletons, Samples, and Statistics

   With experience we have found it useful  to  introduce  a  separation
   between three distinct -- yet related -- notions:
 +    By a 'singleton' metric, we refer to metrics that are, in a sense,
      atomic.   For example, a single instance of "bulk throughput capa-
      city" from one host to another might be  defined  as  a  singleton
      metric,  even though the instance involves measuring the timing of
      a number of Internet packets.
 +    By a 'sample' metric, we refer to metrics  derived  from  a  given
      singleton   metric  by  taking  a  number  of  distinct  instances
      together.  For example, we might define a sample metric of one-way
      delays  from  one  host  to another as an hour's worth of measure-
      ments, each made at Poisson intervals with a mean spacing  of  one
      second.
 +    By a 'statistical' metric, we refer  to  metrics  derived  from  a
      given  sample  metric  by  computing  some statistic of the values
      defined by the singleton metric on the sample.  For  example,  the
      mean  of  all  the  one-way delay values on the sample given above
      might be defined as a statistical metric.
   By applying these notions of singleton, sample, and  statistic  in  a
   consistent way, we will be able to reuse lessons learned about how to
   define samples and statistics on various metrics.  The  orthogonality
   among  these three notions will thus make all our work more effective
   and more intelligible by the community.

   In the remainder of this section, we will cover some topics  in  sam-
   pling  and  statistics that we believe will be important to a variety
   of metric definitions and measurement efforts.
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10.1. Methods of Collecting Samples

   The main reason for collecting samples is to see what sort of  varia-
   tions  and  consistencies  are  present in the metric being measured.
   These variations might be with respect to  different  points  in  the
   Internet,  or different measurement times.  When assessing variations
   based on a sample, one generally makes an assumption that the  sample
   is  "unbiased",  meaning  that the process of collecting the measure-
   ments in the sample did not skew the sample  so  that  it  no  longer
   accurately reflects the metric's variations and consistencies.

   One  common  way  of  collecting  samples  is  to  make  measurements
   separated by fixed amounts of time: periodic sampling.  Periodic sam-
   pling is particularly attractive because of its  simplicity,  but  it
   suffers from two potential problems:
 +    If the metric being measured itself  exhibits  periodic  behavior,
      then  there  is  a possibility that the sampling will observe only
      part of the periodic behavior  if  the  periods  happen  to  agree
      (either  directly, or if one is a multiple of the other).  Related
      to this problem is the notion that periodic sampling can be easily
      anticipated.   Predictable sampling is susceptible to manipulation
      if there are mechanisms by which a  network  component's  behavior
      can  be  temporarily  changed such that the sampling only sees the
      modified behavior.
 +    The act of measurement can perturb what  is  being  measured  (for
      example,  injecting  measurement traffic into a network alters the
      congestion level of the network), and repeated periodic  perturba-
      tions  can  drive  a  network into a state of synchronization (cf.
      [FJ94]), greatly  magnifying  what  might  individually  be  minor
      effects.

   A more sound approach is based on "random additive sampling": samples
   are  separated by independent, randomly generated intervals that have
   a common statistical distribution G(t) [BM92].  The quality  of  this
   sampling depends on the distribution G(t).  For example, if G(t) gen-
   erates a constant value g with probability  one,  then  the  sampling
   reduces to periodic sampling with a period of g.

   Random additive sampling gains significant advantages.   In  general,
   it  avoids synchronization effects and yields an unbiased estimate of
   the property being sampled.  The only significant drawbacks  with  it
   are:
 +    it complicates frequency-domain analysis, because the  samples  do
      not  occur at fixed intervals such as assumed by Fourier-transform
      techniques; and
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 +    unless G(t) is the exponential distribution (see below),  sampling
      still remains somewhat predictable, as discussed for periodic sam-
      pling above.

10.1.1. Poisson Sampling

   It can be proved that if G(t) is  an  exponential  distribution  with
   rate lambda, that is
       G(t) = 1 - exp(-lambda * t)
   then the arrival of new samples *cannot* be  predicted  (and,  again,
   the  sampling  is unbiased).  Furthermore, the sampling is asymptoti-
   cally unbiased even if the act  of  sampling  affects  the  network's
   state.   Such  sampling  is referred to as "Poisson sampling".  It is
   not prone to inducing synchronization, it can be used  to  accurately
   collect  measurements  of  periodic  behavior, and it is not prone to
   manipulation by anticipating when new samples will occur.

   Because of these valuable properties, we in general prefer that  sam-
   ples  of  Internet  measurements are gathered using Poisson sampling.
   {Comment: We note, however, that  there  may  be  circumstances  that
   favor  use of a different G(t).  For example, the exponential distri-
   bution is unbounded, so its use will  on  occasion  generate  lengthy
   spaces  between sampling times.  We might instead desire to bound the
   longest such interval to a maximum value dT, to speed the convergence
   of  the  estimation derived from the sampling.  This could be done by
   using
       G(t) = Unif(0, dT)
   that is, the uniform distribution between 0 and dT.   This  sampling,
   of course, becomes highly predictable if an interval of nearly length
   dT has elapsed without a sample occurring.}

   In its purest form, Poisson sampling is done by  generating  indepen-
   dent,  exponentially  distributed  intervals  and  gathering a single
   measurement after each interval has elapsed.  It can be shown that if
   starting at time T one performs Poisson sampling over an interval dT,
   during which a total of N measurements happen to be made, then  those
   measurements  will  be  uniformly  distributed  over the interval [T,
   T+dT].  So another way of conducting Poisson sampling is to  pick  dT
   and  N and generate N random sampling times uniformly over the inter-
   val [T, T+dT].  The two approaches are equivalent, except if N and dT
   are  externally  known.  In that case, the property of not being able
   to predict measurement times is weakened (the other properties  still
   hold).   The  N/dT  approach has an advantage that dealing with fixed
   values of N and dT can be simpler than dealing with  a  fixed  lambda
   but variable numbers of measurements over variably-sized intervals.
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10.1.2. Geometric Sampling

   Closely related to Poisson sampling is "geometric sampling", in which
   external  events  are measured with a fixed probability p.  For exam-
   ple, one might capture all the packets over a link  but  only  record
   the  packet  to a trace file if a randomly generated number uniformly
   distributed between 0 and 1 is less than a given p.   Geometric  sam-
   pling  has  the same properties of being unbiased and not predictable
   in advance as Poisson sampling, so if it fits a  particular  Internet
   measurement task, it too is sound.  See [CPB93] for more discussion.

10.1.3. Generating Poisson Sampling Intervals

   To generate Poisson sampling intervals, one first determines the rate
   lambda  at  which  the singleton measurements will on average be made
   (e.g., for an average sampling interval of 30 seconds, we have lambda
   =  1/30,  if  the  units  of time are seconds).  One then generates a
   series of exponentially-distributed (pseudo-)random numbers  E1,  E2,
   ...,  En.  The first measurement is made at time E1, the next at time
   E1+E2, and so on.

   One  technique  for  generating  exponentially-distributed   (pseudo-
   )random  numbers is based on the ability to generate U1, U2, ..., Un,
   (pseudo-)random numbers that are uniformly distributed between 0  and
   1.   Many  computers  provide libraries that can do this.  Given such
   Ui, to generate Ei one uses:
       Ei = -log(Ui) / lambda
   where log(Ui) is the natural logarithm of Ui.  {Comment:  This  tech-
   nique  is  an instance of the more general "inverse transform" method
   for generating random numbers with a given distribution.}

   Implementation details:

   There are at least three different methods for approximating  Poisson
   sampling, which we describe here as Methods 1 through 3.  Method 1 is
   the easiest to implement and has the most error, and method 3 is  the
   most  difficult  to  implement  and  has the least error (potentially
   none).

   Method 1 is to proceed as follows:
   1.  Generate E1 and wait that long.
   2.  Perform a measurement.
   3.  Generate E2 and wait that long.
   4.  Perform a measurement.
   5.  Generate E3 and wait that long.
   6.  Perform a measurement ...
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   The problem with this approach is that the  "Perform  a  measurement"
   steps  themselves take time, so the sampling is not done at times E1,
   E1+E2, etc., but rather at E1, E1+M1+E2, etc., where Mi is the amount
   of  time required for the i'th measurement.  If Mi is very small com-
   pared to 1/lambda then the potential error introduced by  this  tech-
   nique  is likewise small.  As Mi becomes a non-negligible fraction of
   1/lambda, the potential error increases.

   Method 2 attempts to correct this error by taking  into  account  the
   amount  of  time  required  by  the measurements (i.e., the Mi's) and
   adjusting the waiting intervals accordingly:
   1.  Generate E1 and wait that long.
   2.  Perform a measurement and measure M1, the time it took to do so.
   3.  Generate E2 and wait for a time E2-M1.
   4.  Perform a measurement and measure M2 ..

   This approach works fine as long as E{i+1} >= Mi.  But if E{i+1} < Mi
   then  it is impossible to wait the proper amount of time.  (Note that
   this case corresponds to needing to perform two  measurements  simul-
   taneously.)

   Method 3 is generating a schedule of  measurement  times  E1,  E1+E2,
   etc., and then sticking to it:
   1.  Generate E1, E2, ..., En.
   2.  Compute measurement times T1, T2, ..., Tn, as Ti = E1 + ... + Ei.
   3.  Arrange that at times T1, T2, ..., Tn, a measurement is made.

   By allowing simultaneous measurements, Method 3 avoids the  shortcom-
   ings  of  Methods  1  and  2.  If, however, simultaneous measurements
   interfere with one another, then Method 3 does not gain  any  benefit
   and may actually prove worse than Methods 1 or 2.

   For Internet phenomena, it is not known to what degree the  inaccura-
   cies  of  these  methods  are significant.  If the Mi's are much less
   than 1/lambda, then any of the three should suffice.  If the Mi's are
   less  than  1/lambda  but  perhaps not greatly less, then Method 2 is
   preferred to Method 1.  If simultaneous measurements do not interfere
   with  one  another, then Method 3 is preferred, though it can be con-
   siderably harder to implement.

10.2. Self-Consistency

   A fundamental requirement for a sound measurement methodology is that
   measurement be made using as few unconfirmed assumptions as possible.
   Experience has painfully shown how easy  it  is  to  make  an  (often
   implicit)  assumption  that turns out to be incorrect.  An example is
   incorporating into a measurement the reading of a clock  synchronized
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   to  a highly accurate source.  It is easy to assume that the clock is
   therefore accurate; but due to software bugs, a loss of power in  the
   source,  or a loss of communication between the source and the clock,
   the clock could actually be quite inaccurate.

   This is not to argue that one must not make  *any*  assumptions  when
   measuring, but rather that, to the extent which is practical, assump-
   tions should be tested.  One  powerful  way  for  doing  so  involves
   checking  for  self-consistency.   Such  checking applies both to the
   observed value(s) of the measurement *and  the  values  used  by  the
   measurement  process itself*.  A simple example of the former is that
   when computing a round trip time, one should check to see  if  it  is
   negative.  Since negative time intervals are non-physical, if it ever
   is negative that finding immediately flags an error.  *These sorts of
   errors should then be investigated!* It is crucial to determine where
   the error lies, because only by doing so diligently can we  build  up
   faith  in  a  methodology's  fundamental  soundness.  For example, it
   could be that the round trip time  is  negative  because  during  the
   measurement  the clock was set backward in the process of synchroniz-
   ing it with another source.  But it could also be that  the  measure-
   ment program accesses uninitialized memory in one of its computations
   and, only very rarely, that  leads  to  a  bogus  computation.   This
   second  error  is more serious, if the same program is used by others
   to perform the same measurement, since then they too will suffer from
   incorrect  results.  Furthermore, once uncovered it can be completely
   fixed.

   A more subtle example of  testing  for  self-consistency  comes  from
   gathering  samples  of  one-way  Internet delays.  If one has a large
   sample of such delays, it may well be highly telling to, for example,
   fit  a line to the pairs of (time of measurement, measured delay), to
   see if the resulting line has a clearly non-zero  slope.   If  so,  a
   possible  interpretation  is that one of the clocks used in the meas-
   urements is skewed relative to the other.  Another interpretation  is
   that the slope is actually due to genuine network effects.  Determin-
   ing which is indeed the case will often be highly illuminating.  (See
   [Pa97] for a discussion of distinguishing between relative clock skew
   and genuine network effects.) Furthermore, if making  this  check  is
   part  of  the methodology, then a finding that the long-term slope is
   very near zero is positive evidence that the measurements  are  prob-
   ably not biased by a difference in skew.

   A final example illustrates checking the measurement  process  itself
   for  self-consistency.  Above we outline Poisson sampling techniques,
   based on generating  exponentially-distributed  intervals.   A  sound
   measurement methodology would include testing the generated intervals
   to see whether they are indeed exponentially distributed (and also to
   see if they suffer from correlation).  In the appendix we discuss and
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   give C code for one such technique, a general-purpose,  well-regarded
   goodness-of-fit test called the Anderson-Darling test.

   Finally, we note that what is truly relevant for Poisson sampling  of
   Internet  metrics  is  often  not when the measurements began but the
   wire times corresponding to the  measurement  process.   These  could
   well  be different, due to complications on the hosts used to perform
   the measurement.  Thus, even  those  with  complete  faith  in  their
   pseudo-random   number   generators  and  subsequent  algorithms  are
   encouraged to consider how they might test the  assumptions  of  each
   measurement procedure as much as possible.

10.3. Defining Statistical Distributions

   One way of describing a collection of measurements (a sample) is as a
   statistical  distribution  --  informally, as percentiles.  There are
   several slightly different ways of doing  so.   In  this  section  we
   define  a  standard  definition  to give uniformity to these descrip-
   tions.

   The "empirical distribution function" (EDF) of a set of scalar  meas-
   urements is a function F(x) which for any x gives the fractional pro-
   portion of the total measurements that were <= x.  If x is less  than
   the  minimum  value  observed,  then  F(x) is 0.  If it is greater or
   equal to the maximum value observed, then F(x) is 1.

   For example, given the 6 measurements:
   -2, 7, 7, 4, 18, -5
   Then F(-8) = 0, F(-5) = 1/6, F(-5.0001) = 0, F(-4.999) = 1/6, F(7)  =
   5/6, F(18) = 1, F(239) = 1.

   Note that we can recover the different measured values and  how  many
   times  each  occurred from F(x) -- no information regarding the range
   in values is lost.  Summarizing measurements using histograms, on the
   other  hand,  in general loses information about the different values
   observed, so the EDF is preferred.

   Using either the EDF or a histogram, however, we do lose  information
   regarding  the order in which the values were observed.  Whether this
   loss is potentially significant will depend on the metric being meas-
   ured.

   We will use the term "percentile" to refer to the smallest value of x
   for  which F(x) >= a given percentage.  So the 50th percentile of the
   example above is 4, since F(4) = 3/6 = 50%; the  25th  percentile  is
   -2,  since  F(-5) = 1/6 < 25%, and F(-2) = 2/6 >= 25%; the 100th per-
   centile is 18; and the 0th percentile is -infinity, as  is  the  15th
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   percentile.

   Care must be taken when using  percentiles  to  summarize  a  sample,
   because  they  can  lend  an unwarranted appearance of more precision
   than is really available.  Any such summary MUST include  the  sample
   size N, because any percentile difference finer than 1/N is below the
   resolution of the sample.

   See [DS86] for more details regarding EDF's.

   We close with a note on the common (and important!) notion of median.
   In  statistics,  the  median  of  a distribution is defined to be the
   point X for which the probability of observing a value <= X is  equal
   to  the  probability  of  observing a value > X.  When estimating the
   median of a set of observations, the estimate depends on whether  the
   number of observations, N, is odd or even:
 +    If N is odd, then the 50th percentile as defined above is used  as
      the estimated median.
 +    If N is even, then the estimated median is the average of the cen-
      tral  two observations; that is, if the observations are sorted in
      ascending order and numbered from 1 to N, where N = 2*K, then  the
      estimated  median is the average of the (K)'th and (K+1)'th obser-
      vations.
   Usually the term "estimated" is dropped from  the  phrase  "estimated
   median" and this value is simply referred to as the "median".

10.4. Testing For Goodness-of-Fit

   For some forms of measurement calibration we need to test  whether  a
   set  of  numbers  is  consistent with those numbers having been drawn
   from a particular distribution.  An example is that to apply a  self-
   consistency  check  to measurements made using a Poisson process, one
   test is to see whether the spacing between the  sampling  times  does
   indeed  reflect  an exponential distribution; or if the dT/N approach
   discussed above was used, whether the times are uniformly distributed
   across [T, dT].

   {Comment: There are at least three possible sets of values  we  could
   test:  the  scheduled packet transmission times, as determined by use
   of a pseudo-random number generator; user-level timestamps made  just
   before or after the system call for transmitting the packet; and wire
   times for the packets as recorded using a packet filter.   All  three
   of  these  are  potentially  informative:  failures for the scheduled
   times to match an exponential distribution indicate  inaccuracies  in
   the random number generation; failures for the user-level times indi-
   cate inaccuracies in the timers used to  schedule  transmission;  and
   failures  for  the  wire  times  indicate  inaccuracies  in  actually
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   transmitting the packets, perhaps due  to  contention  for  a  shared
   resource.}

   There are a large number of  statistical  goodness-of-fit  techniques
   for  performing  such  tests.   See [DS86] for a thorough discussion.
   That reference recommends the Anderson-Darling EDF test  as  being  a
   good  all-purpose  test,  as  well  as one that is especially good at
   detecting deviations from a given distribution in the lower and upper
   tails of the EDF.

   It is important to understand  that  the  nature  of  goodness-of-fit
   tests  is that one first selects a "significance level", which is the
   probability that the test will erroneously declare that the EDF of  a
   given  set  of  measurements fails to match a particular distribution
   when in fact the measurements do indeed  reflect  that  distribution.
   Unless otherwise stated, IPPM goodness-of-fit tests are done using 5%
   significance.  This means that if the test is applied to 100  samples
   and  5  of those samples are deemed to have failed the test, then the
   samples are all consistent with the distribution  being  tested.   If
   significantly  more of the samples fail the test, then the assumption
   that the samples are consistent with the  distribution  being  tested
   must  be  rejected.   If  significantly fewer of the samples fail the
   test, then the samples have potentially been doctored too well to fit
   the  distribution.   Similarly, some goodness-of-fit tests (including
   Anderson-Darling) can detect whether it is likely that a given sample
   was  doctored.   We also use a significance of 5% for this case; that
   is, the test will report that a given honest sample is "too  good  to
   be true" 5% of the time, so if the test reports this finding signifi-
   cantly more often than one time out of twenty, it  is  an  indication
   that something unusual is occurring.

   The appendix gives sample  C  code  for  implementing  the  Anderson-
   Darling test, as well as further discussing its use.

   See [Pa94] for a discussion of goodness-of-fit  and  closeness-of-fit
   tests in the context of network measurement.

11. Avoiding Stochastic Metrics

   When defining metrics applying to a path, subpath,  cloud,  or  other
   network element, we in general do not define them in stochastic terms
   (probabilities).  We instead prefer a deterministic definition.   So,
   for  example, rather than defining a metric about a "packet loss pro-
   bability between A and B", we would define a metric about  a  "packet
   loss rate between A and B".  (A measurement given by the first defin-
   ition might be "0.73", and by the second "73 packets out of 100".)
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   The reason for this distinction is as follows.  When definitions  are
   made in terms of probabilities, there are often hidden assumptions in
   the definition about a stochastic model of the behavior  being  meas-
   ured.  The fundamental goal with avoiding probabilities in our metric
   definitions is to avoid  biasing  our  definitions  by  these  hidden
   assumptions.

   For example, an easy hidden assumption to make is that packet loss in
   a  network  component  due  to queueing overflows can be described as
   something that happens to any given packet with a  particular  proba-
   bility.   Usually,  however, queueing drops are actually *determinis-
   tic*, and assuming that they should  be  described  probabilistically
   can  obscure  crucial correlations between queueing drops among a set
   of packets.  So it's better to  explicitly  note  stochastic  assump-
   tions, rather than have them sneak into our definitions implicitly.

   This does *not* mean that we abandon  stochastic  models  for  under-
   standing  network  performance!  It  only means that when defining IP
   metrics we avoid terms such as "probability" for terms like  "propor-
   tion"  or "rate".  We will still use, for example, random sampling in
   order to estimate probabilities used by stochastic models related  to
   the  IP metrics.  We also do not rule out the possibility of stochas-
   tic metrics when they are truly appropriate (for example, perhaps  to
   model transmission errors caused by certain types of line noise).

12. Packets of Type P

   A fundamental property of many Internet metrics is that the value  of
   the metric depends on the type of IP packet(s) used to make the meas-
   urement.  Consider an IP-connectivity metric: one  obtains  different
   results  depending  on  whether one is interested in connectivity for
   packets destined for well-known TCP ports or unreserved UDP ports, or
   those with invalid IP checksums, or those with TTL's of 16, for exam-
   ple.   In  some  circumstances  these  distinctions  will  be  highly
   interesting  (for  example,  in  the  presence  of firewalls, or RSVP
   reservations).

   Because of this distinction, we introduce the  generic  notion  of  a
   "packet  of  type  P",  where  in  some contexts P will be explicitly
   defined (i.e., exactly  what  type  of  packet  we  mean),  partially
   defined  (e.g., "with a payload of B octets"), or left generic.  Thus
   we may talk about generic  IP-type-P-connectivity  or  more  specific
   IP-port-HTTP-connectivity.   Some  metrics  and  methodologies may be
   fruitfully defined using generic type P definitions  which  are  then
   made specific when performing actual measurements.

   Whenever a metric's value depends on the type of the packets involved
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   in  the metric, the metric's name will include either a specific type
   or a phrase such as "type-P".   Thus  we  will  not  define  an  "IP-
   connectivity"  metric  but instead an "IP-type-P-connectivity" metric
   and/or perhaps an "IP-port-HTTP-connectivity"  metric.   This  naming
   convention serves as an important reminder that one must be conscious
   of the exact type of traffic being measured.

   A closely related note: it would be very useful to know  if  a  given
   Internet  component  treats  equally  a class C of different types of
   packets.  If so, then any one of those types of packets can  be  used
   for subsequent measurement of the component.  This suggests we devise
   a metric or suite of metrics that attempt to determine C.

13. Internet Addresses vs. Hosts

   When considering a metric for some path through the Internet,  it  is
   often  natural  to think about it as being for the path from Internet
   host H1 to host H2.  A definition in  these  terms,  though,  can  be
   ambiguous,  because  Internet  hosts can be attached to more than one
   network.  In this case, the result of the metric will depend on which
   of these networks is actually used.

   Because of this ambiguitiy, usually such definitions  should  instead
   be defined in terms of Internet IP addresses.  For the common case of
   a unidirectional path through the Internet,  we  will  use  the  term
   "Src"  to  denote  the  IP  address of the beginning of the path, and
   "Dst" to denote the IP address of the end.

14. Standard-Formed Packets

   Unless otherwise stated, all metric definitions that concern IP pack-
   ets  include  an  implicit  assumption  that  the packet is *standard
   formed*.  A packet is standard formed if it meets all of the  follow-
   ing criteria:
 +    Its length as given in the IP header corresponds to  the  size  of
      the IP header plus the size of the payload.
 +    It includes a valid IP header: the version field is 4  (later,  we
      will  expand  this  to  include 6); the header length is >= 5; the
      checksum is correct.
 +    It is not an IP fragment.
 +    The source and destination addresses correspond to  the  hosts  in
      question.
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 +    Either the packet possesses sufficient  TTL  to  travel  from  the
      source to the destination if the TTL is decremented by one at each
      hop, or it possesses the maximum TTL of 255.
 +    It does not contain IP options unless explicitly noted.
 +    If a transport header is present, it too contains a valid checksum
      and other valid fields.
   We further require that if a packet is described as having a  "length
   of B octets", then 0 <= B <= 65535; and if B is the payload length in
   octets, then B <= (65535-IP header size in octets).

   So, for example, one might imagine defining an IP connectivity metric
   as  "IP-type-P-connectivity  for  standard-formed packets with the IP
   TOS field set to 0",  or,  more  succinctly,  "IP-type-P-connectivity
   with  the  IP  TOS  field set to 0", since standard-formed is already
   implied by convention.

   A particular type of standard-formed packet often useful to  consider
   is  the  "minimal  IP packet from A to B" - this is an IP packet with
   the following properties:
 +    It is standard-formed.
 +    Its data payload is 0 octets.
 +    It contains no options.
   (Note that we do not define its protocol field, as  different  values
   may lead to different treatment by the network.)

   When defining IP metrics we keep in mind that no  packet  smaller  or
   simpler  than  this  can be transmitted over a correctly operating IP
   network.
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17. Appendix

   Below we give routines written  in  C  for  computing  the  Anderson-
   Darling  test  statistic (A2) for determining whether a set of values
   is consistent with a given statistical distribution.  Externally, the
   two main routines of interest are:
       double exp_A2_known_mean(double x[], int n, double mean)
       double unif_A2_known_range(double x[], int n,
                                  double min_val, double max_val)
   Both take as their first argument, x, the array of  n  values  to  be
   tested.   (Upon return, the elements of x are sorted.)  The remaining
   parameters characterize the distribution to be used: either the  mean
   (1/lambda),  for  an exponential distribution, or the lower and upper
   bounds, for a uniform distribution.  The names of the routines stress
   that  these values must be known in advance, and *not* estimated from
   the data (for example, by computing its sample mean).  Estimating the
   parameters from the data *changes* the significance level of the test
   statistic.  While [DS86] gives alternate significance tables for some
   instances  in  which  the parameters are estimated from the data, for
   our purposes we expect that we should indeed know the  parameters  in
   advance,  since  what we will be testing are generally values such as
   packet sending times that we wish to verify follow a known  distribu-
   tion.

   Both routines return a significance level, as described earlier. This
   is  a  value  between 0 and 1.  The correct use of the routines is to
   pick in advance the threshold for the  significance  level  to  test;
   generally,  this will be 0.05, corresponding to 5%, as also described
   above.  Subsequently, if the routines return a  value  strictly  less
   than this threshold, then the data are deemed to be inconsistent with
   the presumed distribution, *subject to an error corresponding to  the
   significance  level*.  That is, for a significance level of 5%, 5% of
   the time data that is indeed drawn  from  the  presumed  distribution
   will be erroneously deemed inconsistent.

   Thus, it is important to bear in mind that if these routines are used
   frequently,  then one will indeed encounter occasional failures, even
   if the data is unblemished.

   Another important point concerning significance levels is that it  is
   unsound  to  compare  them in order to determine which of two sets of
   values is a "better" fit to a presumed  distribution.   Such  testing
   should  instead  be done using "closeness-of-fit metrics" such as the
   lambda^2 metric described in [Pa94].

   While the routines provided are for exponential and uniform distribu-
   tions  with  known  parameters,  it  is generally straight-forward to
   write comparable routines for any distribution with known parameters.
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   The  heart  of  the A2 tests lies in a statistic computed for testing
   whether a set of values is consistent  with  a  uniform  distribution
   between  0  and  1,  which  we  term  Unif(0, 1).  If we wish to test
   whether a set of values, X, is consistent with a  given  distribution
   G(x), we first compute
       Y = G_inverse(X)
   If X is indeed distributed according to G(x), then Y will be  distri-
   buted  according  to Unif(0, 1); so by testing Y for consistency with
   Unif(0, 1), we also test X for consistency with G(x).

   We note, however, that the process of computing Y above  might  yield
   values  of  Y outside the range (0..1).  Such values should not occur
   if X is indeed distributed according to G(x), but easily can occur if
   it  is  not.  In the latter case, we need to avoid computing the cen-
   tral A2 statistic, since floating-point exceptions may occur  if  any
   of  the  values  lie outside (0..1).  Accordingly, the routines check
   for this possiblity, and if encountered, return a raw A2 statistic of
   -1.  The routine that converts the raw A2 statistic to a significance
   level likewise propagates this value, returning a significance  level
   of -1.  So, any use of these routines must be prepared for a possible
   negative significance level.

   The last important point regarding use of A2  statistic  concerns  n,
   the  number  of  values  being tested.  If n < 5 then the test is not
   meaningful, and in this case a significance level of -1 is returned.

   On the other hand, for "real"  data  the  test  *gains*  power  as  n
   becomes  larger.   It  is well known in the statistics community that
   real data almost never exactly matches  a  theoretical  distribution,
   even in cases such as rolling dice a great many times (see [Pa94] for
   a brief discussion and references).  The A2 test is sensitive  enough
   that,  for sufficiently large sets of real data, the test will almost
   always fail, because it will manage to detect slight imperfections in
   the fit of the data to the distribution.

   For example, we have found that  when  testing  8,192  measured  wire
   times  for packets sent at Poisson intervals, the measurements almost
   always fail the A2 test.  On the other hand, testing 128 measurements
   failed  at  5%  significance  only about 5% of the time, as expected.
   Thus, in general, when the test fails, care must be taken  to  under-
   stand why it failed.

   The remainder of this appendix gives C code  for  the  routines  men-
   tioned above.

   /* Routines for computing the Anderson-Darling A2 test statistic.
    *
    * Implememented based on the description in "Goodness-of-Fit
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    * Techniques," R. D'Agostino and M. Stephens, editors,
    * Marcel Dekker, Inc., 1986.
    */

   #include <stdio.h>
   #include <stdlib.h>
   #include <math.h>

   /* Returns the raw A^2 test statistic for n sorted samples
    * z[0] .. z[n-1], for z ~ Unif(0,1).
    */
   extern double compute_A2(double z[], int n);

   /* Returns the significance level associated with a A^2 test
    * statistic value of A2, assuming no parameters of the tested
    * distribution were estimated from the data.
    */
   extern double A2_significance(double A2);

   /* Returns the A^2 significance level for testing n observations
    * x[0] .. x[n-1] against an exponential distribution with the
    * given mean.
    *
    * SIDE EFFECT: the x[0..n-1] are sorted upon return.
    */
   extern double exp_A2_known_mean(double x[], int n, double mean);

   /* Returns the A^2 significance level for testing n observations
    * x[0] .. x[n-1] against the uniform distribution [min_val, max_val].
    *
    * SIDE EFFECT: the x[0..n-1] are sorted upon return.
    */
   extern double unif_A2_known_range(double x[], int n,
                       double min_val, double max_val);

   /* Returns a pseudo-random number distributed according to an
    * exponential distribution with the given mean.
    */
   extern double random_exponential(double mean);

   /* Helper function used by qsort() to sort double-precision
    * floating-point values.
    */
   static int
   compare_double(const void *v1, const void *v2)
   {
       double d1 = *(double *) v1;
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       double d2 = *(double *) v2;

       if (d1 < d2)
           return -1;
       else if (d1 > d2)
           return 1;
       else
           return 0;
   }

   double
   compute_A2(double z[], int n)
   {
       int i;
       double sum = 0.0;

       if ( n < 5 )
           /* Too few values. */
           return -1.0;

       /* If any of the values are outside the range (0, 1) then
        * fail immediately (and avoid a possible floating point
        * exception in the code below).
        */
       for (i = 0; i < n; ++i)
           if ( z[i] <= 0.0 || z[i] >= 1.0 )
               return -1.0;

       /* Page 101 of D'Agostino and Stephens. */
       for (i = 1; i <= n; ++i) {
           sum += (2 * i - 1) * log(z[i-1]);
           sum += (2 * n + 1 - 2 * i) * log(1.0 - z[i-1]);
       }
       return -n - (1.0 / n) * sum;
   }

   double
   A2_significance(double A2)
   {
       /* Page 105 of D'Agostino and Stephens. */
       if (A2 < 0.0)
           return A2;    /* Bogus A2 value - propagate it. */

       /* Check for possibly doctored values. */
       if (A2 <= 0.201)
           return 0.99;
       else if (A2 <= 0.240)
           return 0.975;
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       else if (A2 <= 0.283)
           return 0.95;
       else if (A2 <= 0.346)
           return 0.90;
       else if (A2 <= 0.399)
           return 0.85;

       /* Now check for possible inconsistency. */
       if (A2 <= 1.248)
           return 0.25;
       else if (A2 <= 1.610)
           return 0.15;
       else if (A2 <= 1.933)
           return 0.10;
       else if (A2 <= 2.492)
           return 0.05;
       else if (A2 <= 3.070)
           return 0.025;
       else if (A2 <= 3.880)
           return 0.01;
       else if (A2 <= 4.500)
           return 0.005;
       else if (A2 <= 6.000)
           return 0.001;
       else
           return 0.0;
   }

   double
   exp_A2_known_mean(double x[], int n, double mean)
   {
       int i;
       double A2;

       /* Sort the first n values. */
       qsort(x, n, sizeof(x[0]), compare_double);

       /* Assuming they match an exponential distribution, transform
        * them to Unif(0,1).
        */
       for (i = 0; i < n; ++i) {
           x[i] = 1.0 - exp(-x[i] / mean);
       }

       /* Now make the A^2 test to see if they're truly uniform. */
       A2 = compute_A2(x, n);
       return A2_significance(A2);
   }
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   double
   unif_A2_known_range(double x[], int n, double min_val, double max_val)
   {
       int i;
       double A2;
       double range = max_val - min_val;

       /* Sort the first n values. */
       qsort(x, n, sizeof(x[0]), compare_double);

       /* Transform Unif(min_val, max_val) to Unif(0,1). */
       for (i = 0; i < n; ++i)
           x[i] = (x[i] - min_val) / range;

       /* Now make the A^2 test to see if they're truly uniform. */
       A2 = compute_A2(x, n);
       return A2_significance(A2);
   }

   double
   random_exponential(double mean)
   {
       return -mean * log1p(-drand48());
   }
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