
ippm F. Brockners
Internet-Draft S. Bhandari
Intended status: Standards Track C. Pignataro
Expires: January 5, 2020 Cisco
 H. Gredler
 RtBrick Inc.
 J. Leddy

 S. Youell
 JPMC
 T. Mizrahi
 Huawei Network.IO Innovation Lab
 D. Mozes

 P. Lapukhov
 Facebook
 R. Chang
 Barefoot Networks
 D. Bernier
 Bell Canada
 J. Lemon
 Broadcom
 July 04, 2019

Data Fields for In-situ OAM
draft-ietf-ippm-ioam-data-06

Abstract

 In-situ Operations, Administration, and Maintenance (IOAM) records
 operational and telemetry information in the packet while the packet
 traverses a path between two points in the network. This document
 discusses the data fields and associated data types for in-situ OAM.
 In-situ OAM data fields can be embedded into a variety of transports
 such as NSH, Segment Routing, Geneve, native IPv6 (via extension
 header), or IPv4. In-situ OAM can be used to complement OAM
 mechanisms based on e.g. ICMP or other types of probe packets.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Brockners, et al. Expires January 5, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft In-situ OAM Data Fields July 2019

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 5, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions . 3
3. Scope, Applicability, and Assumptions 4
4. IOAM Data Types and Formats 5
4.1. IOAM Namespaces . 7
4.2. IOAM Tracing Options 9
4.2.1. Pre-allocated and Incremental Trace Options 11
4.2.2. IOAM node data fields and associated formats 15
4.2.3. Examples of IOAM node data 21

4.3. IOAM Proof of Transit Option 22
4.3.1. IOAM Proof of Transit Type 0 24

4.4. IOAM Edge-to-Edge Option 25
5. Timestamp Formats . 27
5.1. PTP Truncated Timestamp Format 27
5.2. NTP 64-bit Timestamp Format 28
5.3. POSIX-based Timestamp Format 29

6. IOAM Data Export . 31
7. IANA Considerations . 31

 7.1. Creation of a new In-Situ OAM Protocol Parameters
 Registry (IOAM) Protocol Parameters IANA registry 31

7.2. IOAM Type Registry 32
7.3. IOAM Trace Type Registry 32
7.4. IOAM Trace Flags Registry 33
7.5. IOAM POT Type Registry 33

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Brockners, et al. Expires January 5, 2020 [Page 2]

Internet-Draft In-situ OAM Data Fields July 2019

7.6. IOAM POT Flags Registry 33
7.7. IOAM E2E Type Registry 33
7.8. IOAM Namespace-ID Registry 34

8. Security Considerations 34
9. Acknowledgements . 35
10. References . 36
10.1. Normative References 36
10.2. Informative References 36

 Authors' Addresses . 38

1. Introduction

 This document defines data fields for "in-situ" Operations,
 Administration, and Maintenance (IOAM). In-situ OAM records OAM
 information within the packet while the packet traverses a particular
 network domain. The term "in-situ" refers to the fact that the OAM
 data is added to the data packets rather than is being sent within
 packets specifically dedicated to OAM. IOAM is to complement
 mechanisms such as Ping or Traceroute, or more recent active probing
 mechanisms as described in [I-D.lapukhov-dataplane-probe]. In terms
 of "active" or "passive" OAM, "in-situ" OAM can be considered a
 hybrid OAM type. While no extra packets are sent, IOAM adds
 information to the packets therefore cannot be considered passive.
 In terms of the classification given in [RFC7799] IOAM could be
 portrayed as Hybrid Type 1. "In-situ" mechanisms do not require
 extra packets to be sent and hence don't change the packet traffic
 mix within the network. IOAM mechanisms can be leveraged where
 mechanisms using e.g. ICMP do not apply or do not offer the desired
 results, such as proving that a certain traffic flow takes a pre-
 defined path, SLA verification for the live data traffic, detailed
 statistics on traffic distribution paths in networks that distribute
 traffic across multiple paths, or scenarios in which probe traffic is
 potentially handled differently from regular data traffic by the
 network devices.

2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Abbreviations used in this document:

 E2E Edge to Edge

 Geneve: Generic Network Virtualization Encapsulation
 [I-D.ietf-nvo3-geneve]

https://datatracker.ietf.org/doc/html/rfc7799
https://datatracker.ietf.org/doc/html/rfc2119

Brockners, et al. Expires January 5, 2020 [Page 3]

Internet-Draft In-situ OAM Data Fields July 2019

 IOAM: In-situ Operations, Administration, and Maintenance

 MTU: Maximum Transmit Unit

 NSH: Network Service Header [RFC8300]

 OAM: Operations, Administration, and Maintenance

 POT: Proof of Transit

 SFC: Service Function Chain

 SID: Segment Identifier

 SR: Segment Routing

 VXLAN-GPE: Virtual eXtensible Local Area Network, Generic Protocol
 Extension [I-D.ietf-nvo3-vxlan-gpe]

3. Scope, Applicability, and Assumptions

 IOAM deployment assumes a set of constraints, requirements, and
 guiding principles which are described in this section.

 Scope: This document defines the data fields and associated data
 types for in-situ OAM. The in-situ OAM data field can be transported
 by a variety of transport protocols, including NSH, Segment Routing,
 Geneve, IPv6, or IPv4. Specification details for these different
 transport protocols are outside the scope of this document.

 Deployment domain (or scope) of in-situ OAM deployment: IOAM is a
 network domain focused feature, with "network domain" being a set of
 network devices or entities within a single administration. For
 example, a network domain can include an enterprise campus using
 physical connections between devices or an overlay network using
 virtual connections / tunnels for connectivity between said devices.
 A network domain is defined by its perimeter or edge. Designers of
 carrier protocols for IOAM must specify mechanisms to ensure that
 IOAM data stays within an IOAM domain. In addition, the operator of
 such a domain is expected to put provisions in place to ensure that
 IOAM data does not leak beyond the edge of an IOAM domain, e.g. using
 for example packet filtering methods. The operator should consider
 potential operational impact of IOAM to mechanisms such as ECMP
 processing (e.g. load-balancing schemes based on packet length could
 be impacted by the increased packet size due to IOAM), path MTU (i.e.
 ensure that the MTU of all links within a domain is sufficiently
 large to support the increased packet size due to IOAM) and ICMP
 message handling (i.e. in case of a native IPv6 transport, IOAM

https://datatracker.ietf.org/doc/html/rfc8300

Brockners, et al. Expires January 5, 2020 [Page 4]

Internet-Draft In-situ OAM Data Fields July 2019

 support for ICMPv6 Echo Request/Reply could desired which would
 translate into ICMPv6 extensions to enable IOAM data fields to be
 copied from an Echo Request message to an Echo Reply message).

 IOAM control points: IOAM data fields are added to or removed from
 the live user traffic by the devices which form the edge of a domain.
 Devices within an IOAM domain can update and/or add IOAM data-fields.
 Domain edge devices can be hosts or network devices.

 Traffic-sets that IOAM is applied to: IOAM can be deployed on all or
 only on subsets of the live user traffic. It SHOULD be possible to
 enable IOAM on a selected set of traffic (e.g., per interface, based
 on an access control list or flow specification defining a specific
 set of traffic, etc.) The selected set of traffic can also be all
 traffic.

 Encapsulation independence: Data formats for IOAM SHOULD be defined
 in a transport-independent manner. IOAM applies to a variety of
 encapsulating protocols. A definition of how IOAM data fields are
 carried by different transport protocols is outside the scope of this
 document.

 Layering: If several encapsulation protocols (e.g., in case of
 tunneling) are stacked on top of each other, IOAM data-records could
 be present at every layer. The behavior follows the ships-in-the-
 night model, i.e. IOAM data in one layer is independent from IOAM
 data in another layer. Layering allows operators to instrument the
 protocol layer they want to measure. The different layers could, but
 do not have to share the same IOAM encapsulation and decapsulation.

 IOAM implementation: The IOAM data-field definitions take the
 specifics of devices with hardware data-plane and software data-plane
 into account.

4. IOAM Data Types and Formats

 This section defines IOAM data types and data fields and associated
 data types required for IOAM.

 To accommodate the different uses of IOAM, IOAM data fields fall into
 different categories, as specified below. In IOAM these categories
 are referred to as IOAM-Types. A common registry is maintained for
 IOAM-Types, see Section 7.2 for details. Corresponding to these
 IOAM-Types, different IOAM data fields are defined. IOAM data fields
 can be encapsulated into a variety of protocols, such as NSH, Geneve,
 IPv6, etc. The definition of how IOAM data fields are encapsulated
 into other protocols is outside the scope of this document.

Brockners, et al. Expires January 5, 2020 [Page 5]

Internet-Draft In-situ OAM Data Fields July 2019

 This document defines four IOAM-Types, as specified in this section:

 o Pre-allocated Trace Option

 o Incremental Trace Option

 o Proof of Transit (POT) Option

 o Edge-to-Edge (E2E) Option

 IOAM is expected to be deployed in a specific domain rather than on
 the overall Internet. The part of the network which employs IOAM is
 referred to as the "IOAM-domain". IOAM data is added to a packet
 upon entering the IOAM-domain and is removed from the packet when
 exiting the domain. Within the IOAM-domain, the IOAM data may be
 updated by network nodes that the packet traverses. The device which
 adds an IOAM data container to the packet to capture IOAM data is
 called the "IOAM encapsulating node", whereas the device which
 removes the IOAM data container is referred to as the "IOAM
 decapsulating node". Nodes within the domain which are aware of IOAM
 data and read and/or write or process the IOAM data are called "IOAM
 transit nodes". IOAM nodes which add or remove the IOAM data fields
 can also update the IOAM data fields at the same time. Or in other
 words, IOAM encapsulating or decapsulating nodes can also serve as
 IOAM transit nodes at the same time. Note that not every node in an
 IOAM domain needs to be an IOAM transit node. For example, a
 deployment might require that packets traverse a set of firewalls.
 In that case, only the set of firewall nodes would be IOAM transit
 nodes rather than all nodes.

 An IOAM encapsulating node incorporates one or more IOAM-Types (from
 the list of four IOAM-Types above) into packets that IOAM is enabled
 for. If IOAM is enabled for a selected subset of the traffic, the
 encapsulating node is responsible for applying the IOAM functionality
 to the selected subset.

 An IOAM transit node updates one or more of the IOAM data fields. If
 both the pre-allocated and the incremental trace options are present
 in the packet, each IOAM transit node will update at most one of
 these options. A transit node cannot add new IOAM options to a
 packet, and cannot change an IOAM Edge-to-Edge Option.

 An IOAM decapsulating node removes all the IOAM-Types from packets.

 The role of a node (i.e. encapsulating, transit, decapsulating) is
 defined within an IOAM namespace (see below). A node can have
 different roles in different IOAM namespaces.

Brockners, et al. Expires January 5, 2020 [Page 6]

Internet-Draft In-situ OAM Data Fields July 2019

4.1. IOAM Namespaces

 A subset or all of the IOAM option types and associated IOAM data
 fields can be associated to an IOAM namespace. Namespaces add
 further context to IOAM option types and associated IOAM data fields.
 Any IOAM namespace MUST interpret the IOAM option types and
 associated IOAM data fields per the definition in this document.
 Namespaces group nodes to support different deployment approaches of
 IOAM (see a few example use-cases below) as well as resolve issues
 which can occur due to IOAM data fields not being globally unique
 (e.g. IOAM node identifiers do not have to be globally unique).
 IOAM data fields are defined within an IOAM namespace.

 An IOAM namespace is identified by a 16-bit namespace identifier
 (Namespace-ID). Namespace identifiers MUST be present and populated
 in all IOAM option headers. The Namespace-ID value is divided into
 two sub-ranges:

 o An operator-assigned range from 0x0001 to 0x7FFF

 o An IANA-assigned range from 0x8000 to 0xFFFF

 The IANA-assigned range is intended to allow future extensions to
 have new and interoperable IOAM functionality, while the operator-
 assigned range is intended to be domain specific, and managed by the
 network operator. The Namespace-ID value of 0x0000 is default and
 known to all the nodes implementing IOAM.

 Namespace identifiers allow devices which are IOAM capable to
 determine:

 o whether IOAM option header(s) need to be processed by a device: If
 the Namespace-ID contained in a packet does not match any
 Namespace-ID the node is configured to operate on, then the node
 MUST NOT change the contents of the IOAM data fields.

 o which IOAM option headers need to be processed/updated in case
 there are multiple IOAM option headers present in the packet.
 Multiple option headers can be present in a packet in case of
 overlapping IOAM domains or in case of a layered IOAM deployment.

 o whether IOAM option header(s) should be removed from the packet,
 e.g. at a domain edge or domain boundary.

 IOAM namespaces support several different uses:

Brockners, et al. Expires January 5, 2020 [Page 7]

Internet-Draft In-situ OAM Data Fields July 2019

 o Namespaces can be used by an operator to distinguish different
 operational domains. Devices at domain edges can filter on
 Namespace-IDs to provide for proper IOAM domain isolation.

 o Namespaces provide additional context for IOAM data fields and
 thus ensure that IOAM data is unique and can be interpreted
 properly by management stations or network controllers. While,
 for example, the IOAM node identifier (Node-ID) does not need to
 be unique in a deployment (e.g. an operator may wish to use
 different Node-IDs for different IOAM layers, even within the same
 device; or Node-IDs might not be unique for other organizational
 reasons, such as after a merger of two formerly separated
 organizations), the combination of Node-ID and Namespace-ID will
 always be unique. Similarly, namespaces can be used to define how
 certain IOAM data fields are interpreted: IOAM offers three
 different timestamp format options. The Namespace-ID can be used
 to determine the timestamp format. IOAM data fields (e.g. buffer
 occupancy) which do not have a unit associated are to be
 interpreted within the context of a namespace.

 o Namespaces can be used to identify different sets of devices
 (e.g., different types of devices) in a deployment: If an operator
 desires to insert different IOAM data based on the device, the
 devices could be grouped into multiple namespaces. This could be
 due to the fact that the IOAM feature set differs between
 different sets of devices, or it could be for reasons of optimized
 space usage in the packet header. This could also stem from
 hardware or operational limitations on the size of the trace data
 that can be added and processed, preventing collection of a full
 trace for a flow.

 * Assigning different Namespace-IDs to different sets of nodes or
 network partitions and using the Namespace-ID as a selector at
 the IOAM encapsulating node, a full trace for a flow could be
 collected and constructed via partial traces in different
 packets of the same flow. Example: An operator could choose to
 group the devices of a domain into two namespaces, in a way
 that at average, only every second hop would be recorded by any
 device. To retrieve a full view of the deployment, the
 captured IOAM data fields of the two namespaces need to be
 correlated.

 * Assigning different Namespace-IDs to different sets of nodes or
 network partitions and using a separate IOAM header for each
 Namespace-ID, a full trace for a flow could be collected and
 constructed via partial traces from each IOAM header in each of
 the packets in the flow. Example: An operator could choose to
 group the devices of a domain into two namespaces, in a way

Brockners, et al. Expires January 5, 2020 [Page 8]

Internet-Draft In-situ OAM Data Fields July 2019

 that each namespace is represented by one of two IOAM headers
 in the packet. Each node would record data only for the IOAM
 namespace that it belongs to, ignoring the other IOAM header
 with a namespace to which it doesn't belong. To retrieve a
 full view of the deployment, the captured IOAM data fields of
 the two namespaces need to be correlated.

4.2. IOAM Tracing Options

 "IOAM tracing data" is expected to be collected at every node that a
 packet traverses to ensure visibility into the entire path a packet
 takes within an IOAM domain, i.e., in a typical deployment all nodes
 in an in-situ OAM-domain would participate in IOAM and thus be IOAM
 transit nodes, IOAM encapsulating or IOAM decapsulating nodes. If
 not all nodes within a domain are IOAM capable, IOAM tracing
 information (i.e., node data) will only be collected on those nodes
 which are IOAM capable. Nodes which are not IOAM capable will
 forward the packet without any changes to the IOAM data fields. The
 maximum number of hops and the minimum path MTU of the IOAM domain is
 assumed to be known.

 To optimize hardware and software implementations tracing is defined
 as two separate options. Any deployment MAY choose to configure and
 support one or both of the following options. An implementation of
 the transport protocol that carries these in-situ OAM data MAY choose
 to support only one of the options. In the event that both options
 are utilized at the same time, the Incremental Trace Option MUST be
 placed before the Pre-allocated Trace Option. Given that the
 operator knows which equipment is deployed in a particular IOAM, the
 operator will decide by means of configuration which type(s) of trace
 options will be enabled for a particular domain.

 Pre-allocated Trace Option: This trace option is defined as a
 container of node data fields with pre-allocated space for each
 node to populate its information. This option is useful for
 software implementations where it is efficient to allocate the
 space once and index into the array to populate the data during
 transit. The IOAM encapsulating node allocates the option header
 and sets the fields in the option header. The in situ OAM
 encapsulating node allocates an array which is used to store
 operational data retrieved from every node while the packet
 traverses the domain. IOAM transit nodes update the content of
 the array, and possibly update the checksums of outer headers. A
 pointer which is part of the IOAM trace data points to the next
 empty slot in the array. An IOAM transit node that updates the
 content of the pre-allocated option also updates the value of the
 pointer, which specifies where the next IOAM transit node fills in
 its data.

Brockners, et al. Expires January 5, 2020 [Page 9]

Internet-Draft In-situ OAM Data Fields July 2019

 Incremental Trace Option: This trace option is defined as a
 container of node data fields where each node allocates and pushes
 its node data immediately following the option header. This type
 of trace recording is useful for some of the hardware
 implementations as this eliminates the need for the transit
 network elements to read the full array in the option and allows
 for arbitrarily long packets as the MTU allows. The in-situ OAM
 encapsulating node allocates the option header. The in-situ OAM
 encapsulating node based on operational state and configuration
 sets the fields in the header that control what node data fields
 should be collected, and how large the node data list can grow.
 The in-situ OAM transit nodes push their node data to the node
 data list, decrease the remaining length available to subsequent
 nodes, and adjust the lengths and possibly checksums in outer
 headers.

 Every node data entry is to hold information for a particular IOAM
 transit node that is traversed by a packet. The in-situ OAM
 decapsulating node removes the IOAM data and processes and/or exports
 the metadata. IOAM data uses its own name-space for information such
 as node identifier or interface identifier. This allows for a
 domain-specific definition and interpretation. For example: In one
 case an interface-id could point to a physical interface (e.g., to
 understand which physical interface of an aggregated link is used
 when receiving or transmitting a packet) whereas in another case it
 could refer to a logical interface (e.g., in case of tunnels).

 The following IOAM data is defined for IOAM tracing:

 o Identification of the IOAM node. An IOAM node identifier can
 match to a device identifier or a particular control point or
 subsystem within a device.

 o Identification of the interface that a packet was received on,
 i.e. ingress interface.

 o Identification of the interface that a packet was sent out on,
 i.e. egress interface.

 o Time of day when the packet was processed by the node. Different
 definitions of processing time are feasible and expected, though
 it is important that all devices of an in-situ OAM domain follow
 the same definition.

 o Generic data: Format-free information where syntax and semantic of
 the information is defined by the operator in a specific
 deployment. For a specific deployment, all IOAM nodes should
 interpret the generic data the same way. Examples for generic

Brockners, et al. Expires January 5, 2020 [Page 10]

Internet-Draft In-situ OAM Data Fields July 2019

 IOAM data include geo-location information (location of the node
 at the time the packet was processed), buffer queue fill level or
 cache fill level at the time the packet was processed, or even a
 battery charge level.

 o A mechanism to detect whether IOAM trace data was added at every
 hop or whether certain hops in the domain weren't in-situ OAM
 transit nodes.

 The "node data list" array in the packet is populated iteratively as
 the packet traverses the network, starting with the last entry of the
 array, i.e., "node data list [n]" is the first entry to be populated,
 "node data list [n-1]" is the second one, etc.

4.2.1. Pre-allocated and Incremental Trace Options

 The in-situ OAM pre-allocated trace option and the in-situ OAM
 incremental trace option have similar formats. Except where noted
 below, the internal formats and fields of the two trace options are
 identical.

Brockners, et al. Expires January 5, 2020 [Page 11]

Internet-Draft In-situ OAM Data Fields July 2019

 Pre-allocated and incremental trace option headers:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Namespace-ID |NodeLen | Flags | RemainingLen|
 +-+
 | IOAM-Trace-Type | Reserved |
 +-+

 The trace option data MUST be 4-octet aligned:

 +-+<-+
node data list [0]	
+-+ D	
	a
node data list [1]	t
	a
+-+	
~ ... ~ S	
+-+ p	
	a
node data list [n-1]	c
	e
+-+	
node data list [n]	
 +-+<-+

 Namespace-ID: 16-bit identifier of an IOAM namespace. The
 Namespace-ID value of 0x0000 is defined as the default value and
 MUST be known to all the nodes implementing IOAM. For any other
 Namespace-ID value that does not match any Namespace-ID the node
 is configured to operate on, the node MUST NOT change the contents
 of the IOAM data fields.

 NodeLen: 5-bit unsigned integer. This field specifies the length of
 data added by each node in multiples of 4-octets, excluding the
 length of the "Opaque State Snapshot" field.

 If IOAM-Trace-Type bit 7 is not set, then NodeLen specifies the
 actual length added by each node. If IOAM-Trace-Type bit 7 is

Brockners, et al. Expires January 5, 2020 [Page 12]

Internet-Draft In-situ OAM Data Fields July 2019

 set, then the actual length added by a node would be (NodeLen +
 Opaque Data Length).

 For example, if 3 IOAM-Trace-Type bits are set and none of them
 are wide, then NodeLen would be 3. If 3 IOAM-Trace-Type bits are
 set and 2 of them are wide, then NodeLen would be 5.

 An IOAM encapsulating node must set NodeLen.

 A node receiving an IOAM Pre-allocated or Incremental Trace Option
 may rely on the NodeLen value, or it may ignore the NodeLen value
 and calculate the node length from the IOAM-Trace-Type bits.

 Flags 4-bit field. Flags are allocated by IANA, as specified in
Section 7.4. The current document allocates a single flag as

 follows:

 Bit 0 "Overflow" (O-bit) (most significant bit). This bit is set
 by the network element if there are not enough octets left to
 record node data, no field is added and the overflow "O-bit"
 must be set to "1" in the header. This is useful for transit
 nodes to ignore further processing of the option.

 RemainingLen: 7-bit unsigned integer. This field specifies the data
 space in multiples of 4-octets remaining for recording the node
 data, before the node data list is considered to have overflowed.
 When RemainingLen reaches 0, nodes are no longer allowed to add
 node data. Given that the sender knows the minimum path MTU, the
 sender MAY set the initial value of RemainingLen according to the
 number of node data bytes allowed before exceeding the MTU.
 Subsequent nodes can carry out a simple comparison between
 RemainingLen and NodeLen, along with the length of the "Opaque
 State Snapshot" if applicable, to determine whether or not data
 can be added by this node. When node data is added, the node MUST
 decrease RemainingLen by the amount of data added. In the pre-
 allocated trace option, this is used as an offset in data space to
 record the node data element.

 IOAM-Trace-Type: A 24-bit identifier which specifies which data
 types are used in this node data list.

 The IOAM-Trace-Type value is a bit field. The following bit
 fields are defined in this document, with details on each field
 described in the Section 4.2.2. The order of packing the data
 fields in each node data element follows the bit order of the
 IOAM-Trace-Type field, as follows:

Brockners, et al. Expires January 5, 2020 [Page 13]

Internet-Draft In-situ OAM Data Fields July 2019

 Bit 0 (Most significant bit) When set indicates presence of
 Hop_Lim and node_id in the node data.

 Bit 1 When set indicates presence of ingress_if_id and
 egress_if_id (short format) in the node data.

 Bit 2 When set indicates presence of timestamp seconds in the
 node data.

 Bit 3 When set indicates presence of timestamp subseconds in
 the node data.

 Bit 4 When set indicates presence of transit delay in the node
 data.

 Bit 5 When set indicates presence of namespace specific data
 (short format) in the node data.

 Bit 6 When set indicates presence of queue depth in the node
 data.

 Bit 7 When set indicates presence of variable length Opaque
 State Snapshot field.

 Bit 8 When set indicates presence of Hop_Lim and node_id in
 wide format in the node data.

 Bit 9 When set indicates presence of ingress_if_id and
 egress_if_id in wide format in the node data.

 Bit 10 When set indicates presence of namespace specific data in
 wide format in the node data.

 Bit 11 When set indicates presence of buffer occupancy in the
 node data.

 Bit 12-22 Undefined. An IOAM encapsulating node MUST set the
 value of each of these bits to 0. If an IOAM transit
 node receives a packet with one or more of these bits set
 to 1, it must either:

 1. Add corresponding node data filled with the reserved
 value 0xFFFFFFFF, after the node data fields for the
 IOAM-Trace-Type bits defined above, such that the
 total node data added by this node in units of
 4-octets is equal to NodeLen, or

Brockners, et al. Expires January 5, 2020 [Page 14]

Internet-Draft In-situ OAM Data Fields July 2019

 2. Not add any node data fields to the packet, even for
 the IOAM-Trace-Type bits defined above.

 Bit 23 When set indicates presence of the Checksum Complement
 node data.

Section 4.2.2 describes the IOAM data types and their formats.
 Within an in-situ OAM domain possible combinations of these bits
 making the IOAM-Trace-Type can be restricted by configuration
 knobs.

 Reserved: 8-bits. Must be zero.

 Node data List [n]: Variable-length field. The type of which is
 determined by the IOAM-Trace-Type bit representing the n-th node
 data in the node data list. The node data list is encoded
 starting from the last node data of the path. The first element
 of the node data list (node data list [0]) contains the last node
 of the path while the last node data of the node data list (node
 data list[n]) contains the first node data of the path traced.
 Populating the node data list in this way ensures that the order
 of node data list is the same for incremental and pre-allocated
 trace options. In the pre-allocated trace option, the index
 contained in RemainingLen identifies the offset for current active
 node data to be populated.

4.2.2. IOAM node data fields and associated formats

 All the data fields MUST be 4-octet aligned. If a node which is
 supposed to update an IOAM data field is not capable of populating
 the value of a field set in the IOAM-Trace-Type, the field value MUST
 be set to 0xFFFFFFFF for 4-octet fields or 0xFFFFFFFFFFFFFFFF for
 8-octet fields, indicating that the value is not populated, except
 when explicitly specified in the field description below.

 Data field and associated data type for each of the data field is
 shown below:

 Hop_Lim and node_id: 4-octet field defined as follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id |
 +-+

 Hop_Lim: 1-octet unsigned integer. It is set to the Hop Limit
 value in the packet at the node that records this data. Hop
 Limit information is used to identify the location of the node

Brockners, et al. Expires January 5, 2020 [Page 15]

Internet-Draft In-situ OAM Data Fields July 2019

 in the communication path. This is copied from the lower
 layer, e.g., TTL value in IPv4 header or hop limit field from
 IPv6 header of the packet when the packet is ready for
 transmission. The semantics of the Hop_Lim field depend on the
 lower layer protocol that IOAM is encapsulated over, and
 therefore its specific semantics are outside the scope of this
 memo.

 node_id: 3-octet unsigned integer. Node identifier field to
 uniquely identify a node within in-situ OAM domain. The
 procedure to allocate, manage and map the node_ids is beyond
 the scope of this document.

 ingress_if_id and egress_if_id: 4-octet field defined as follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ingress_if_id | egress_if_id |
 +-+

 ingress_if_id: 2-octet unsigned integer. Interface identifier to
 record the ingress interface the packet was received on.

 egress_if_id: 2-octet unsigned integer. Interface identifier to
 record the egress interface the packet is forwarded out of.

 Note that due to the fact that IOAM uses its own namespaces for
 IOAM data fields, data fields like interface identifiers can be
 used in a flexible way to represent system resources that are
 associated with ingressing or egressing packets, i.e. an IOAM
 interface ID could represent a physical interface, a virtual or
 logical interface, or even a queue.

 timestamp seconds: 4-octet unsigned integer. Absolute timestamp in
 seconds that specifies the time at which the packet was received
 by the node. This field has three possible formats; based on
 either PTP [IEEE1588v2], NTP [RFC5905], or POSIX [POSIX]. The
 three timestamp formats are specified in Section 5. In all three
 cases, the Timestamp Seconds field contains the 32 most
 significant bits of the timestamp format that is specified in

Section 5. If a node is not capable of populating this field, it
 assigns the value 0xFFFFFFFF. Note that this is a legitimate
 value that is valid for 1 second in approximately 136 years; the
 analyzer should correlate several packets or compare the timestamp
 value to its own time-of-day in order to detect the error
 indication.

https://datatracker.ietf.org/doc/html/rfc5905

Brockners, et al. Expires January 5, 2020 [Page 16]

Internet-Draft In-situ OAM Data Fields July 2019

 timestamp subseconds: 4-octet unsigned integer. Absolute timestamp
 in subseconds that specifies the time at which the packet was
 received by the node. This field has three possible formats;
 based on either PTP [IEEE1588v2], NTP [RFC5905], or POSIX [POSIX].
 The three timestamp formats are specified in Section 5. In all
 three cases, the Timestamp Subseconds field contains the 32 least
 significant bits of the timestamp format that is specified in

Section 5. If a node is not capable of populating this field, it
 assigns the value 0xFFFFFFFF. Note that this is a legitimate
 value in the NTP format, valid for approximately 233 picoseconds
 in every second. If the NTP format is used the analyzer should
 correlate several packets in order to detect the error indication.

 transit delay: 4-octet unsigned integer in the range 0 to 2^31-1.
 It is the time in nanoseconds the packet spent in the transit
 node. This can serve as an indication of the queuing delay at the
 node. If the transit delay exceeds 2^31-1 nanoseconds then the
 top bit 'O' is set to indicate overflow and value set to
 0x80000000. When this field is part of the data field but a node
 populating the field is not able to fill it, the field position in
 the field must be filled with value 0xFFFFFFFF to mean not
 populated.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |O| transit delay |
 +-+

 namespace specific data: 4-octet field which can be used by the node
 to add namespace specific data. This represents a "free-format"
 4-octet bit field with its semantics defined in the context of a
 specific namespace.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | namespace specific data |
 +-+

 queue depth: 4-octet unsigned integer field. This field indicates
 the current length of the egress interface queue of the interface
 from where the packet is forwarded out. The queue depth is
 expressed as the current number of memory buffers used by the
 queue (a packet may consume one or more memory buffers, depending
 on its size).

https://datatracker.ietf.org/doc/html/rfc5905

Brockners, et al. Expires January 5, 2020 [Page 17]

Internet-Draft In-situ OAM Data Fields July 2019

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | queue depth |
 +-+

 Opaque State Snapshot: Variable length field. It allows the network
 element to store an arbitrary state in the node data field,
 without a pre-defined schema. The schema is to be defined within
 the context of a namespace. The schema needs to be made known to
 the analyzer by some out-of-band mechanism. The specification of
 this mechanism is beyond the scope of this document. A 24-bit
 "Schema Id" field, interpreted within the context of a namespace,
 indicates which particular schema is used, and should be
 configured on the network element by the operator.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Length | Schema ID |
 +-+
 | |
 | |
 | Opaque data |
 ~ ~
 . .
 . .
 +-+

 Length: 1-octet unsigned integer. It is the length in multiples
 of 4-octets of the Opaque data field that follows Schema Id.

 Schema ID: 3-octet unsigned integer identifying the schema of
 Opaque data.

 Opaque data: Variable length field. This field is interpreted as
 specified by the schema identified by the Schema ID.

 When this field is part of the data field but a node populating
 the field has no opaque state data to report, the Length must be
 set to 0 and the Schema ID must be set to 0xFFFFFF to mean no
 schema.

 Hop_Lim and node_id wide: 8-octet field defined as follows:

Brockners, et al. Expires January 5, 2020 [Page 18]

Internet-Draft In-situ OAM Data Fields July 2019

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id ~
 +-+
 ~ node_id (contd) |
 +-+

 Hop_Lim: 1-octet unsigned integer. It is set to the Hop Limit
 value in the packet at the node that records this data. Hop
 Limit information is used to identify the location of the node
 in the communication path. This is copied from the lower layer
 for e.g. TTL value in IPv4 header or hop limit field from IPv6
 header of the packet. The semantics of the Hop_Lim field
 depend on the lower layer protocol that IOAM is encapsulated
 over, and therefore its specific semantics are outside the
 scope of this memo.

 node_id: 7-octet unsigned integer. Node identifier field to
 uniquely identify a node within in-situ OAM domain. The
 procedure to allocate, manage and map the node_ids is beyond
 the scope of this document.

 ingress_if_id and egress_if_id wide: 8-octet field defined as
 follows:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | ingress_if_id |
 +-+
 | egress_if_id |
 +-+

 ingress_if_id: 4-octet unsigned integer. Interface identifier to
 record the ingress interface the packet was received on.

 egress_if_id: 4-octet unsigned integer. Interface identifier to
 record the egress interface the packet is forwarded out of.

 namespace specific data wide: 8-octet field which can be used by the
 node to add namespace specific data. This represents a "free-
 format" 8-octet bit field with its semantics defined in the
 context of a specific namespace.

Brockners, et al. Expires January 5, 2020 [Page 19]

Internet-Draft In-situ OAM Data Fields July 2019

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | namespace specific data ~
 +-+
 ~ namespace specific data (contd) |
 +-+

 buffer occupancy: 4-octet unsigned integer field. This field
 indicates the current status of the occupancy of the common buffer
 pool used by a set of queues. The units of this field depend on
 the equipment type and deployment and has to be interpreted within
 the context of a namespace and/or node-id if used.

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | buffer occupancy |
 +-+

 Checksum Complement: 4-octet node data which contains a two-octet
 Checksum Complement field, and a 2-octet reserved field. The
 Checksum Complement is useful when IOAM is transported over
 encapsulations that make use of a UDP transport, such as VXLAN-GPE
 or Geneve. Without the Checksum Complement, nodes adding IOAM
 node data must update the UDP Checksum field. When the Checksum
 Complement is present, an IOAM encapsulating node or IOAM transit
 node adding node data MUST carry out one of the following two
 alternatives in order to maintain the correctness of the UDP
 Checksum value:

 1. Recompute the UDP Checksum field.

 2. Use the Checksum Complement to make a checksum-neutral update
 in the UDP payload; the Checksum Complement is assigned a
 value that complements the rest of the node data fields that
 were added by the current node, causing the existing UDP
 Checksum field to remain correct.

 IOAM decapsulating nodes MUST recompute the UDP Checksum field,
 since they do not know whether previous hops modified the UDP
 Checksum field or the Checksum Complement field.

 Checksum Complement fields are used in a similar manner in
 [RFC7820] and [RFC7821].

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Checksum Complement | Reserved |
 +-+

https://datatracker.ietf.org/doc/html/rfc7820
https://datatracker.ietf.org/doc/html/rfc7821

Brockners, et al. Expires January 5, 2020 [Page 20]

Internet-Draft In-situ OAM Data Fields July 2019

4.2.3. Examples of IOAM node data

 An entry in the "node data list" array can have different formats,
 following the needs of the deployment. Some deployments might only
 be interested in recording the node identifiers, whereas others might
 be interested in recording node identifier and timestamp. The
 section defines different types that an entry in "node data list" can
 take.

 0xD40000: IOAM-Trace-Type is 0xD40000 then the format of node data
 is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id |
 +-+
 | ingress_if_id | egress_if_id |
 +-+
 | timestamp subseconds |
 +-+
 | namespace specific data |
 +-+

 0xC00000: IOAM-Trace-Type is 0xC00000 then the format is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id |
 +-+
 | ingress_if_id | egress_if_id |
 +-+

 0x900000: IOAM-Trace-Type is 0x900000 then the format is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id |
 +-+
 | timestamp subseconds |
 +-+

 0x840000: IOAM-Trace-Type is 0x840000 then the format is:

Brockners, et al. Expires January 5, 2020 [Page 21]

Internet-Draft In-situ OAM Data Fields July 2019

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id |
 +-+
 | namespace specific data |
 +-+

 0x940000: IOAM-Trace-Type is 0x940000 then the format is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Hop_Lim | node_id |
 +-+
 | timestamp subseconds |
 +-+
 | namespace specific data |
 +-+

 0x318000: IOAM-Trace-Type is 0x318000 then the format is:

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | timestamp seconds |
 +-+
 | timestamp subseconds |
 +-+
 | Length | Schema Id |
 +-+
 | |
 | |
 | Opaque data |
 ~ ~
 . .
 . .
 +-+
 | Hop_Lim | node_id |
 +-+
 | node_id(contd) |
 +-+

4.3. IOAM Proof of Transit Option

 IOAM Proof of Transit data is to support the path or service function
 chain [RFC7665] verification use cases. Proof-of-transit uses
 methods like nested hashing or nested encryption of the IOAM data or

https://datatracker.ietf.org/doc/html/rfc7665

Brockners, et al. Expires January 5, 2020 [Page 22]

Internet-Draft In-situ OAM Data Fields July 2019

 mechanisms such as Shamir's Secret Sharing Schema (SSSS). While
 details on how the IOAM data for the proof of transit option is
 processed at IOAM encapsulating, decapsulating and transit nodes are
 outside the scope of the document, all of these approaches share the
 need to uniquely identify a packet as well as iteratively operate on
 a set of information that is handed from node to node.
 Correspondingly, two pieces of information are added as IOAM data to
 the packet:

 o Random: Unique identifier for the packet (e.g., 64-bits allow for
 the unique identification of 2^64 packets).

 o Cumulative: Information which is handed from node to node and
 updated by every node according to a verification algorithm.

 IOAM proof of transit option header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Namespace-ID |IOAM POT Type | IOAM POT flags|
 +-+

 IOAM proof of transit option data MUST be 4-octet aligned.:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | POT Option data field determined by IOAM-POT-Type |
 +-+

 Namespace-ID: 16-bit identifier of an IOAM namespace. The
 Namespace-ID value of 0x0000 is defined as the default value and
 MUST be known to all the nodes implementing IOAM. For any other
 Namespace-ID value that does not match any Namespace-ID the node
 is configured to operate on, the node MUST NOT change the contents
 of the IOAM data fields.

 IOAM POT Type: 8-bit identifier of a particular POT variant that
 specifies the POT data that is included. This document defines
 POT Type 0:

 0: POT data is a 16 Octet field as described below.

 IOAM POT flags: 8-bit. Following flags are defined:

Brockners, et al. Expires January 5, 2020 [Page 23]

Internet-Draft In-situ OAM Data Fields July 2019

 Bit 0 "Profile-to-use" (P-bit) (most significant bit). For IOAM
 POT types that use a maximum of two profiles to drive
 computation, indicates which POT-profile is used. The two
 profiles are numbered 0, 1.

 Bit 1-7 Reserved: Must be set to zero upon transmission and
 ignored upon receipt.

 POT Option data: Variable-length field. The type of which is
 determined by the IOAM-POT-Type.

4.3.1. IOAM Proof of Transit Type 0

 IOAM proof of transit option of IOAM POT Type 0:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Namespace-ID |IOAM POT Type=0|P|R R R R R R R|
 +-+<-+
 | Random | |
 +-+ P
 | Random(contd) | O
 +-+ T
 | Cumulative | |
 +-+ |
 | Cumulative (contd) | |
 +-+<-+

 Namespace-ID: 16-bit identifier of an IOAM namespace. The
 Namespace-ID value of 0x0000 is defined as the default value and
 MUST be known to all the nodes implementing IOAM. For any other
 Namespace-ID value that does not match any Namespace-ID the node
 is configured to operate on, the node MUST NOT change the contents
 of the IOAM data fields.

 IOAM POT Type: 8-bit identifier of a particular POT variant that
 specifies the POT data that is included. This section defines the
 POT data when the IOAM POT Type is set to the value 0.

 P bit: 1-bit. "Profile-to-use" (P-bit) (most significant bit).
 Indicates which POT-profile is used to generate the Cumulative.
 Any node participating in POT will have a maximum of 2 profiles
 configured that drive the computation of cumulative. The two
 profiles are numbered 0, 1. This bit conveys whether profile 0 or
 profile 1 is used to compute the Cumulative.

Brockners, et al. Expires January 5, 2020 [Page 24]

Internet-Draft In-situ OAM Data Fields July 2019

 R (7 bits): 7-bit IOAM POT flags for future use. MUST be set to
 zero upon transmission and ignored upon receipt.

 Random: 64-bit Per packet Random number.

 Cumulative: 64-bit Cumulative that is updated at specific nodes by
 processing per packet Random number field and configured
 parameters.

 Note: Larger or smaller sizes of "Random" and "Cumulative" data are
 feasible and could be required for certain deployments (e.g. in case
 of space constraints in the transport protocol used). Future
 versions of this document will address different sizes of data for
 "proof of transit".

4.4. IOAM Edge-to-Edge Option

 The IOAM edge-to-edge option is to carry data that is added by the
 IOAM encapsulating node and interpreted by IOAM decapsulating node.
 The IOAM transit nodes MAY process the data without modifying it.

 IOAM edge-to-edge option header:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Namespace-ID | IOAM-E2E-Type |
 +-+

 IOAM edge-to-edge option data MUST be 4-octet aligned:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | E2E Option data field determined by IOAM-E2E-Type |
 +-+

 Namespace-ID: 16-bit identifier of an IOAM namespace. The
 Namespace-ID value of 0x0000 is defined as the default value and
 MUST be known to all the nodes implementing IOAM. For any other
 Namespace-ID value that does not match any Namespace-ID the node
 is configured to operate on, then the node MUST NOT change the
 contents of the IOAM data fields.

 IOAM-E2E-Type: A 16-bit identifier which specifies which data types
 are used in the E2E option data. The IOAM-E2E-Type value is a bit

Brockners, et al. Expires January 5, 2020 [Page 25]

Internet-Draft In-situ OAM Data Fields July 2019

 field. The order of packing the E2E option data field elements
 follows the bit order of the IOAM-E2E-Type field, as follows:

 Bit 0 (Most significant bit) When set indicates presence of a
 64-bit sequence number added to a specific "packet group"
 which is used to detect packet loss, packet reordering,
 or packet duplication within the group. The "packet
 group" is deployment dependent and defined at the IOAM
 encapsulating node e.g. by n-tuple based classification
 of packets.

 Bit 1 When set indicates presence of a 32-bit sequence number
 added to a specific "packet group" which is used to
 detect packet loss, packet reordering, or packet
 duplication within that group. The "packet group" is
 deployment dependent and defined at the IOAM
 encapsulating node e.g. by n-tuple based classification
 of packets.

 Bit 2 When set indicates presence of timestamp seconds for the
 transmission of the frame. This 4-octet field has three
 possible formats; based on either PTP [IEEE1588v2], NTP
 [RFC5905], or POSIX [POSIX]. The three timestamp formats
 are specified in Section 5. In all three cases, the
 Timestamp Seconds field contains the 32 most significant
 bits of the timestamp format that is specified in

Section 5. If a node is not capable of populating this
 field, it assigns the value 0xFFFFFFFF. Note that this
 is a legitimate value that is valid for 1 second in
 approximately 136 years; the analyzer should correlate
 several packets or compare the timestamp value to its own
 time-of-day in order to detect the error indication.

 Bit 3 When set indicates presence of timestamp subseconds for
 the transmission of the frame. This 4-octet field has
 three possible formats; based on either PTP [IEEE1588v2],
 NTP [RFC5905], or POSIX [POSIX]. The three timestamp
 formats are specified in Section 5. In all three cases,
 the Timestamp Subseconds field contains the 32 least
 significant bits of the timestamp format that is
 specified in Section 5. If a node is not capable of
 populating this field, it assigns the value 0xFFFFFFFF.
 Note that this is a legitimate value in the NTP format,
 valid for approximately 233 picoseconds in every second.
 If the NTP format is used the analyzer should correlate
 several packets in order to detect the error indication.

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Brockners, et al. Expires January 5, 2020 [Page 26]

Internet-Draft In-situ OAM Data Fields July 2019

 Bit 4-15 Undefined. An IOAM encapsulating node Must set the value
 of these bits to zero upon transmission and ignore upon
 receipt.

 E2E Option data: Variable-length field. The type of which is
 determined by the IOAM-E2E-Type.

5. Timestamp Formats

 The IOAM data fields include a timestamp field which is represented
 in one of three possible timestamp formats. It is assumed that the
 management plane is responsible for determining which timestamp
 format is used.

5.1. PTP Truncated Timestamp Format

 The Precision Time Protocol (PTP) [IEEE1588v2] uses an 80-bit
 timestamp format. The truncated timestamp format is a 64-bit field,
 which is the 64 least significant bits of the 80-bit PTP timestamp.
 The PTP truncated format is specified in Section 4.3 of
 [I-D.ietf-ntp-packet-timestamps], and the details are presented below
 for the sake of completeness.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds |
 +-+
 | Nanoseconds |
 +-+

 Figure 1: PTP [IEEE1588v2] Truncated Timestamp Format

 Timestamp field format:

 Seconds: specifies the integer portion of the number of seconds
 since the epoch.

 + Size: 32 bits.

 + Units: seconds.

 Nanoseconds: specifies the fractional portion of the number of
 seconds since the epoch.

 + Size: 32 bits.

Brockners, et al. Expires January 5, 2020 [Page 27]

Internet-Draft In-situ OAM Data Fields July 2019

 + Units: nanoseconds. The value of this field is in the range 0
 to (10^9)-1.

 Epoch:

 The PTP [IEEE1588v2] epoch is 1 January 1970 00:00:00 TAI, which
 is 31 December 1969 23:59:51.999918 UTC.

 Resolution:

 The resolution is 1 nanosecond.

 Wraparound:

 This time format wraps around every 2^32 seconds, which is roughly
 136 years. The next wraparound will occur in the year 2106.

 Synchronization Aspects:

 It is assumed that nodes that run this protocol are synchronized
 among themselves. Nodes may be synchronized to a global reference
 time. Note that if PTP [IEEE1588v2] is used for synchronization,
 the timestamp may be derived from the PTP-synchronized clock,
 allowing the timestamp to be measured with respect to the clock of
 an PTP Grandmaster clock.

 The PTP truncated timestamp format is not affected by leap
 seconds.

5.2. NTP 64-bit Timestamp Format

 The Network Time Protocol (NTP) [RFC5905] timestamp format is 64 bits
 long. This format is specified in Section 4.2.1 of
 [I-D.ietf-ntp-packet-timestamps], and the details are presented below
 for the sake of completeness.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds |
 +-+
 | Fraction |
 +-+

 Figure 2: NTP [RFC5905] 64-bit Timestamp Format

 Timestamp field format:

https://datatracker.ietf.org/doc/html/rfc5905
https://datatracker.ietf.org/doc/html/rfc5905

Brockners, et al. Expires January 5, 2020 [Page 28]

Internet-Draft In-situ OAM Data Fields July 2019

 Seconds: specifies the integer portion of the number of seconds
 since the epoch.

 + Size: 32 bits.

 + Units: seconds.

 Fraction: specifies the fractional portion of the number of
 seconds since the epoch.

 + Size: 32 bits.

 + Units: the unit is 2^(-32) seconds, which is roughly equal to
 233 picoseconds.

 Epoch:

 The epoch is 1 January 1900 at 00:00 UTC.

 Resolution:

 The resolution is 2^(-32) seconds.

 Wraparound:

 This time format wraps around every 2^32 seconds, which is roughly
 136 years. The next wraparound will occur in the year 2036.

 Synchronization Aspects:

 Nodes that use this timestamp format will typically be
 synchronized to UTC using NTP [RFC5905]. Thus, the timestamp may
 be derived from the NTP-synchronized clock, allowing the timestamp
 to be measured with respect to the clock of an NTP server.

 The NTP timestamp format is affected by leap seconds; it
 represents the number of seconds since the epoch minus the number
 of leap seconds that have occurred since the epoch. The value of
 a timestamp during or slightly after a leap second may be
 temporarily inaccurate.

5.3. POSIX-based Timestamp Format

 This timestamp format is based on the POSIX time format [POSIX]. The
 detailed specification of the timestamp format used in this document
 is presented below.

https://datatracker.ietf.org/doc/html/rfc5905

Brockners, et al. Expires January 5, 2020 [Page 29]

Internet-Draft In-situ OAM Data Fields July 2019

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Seconds |
 +-+
 | Microseconds |
 +-+

 Figure 3: POSIX-based Timestamp Format

 Timestamp field format:

 Seconds: specifies the integer portion of the number of seconds
 since the epoch.

 + Size: 32 bits.

 + Units: seconds.

 Microseconds: specifies the fractional portion of the number of
 seconds since the epoch.

 + Size: 32 bits.

 + Units: the unit is microseconds. The value of this field is in
 the range 0 to (10^6)-1.

 Epoch:

 The epoch is 1 January 1970 00:00:00 TAI, which is 31 December
 1969 23:59:51.999918 UTC.

 Resolution:

 The resolution is 1 microsecond.

 Wraparound:

 This time format wraps around every 2^32 seconds, which is roughly
 136 years. The next wraparound will occur in the year 2106.

 Synchronization Aspects:

 It is assumed that nodes that use this timestamp format run Linux
 operating system, and hence use the POSIX time. In some cases
 nodes may be synchronized to UTC using a synchronization mechanism
 that is outside the scope of this document, such as NTP [RFC5905].
 Thus, the timestamp may be derived from the NTP-synchronized

https://datatracker.ietf.org/doc/html/rfc5905

Brockners, et al. Expires January 5, 2020 [Page 30]

Internet-Draft In-situ OAM Data Fields July 2019

 clock, allowing the timestamp to be measured with respect to the
 clock of an NTP server.

 The POSIX-based timestamp format is affected by leap seconds; it
 represents the number of seconds since the epoch minus the number
 of leap seconds that have occurred since the epoch. The value of
 a timestamp during or slightly after a leap second may be
 temporarily inaccurate.

6. IOAM Data Export

 IOAM nodes collect information for packets traversing a domain that
 supports IOAM. IOAM decapsulating nodes as well as IOAM transit
 nodes can choose to retrieve IOAM information from the packet,
 process the information further and export the information using
 e.g., IPFIX. The mechanisms and associated data formats for
 exporting IOAM data is outside the scope of this document.

 Raw data export of IOAM data using IPFIX is discussed in
 [I-D.spiegel-ippm-ioam-rawexport].

7. IANA Considerations

 This document requests the following IANA Actions.

7.1. Creation of a new In-Situ OAM Protocol Parameters Registry (IOAM)
 Protocol Parameters IANA registry

 IANA is requested to create a new protocol registry for "In-Situ OAM
 (IOAM) Protocol Parameters". This is the common registry that will
 include registrations for all IOAM namespaces. Each Registry, whose
 names are listed below:

 IOAM Type

 IOAM Trace Type

 IOAM Trace flags

 IOAM POT Type

 IOAM POT flags

 IOAM E2E Type

 IOAM Namespace-ID

Brockners, et al. Expires January 5, 2020 [Page 31]

Internet-Draft In-situ OAM Data Fields July 2019

 will contain the current set of possibilities defined in this
 document. New registries in this name space are created via RFC
 Required process as per [RFC8126].

 The subsequent sub-sections detail the registries herein contained.

7.2. IOAM Type Registry

 This registry defines 128 code points for the IOAM-Type field for
 identifying IOAM options as explained in Section 4. The following
 code points are defined in this draft:

 0 IOAM Pre-allocated Trace Option Type

 1 IOAM Incremental Trace Option Type

 2 IOAM POT Option Type

 3 IOAM E2E Option Type

 4 - 127 are available for assignment via RFC Required process as per
 [RFC8126].

7.3. IOAM Trace Type Registry

 This registry defines code point for each bit in the 24-bit IOAM-
 Trace-Type field for Pre-allocated trace option and Incremental trace
 option defined in Section 4.2. The meaning of Bits 0 - 11 for trace
 type are defined in this document in Paragraph 5 of Section 4.2.1:

 Bit 0 hop_Lim and node_id in short format

 Bit 1 ingress_if_id and egress_if_id in short format

 Bit 2 timestamp seconds

 Bit 3 timestamp subseconds

 Bit 4 transit delay

 Bit 5 namespace specific data in short format

 Bit 6 queue depth

 Bit 7 variable length Opaque State Snapshot

 Bit 8 hop_Lim and node_id in wide format

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Brockners, et al. Expires January 5, 2020 [Page 32]

Internet-Draft In-situ OAM Data Fields July 2019

 Bit 9 ingress_if_id and egress_if_id in wide format

 Bit 10 namespace specific data in wide format

 Bit 11 buffer occupancy

 Bit 23 checksum complement

 The meaning for Bits 12 - 22 are available for assignment via RFC
 Required process as per [RFC8126].

7.4. IOAM Trace Flags Registry

 This registry defines code points for each bit in the 4 bit flags for
 the Pre-allocated trace option and for the Incremental trace option
 defined in Section 4.2. The meaning of Bit 0 (the most significant
 bit) for trace flags is defined in this document in Paragraph 3 of

Section 4.2.1:

 Bit 0 "Overflow" (O-bit)

7.5. IOAM POT Type Registry

 This registry defines 256 code points to define IOAM POT Type for
 IOAM proof of transit option Section 4.3. The code point value 0 is
 defined in this document:

 0: 16 Octet POT data

 1 - 255 are available for assignment via RFC Required process as per
 [RFC8126].

7.6. IOAM POT Flags Registry

 This registry defines code points for each bit in the 8 bit flags for
 IOAM POT option defined in Section 4.3. The meaning of Bit 0 for
 IOAM POT flags is defined in this document in Section 4.3:

 Bit 0 "Profile-to-use" (P-bit)

 The meaning for Bits 1 - 7 are available for assignment via RFC
 Required process as per [RFC8126].

7.7. IOAM E2E Type Registry

 This registry defines code points for each bit in the 16 bit IOAM-
 E2E-Type field for IOAM E2E option Section 4.4. The meaning of Bit 0
 - 3 are defined in this document:

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126

Brockners, et al. Expires January 5, 2020 [Page 33]

Internet-Draft In-situ OAM Data Fields July 2019

 Bit 0 64-bit sequence number

 Bit 1 32-bit sequence number

 Bit 2 timestamp seconds

 Bit 3 timestamp subseconds

 The meaning of Bits 4 - 15 are available for assignment via RFC
 Required process as per [RFC8126].

7.8. IOAM Namespace-ID Registry

 IANA is requested to set up an "IOAM Namespace-ID Registry",
 containing 16-bit values. The meaning of Bit 0 is defined in this
 document. IANA is requested to reserve the values 0x0001 to 0x7FFF
 for private use (managed by operators), as specified in Section 4.1
 of the current document. Registry entries for the values 0x8000 to
 0xFFFF are to be assigned via the "Expert Review" policy defined in
 [RFC8126].

 0: default namespace (known to all IOAM nodes)

 0x0001 - 0x7FFF: reserved for private use

 0x8000 - 0xFFFF: unassigned

8. Security Considerations

 As discussed in [RFC7276], a successful attack on an OAM protocol in
 general, and specifically on IOAM, can prevent the detection of
 failures or anomalies, or create a false illusion of nonexistent
 ones.

 The Proof of Transit option (Section Section 4.3) is used for
 verifying the path of data packets. The security considerations of
 POT are further discussed in [I-D.brockners-proof-of-transit].

 The data elements of IOAM can be used for network reconnaissance,
 allowing attackers to collect information about network paths,
 performance, queue states, buffer occupancy and other information.
 Note that in case IOAM is used in "immediate export" mode (reference
 to be added in a future revision), the IOAM related trace information
 would not be available in the customer data packets, but would
 trigger export of packet related IOAM information at every node.
 IOAM data export and securing IOAM data export is outside the scope
 of this document.

https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc7276

Brockners, et al. Expires January 5, 2020 [Page 34]

Internet-Draft In-situ OAM Data Fields July 2019

 IOAM can be used as a means for implementing Denial of Service (DoS)
 attacks, or for amplifying them. For example, a malicious attacker
 can add an IOAM header to packets in order to consume the resources
 of network devices that take part in IOAM or collectors that analyze
 the IOAM data. Another example is a packet length attack, in which
 an attacker pushes IOAM headers into data packets, causing these
 packets to be increased beyond the MTU size, resulting in
 fragmentation or in packet drops.

 Since IOAM options may include timestamps, if network devices use
 synchronization protocols then any attack on the time protocol
 [RFC7384] can compromise the integrity of the timestamp-related data
 fields.

 At the management plane, attacks may be implemented by misconfiguring
 or by maliciously configuring IOAM-enabled nodes in a way that
 enables other attacks. Thus, IOAM configuration should be secured in
 a way that authenticates authorized users and verifies the integrity
 of configuration procedures.

 Notably, IOAM is expected to be deployed in specific network domains,
 thus confining the potential attack vectors to within the network
 domain. Indeed, in order to limit the scope of threats to within the
 current network domain the network operator is expected to enforce
 policies that prevent IOAM traffic from leaking outside of the IOAM
 domain, and prevent IOAM data from outside the domain to be processed
 and used within the domain. Note that the Immediate Export mode
 (reference to be added in a future revision) can mitigate the
 potential threat of IOAM data leaking through data packets.

9. Acknowledgements

 The authors would like to thank Eric Vyncke, Nalini Elkins, Srihari
 Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya
 Nadahalli, LJ Wobker, Erik Nordmark, Vengada Prasad Govindan, Andrew
 Yourtchenko, Aviv Kfir, Tianran Zhou, Haoyu song and Robin
 <lizhenbin@huawei.com> for the comments and advice.

 This document leverages and builds on top of several concepts
 described in [I-D.kitamura-ipv6-record-route]. The authors would
 like to acknowledge the work done by the author Hiroshi Kitamura and
 people involved in writing it.

 The authors would like to gracefully acknowledge useful review and
 insightful comments received from Joe Clarke, Al Morton, and Mickey
 Spiegel.

https://datatracker.ietf.org/doc/html/rfc7384

Brockners, et al. Expires January 5, 2020 [Page 35]

Internet-Draft In-situ OAM Data Fields July 2019

 The authors would like to acknowledge the contribution of "Immediate
 export" of IOAM trace by Barak Gafni.

10. References

10.1. Normative References

 [IEEE1588v2]
 Institute of Electrical and Electronics Engineers, "IEEE
 Std 1588-2008 - IEEE Standard for a Precision Clock
 Synchronization Protocol for Networked Measurement and
 Control Systems", IEEE Std 1588-2008, 2008,
 <http://standards.ieee.org/findstds/

standard/1588-2008.html>.

 [POSIX] Institute of Electrical and Electronics Engineers, "IEEE
 Std 1003.1-2008 (Revision of IEEE Std 1003.1-2004) - IEEE
 Standard for Information Technology - Portable Operating
 System Interface (POSIX(R))", IEEE Std 1003.1-2008, 2008,
 <https://standards.ieee.org/findstds/

standard/1003.1-2008.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5905] Mills, D., Martin, J., Ed., Burbank, J., and W. Kasch,
 "Network Time Protocol Version 4: Protocol and Algorithms
 Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010,
 <https://www.rfc-editor.org/info/rfc5905>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

10.2. Informative References

 [I-D.brockners-proof-of-transit]
 Brockners, F., Bhandari, S., Dara, S., Pignataro, C.,
 Leddy, J., Youell, S., Mozes, D., and T. Mizrahi, "Proof
 of Transit", draft-brockners-proof-of-transit-05 (work in
 progress), May 2018.

http://standards.ieee.org/findstds/standard/1588-2008.html
http://standards.ieee.org/findstds/standard/1588-2008.html
https://standards.ieee.org/findstds/standard/1003.1-2008.html
https://standards.ieee.org/findstds/standard/1003.1-2008.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5905
https://www.rfc-editor.org/info/rfc5905
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/draft-brockners-proof-of-transit-05

Brockners, et al. Expires January 5, 2020 [Page 36]

Internet-Draft In-situ OAM Data Fields July 2019

 [I-D.ietf-ntp-packet-timestamps]
 Mizrahi, T., Fabini, J., and A. Morton, "Guidelines for
 Defining Packet Timestamps", draft-ietf-ntp-packet-

timestamps-06 (work in progress), February 2019.

 [I-D.ietf-nvo3-geneve]
 Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
 Network Virtualization Encapsulation", draft-ietf-

nvo3-geneve-13 (work in progress), March 2019.

 [I-D.ietf-nvo3-vxlan-gpe]
 Maino, F., Kreeger, L., and U. Elzur, "Generic Protocol
 Extension for VXLAN", draft-ietf-nvo3-vxlan-gpe-07 (work
 in progress), April 2019.

 [I-D.kitamura-ipv6-record-route]
 Kitamura, H., "Record Route for IPv6 (PR6) Hop-by-Hop
 Option Extension", draft-kitamura-ipv6-record-route-00
 (work in progress), November 2000.

 [I-D.lapukhov-dataplane-probe]
 Lapukhov, P. and r. remy@barefootnetworks.com, "Data-plane
 probe for in-band telemetry collection", draft-lapukhov-

dataplane-probe-01 (work in progress), June 2016.

 [I-D.spiegel-ippm-ioam-rawexport]
 Spiegel, M., Brockners, F., Bhandari, S., and R.
 Sivakolundu, "In-situ OAM raw data export with IPFIX",

draft-spiegel-ippm-ioam-rawexport-01 (work in progress),
 October 2018.

 [RFC7276] Mizrahi, T., Sprecher, N., Bellagamba, E., and Y.
 Weingarten, "An Overview of Operations, Administration,
 and Maintenance (OAM) Tools", RFC 7276,
 DOI 10.17487/RFC7276, June 2014,
 <https://www.rfc-editor.org/info/rfc7276>.

 [RFC7384] Mizrahi, T., "Security Requirements of Time Protocols in
 Packet Switched Networks", RFC 7384, DOI 10.17487/RFC7384,
 October 2014, <https://www.rfc-editor.org/info/rfc7384>.

 [RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
 Chaining (SFC) Architecture", RFC 7665,
 DOI 10.17487/RFC7665, October 2015,
 <https://www.rfc-editor.org/info/rfc7665>.

https://datatracker.ietf.org/doc/html/draft-ietf-ntp-packet-timestamps-06
https://datatracker.ietf.org/doc/html/draft-ietf-ntp-packet-timestamps-06
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-13
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-13
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-vxlan-gpe-07
https://datatracker.ietf.org/doc/html/draft-kitamura-ipv6-record-route-00
https://datatracker.ietf.org/doc/html/draft-lapukhov-dataplane-probe-01
https://datatracker.ietf.org/doc/html/draft-lapukhov-dataplane-probe-01
https://datatracker.ietf.org/doc/html/draft-spiegel-ippm-ioam-rawexport-01
https://datatracker.ietf.org/doc/html/rfc7276
https://www.rfc-editor.org/info/rfc7276
https://datatracker.ietf.org/doc/html/rfc7384
https://www.rfc-editor.org/info/rfc7384
https://datatracker.ietf.org/doc/html/rfc7665
https://www.rfc-editor.org/info/rfc7665

Brockners, et al. Expires January 5, 2020 [Page 37]

Internet-Draft In-situ OAM Data Fields July 2019

 [RFC7799] Morton, A., "Active and Passive Metrics and Methods (with
 Hybrid Types In-Between)", RFC 7799, DOI 10.17487/RFC7799,
 May 2016, <https://www.rfc-editor.org/info/rfc7799>.

 [RFC7820] Mizrahi, T., "UDP Checksum Complement in the One-Way
 Active Measurement Protocol (OWAMP) and Two-Way Active
 Measurement Protocol (TWAMP)", RFC 7820,
 DOI 10.17487/RFC7820, March 2016,
 <https://www.rfc-editor.org/info/rfc7820>.

 [RFC7821] Mizrahi, T., "UDP Checksum Complement in the Network Time
 Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March
 2016, <https://www.rfc-editor.org/info/rfc7821>.

 [RFC8300] Quinn, P., Ed., Elzur, U., Ed., and C. Pignataro, Ed.,
 "Network Service Header (NSH)", RFC 8300,
 DOI 10.17487/RFC8300, January 2018,
 <https://www.rfc-editor.org/info/rfc8300>.

Authors' Addresses

 Frank Brockners
 Cisco Systems, Inc.
 Hansaallee 249, 3rd Floor
 DUESSELDORF, NORDRHEIN-WESTFALEN 40549
 Germany

 Email: fbrockne@cisco.com

 Shwetha Bhandari
 Cisco Systems, Inc.
 Cessna Business Park, Sarjapura Marathalli Outer Ring Road
 Bangalore, KARNATAKA 560 087
 India

 Email: shwethab@cisco.com

 Carlos Pignataro
 Cisco Systems, Inc.
 7200-11 Kit Creek Road
 Research Triangle Park, NC 27709
 United States

 Email: cpignata@cisco.com

https://datatracker.ietf.org/doc/html/rfc7799
https://www.rfc-editor.org/info/rfc7799
https://datatracker.ietf.org/doc/html/rfc7820
https://www.rfc-editor.org/info/rfc7820
https://datatracker.ietf.org/doc/html/rfc7821
https://www.rfc-editor.org/info/rfc7821
https://datatracker.ietf.org/doc/html/rfc8300
https://www.rfc-editor.org/info/rfc8300

Brockners, et al. Expires January 5, 2020 [Page 38]

Internet-Draft In-situ OAM Data Fields July 2019

 Hannes Gredler
 RtBrick Inc.

 Email: hannes@rtbrick.com

 John Leddy
 United States

 Email: john@leddy.net

 Stephen Youell
 JP Morgan Chase
 25 Bank Street
 London E14 5JP
 United Kingdom

 Email: stephen.youell@jpmorgan.com

 Tal Mizrahi
 Huawei Network.IO Innovation Lab
 Israel

 Email: tal.mizrahi.phd@gmail.com

 David Mozes

 Email: mosesster@gmail.com

 Petr Lapukhov
 Facebook
 1 Hacker Way
 Menlo Park, CA 94025
 US

 Email: petr@fb.com

 Remy Chang
 Barefoot Networks
 4750 Patrick Henry Drive
 Santa Clara, CA 95054
 US

Brockners, et al. Expires January 5, 2020 [Page 39]

Internet-Draft In-situ OAM Data Fields July 2019

 Daniel Bernier
 Bell Canada
 Canada

 Email: daniel.bernier@bell.ca

 John Lemon
 Broadcom
 270 Innovation Drive
 San Jose, CA 95134
 US

 Email: john.lemon@broadcom.com

Brockners, et al. Expires January 5, 2020 [Page 40]

