
IP Performance Working Group M. Mathis
Internet-Draft Google, Inc
Intended status: Experimental A. Morton
Expires: April 24, 2014 AT&T Labs
 October 21, 2013

Model Based Bulk Performance Metrics
draft-ietf-ippm-model-based-metrics-01.txt

Abstract

 We introduce a new class of model based metrics designed to determine
 if a long network path can meet predefined end-to-end application
 performance targets by applying a suite of IP diagnostic tests to
 successive subpaths. The subpath at a time tests are designed to
 exclude all known conditions which might prevent the full end-to-end
 path from meeting the user's target application performance.

 This approach makes it possible to to determine the IP performance
 requirements needed to support the desired end-to-end TCP
 performance. The IP metrics are based on traffic patterns that mimic
 TCP or other transport protocol but are precomputed independently of
 the actual behavior of the transport protocol over the subpath under
 test. This makes the measurements open loop, eliminating nearly all
 of the difficulties encountered by traditional bulk transport
 metrics, which fundamentally depend on congestion control equilibrium
 behavior.

 A natural consequence of this methodology is verifiable network
 measurement: measurements from any given vantage point can be
 verified by repeating them from other vantage points.

 Formatted: Mon Oct 21 15:42:35 PDT 2013

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference

Mathis & Morton Expires April 24, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Model Based Metrics October 2013

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 24, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Mathis & Morton Expires April 24, 2014 [Page 2]

Internet-Draft Model Based Metrics October 2013

Table of Contents

1. Introduction . 5
1.1. TODO . 6

2. Terminology . 6
3. New requirements relative to RFC 2330 9
4. Background . 10
4.1. TCP properties . 12

5. Common Models and Parameters 14
5.1. Target End-to-end parameters 14
5.2. Common Model Calculations 15
5.3. Parameter Derating . 16

6. Common testing procedures 16
6.1. Traffic generating techniques 16
6.1.1. Paced transmission 16
6.1.2. Constant window pseudo CBR 17
6.1.3. Scanned window pseudo CBR 18
6.1.4. Concurrent or channelized testing 18
6.1.5. Intermittent Testing 19
6.1.6. Intermittent Scatter Testing 20

6.2. Interpreting the Results 20
6.2.1. Test outcomes . 20
6.2.2. Statistical criteria for measuring run_length 21
6.2.3. Reordering Tolerance 23

6.3. Test Qualifications 23
6.3.1. Verify the Traffic Generation Accuracy 23
6.3.2. Verify the absence of cross traffic 24
6.3.3. Additional test preconditions 25

7. Diagnostic Tests . 25
7.1. Basic Data Rate and Run Length Tests 25
7.1.1. Run Length at Paced Full Data Rate 26
7.1.2. run length at Full Data Windowed Rate 26
7.1.3. Background Run Length Tests 26

7.2. Standing Queue tests 26
7.2.1. Congestion Avoidance 28
7.2.2. Bufferbloat . 28
7.2.3. Non excessive loss 28
7.2.4. Duplex Self Interference 28

7.3. Slowstart tests . 29
7.3.1. Full Window slowstart test 29
7.3.2. Slowstart AQM test 29

7.4. Sender Rate Burst tests 29
7.5. Combined Tests . 30
7.5.1. Sustained burst test 30
7.5.2. Live Streaming Media 31

8. Examples . 32
8.1. Near serving HD streaming video 32
8.2. Far serving SD streaming video 32

https://datatracker.ietf.org/doc/html/rfc2330

Mathis & Morton Expires April 24, 2014 [Page 3]

Internet-Draft Model Based Metrics October 2013

8.3. Bulk delivery of remote scientific data 33
9. Validation . 33
10. Acknowledgements . 34
11. Informative References . 35
Appendix A. Model Derivations 36
A.1. Aggregate Reno . 37
A.2. CUBIC . 37

Appendix B. Version Control 38
 Authors' Addresses . 38

Mathis & Morton Expires April 24, 2014 [Page 4]

Internet-Draft Model Based Metrics October 2013

1. Introduction

 Model based bulk performance metrics evaluate an Internet path's
 ability to carry bulk data. TCP models are used to design a targeted
 diagnostic suite (TDS) of IP performance tests which can be applied
 independently to each subpath of the full end-to-end path. A
 targeted diagnostic suite is constructed such that independent tests
 of the subpaths will accurately predict if the full end-to-end path
 can deliver bulk data at the specified performance target,
 independent of the measurement vantage points or other details of the
 test procedures used to measure each subpath.

 Each test in the TDS consists of a precomputed traffic pattern and
 statistical criteria for evaluating packet delivery.

 TCP models are used to design traffic patterns that mimic TCP or
 other bulk transport protocol operating at the target performance and
 RTT over a full range of conditions, including flows that are bursty
 at multiple time scales. The traffic patterns are computed in
 advance based on the properties of the full end-to-end path and
 independent of the properties of individual subpaths. As much as
 possible the traffic is generated deterministically in ways that
 minimizes the extent to which test methodology, measurement points,
 measurement vantage or path partitioning effect the details of the
 traffic.

 Models are also used to compute the bounds on the packet delivery
 statistics for acceptable the IP performance. The criteria for
 passing each test are determined from the end-to-end target
 performance and are independent of the subpath under test. In
 addition to passing or failing, a test can be inconclusive if the
 precomputed traffic pattern was not authentically generated, test
 preconditions were not met or the measurement results were not
 statistically significant.

 TCP's ability to compensate for less than ideal network conditions is
 fundamentally affected by the RTT and MTU of the end-to-end Internet
 path that it traverses. The end-to-end path determines fixed bounds
 on these parameters. The target values for these three parameters,
 Data Rate, RTT and MTU, are determined by the application, its
 intended use and the physical infrastructure over which it is
 intended to traverse. These parameters are used to inform the models
 used to design the TDS.

 This document describes a framework for deriving the traffic and
 delivery statistics for model based metrics. It does not fully
 specify any measurement techniques. Important details such as packet
 type-p selection, sampling techniques, vantage selection, etc are out

Mathis & Morton Expires April 24, 2014 [Page 5]

Internet-Draft Model Based Metrics October 2013

 of scope for this document. We imagine Fully Specified Targeted
 Diagnostic Suites (FSTDS), that fully defines all of these details.
 We use TDS to refer to the subset of such a specification that is in
 scope for this document. A TDS includes specification for the
 traffic and delivery statistics for the diagnostic tests themselves,
 documentation of the models and any assumptions or derating used to
 derive the test parameters and a description of the test setup used
 to calibrate the models, as described in later sections.

Section 2 defines terminology used throughout this document.

 It has been difficult to develop BTC metrics due to some overlooked
 requirements described in Section 3 and some intrinsic problems with
 using protocols for measurement, described in Section 4.

 In Section 5 we describe the models and common parameters used to
 derive the targeted diagnostic suite. In Section 6 we describe
 common testing procedures. Each subpath is evaluated using suite of
 far simpler and more predictable diagnostic tests described in
 Section 7. In Section 8 we present three example TDS, one that might
 be representative of HD video, when served fairly close to the user,
 a second that might be representative of standard video, served from
 a greater distance, and a third that might be representative of an
 network designed to support high performance bulk download.

 There exists a small risk that model based metric itself might yield
 a false pass result, in the sense that every subpath of an end-to-end
 path passes every IP diagnostic test and yet a real application falls
 to attain the performance target over the end-to-end path. If this
 happens, then the validation procedure described in Section 9 needs
 to be used to prove and potentially revise the models.

 Future document will define model based metrics for other traffic
 classes and application types, such as real time streaming media.

1.1. TODO

 Please send comments on this draft to ippm@ietf.org. See
http://goo.gl/02tkD for more information including: interim drafts,

 an up to date todo list and information on contributing.

 Formatted: Mon Oct 21 15:42:35 PDT 2013

2. Terminology

 Terminology about paths, etc. See [RFC2330] and
 [I-D.morton-ippm-lmap-path].

http://goo.gl/02tkD
https://datatracker.ietf.org/doc/html/rfc2330

Mathis & Morton Expires April 24, 2014 [Page 6]

Internet-Draft Model Based Metrics October 2013

 [data] sender Host sending data and receiving ACKs, typically via
 TCP.
 [data] receiver Host receiving data and sending ACKs, typically via
 TCP.
 subpath A portion of the full path. Note that there is no
 requirement that subpaths be non-overlapping.
 Measurement Point Measurement points as described in
 [I-D.morton-ippm-lmap-path].
 test path A path between two measurement points that includes a
 subpath of the end-to-end path under test, plus possibly
 additional infrastructure between the measurement points and the
 subpath.
 [Dominant] Bottleneck The Bottleneck that determines a flow's self
 clock. It generally determines the traffic statistics for the
 entire path. See Section 4.1.
 front path The subpath from the data sender to the dominant
 bottleneck.
 back path The subpath from the dominant bottleneck to the receiver.
 return path The path taken by the ACKs from the data receiver to the
 data sender.
 cross traffic Other, potentially interfering, traffic competing for
 resources (network and/or queue capacity).

 Properties determined by the end-to-end path and application. They
 are described in more detail in Section 5.1.

 Application Data Rate General term for the data rate as seen by the
 application above the transport layer. This is the payload data
 rate, and excludes TCP/IP (or other protocol) headers and
 retransmits.
 Link Data Rate General term for the data rate as seen by the link or
 lower layers. It includes transport and IP headers, retransmits
 and other transport layer overhead. This document is agnostic as
 to whether the link data rate includes or excludes framing, MAC or
 other lower layer overheads, except that they must be treated
 uniformly.
 end-to-end target parameters: Application or transport performance
 goals for the end-to-end path. They include the target data rate,
 RTT and MTU described below.
 Target Data Rate: The application or ultimate user's performance
 goal. When converted to link data rate, it must be slightly
 smaller than the actual link data rate, otherwise there is no
 margin for compensating for RTT or other path properties. These
 test will be excessively brittle if the target data rate does not
 include any built in headroom.

Mathis & Morton Expires April 24, 2014 [Page 7]

Internet-Draft Model Based Metrics October 2013

 Target RTT (Round Trip Time): The baseline (minimum) RTT of the
 longest end-to-end path the over which the application expects to
 meet the target performance. This must be specified considering
 authentic packets sizes: MTU sized packets on the forward path,
 header_overhead sized packets on the return (ACK) path.
 Target MTU (Maximum Transmission Unit): The maximum MTU supported by
 the end-to-end path the over which the application expects to meet
 the target performance. Assume 1500 Bytes per packet unless
 otherwise specified. If some subpath forces a smaller MTU, then
 it becomes the target MTU, and all model calculations and subpath
 tests must use the same smaller MTU.
 Effective Bottleneck Data Rate: This is the bottleneck data rate
 that might be inferred from the ACK stream, by looking at how much
 data the ACK stream reports was delivered per unit time. See

Section 4.1 for more details.
 [sender] [interface] rate: The burst data rate, constrained by the
 data sender's interfaces. Today 1 or 10 Gb/s are typical.
 Header overhead: The IP and TCP header sizes, which are the portion
 of each MTU not available for carrying application payload.
 Without loss of generality this is assumed to be the size for
 returning acknowledgements (ACKs). For TCP, the Maximum Segment
 Size (MSS) is the Target MTU minus the header overhead.

 Basic parameters common to models and subpath tests. They are
 described in more detail in Section 5.2.

 pipe size A general term for number of packets needed in flight (the
 window size) to exactly fill some network path or subpath. This
 is the window size which in normally the onset of queueing.
 target_pipe_size: The number of packets in flight (the window size)
 needed to exactly meet the target rate, with a single stream and
 no cross traffic for the specified target data rate, RTT and MTU.
 run length A general term for the observed, measured or specified
 number of packets that are (to be) delivered between losses or ECN
 marks. Nominally one over the loss or ECN marking probability.
 target_run_length Required run length computed from the target data
 rate, RTT and MTU.

 Ancillary parameters used for some tests

 derating: Under some conditions the standard models are too
 conservative. The modeling framework permits some latitude in
 relaxing or derating some test parameters as described in

Section 5.3 in exchange for a more stringent TDS validation
 procedures, described in Section 9.

Mathis & Morton Expires April 24, 2014 [Page 8]

Internet-Draft Model Based Metrics October 2013

 subpath_data_rate The maximum IP data rate supported by a subpath.
 This typically includes TCP/IP overhead, including headers,
 retransmits, etc.
 test_path_RTT The RTT (using appropriate packet sizes) between two
 measurement points.
 test_path_pipe The amount of data necessary to fill a test path.
 Nominally the test path RTT times the subpath_data_rate (which
 should be part of the end-to-end subpath).
 test_window The window necessary to meet the target_rate over a
 subpath. Typically test_window=target_data_rate*test_RTT/
 target_MTU.

 Tests can be classified into groups according to their applicability

 Capacity tests determine if a network subpath has sufficient
 capacity to deliver the target performance. As long as the test
 traffic is within the proper envelope for the target end-to-end
 performance, the average packet losses or ECN must be below the
 threshold computed by the model. As such, they reflect parameters
 that can transition from passing to failing as a consequence of
 additional presented load or the actions of other network users.
 By definition, capacity tests also consume significant network
 resources (data capacity and/or buffer space), and the test
 schedules must be balanced by their cost.
 Monitoring tests are design to capture the most important aspects of
 a capacity test, but without causing unreasonable ongoing load
 themselves. As such they may miss some details of the network
 performance, but can serve as a useful reduced cost proxy for a
 capacity test.
 Engineering tests evaluate how network algorithms (such as AQM and
 channel allocation) interact with TCP style self clocked protocols
 and adaptive congestion control based on packet loss and ECN
 marks. These tests are likely to have complicated interactions
 with other traffic and under some conditions can be inversely
 sensitive to load. For example a test to verify that an AQM
 algorithm causes ECN marks or packet drops early enough to limit
 queue occupancy may experience a false pass results in the
 presence of bursty cross traffic. It is important that
 engineering tests be performed under a wide range of conditions,
 including both in situ and bench testing, and over a wide variety
 of load conditions. Ongoing monitoring is less likely to be
 useful for engineering tests, although sparse in situ testing
 might be appropriate.

3. New requirements relative to RFC 2330

 [Move this entire section to a future paper]

https://datatracker.ietf.org/doc/html/rfc2330

Mathis & Morton Expires April 24, 2014 [Page 9]

Internet-Draft Model Based Metrics October 2013

 Model Based Metrics are designed to fulfill some additional
 requirement that were not recognized at the time RFC 2330 [RFC2330]
 was written. These missing requirements may have significantly
 contributed to policy difficulties in the IP measurement space. Some
 additional requirements are:
 o Metrics must be actionable by the ISP - they have to be
 interpreted in terms of behaviors or properties at the IP or lower
 layers, that an ISP can test, repair and verify.
 o Metrics must be vantage point invariant over a significant range
 of measurement point choices (e.g., measurement points as
 described in [I-D.morton-ippm-lmap-path]), including off path
 measurement points. The only requirements on MP selection should
 be that the portion of the path that is not under test is
 effectively ideal (or is non ideal in calibratable ways) and the
 RTT between MPs is below some reasonable bound.
 o Metrics must be repeatable by multiple parties. It must be
 possible for different parties to make the same measurement and
 observe the same results. In particular it is specifically
 important that both a consumer (or their delegate) and ISP be able
 to perform the same measurement and get the same result.

 NB: All of the metric requirements in RFC 2330 should be reviewed and
 potentially revised. If such a document is opened soon enough, this
 entire section should be dropped.

4. Background

 [Move to a future paper, abridge here,]

 At the time the IPPM WG was chartered, sound Bulk Transport Capacity
 measurement was known to be beyond our capabilities. By hindsight it
 is now clear why it is such a hard problem:
 o TCP is a control system with circular dependencies - everything
 affects performance, including components that are explicitly not
 part of the test.
 o Congestion control is an equilibrium process, transport protocols
 change the network (raise loss probability and/or RTT) to conform
 to their behavior.
 o TCP's ability to compensate for network flaws is directly
 proportional to the number of roundtrips per second (i.e.
 inversely proportional to the RTT). As a consequence a flawed
 link may pass a short RTT local test even though it fails when the
 path is extended by a perfect network to some larger RTT.
 o TCP has a meta Heisenberg problem - Measurement and cross traffic
 interact in unknown and ill defined ways. The situation is
 actually worse than the traditional physics problem where you can
 at least estimate the relative momentum of the measurement and

https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2330

Mathis & Morton Expires April 24, 2014 [Page 10]

Internet-Draft Model Based Metrics October 2013

 measured particles. For network measurement you can not in
 general determine the relative "elasticity" of the measurement
 traffic and cross traffic, so you can not even gage the relative
 magnitude of their effects on each other.

 The MBM approach is to "open loop" TCP by precomputing traffic
 patterns that are typically generated by TCP operating at the given
 target parameters, and evaluating delivery statistics (losses, ECN
 marks and delay). In this approach the measurement software
 explicitly controls the data rate, transmission pattern or cwnd
 (TCP's primary congestion control state variables) to create
 repeatable traffic patterns that mimic TCP behavior but are
 independent of the actual network behavior of the subpath under test.
 These patterns are manipulated to probe the network to verify that it
 can deliver all of the traffic patterns that a transport protocol is
 likely to generate under normal operation at the target rate and RTT.

 Models are used to determine the actual test parameters (burst size,
 loss rate, etc) from the target parameters. The basic method is to
 use models to estimate specific network properties required to
 sustain a given transport flow (or set of flows), and using a suite
 of metrics to confirm that the network meets the required properties.

 A network is expected to be able to sustain a Bulk TCP flow of a
 given data rate, MTU and RTT when the following conditions are met:
 o The raw link rate is higher than the target data rate.
 o The raw packet run length is larger than required by a suitable
 TCP performance model
 o There is sufficient buffering at the dominant bottleneck to absorb
 a slowstart rate burst large enough to get the flow out of
 slowstart at a suitable window size.
 o There is sufficient buffering in the front path to absorb and
 smooth sender interface rate bursts at all scales that are likely
 to be generated by the application, any channel arbitration in the
 ACK path or other mechanisms.
 o When there is a standing queue at a bottleneck for a shared media
 subpath, there are suitable bounds on how the data and ACKs
 interact, for example due to the channel arbitration mechanism.
 o When there is a slowly rising standing queue at the bottleneck the
 onset of packet loss has to be at an appropriate point (time or
 queue depth) and progressive.

 The tests to verify these condition are described in Section 7.

 A singleton [RFC2330] measurement is a pass/fail evaluation of a
 given path or subpath at a given performance. Note that measurements
 to confirm that a link passes at one particular performance might not
 be be useful to predict if the link will pass at a different

https://datatracker.ietf.org/doc/html/rfc2330

Mathis & Morton Expires April 24, 2014 [Page 11]

Internet-Draft Model Based Metrics October 2013

 performance.

 A TDS does have several valuable properties, such as natural ways to
 define several different composition metrics [RFC5835].

 [Add text on algebra on metrics (A-Frame from [RFC2330]) and
 tomography.] The Spatial Composition of fundamental IPPM metrics has
 been studied and standardized. For example, the algebra to combine
 empirical assessments of loss ratio to estimate complete path
 performance is described in section 5.1.5. of [RFC6049]. We intend
 to use this and other composition metrics as necessary.

 We are developing a tool that can perform many of the tests described
 here[MBMSource].

4.1. TCP properties

 [Move this entire section to a future paper]

 TCP and SCTP are self clocked protocols. The dominant steady state
 behavior is to have an approximately fixed quantity of data and
 acknowledgements (ACKs) circulating in the network. The receiver
 reports arriving data by returning ACKs to the data sender, the data
 sender most frequently responds by sending exactly the same quantity
 of data back into the network. The quantity of data plus the data
 represented by ACKs circulating in the network is referred to as the
 window. The mandatory congestion control algorithms incrementally
 adjust the widow by sending slightly more or less data in response to
 each ACK. The fundamentally important property of this systems is
 that it is entirely self clocked: The data transmissions are a
 reflection of the ACKs that were delivered by the network, the ACKs
 are a reflection of the data arriving from the network.

 A number of phenomena can cause bursts of data, even in idealized
 networks that are modeled as simple queueing systems.

 During slowstart the data rate is doubled on each RTT by sending
 twice as much data as was delivered to the receiver on the prior RTT.
 For slowstart to be able to fill such a network the network must be
 able to tolerate slowstart bursts up to the full pipe size inflated
 by the anticipated window reduction on the first loss or ECN mark.
 For example, with classic Reno congestion control, an optimal
 slowstart has to end with a burst that is twice the bottleneck rate
 for exactly one RTT in duration. This burst causes a queue which is
 exactly equal to the pipe size (the window is exactly twice the pipe
 size) so when the window is halved, the new window will be exactly
 the pipe size.

https://datatracker.ietf.org/doc/html/rfc5835
https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc6049#section-5.1.5

Mathis & Morton Expires April 24, 2014 [Page 12]

Internet-Draft Model Based Metrics October 2013

 Another source of bursts are application pauses. If the application
 pauses (stops reading or writing data) for some fraction of one RTT,
 state-of-the-art TCP to "catches up" to the earlier window size by
 sending a burst of data at the full sender interface rate. To fill
 such a network with a realistic application, the network has to be
 able to tolerate interface rate bursts from the data sender large
 enough to cover application pauses.

 Note that if the bottleneck data rate is significantly slower than
 the rest of the path, the slowstart bursts will not cause significant
 queues anywhere else along the path; they primarily exercise the
 queue at the dominant bottleneck. Furthermore, although the
 interface rate bursts caused by the application are likely to be
 smaller than last burst of a slowstart, they are at a higher rate so
 they can exercise queues at arbitrary points along the "front path"
 from the data sender up to and including the queue at the bottleneck.

 For many network technologies a simple queueing model does not apply:
 the network schedules, thins or otherwise alters the timing of ACKs
 and data, generally to raise the efficiency of the channel allocation
 process when confronted with relatively widely spaced small ACKs.
 These efficiency strategies are ubiquitous for half duplex, wireless
 or broadcast media.

 Altering the ACK stream generally has two consequences: raising the
 effective bottleneck data rate making slowstart burst at higher rates
 (possibly as high as the sender's interface rate) and effectively
 raising the RTT by the time that the ACKs were postponed. The first
 effect can be partially mitigated by reclocking ACKs once they are
 beyond the bottleneck on the return path to the sender, however this
 further raises the effective RTT. The most extreme example of this
 class of behaviors is a half duplex channel that is never released
 until the current end point has no pending traffic. Such
 environments cause self clocked protocols revert to extremely
 inefficient stop and wait behavior, where they send an entire window
 of data as a single burst, followed by the entire window of ACKs on
 the return path.

 If a particular end-to-end path contains a link or device that alters
 the ACK stream, then the entire path from the sender up to the
 bottleneck must be tested at the burst parameters implied by the ACK
 scheduling algorithm. The most important parameter is the Effective
 Bottleneck Data Rate, which is the average rate at which the ACKs
 advance snd.una. Note that thinning the ACKs (relying on the
 cumulative nature of seg.ack to permit discarding some ACKs) is
 implies an effectively infinite bottleneck data rate.

 To verify that a path can meet the performance target, it is

Mathis & Morton Expires April 24, 2014 [Page 13]

Internet-Draft Model Based Metrics October 2013

 necessary to independently confirm that the entire path can tolerate
 bursts in the dimensions that are likely to be induced by the
 application and any data or ACK scheduling anywhere in the path. Two
 common cases are the most important: slowstart bursts at twice the
 effective bottleneck data rate; and somewhat smaller sender interface
 rate bursts.

 The slowstart rate bursts must be at least as least as large
 target_pipe_size packets and should be twice as large (so the peak
 queue occupancy at the dominant bottleneck would be approximately
 target_pipe_size).

 There is no general model for how well the network needs to tolerate
 sender interface rate bursts. All existing TCP implementations send
 full sized full rate bursts under some typically uncommon conditions,
 such as application pauses that approximately match the RTT, or when
 ACKs are lost or thinned. Strawman: partial window bursts (some
 fraction of target_pipe_size) should be tolerated without
 significantly raising the loss probability. Full target_pipe_size
 bursts may slightly increase the loss probability. Interface rate
 bursts as large as twice target_pipe_size should not cause
 deterministic packet drops.

5. Common Models and Parameters

5.1. Target End-to-end parameters

 The target end to end parameters are the target data rate, target RTT
 and target MTU as defined in Section 2 These parameters are
 determined by the needs of the application or the ultimate end user
 and the end-to-end Internet path over which the application is
 expected to operate. The target parameters are in units that make
 sense to the upper layer: payload bytes delivered to the application,
 above TCP. They exclude overheads associated with TCP and IP
 headers, retransmitts and other protocols (e.g. DNS). In addition,
 other end-to-end parameters include the effective bottleneck data
 rate, the sender interface data rate and the TCP/IP header sizes
 (overhead).

 Note that the target parameters can be specified for a hypothetical
 path, for example to construct TDS designed for bench testing in the
 absence of a real application, or for a real physical test, for in
 situ testing of production infrastructure.

 The number of concurrent connections is explicitly not a parameter to
 this model [unlike earlier drafts]. If a subpath requires multiple
 connections in order to meet the specified performance, that must be

Mathis & Morton Expires April 24, 2014 [Page 14]

Internet-Draft Model Based Metrics October 2013

 stated explicitly and the procedure described in Section 6.1.4
 applies.

5.2. Common Model Calculations

 The most important derived parameter is target_pipe_size (in
 packets), which is the window size --- the number of packets needed
 exactly meet the target rate, with no cross traffic for the specified
 target RTT and MTU. It is given by:

 target_pipe_size = target_rate * target_RTT / (target_MTU -
 header_overhead)

 If the transport protocol (e.g. TCP) average window size is smaller
 than this, it will not meet the target rate.

 The reference target_run_length, is a very conservative model for the
 minimum required spacing between losses or ECN marks. The reference
 target_run_length can derived as follows: assume the
 subpath_data_rate is infinitesimally larger than the target_data_rate
 plus the required header overheads. Then target_pipe_size also
 predicts the onset of queueing. If the transport protocol (e.g.
 TCP) has a window size that is larger than the target_pipe_size, the
 excess packets will raise the RTT, typically by forming a standing
 queue at the bottleneck.

 Assume the transport protocol is using standard Reno style Additive
 Increase, Multiplicative Decrease congestion control [RFC5681] and
 the receiver is using standard delayed ACKs. With delayed ACKs there
 must be 2*target_pipe_size roundtrips between losses. Otherwise the
 multiplicative window reduction triggered by a loss would cause the
 network to be underfilled. We derive the number of packets between
 losses from the area under the AIMD sawtooth following [MSMO97].
 They must be no more frequent than every 1 in
 (3/2)*target_pipe_size*(2*target_pipe_size) packets. This simplifies
 to:

 target_run_length = 3*(target_pipe_size^2)

 Note that this calculation is very conservative and is based on a
 number of assumptions that may not apply. Appendix A discusses these
 assumptions and provides some alternative models. If a less
 conservative model is used, a fully specified TDS or FSTDS MUST
 document the actual method for computing target_run_length along with
 the rationale for the underlying assumptions and the ratio of chosen
 target_run_length to the reference target_run_length calculated
 above.

https://datatracker.ietf.org/doc/html/rfc5681

Mathis & Morton Expires April 24, 2014 [Page 15]

Internet-Draft Model Based Metrics October 2013

 These two parameters, target_pipe_size and target_run_length,
 directly imply most of the individual parameters for the tests below.
 Target_pipe_size is the window size, the amount of circulating data
 required to meet the target data rate, and implies the scale of the
 bursts that the network might experience. Target_run_length is the
 amount of data required between losses or ECN marks standard for
 standard congestion control.

 The individual parameters are for each diagnostic test is described
 below. In a few case there are not well established models for what
 is considered correct network operation. In many of these cases the
 problems might either be partially mitigated by future improvements
 to TCP implementations.

5.3. Parameter Derating

 Since some aspects of the models are very conservative, this
 framework permits some latitude in derating test parameters. Rather
 than trying to formalize more complicated models we permit some test
 parameters to be relaxed as long as they meet some additional
 procedural constraints:
 o The TDS or FSTDS MUST document and justify the actual method used
 compute the derated metric parameters.
 o The validation procedures described in Section 9 must be used to
 demonstrate the feasibility of meeting the performance targets
 with infrastructure that infinitessimally passes the derated
 tests.
 o The validation process itself must be documented is such a way
 that other researchers can duplicate the validation experiments.

 Except as noted, all tests below assume no derating. Tests where
 there is not currently a well established model for the required
 parameters include derating as a way to indicate flexibility in the
 parameters.

6. Common testing procedures

6.1. Traffic generating techniques

6.1.1. Paced transmission

 Paced (burst) transmissions: send bursts of data on a timer to meet a
 particular target rate and pattern. In all cases the specified data
 rate can either be the application or link rates. Header overheads
 must be included in the calculations as appropriate.

Mathis & Morton Expires April 24, 2014 [Page 16]

Internet-Draft Model Based Metrics October 2013

 Paced single packets: Send individual packets at the specified rate
 or headway.
 Burst: Send sender interface rate bursts on a timer. Specify any 3
 of: average rate, packet size, burst size (number of packets) and
 burst headway (burst start to start). These bursts are typically
 sent as back-to-back packets at the testers interface rate.
 Slowstart bursts: Send 4 packet sender interface rate bursts at an
 average data rate equal to twice effective bottleneck link rate
 (but not more than the sender interface rate). This corresponds
 to the average rate during a TCP slowstart when Appropriate Byte
 Counting [ABC] is present or delayed ack is disabled.
 Repeated Slowstart bursts: Slowstart bursts are typically part of
 larger scale pattern of repeated bursts, such as sending
 target_pipe_size packets as slowstart bursts on a target_RTT
 headway (burst start to burst start). Such a stream has three
 different average rates, depending on the averaging time scale.
 At the finest time scale the average rate is the same as the
 sender interface rate, at a medium scale the average rate is twice
 the effective bottleneck link rate and at the longest time scales
 the average rate is the target data rate.

 Note that if the effective bottleneck link rate is more than half of
 the sender interface rate, slowstart bursts become sender interface
 rate bursts.

6.1.2. Constant window pseudo CBR

 Implement pseudo constant bit rate by running a standard protocol
 such as TCP with a fixed bound on the window size. The rate is only
 maintained in average over each RTT, and is subject to limitations of
 the transport protocol.

 The bound on the window size is computed from the target_data_rate
 and the actual RTT of the test path.

 If the transport protocol fails to maintain the test rate within
 prescribed data rates, the test MUST NOT be considered passing. If
 there is a signature of a network problem (e.g. the run length is too
 small) then the test can be considered to fail. Since packet loss
 and ECN marks are required to reduce the data rate for standard
 transport protocols, the test specification must include suitable
 allowances in the prescribed data rates. If there is not sufficient
 signature of a network problem, then failing to make the prescribed
 data rate must be considered inconclusive. Otherwise there are some
 cases where tester failures might cause false negative test results.

Mathis & Morton Expires April 24, 2014 [Page 17]

Internet-Draft Model Based Metrics October 2013

6.1.3. Scanned window pseudo CBR

 Same as the above, except the window is scanned across a range of
 sizes designed to include two key events, the onset of queueing and
 the onset of packet loss or ECN marks. The window is scanned by
 incrementing it by one packet for every 2*target_pipe_size delivered
 packets. This mimics the additive increase phase of standard
 congestion avoidance and normally separates the the window increases
 by approximately twice the target_RTT.

 There are two versions of this test: one built by applying a window
 clamp to standard congestion control and one one built by stiffening
 a non-standard transport protocol. When standard congestion control
 is in effect, any losses or ECN marks cause the transport to revert
 to a window smaller than the clamp such that the scanning clamp
 looses control the window size. The NPAD pathdiag tool is an example
 of this class of algorithms [Pathdiag].

 Alternatively a non-standard congestion control algorithm can respond
 to losses by transmitting extra data, such that it (attempts) to
 maintain the specified window size independent of losses or ECN
 marks. Such a stiffened transport explicitly violates mandatory
 Internet congestion control and is not suitable for in situ testing.
 It is only appropriate for engineering testing under laboratory
 conditions. The Windowed Ping tools implemented such a test [WPING].
 This tool has been updated and is under test.[mpingSource]

 The test procedures in Section 7.2 describe how to the partition the
 scans into regions and how to interpret the results.

6.1.4. Concurrent or channelized testing

 The procedures described in his document are only directly applicable
 to single stream performance measurement, e.g. one TCP connection.
 In an Ideal world, we would disallow all performance claims based
 multiple concurrent stream but this is not practical due to at least
 two different issues. First, many very high rate link technologies
 are channelized, and pin individual flows to specific channels to
 minimize reordering or solve other problems and second TCP itself has
 scaling limits. Although the former problem might be overcome
 through different design decisions, the later problem is more deeply
 rooted.

 All standard [RFC 5681] and de facto standard [CUBIC] congestion
 control algorithms have scaling limits, in the sense that as a
 network over a fixed RTT and MTU gets faster all congestion control
 algorithms get less accurate. In general their noise immunity drops
 (a single packet drop should have less effect as individual packets

https://datatracker.ietf.org/doc/html/rfc5681

Mathis & Morton Expires April 24, 2014 [Page 18]

Internet-Draft Model Based Metrics October 2013

 become smaller relative to the window size) and the control frequency
 of the AIMD sawtooth also drops, meaning that as TCP is using more
 total capacity it gets less information about the state of the
 network and other traffic. These properties are a direct consequence
 of the original Reno design and are implicitly required by the
 requirement that all transport protocols be "TCP friendly"
 [Guidelines] There are a number of reason to want to specify
 performance in term of multiple concurrent flows. Although there are
 a number of downsides to @@@@

 The use of multiple connections in the Internet has been very
 controversial since the beginning of the World-Wide-Web[first
 complaint]. Modern browsers open many connections [BScope]. Experts
 associated with IETF transport area have frequently spoken against
 this practice [long list]. It is not inappropriate to assume some
 small number of concurrent connections (e.g. 4 or 6), to compensate
 for limitation in TCP. However, choosing too large a number is at
 risk of being interpreted as a signal by the web browser community
 that this practice has been embraced by the Internet service provider
 community. It may not be desirable to send such a signal.

 Note that the current proposal for httpbis [SPDY] is specifically
 designed to work best with a single TCP connection per client server
 pair, because it uses adaptive compression which requires sending
 separate compression dictionaries per connection. As long as TCP can
 use IW10 and some of the transport parameter can be cached, multiple
 connections provide a negative gain, due to the replicated
 compression overhead.

 The specification to use multiple connections is not recommended for
 data rates below several Mb/s, which can be attained with run lengths
 under 10000. Since run length goes as the square of the data rates,
 at higher rates (see Section 8.3) the run lengths can be unfeasibly
 large, and multiple connection might be the only feasible approach.

6.1.5. Intermittent Testing

 Any test which does not depend on queueing (e.g. the CBR tests) or
 experiences periodic zero outstanding data during normal operation
 (e.g. between bursts for the various burst tests), can be formulated
 as an intermittent test.

 The Intermittent testing can be used for ongoing monitoring for
 changes in subpath quality with minimal disruption users. It should
 be used in conjunction with the full rate test because this method
 assesses an average_run_length over a long time interval w.r.t. user
 sessions. It may false fail due to other legitimate congestion
 causing traffic or may false pass changes in underlying link

Mathis & Morton Expires April 24, 2014 [Page 19]

Internet-Draft Model Based Metrics October 2013

 properties (e.g. a modem retraining to an out of contract lower
 rate).

 [Need text about bias (false pass) in the shadow of loss caused by
 excessive bursts]

6.1.6. Intermittent Scatter Testing

 Intermittent scatter testing: when testing the network path to or
 from an ISP subscriber aggregation point (CMTS, DSLAM, etc),
 intermittent tests can be spread across a pool of users such that no
 one users experiences the full impact of the testing, even though the
 traffic to or from the ISP subscriber aggregation point is sustained
 at full rate.

6.2. Interpreting the Results

6.2.1. Test outcomes

 A singleton is a pass/fail measurement of a subpath. If any subpath
 fails any test then the end-to-end path is also expected to fail to
 attain the target performance under some conditions.

 In addition we use "inconclusive outcome" to indicate that a test
 failed to attain the required test conditions. A test is
 inconclusive if the precomputed traffic pattern was not authentically
 generated, test preconditions were not met or the measurement results
 were not statistically significantly.

 This is important to the extent that the diagnostic tests use
 protocols which themselves include built in control systems which
 might interfere with some aspect of the test. For example consider a
 test that is implemented by adding rate controls and loss
 instrumentation to TCP: meeting the run length specification while
 failing to attain the specified data rate must be treated as an
 inconclusive result, because we can not a priori determine if the
 reduced data rate was caused by a TCP problem or a network problem,
 or if the reduced data rate had a material effect on the run length
 measurement. (Note that if the measured run length was too small,
 the test can be considered to have failed because it doesn't really
 matter that the test didn't attain the required data rate).

 The vantage independence properties of Model Based Metrics depends on
 the accuracy of the distinction between conclusive (pass or fail) and
 inconclusive tests. One way to view inconclusive tests is that they
 reflect situations where the signature is ambiguous between problems
 with the the subpath and problems with the diagnostic test itself.
 One of the goals for evolving diagnostic test designs will be to keep

Mathis & Morton Expires April 24, 2014 [Page 20]

Internet-Draft Model Based Metrics October 2013

 sharpening this distinction.

 One of the goals of evolving the testing process, procedures and
 measurement point selection should be to minimize the number of
 inconclusive tests.

 Note that procedures that attempt to sweep the target parameter space
 to find the bounds on some parameter (for example to find the highest
 data rate for a subpath) are likely to break the location independent
 properties of Model Based Metrics, because the boundary between
 passing and inconclusive is extremely likely to be RTT sensitive,
 because TCP's ability to compensate for problems scales with the
 number of round trips per second.

6.2.2. Statistical criteria for measuring run_length

 When evaluating the observed run_length, we need to determine
 appropriate packet stream sizes and acceptable error levels for
 efficient methods of measurement. In practice, can we compare the
 empirically estimated loss probabilities with the targets as the
 sample size grows? How large a sample is needed to say that the
 measurements of packet transfer indicate a particular run-length is
 present?

 The generalized measurement can be described as recursive testing:
 send packets (individually or in patterns) and observe the packet
 transfer performance (loss ratio or other metric, any defect we
 define).

 As each packet is sent and measured, we have an ongoing estimate of
 the performance in terms of defect to total packet ratio (or an
 empirical probability). We continue to send until conditions support
 a conclusion or a maximum sending limit has been reached.

 We have a target_defect_probability, 1 defect per target_run_length,
 where a "defect" is defined as a lost packet, a packet with ECN mark,
 or other impairment. This constitutes the null Hypothesis:

 H0: no more than one defect in target_run_length =
 3*(target_pipe_size)^2 packets

 and we can stop sending packets if on-going measurements support
 accepting H0 with the specified Type I error = alpha (= 0.05 for
 example).

 We also have an alternative Hypothesis to evaluate: if performance is
 significantly lower than the target_defect_probability. Based on
 analysis of typical values and practical limits on measurement

Mathis & Morton Expires April 24, 2014 [Page 21]

Internet-Draft Model Based Metrics October 2013

 duration, we choose four times the H0 probability:

 H1: one or more defects in (target_run_length/4) packets

 and we can stop sending packets if measurements support rejecting H0
 with the specified Type II error = beta (= 0.05 for example), thus
 preferring the alternate hypothesis H1.

 H0 and H1 constitute the Success and Failure outcomes described
 elsewhere in the memo, and while the ongoing measurements do not
 support either hypothesis the current status of measurements is
 inconclusive.

 The problem above is formulated to match the Sequential Probability
 Ratio Test (SPRT) [StatQC], which also starts with a pair of
 hypothesis specified as above:

 H0: p0 = one defect in target_run_length
 H1: p1 = one defect in target_run_length/4
 As packets are sent and measurements collected, the tester evaluates
 the cumulative defect count against two boundaries representing H0
 Acceptance or Rejection (and acceptance of H1):

 Acceptance line: Xa = -h1 + sn
 Rejection line: Xr = h2 + sn
 where n increases linearly for each packet sent and

 h1 = { log((1-alpha)/beta) }/k
 h2 = { log((1-beta)/alpha) }/k
 k = log{ (p1(1-p0)) / (p0(1-p1)) }
 s = [log{ (1-p0)/(1-p1) }]/k
 for p0 and p1 as defined in the null and alternative Hypotheses
 statements above, and alpha and beta as the Type I and Type II error.

 The SPRT specifies simple stopping rules:

 o Xa < defect_count(n) < Xb: continue testing
 o defect_count(n) <= Xa: Accept H0
 o defect_count(n) >= Xb: Accept H1

 The calculations above are implemented in the R-tool for Statistical
 Analysis, in the add-on package for Cross-Validation via Sequential
 Testing (CVST) [http://www.r-project.org/] [Rtool] [CVST] .

 Using the equations above, we can calculate the minimum number of
 packets (n) needed to accept H0 when x defects are observed. For
 example, when x = 0:

Mathis & Morton Expires April 24, 2014 [Page 22]

Internet-Draft Model Based Metrics October 2013

 Xa = 0 = -h1 + sn
 and n = h1 / s

6.2.3. Reordering Tolerance

 All tests must be instrumented for reordering [RFC4737].

 NB: there is no global consensus for how much reordering tolerance is
 appropriate or reasonable. ("None" is absolutely unreasonable.)

Section 5 of [RFC4737] proposed a metric that may be sufficient to
 designate isolated reordered packets as effectively lost, because
 TCP's retransmission response would be the same.

 [As a strawman, we propose the following:] TCP should be able to
 adapt to reordering as long as the reordering extent is no more than
 the maximum of one half window or 1 mS, whichever is larger. Note
 that there is a fundamental tradeoff between tolerance to reordering
 and how quickly algorithms such as fast retransmit can repair losses.
 Within this limit on reorder extent, there should be no bound on
 reordering density.

 NB: Traditional TCP implementations were not compatible with this
 metric, however newer implementations still need to be evaluated

 Parameters:
 Reordering displacement: the maximum of one half of target_pipe_size
 or 1 mS.

6.3. Test Qualifications

 This entire section might be summarized as "needs to be specified in
 a FSTDS"

 Things to monitor before, during and after a test.

6.3.1. Verify the Traffic Generation Accuracy

 [Excess detail for this doc. To be summarized]

 for most tests, failing to accurately generate the test traffic
 indicates an inconclusive tests, since it has to be presumed that the
 error in traffic generation might have affected the test outcome. To
 the extent that the network itself had an effect on the the traffic
 generation (e.g. in the standing queue tests) the possibility exists
 that allowing too large of error margin in the traffic generation
 might introduce feedback loops that comprise the vantage independents
 properties of these tests.

https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc4737#section-5

Mathis & Morton Expires April 24, 2014 [Page 23]

Internet-Draft Model Based Metrics October 2013

 Parameters:
 Maximum Data Rate Error The permitted amount that the test traffic
 can be different than specified for the current test. This is a
 symmetrical bound.
 Maximum Data Rate Overage The permitted amount that the test traffic
 can be above than specified for the current test.
 Maximum Data Rate Underage The permitted amount that the test
 traffic can be less than specified for the current test.

6.3.2. Verify the absence of cross traffic

 [Excess detail for this doc. To be summarized]

 The proper treatment of cross traffic is different for different
 subpaths. In general when testing infrastructure which is associated
 with only one subscriber, the test should be treated as inconclusive
 it that subscriber is active on the network. However, for shared
 infrastructure, the question at hand is likely to be testing if
 provider has sufficient total capacity. In such cases the presence
 of cross traffic due to other subscribers is explicitly part of the
 network conditions and its effects are explicitly part of the test.

 @@@@ Need to distinguish between ISP managed sharing and unmanaged
 sharing. e.g. WiFi

 Note that canceling tests due to load on subscriber lines may
 introduce sampling errors for testing other parts of the
 infrastructure. For this reason tests that are scheduled but not run
 due to load should be treated as a special case of "inconclusive".

 Use a passive packet or SNMP monitoring to verify that the traffic
 volume on the subpath agrees with the traffic generated by a test.
 Ideally this should be performed before, during and after each test.

 The goal is provide quality assurance on the overall measurement
 process, and specifically to detect the following measurement
 failure: a user observes unexpectedly poor application performance,
 the ISP observes that the access link is running at the rated
 capacity. Both fail to observe that the user's computer has been
 infected by a virus which is spewing traffic as fast as it can.

 Parameters:
 Maximum Cross Traffic Data Rate The amount of excess traffic
 permitted. Note that this will be different for different tests.

 One possible method is an adaptation of: www-didc.lbl.gov/papers/
 SCNM-PAM03.pdf D Agarwal etal. "An Infrastructure for Passive
 Network Monitoring of Application Data Streams". Use the same

Mathis & Morton Expires April 24, 2014 [Page 24]

Internet-Draft Model Based Metrics October 2013

 technique as that paper to trigger the capture of SNMP statistics for
 the link.

6.3.3. Additional test preconditions

 [Excess detail for this doc. To be summarized]

 Send pre-load traffic as needed to activate radios with a sleep mode,
 or other "reactive network" elements (term defined in
 [draft-morton-ippm-2330-update-01]).

 Use the procedure above to confirm that the pre-test background
 traffic is low enough.

7. Diagnostic Tests

 The diagnostic tests are organized by which properties are being
 tested: run length, standing queues; slowstart bursts; sender rate
 bursts; and combined tests. The combined tests reduce overhead at
 the expense of conflating the signatures of multiple failures.

7.1. Basic Data Rate and Run Length Tests

 We propose several versions of the basic data rate and run length
 test. All measure the number of packets delivered between losses or
 ECN marks, using a data stream that is rate controlled at or below
 the target_data_rate.

 The tests below differ in how the data rate is controlled. The data
 can be paced on a timer, or window controlled at full target data
 rate. The first two tests implicitly confirm that sub_path has
 sufficient raw capacity to carry the target_data_rate. They are
 recommend for relatively infrequent testing, such as an installation
 or auditing process. The third, background run length, is a low rate
 test designed for ongoing monitoring for changes in subpath quality.

 All rely on the receiver accumulating packet delivery statistics as
 described in Section 6.2.2 to score the outcome:

 Pass: it is statistically significant that the observed run length is
 larger than the target_run_length.

 Fail: it is statistically significant that the observed run length is
 smaller than the target_run_length.

 A test is considered to be inconclusive if it failed to meet the data
 rate as specified below, meet the qualifications defined in

https://datatracker.ietf.org/doc/html/draft-morton-ippm-2330-update-01

Mathis & Morton Expires April 24, 2014 [Page 25]

Internet-Draft Model Based Metrics October 2013

Section 6.3 or neither run length statistical hypothesis was
 confirmed in the allotted test duration.

7.1.1. Run Length at Paced Full Data Rate

 Confirm that the observed run length is at least the
 target_run_length while relying on timer to send data at the
 target_rate using the procedure described in in Section 6.1.1 with a
 burst size of 1 (single packets).

 The test is considered to be inconclusive if the packet transmission
 can not be accurately controlled for any reason.

7.1.2. run length at Full Data Windowed Rate

 Confirm that the observed run length is at least the
 target_run_length while sending at an average rate equal to the
 target_data_rate, by controlling (or clamping) the window size of a
 conventional transport protocol to a fixed value computed from the
 properties of the test path, typically
 test_window=target_data_rate*test_RTT/target_MTU.

 Since losses and ECN marks generally cause transport protocols to at
 least temporarily reduce their data rates, this test is expected to
 be less precise about controlling its data rate. It should not be
 considered inconclusive as long as at least some of the round trips
 reached the full target_data_rate, without incurring losses. To pass
 this test the network MUST deliver target_pipe_size packets in
 target_RTT time without any losses or ECN marks at least once per two
 target_pipe_size round trips, in addition to meeting the run length
 statistical test.

7.1.3. Background Run Length Tests

 The background run length is a low rate version of the target target
 rate test above, designed for ongoing lightweight monitoring for
 changes in the observed subpath run length without disrupting users.
 It should be used in conjunction with one of the above full rate
 tests because it does not confirm that the subpath can support raw
 data rate.

 Existing loss metrics such as [RFC 6673] might be appropriate for
 measuring background run length.

7.2. Standing Queue tests

 These test confirm that the bottleneck is well behaved across the
 onset of packet loss, which typically follows after the onset of

https://datatracker.ietf.org/doc/html/rfc6673

Mathis & Morton Expires April 24, 2014 [Page 26]

Internet-Draft Model Based Metrics October 2013

 queueing. Well behaved generally means lossless for transient
 queues, but once the queue has been sustained for a sufficient period
 of time (or a sufficient queue depth) there should be a small number
 of losses to signal to the transport protocol that it should reduce
 its window. Losses that are too early can prevent the transport from
 averaging at the target_data_rate. Losses that are too late indicate
 that the queue might be subject to bufferbloat [Bufferbloat] and
 inflict excess queuing delays on all flows sharing the bottleneck.
 Excess losses make loss recovery problematic for the transport
 protocol. Non-linear or erratic RTT fluctuations suggest poor
 interactions between the channel acquisition systems and the
 transport self clock. All of the tests in this section use the same
 basic scanning algorithm but score the link on the basis of how well
 it avoids each of these problems.

 For some technologies the data might not be subject to increasing
 delays, in which case the data rate will vary with the window size
 all the way up to the onset of losses or ECN marks. For theses
 technologies, the discussion of queueing does not apply, but it is
 still required that the onset of losses (or ECN marks) be at an
 appropriate point and progressive.

 Use the procedure in Section 6.1.3 to sweep the window across the
 onset of queueing and the onset of loss. The tests below all assume
 that the scan emulates standard additive increase and delayed ACK by
 incrementing the window by one packet for every 2*target_pipe_size
 packets delivered. A scan can be divided into three regions: below
 the onset of queueing, a standing queue, and at or beyond the onset
 of loss.

 Below the onset of queueing the RTT is typically fairly constant, and
 the data rate varies in proportion to the window size. Once the data
 rate reaches the link rate, the data rate becomes fairly constant,
 and the RTT increases in proportion to the the window size. The
 precise transition from one region to the other can be identified by
 the maximum network power, defined to be the ratio data rate over the
 RTT[POWER].

 For technologies that do not have conventional queues, start the scan
 at a window equal to the test_window, i.e. starting at the target
 rate, instead of the power point.

 If there is random background loss (e.g. bit errors, etc), precise
 determination of the onset of packet loss may require multiple scans.
 Above the onset of loss, all transport protocols are expected to
 experience periodic losses. For the stiffened transport case they
 will be determined by the AQM algorithm in the network or the details
 of how the the window increase function responds to loss. For the

Mathis & Morton Expires April 24, 2014 [Page 27]

Internet-Draft Model Based Metrics October 2013

 standard transport case the details of periodic losses are typically
 dominated by the behavior of the transport protocol itself.

7.2.1. Congestion Avoidance

 A link passes the congestion avoidance standing queue test if more
 than target_run_length packets are delivered between the power point
 (or test_window) and the first loss or ECN mark. If this test is
 implemented using a standards congestion control algorithm with a
 clamp, it can be used in situ in the production internet as a
 capacity test. For an example of such a test see [NPAD].

7.2.2. Bufferbloat

 This test confirms that there is some mechanism to limit buffer
 occupancy (e.g. prevents bufferbloat). Note that this is not
 strictly a requirement for single stream bulk performance, however if
 there is no mechanism to limit buffer occupancy then a single stream
 with sufficient data to deliver is likely to cause the problems
 described in [RFC 2309] and [Bufferbloat]. This may cause only minor
 symptoms for the dominant flow, but has the potential to make the
 link unusable for all other flows and applications.

 Pass if the onset of loss is before a standing queue has introduced
 more delay than than twice target_RTT, or other well defined limit.
 Note that there is not yet a model for how much standing queue is
 acceptable. The factor of two chosen here reflects a rule of thumb.
 Note that in conjunction with the previous test, this test implies
 that the first loss should occur at a queueing delay which is between
 one and two times the target_RTT.

7.2.3. Non excessive loss

 This test confirm that the onset of loss is not excessive. Pass if
 losses are bound by the the fluctuations in the cross traffic, such
 that transient load (bursts) do not cause dips in aggregate raw
 throughput. e.g. pass as long as the losses are no more bursty than
 are expected from a simple drop tail queue. Although this test could
 be made more precise it is really included here for pedantic
 completeness.

7.2.4. Duplex Self Interference

 This engineering test confirms a bound on the interactions between
 the forward data path and the ACK return path. Fail if the RTT rises
 by more than some fixed bound above the expected queueing time
 computed from trom the excess window divided by the link data rate.
 @@@@ This needs further testing.

https://datatracker.ietf.org/doc/html/rfc2309

Mathis & Morton Expires April 24, 2014 [Page 28]

Internet-Draft Model Based Metrics October 2013

7.3. Slowstart tests

 These tests mimic slowstart: data is sent at twice the effective
 bottleneck rate to exercise the queue at the dominant bottleneck.

 They are deemed inconclusive if the elapsed time to send the data
 burst is not less than half of the time to receive the ACKs. (i.e.
 sending data too fast is ok, but sending it slower than twice the
 actual bottleneck rate as indicated by the ACKs is deemed
 inconclusive). Space the bursts such that the average data rate is
 equal to the target_data_rate.

7.3.1. Full Window slowstart test

 This is a capacity test to confirm that slowstart is not likely to
 exit prematurely. Send slowstart bursts that are target_pipe_size
 total packets. Accumulate packet delivery statistics as described in

Section 6.2.2 to score the outcome. Pass if it is statistically
 significant that the observed run length is larger than the
 target_run_length. Fail if it is statistically significant that the
 observed run length is smaller than the target_run_length.

 Note that these are the same parameters as the Sender Full Window
 burst test, except the burst rate is at slowestart rate, rather than
 sender interface rate.

7.3.2. Slowstart AQM test

 Do a continuous slowstart (send data continuously at slowstart_rate),
 until the first loss, stop, allow the network to drain and repeat,
 gathering statistics on the last packet delivered before the loss,
 the loss pattern, maximum RTT and window size. Justify the results.
 There is not currently sufficient theory justifying requiring any
 particular result, however design decisions that affect the outcome
 of this tests also affect how the network balances between long and
 short flows (the "mice and elephants" problem)

 This is an engineering test: It would be best performed on a
 quiescent network or testbed, since cross traffic has the potential
 to change the results.

7.4. Sender Rate Burst tests

 These tests determine how well the network can deliver bursts sent at
 sender's interface rate. Note that this test most heavily exercises
 the front path, and is likely to include infrastructure nominally out
 of scope.

Mathis & Morton Expires April 24, 2014 [Page 29]

Internet-Draft Model Based Metrics October 2013

 Also, there are a several details that are not precisely defined.
 For starters there is not a standard server interface rate. 1 Gb/s is
 very common today, but higher rates (e.g. 10 Gb/s) are becoming cost
 effective and can be expected to be dominant some time in the future.

 Current standards permit TCP to send a full window bursts following
 an application pause. Congestion Window Validation [RFC 2861], is
 not required, but even if was it does not take effect until an
 application pause is longer than an RTO. Since this is standard
 behavior, it is desirable that the network be able to deliver it,
 otherwise application pauses will cause unwarranted losses.

 It is also understood in the application and serving community that
 interface rate bursts have a cost to the network that has to be
 balanced against other costs in the servers themselves. For example
 TCP Segmentation Offload [TSO] reduces server CPU in exchange for
 larger network bursts, which increase the stress on network buffer
 memory.

 There is not yet theory to unify these costs or to provide a
 framework for trying to optimize global efficiency. We do not yet
 have a model for how much the network should tolerate server rate
 bursts. Some bursts must be tolerated by the network, but it is
 probably unreasonable to expect the network to efficiently deliver
 all data as a series of bursts.

 For this reason, this is the only test for which we explicitly
 encourage detrateing. A TDS should include a table of pairs of
 derating parameters: what burst size to use as a fraction of the
 target_pipe_size, and how much each burst size is permitted to reduce
 the run length, relative to to the target_run_length. @@@@ Needs more
 work and experimentation.

7.5. Combined Tests

 These tests are more efficient from a deployment/operational
 perspective, but may not be possible to diagnose if they fail.

7.5.1. Sustained burst test

 Send target_pipe_size*derate sender interface rate bursts every
 target_RTT*derate, for derate between 0 and 1. Verify that the
 observed run length meets target_run_length. Key observations:
 o This test is subpath RTT invariant, as long as the tester can
 generate the required pattern.
 o The subpath under test is expected to go idle for some fraction of
 the time: (subpath_data_rate-target_rate)/subpath_data_rate.
 Failing to do so suggests a problem with the procedure.

https://datatracker.ietf.org/doc/html/rfc2861

Mathis & Morton Expires April 24, 2014 [Page 30]

Internet-Draft Model Based Metrics October 2013

 o This test is more strenuous than the slowstart tests: they are not
 needed if the link passes this test with derate=1.
 o A link that passes this test is likely to be able to sustain
 higher rates (close to subpath_data_rate) for paths with RTTs
 smaller than the target_RTT. Offsetting this performance
 underestimation is part of the rationale behind permitting
 derating in general.
 o This test can be implemented with standard instrumented TCP[RFC
 4898], using a specialized measurement application at one end and
 a minimal service at the other end [RFC 863, RFC 864]. It may
 require tweaks to the TCP implementation.
 o This test is efficient to implement, since it does not require
 per-packet timers, and can make use of TSO in modern NIC hardware.
 o This test is not totally sufficient: the standing window
 engineering tests are also needed to be sure that the link is well
 behaved at and beyond the onset of congestion.
 o This one test can be proven to be the one capacity test to
 supplant them all.

7.5.2. Live Streaming Media

 Model Based Metrics can be implemented as a side effect of serving
 any non-throughput maximizing traffic, such as streaming media, by
 applying some additional controls to the traffic. The essential
 requirement is that the traffic be constrained such that even with
 arbitrary application pauses, bursts and data rate fluctuations the
 traffic stays within the envelope determined by all of the individual
 tests described above, for a specific TDS.

 If the serving RTT is less than the target_RTT, this constraint is
 most easily implemented by clamping the transport window size to
 test_window=target_data_rate*serving_RTT/target_MTU. This
 test_window size will limit the both the serving data rate and burst
 sizes to be no larger than the procedures in Section 7.1.2 and

Section 7.4, assuming burst size derating equal to the serving_RTT
 divided by the target_RTT.

 Note that if the application tolerates fluctuations in its actual
 data rate (say by use of a playout buffer) it is important that the
 target_data_rate be above the actual average rate needed by the
 application so it can recover after transient pauses caused by
 congestion or the application itself. Since the serving RTT is
 smaller than the target_RTT, the worst case bursts that might be
 generated under these conditions are smaller than called for by

Section 7.4

https://datatracker.ietf.org/doc/html/rfc864

Mathis & Morton Expires April 24, 2014 [Page 31]

Internet-Draft Model Based Metrics October 2013

8. Examples

 In this section we present TDS for a couple of performance
 specifications.

 Tentatively: 5 Mb/s*50 ms, 1 Mb/s*50ms, 250kbp*100mS

8.1. Near serving HD streaming video

 Today the best quality HD video requires slightly less than 5 Mb/s
 [HDvideo]. Since it is desirable to serve such content locally, we
 assume that the content will be within 50 mS, which is enough to
 cover continental Europe or either US coast.

 5 Mb/s over a 50 ms path

 +----------------------+-------+---------+
 | End to End Parameter | Value | units |
 +----------------------+-------+---------+
 | target_rate | 5 | Mb/s |
 | target_RTT | 50 | ms |
 | traget_MTU | 1500 | bytes |
 | target_pipe_size | 22 | packets |
 | target_run_length | 1452 | packets |
 +----------------------+-------+---------+

 Table 1

 This example uses the most conservative TCP model and no derating.

8.2. Far serving SD streaming video

 Standard Quality video typically fits in 1 Mb/s [SDvideo]. This can
 be reasonably delivered via longer paths with larger. We assume
 100mS.

Mathis & Morton Expires April 24, 2014 [Page 32]

Internet-Draft Model Based Metrics October 2013

 5 Mb/s over a 50 ms path

 +----------------------+-------+---------+
 | End to End Parameter | Value | units |
 +----------------------+-------+---------+
 | target_rate | 1 | Mb/s |
 | target_RTT | 100 | ms |
 | traget_MTU | 1500 | bytes |
 | target_pipe_size | 9 | packets |
 | target_run_length | 243 | packets |
 +----------------------+-------+---------+

 Table 2

 This example uses the most conservative TCP model and no derating.

8.3. Bulk delivery of remote scientific data

 This example corresponds to 100 Mb/s bulk scientific data over a
 moderately long RTT. Note that the target_run_length is infeasible
 for most networks.

 100 Mb/s over a 200 ms path

 +----------------------+---------+---------+
 | End to End Parameter | Value | units |
 +----------------------+---------+---------+
 | target_rate | 100 | Mb/s |
 | target_RTT | 200 | ms |
 | traget_MTU | 1500 | bytes |
 | target_pipe_size | 1741 | packets |
 | target_run_length | 9093243 | packets |
 +----------------------+---------+---------+

 Table 3

9. Validation

 This document permits alternate models and parameter derating, as
 described in Section 5.2 and Section 5.3. In exchange for this
 latitude in the modelling process it requires the ability to
 demonstrate authentic applications and protocol implementations
 meeting the target end-to-end performance goals over infrastructure
 that infinitessimally passes the TDS.

 The validation process relies on constructing a test network such
 that all of the individual load tests pass only infinitessimally, and

Mathis & Morton Expires April 24, 2014 [Page 33]

Internet-Draft Model Based Metrics October 2013

 proving that an authentic application running over a real TCP
 implementation (or other protocol as appropriate) can be expected to
 meet the end-to-end target parameters on such a network.

 For example using our example in our HD streaming video TDS described
 in Section 8.1, the bottleneck data rate should be 5 Mb/s, the per
 packet random background loss probability should be 1/1453, for a run
 length of 1452 packets, the bottleneck queue should be 22 packets and
 the front path should have just enough buffering to withstand 22
 packet line rate bursts. We want every one of the TDS tests to fail
 if we slightly increase the relevant test parameter, so for example
 sending a 23 packet slowstart bursts should cause excess (possibly
 deterministic) packet drops at the dominant queue at the bottleneck.
 On this infinitessimally passing network it should be possible for a
 real ral application using a stock TCP implementation in the vendor's
 default configuration to attain 5 Mb/s over an 50 mS path.

 @@@@ Need to better specify the workload: both short and long flows.

 The difficult part of this process is arranging for each subpath to
 infinitesimally pass the individual tests. We suggest two
 approaches: constraining resources in devices by configuring them not
 to use all available buffer space or data rate; and preloading
 subpaths with cross traffic. Note that is it important that a single
 environment is constructed that infinitessimally passes all tests,
 otherwise there is a chance that TCP can exploit extra latitude in
 some parameters (such as data rate) to partially compensate for
 constraints in other parameters.

 If a TDS validated according to these procedures is used to inform
 public dialog, the validation experiment itself should also be public
 with sufficient precision for the experiment to be replicated by
 other researchers. All components should either be open source of
 fully specified proprietary implementations that are available to the
 research community.

 TODO: paper proving the validation process.

10. Acknowledgements

 Ganga Maguluri suggested the statistical test for measuring loss
 probability in the target run length.

 Meredith Whittaker for improving the clarity of the communications.

Mathis & Morton Expires April 24, 2014 [Page 34]

Internet-Draft Model Based Metrics October 2013

11. Informative References

 [RFC2330] Paxson, V., Almes, G., Mahdavi, J., and M. Mathis,
 "Framework for IP Performance Metrics", RFC 2330,
 May 1998.

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
 November 2006.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, September 2009.

 [RFC5835] Morton, A. and S. Van den Berghe, "Framework for Metric
 Composition", RFC 5835, April 2010.

 [RFC6049] Morton, A. and E. Stephan, "Spatial Composition of
 Metrics", RFC 6049, January 2011.

 [I-D.morton-ippm-lmap-path]
 Bagnulo, M., Burbridge, T., Crawford, S., Eardley, P., and
 A. Morton, "A Reference Path and Measurement Points for
 LMAP", draft-morton-ippm-lmap-path-00 (work in progress),
 January 2013.

 [MSMO97] Mathis, M., Semke, J., Mahdavi, J., and T. Ott, "The
 Macroscopic Behavior of the TCP Congestion Avoidance
 Algorithm", Computer Communications Review volume 27,
 number3, July 1997.

 [WPING] Mathis, M., "Windowed Ping: An IP Level Performance
 Diagnostic", INET 94, June 1994.

 [mpingSource]
 Fan, X., Mathis, M., and D. Hamon, "Git Repository for
 mping: An IP Level Performance Diagnostic", Sept 2013,
 <https://github.com/m-lab/mping>.

 [MBMSource]
 Hamon, D., "Git Repository for Model Based Metrics",
 Sept 2013, <https://github.com/m-lab/MBM>.

 [Pathdiag]
 Mathis, M., Heffner, J., O'Neil, P., and P. Siemsen,
 "Pathdiag: Automated TCP Diagnosis", Passive and Active
 Measurement , June 2008.

 [BScope] Broswerscope, "Browserscope Network tests", Sept 2012,

https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc5835
https://datatracker.ietf.org/doc/html/rfc6049
https://datatracker.ietf.org/doc/html/draft-morton-ippm-lmap-path-00
https://github.com/m-lab/mping
https://github.com/m-lab/MBM

Mathis & Morton Expires April 24, 2014 [Page 35]

Internet-Draft Model Based Metrics October 2013

 <http://www.browserscope.org/?category=network>.

 [Rtool] R Development Core Team, "R: A language and environment
 for statistical computing. R Foundation for Statistical
 Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

http://www.R-project.org/", , 2011.

 [StatQC] Montgomery, D., "Introduction to Statistical Quality
 Control - 2nd ed.", ISBN 0-471-51988-X, 1990.

 [CVST] Krueger, T. and M. Braun, "R package: Fast Cross-
 Validation via Sequential Testing", version 0.1, 11 2012.

 [LMCUBIC] Ledesma Goyzueta, R. and Y. Chen, "A Deterministic Loss
 Model Based Analysis of CUBIC, IEEE International
 Conference on Computing, Networking and Communications
 (ICNC), E-ISBN : 978-1-4673-5286-4", January 2013.

Appendix A. Model Derivations

 The reference target_run_length described in Section 5.2 is based on
 very conservative assumptions: that all window above target_pipe_size
 contributes to a standing queue that raises the RTT, and that classic
 Reno congestion control is in effect. In this section we provide two
 alternative calculations using different assumptions.

 It may seem out of place to allow such latitude in a measurement
 standard, but the section provides offsetting requirements.

 These models provide estimates that make the most sense if network
 performance is viewed logarithmically. In the operational internet,
 data rates span more than 8 orders of magnitude, RTT spans more than
 3 orders of magnitude, and loss probability spans at least 8 orders
 of magnitude. When viewed logarithmically (as in decibels), these
 correspond to 80 dB of dynamic range. On an 80 db scale, a 3 dB
 error is less than 4% of the scale, even though it might represent a
 factor of 2 in raw parameter.

 Although this document gives a lot of latitude for calculating
 target_run_length, people designing suites of tests need to consider
 the effect of their choices on the ongoing conversation and tussle
 about the relevance of "TCP friendliness" as an appropriate model for
 capacity allocation. Choosing a target_run_length that is
 substantially smaller than the reference target_run_length specified
 in Section 5.2 is equivalent to saying that it is appropriate for the
 transport research community to abandon "TCP friendliness" as a
 fairness model and to develop more aggressive Internet transport

http://www.browserscope.org/?category=network
http://www.R-project

Mathis & Morton Expires April 24, 2014 [Page 36]

Internet-Draft Model Based Metrics October 2013

 protocols, and for applications to continue (or even increase) the
 number of connections that they open concurrently.

A.1. Aggregate Reno

 In Section 5.2 it is assumed that the target rate is the same as the
 link rate, and any excess window causes a standing queue at the
 bottleneck. This might be representative of a non-shared access
 link. An alternative situation would be a heavily aggregated subpath
 where individual flows do not significantly contribute to the
 queueing delay, and losses are determined monitoring the average data
 rate, for example by the use of a virtual queue as in [AFD]. In such
 a scheme the RTT is constant and TCP's AIMD congestion control causes
 the data rate to fluctuate in a sawtooth. If the traffic is being
 controlled in a manner that is consistent with the metrics here, goal
 would be to make the actual average rate equal to the
 target_data_rate.

 We can derive a model for Reno TCP and delayed ACK under the above
 set of assumptions: for some value of Wmin, the window will sweep
 from Wmin to 2*Wmin in 2*Wmin RTT. Between losses each sawtooth
 delivers (1/2)(Wmin+2*Wmin)(2Wmin) packets in 2*Wmin round trip
 times. However, unlike the queueing case where Wmin =
 Target_pipe_size, we want the average of Wmin and 2*Wmin to be the
 target_pipe_size, so the average rate is the target rate. Thus we
 want Wmin = (2/3)*target_pipe_size.

 (@@@@ something is wrong above) Substituting these together we get:

 target_run_length = (8/3)(target_pipe_size^2)

 Note that this is always 88% of the reference run length.

A.2. CUBIC

 CUBIC has three operating regions. The model for the expected value
 of window size derived in [LMCUBIC] assumes operation in the
 "concave" region only, which is a non-TCP friendly region for long-
 lived flows. The authors make the following assumptions: packet loss
 probability, p, is independent and periodic, losses occur one at a
 time, and they are true losses due to tail drop or corruption. This
 definition of p aligns very well with our definition of
 target_run_length and the requirement for progressive loss (AQM).

 Although CUBIC window increase depends on continuous time, the
 authors transform the time to reach the maximum Window size in terms
 of RTT and a parameter for the multiplicative rate decrease on
 observing loss, beta (whose default value is 0.2 in CUBIC). The

Mathis & Morton Expires April 24, 2014 [Page 37]

Internet-Draft Model Based Metrics October 2013

 expected value of Window size, E[W], is also dependent on C, a
 parameter of CUBIC that determines its window-growth aggressiveness
 (values from 0.01 to 4).

 E[W] = (C*(RTT/p)^3 * ((4-beta)/beta))^-4

 and, further assuming Poisson arrival, the mean throughput, x, is

 x = E[W]/RTT

 We note that under these conditions (deterministic single losses),
 the value of E[W] is always greater than 0.8 of the maximum window
 size ~= reference_run_length. (as far as I can tell)

 Commentary on the consequence of the choice.

Appendix B. Version Control

 Formatted: Mon Oct 21 15:42:35 PDT 2013

Authors' Addresses

 Matt Mathis
 Google, Inc
 1600 Amphitheater Parkway
 Mountain View, California 93117
 USA

 Email: mattmathis@google.com

 Al Morton
 AT&T Labs
 200 Laurel Avenue South
 Middletown, NJ 07748
 USA

 Phone: +1 732 420 1571
 Email: acmorton@att.com
 URI: http://home.comcast.net/~acmacm/

http://home.comcast.net/~acmacm/

Mathis & Morton Expires April 24, 2014 [Page 38]

