
Network Working Group Stanislav Shalunov
Internet Draft Benjamin Teitelbaum
Expiration Date: November 2003 Anatoly Karp
 Jeff W. Boote
 Matthew J. Zekauskas
 Internet2
 May 2003

A One-way Active Measurement Protocol (OWAMP)
<draft-ietf-ippm-owdp-06.txt>

1. Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft shadow directories can be accessed at
http://www.ietf.org/shadow.html

 This memo provides information for the Internet community. This memo
 does not specify an Internet standard of any kind. Distribution of
 this memo is unlimited.

2. Abstract

 With growing availability of good time sources to network nodes, it
 becomes increasingly possible to measure one-way IP performance
 metrics with high precision. To do so in an interoperable manner, a
 common protocol for such measurements is required. The One-Way
 Active Measurement Protocol (OWAMP) can measure one-way delay, as
 well as other unidirectional characteristics, such as one-way loss.

Shalunov et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-owdp-06.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

3. Motivation and Goals

 The IETF IP Performance Metrics (IPPM) working group has proposed
 draft standard metrics for one-way packet delay [RFC2679] and loss
 [RFC 2680] across Internet paths. Although there are now several
 measurement platforms that implement collection of these metrics
 [SURVEYOR], [RIPE], there is not currently a standard that would
 permit initiation of test streams or exchange of packets to collect
 singleton metrics in an interoperable manner.

 With the increasingly wide availability of affordable global
 positioning system (GPS) and CDMA based time sources, hosts
 increasingly have available to them very accurate time
 sources--either directly or through their proximity to NTP primary
 (stratum 1) time servers. By standardizing a technique for
 collecting IPPM one-way active measurements, we hope to create an
 environment where IPPM metrics may be collected across a far broader
 mesh of Internet paths than is currently possible. One particularly
 compelling vision is of widespread deployment of open OWAMP servers
 that would make measurement of one-way delay as commonplace as
 measurement of round-trip time using an ICMP-based tool like ping.

 Additional design goals of OWAMP include being hard to detect and
 manipulate, security, logical separation of control and test
 functionality, and support for small test packets.

 OWAMP test traffic is hard to detect, because it is simply a stream
 of UDP packets from and to negotiated port numbers with potentially
 nothing static in the packets (size is negotiated, too).
 Additionally, OWAMP supports an encrypted mode, that further obscures
 the traffic, at the same time making it impossible to alter
 timestamps undetectably.

 Security features include optional authentication and/or encryption
 of control and test messages. These features may be useful to
 prevent unauthorized access to results or man-in-the-middle attackers
 who attempt to provide special treatment to OWAMP test streams or who
 attempt to modify sender-generated timestamps to falsify test
 results.

3.1. Relationship of Test and Control Protocols

 OWAMP actually consists of two inter-related protocols: OWAMP-Control
 and OWAMP-Test. OWAMP-Control is used to initiate, start and stop
 test sessions and fetch their results, while OWAMP-Test is used to
 exchange test packets between two measurement nodes.

https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2680

Shalunov et al. [Page 2]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Although OWAMP-Test may be used in conjunction with a control
 protocol other than OWAMP-Control, the authors have deliberately
 chosen to include both protocols in the same draft to encourage the
 implementation and deployment of OWAMP-Control as a common
 denominator control protocol for one-way active measurements. Having
 a complete and open one-way active measurement solution that is
 simple to implement and deploy is crucial to assuring a future in
 which inter-domain one-way active measurement could become as
 commonplace as ping. We neither anticipate nor recommend that OWAMP-
 Control form the foundation of a general purpose extensible
 measurement and monitoring control protocol.

 OWAMP-Control is designed to support the negotiation of one-way
 active measurement sessions and results retrieval in a
 straightforward manner. At session initiation, there is a negotiation
 of sender and receiver addresses and port numbers, session start
 time, session length, test packet size, the mean Poisson sampling
 interval for the test stream, and some attributes of the very general

RFC 2330 notion of `packet type', including packet size and per-hop
 behavior (PHB) [RFC2474], which could be used to support the
 measurement of one-way active across diff-serv networks.
 Additionally, OWAMP-Control supports per-session encryption and
 authentication for both test and control traffic, measurement servers
 which may act as proxies for test stream endpoints, and the exchange
 of a seed value for the pseudo-random Poisson process that describes
 the test stream generated by the sender.

 We believe that OWAMP-Control can effectively support one-way active
 measurement in a variety of environments, from publicly accessible
 measurement `beacons' running on arbitrary hosts to network
 monitoring deployments within private corporate networks. If
 integration with SNMP or proprietary network management protocols is
 required, gateways may be created.

3.2. Logical Model

 Several roles are logically separated to allow for broad flexibility
 in use. Specifically, we define:

 Session-Sender the sending endpoint of an OWAMP-Test session;

 Session-Receiver the receiving endpoint of an OWAMP-Test session;

 Server an end system that manages one or more OWAMP-Test
 sessions, is capable of configuring per-session
 state in session endpoints, and is capable of
 returning the results of a test session;

https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2474

Shalunov et al. [Page 3]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Control-Client an end system that initiates requests for
 OWAMP-Test sessions, triggers the start of a set
 of sessions, and may trigger their termination;

 Fetch-Client an end system that initiates requests to fetch
 the results of completed OWAMP-Test sessions;

 One possible scenario of relationships between these roles is shown
 below.

 +----------------+ +------------------+
 | Session-Sender |--OWAMP-Test-->| Session-Receiver |
 +----------------+ +------------------+
 ^ ^
 | |
 | |
 | |
 | +----------------+<----------------+
 | | Server |<-------+
 | +----------------+ |
 | ^ |
 | | |
 | OWAMP-Control OWAMP-Control
 | | |
 v v v
 +----------------+ +-----------------+
 | Control-Client | | Fetch-Client |
 +----------------+ +-----------------+

 (Unlabeled links in the figure are unspecified by this draft and may
 be proprietary protocols.)

 Different logical roles can be played by the same host. For example,
 in the figure above, there could actually be only two hosts: one
 playing the roles of Control-Client, Fetch-Client, and Session-
 Sender, and the other playing the roles of Server and Session-
 Receiver. This is shown below.

 +-----------------+ +------------------+
 | Control-Client |<--OWAMP-Control-->| Server |
 | Fetch-Client | | |
 | Session-Sender |---OWAMP-Test----->| Session-Receiver |
 +-----------------+ +------------------+

 Finally, because many Internet paths include segments that transport
 IP over ATM, delay and loss measurements can include the effects of
 ATM segmentation and reassembly (SAR). Consequently, OWAMP has been
 designed to allow for small test packets that would fit inside the

Shalunov et al. [Page 4]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 payload of a single ATM cell (this is only achieved in
 unauthenticated and encrypted modes).

4. Protocol Overview

 As described above, OWAMP consists of two inter-related protocols:
 OWAMP-Control and OWAMP-Test. The former is layered over TCP and is
 used to initiate and control measurement sessions and to fetch their
 results. The latter protocol is layered over UDP and is used to send
 singleton measurement packets along the Internet path under test.

 The initiator of the measurement session establishes a TCP connection
 to a well-known port on the target point and this connection remains
 open for the duration of the OWAMP-Test sessions. IANA will be
 requested to allocate a well-known port number for OWAMP-Control
 sessions. An OWAMP server SHOULD listen to this well-known port.

 OWAMP-Control messages are transmitted only before OWAMP-Test
 sessions are actually started and after they complete (with the
 possible exception of an early Stop-Session message).

 The OWAMP-Control and OWAMP-Test protocols support three modes of
 operation: unauthenticated, authenticated, and encrypted. The
 authenticated or encrypted modes require endpoints to possess a
 shared secret.

 All multi-octet quantities defined in this document are represented
 as unsigned integers in network byte order unless specified
 otherwise.

5. OWAMP-Control

 Each type of OWAMP-Control message has a fixed length. The recipient
 will know the full length of a message after examining first 16
 octets of it. No message is shorter than 16 octets.

 If the full message is not received within 30 minutes after it is
 expected, connection SHOULD be dropped.

5.1. Connection Setup

 Before either a Control-Client or a Fetch-Client can issue commands
 of a Server, it must establish a connection to the server.

 First, a client opens a TCP connection to the server on a well-known

Shalunov et al. [Page 5]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 port. The server responds with a server greeting:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Unused (12 octets) |
 | |
 |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Modes |
 +-+
 | |
 | Challenge (16 octets) |
 | |
 | |
 +-+

 The following mode values are meaningful: 1 for unauthenticated, 2
 for authenticated, 4 for encrypted. The value of the Modes field
 sent by the server is the bit-wise OR of the mode values that it is
 willing to support during this session. Thus, last three bits of the
 Modes 32-bit value are used. The first 29 bits MUST be zero. A
 client MUST ignore the values in the first 29 bits of the Modes
 value. (This way, the bits are available for future protocol
 extensions. This is the only intended extension mechanism.)

 Challenge is a random sequence of octets generated by the server; it
 is used subsequently by the client to prove possession of a shared
 secret in a manner prescribed below.

 If Modes value is zero, the server doesn't wish to communicate with
 the client and MAY close the connection immediately. The client
 SHOULD close the connection if it gets a greeting with Modes equal to
 zero. The client MAY close the connection if the client's desired
 mode is unavailable.

 Otherwise, the client MUST respond with the following message:

Shalunov et al. [Page 6]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Mode |
 +-+
 | |
 . .
 . Username (16 octets) .
 . .
 | |
 +-+
 | |
 . .
 . Token (32 octets) .
 . .
 | |
 +-+
 | |
 . .
 . Client-IV (16 octets) .
 . .
 | |
 +-+

 Here Mode is the mode that the client chooses to use during this
 OWAMP-Control session. It will also be used for all OWAMP-Test
 sessions started under control of this OWAMP-Control session. In
 Mode, one or zero bits MUST be set within last three bits. The first
 29 bits of Mode MUST be zero. A server MUST ignore the values of the
 first 29 bits.

 In unauthenticated mode, Username, Token, and Client-IV are unused.

 Otherwise, Username is a 16-octet indicator of which shared secret
 the client wishes to use to authenticate or encrypt and Token is the
 concatenation of a 16-octet challenge and a 16-octet Session-key,
 encrypted using the AES (Advanced Encryption Standard) [AES] in
 Cipher Block Chaining (CBC). Encryption MUST be performed using an
 Initialization Vector (IV) of zero and a key value that is the shared
 secret associated with Username. The shared secret will typically be
 provided as a passphrase; in this case, the MD5 sum [RFC1321] of the
 passphrase (without possible newline character(s) at the end of the
 passphrase) SHOULD be used as a key for encryption by the client and
 decryption by the server (the passphrase also SHOULD NOT contain
 newlines in the middle).

 Session-key and Client-IV are generated randomly by the client.

https://datatracker.ietf.org/doc/html/rfc1321

Shalunov et al. [Page 7]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 The server MUST respond with the following message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Unused, MBZ (15 octets) |
 | |
 | +-+-+-+-+-+-+-+-+
 | | Accept |
 +-+
 | |
 | Server-IV (16 octets) |
 | |
 | |
 +-+
 | Uptime (Timestamp) |
 | |
 +-+
 | Integrity Zero Padding (8 octets) |
 | |
 +-+

 The Unused 15-octet part MUST be zero. The client MUST ignore its
 value.

 Server-IV is generated randomly by the server. In unauthenticated
 mode, Server-IV is unused.

 A zero value in the Accept field means that the server accepts the
 authentication and is willing to conduct further transactions. A
 value of 1 means that the server does not accept the authentication
 provided by the client or, for some other reason, is not willing to
 conduct further transactions in this OWAMP-Control session. All
 other values are reserved. The client MUST interpret all values of
 Accept other than 0 and 1 as 1. This way, other values are available
 for future extensions. If a negative response is sent, the server
 MAY and the client SHOULD close the connection after this message.

 Uptime is a timestamp representing the time when the current
 instantiation of the server started operating. (For example, in a
 multi-user general purpose operating system, it could be the time
 when the server process was started.) If Accept is non-zero, Uptime
 SHOULD be set to a string of zeros. In authenticated and encrypted
 modes, Uptime is encrypted as described in the next section, unless
 Accept is non-zero. (authenticated and encrypted mode can not be
 entered unless the control connection can be initialized.)

Shalunov et al. [Page 8]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Timestamp format is described in `Sender Behavior' section below.
 The same instantiation of the server SHOULD report the same exact
 Uptime value to each client in each session.

 Integrity Zero Padding is treated the same way as Integrity Zero
 Padding in the next section and beyond.

 The previous transactions constitute connection setup.

5.2. OWAMP-Control Commands

 In authenticated or encrypted mode (which are identical as far as
 OWAMP-Control is concerned, and only differ in OWAMP-Test) all
 further communications are encrypted with the Session-key, using CBC
 mode. The client encrypts its stream using Client-IV. The server
 encrypts its stream using Server-IV.

 The following commands are available for the client: Request-Session,
 Start-Sessions, Stop-Session, Fetch-Session. The command Stop-
 Session is available to both the client and the server. (The server
 can also send other messages in response to commands it receives.)

 After Start-Sessions is sent/received by the client/server, and
 before it both sends and receives Stop-Session (order unspecified),
 it is said to be conducting active measurements.

 While conducting active measurements, the only command available is
 Stop-Session.

 These commands are described in detail below.

5.3. Creating Test Sessions

 Individual one-way active measurement sessions are established using
 a simple request/response protocol. An OWAMP client MAY issue zero or
 more Request-Session messages to an OWAMP server, which MUST respond
 to each with an Accept-Session message. An Accept-Session message
 MAY refuse a request.

 The format of Request-Session message is as follows:

Shalunov et al. [Page 9]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | MBZ | IPVN | Conf-Sender | Conf-Receiver |
 +-+
 | Number of Schedule Slots |
 +-+
 | Number of Packets |
 +-+
 | Sender Port | Receiver Port |
 +-+
 | Sender Address |
 +-+
 | |
 | Sender Address (cont.) or MBZ |
 | |
 +-+
 | Receiver Address |
 +-+
 | |
 | Receiver Address (cont.) or MBZ |
 | |
 +-+
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | Padding Length |
 +-+
 | Start Time |
 | |
 +-+
 | Timeout |
 | |
 +-+
 | Type-P Descriptor |
 +-+
 | MBZ |
 | |
 +-+
 | |
 | Integrity Zero Padding (16 octets) |
 | |
 | |
 +-+

 This is immediately followed by one or more schedule slot

Shalunov et al. [Page 10]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 descriptions (the number of schedule slots is specified in the
 `Number of Schedule Slots' field above):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Slot Type | |
 +-+-+-+-+-+-+-+-+ MBZ |
 | |
 +-+
 | Slot Parameter (Timestamp) |
 | |
 +-+

 These are immediately followed by Integrity Zero Padding:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Integrity Zero Padding (16 octets) |
 | |
 | |
 +-+

 All these messages comprise one logical message: the Request-Session
 command.

 Above, the first octet (1) indicates that this is Request-Session
 command.

 IPVN is the IP version numbers for Sender and Receiver. In the case
 of IP version number being 4, twelve octets follow the four-octet
 IPv4 address stored in Sender Address and Receiver address. These
 octets MUST be set to zero by the client and MUST be ignored by the
 server. Currently meaningful IPVN values are 4 and 6.

 Conf-Sender and Conf-Receiver MUST be set to 0 or 1 by the client.
 The server MUST interpret any non-zero value as 1. If the value is
 1, the server is being asked to configure the corresponding agent
 (sender or receiver). In this case, the corresponding Port value
 SHOULD be disregarded by the server. At least one of Conf-Sender and
 Conf-Receiver MUST be 1. (Both can be set, in which case the server
 is being asked to perform a session between two hosts it can
 configure.)

 Number of Schedule Slots, as mentioned before, specifies the number
 of slot records that go between the two blocks of Integrity Zero

Shalunov et al. [Page 11]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Padding. It is used by the sender to determine when to send test
 packets (see next section).

 Number of Packets is the number of active measurement packets to be
 sent during this OWAMP-Test session (note that both server and client
 can abort the session early).

 If Conf-Sender is not set, Sender Port is the UDP port OWAMP-Test
 packets will be sent from. If Conf-Receiver is not set, Receiver
 Port is the UDP port OWAMP-Test packets are requested to be sent to.

 The Sender Address and Receiver Address fields contain respectively
 the sender and receiver addresses of the end points of the Internet
 path over which an OWAMP test session is requested.

 SID is the session identifier. It can be used in later sessions as
 an argument for Fetch-Session command. It is meaningful only if
 Conf-Receiver is 0. This way, the SID is always generated by the
 receiving side. See the end of the section for information on how
 the SID is generated.

 Padding length is the number of octets to be appended to normal
 OWAMP-Test packet (see more on padding in discussion of OWAMP-Test).

 Start Time is the time when the session is to be started (but not
 before Start-Sessions command is issued). This timestamp is in the
 same format as OWAMP-Test timestamps.

 Timeout (or a loss threshold) is an interval of time (expressed as a
 timestamp). A packet belonging to the test session that is being set
 up by the current Request-Session command will be considered lost if
 it is not received during Timeout seconds after it is sent.

 Type-P Descriptor covers only a subset of (very large) Type-P space.
 If the first two bits of Type-P Descriptor are 00, then subsequent 6
 bits specify the requested Differentiated Services Codepoint (DSCP)
 value of sent OWAMP-Test packets as defined in RFC 2474. If the
 first two bits of Type-P descriptor are 01, then subsequent 16 bits
 specify the requested Per Hop Behavior Identification Code (PHB ID)
 as defined in RFC 2836.

 Therefore, the value of all zeros specifies the default best-effort
 service.

 If Conf-Sender is set, Type-P Descriptor is to be used to configure
 the sender to send packets according to its value. If Conf-Sender is
 not set, Type-P Descriptor is a declaration of how the sender will be
 configured.

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2836

Shalunov et al. [Page 12]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 If Conf-Sender is set and the server doesn't recognize Type-P
 Descriptor, cannot or does not wish to set the corresponding
 attributes on OWAMP-Test packets, it SHOULD reject the session
 request. If Conf-Sender is not set, the server SHOULD accept the
 session regardless of the value of Type-P Descriptor.

 Integrity Zero Padding MUST be all zeros in this and all subsequent
 messages that use zero padding. The recipient of a message where
 zero padding is not zero MUST reject the message as it is an
 indication of tampering with the content of the message by an
 intermediary (or brokenness). If the message is part of OWAMP-
 Control, the session MUST be terminated and results invalidated. If
 the message is part of OWAMP-Test, it MUST be silently ignored. This
 will ensure data integrity. In unauthenticated mode, Integrity Zero
 Padding is nothing more than a simple check. In authenticated and
 encrypted modes, however, it ensures, in conjunction with properties
 of CBC chaining mode, that everything received before was not
 tampered with. For this reason, it is important to check the
 Integrity Zero Padding Field as soon as possible, so that bad data
 doesn't get propagated.

 To each Request-Session message, an OWAMP server MUST respond with an
 Accept-Session message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Accept | Unused | Port |
 +-|
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | |
 | Integrity Zero Padding (12 octets) |
 | |
 +-+

 In this message, zero in the Accept field means that the server is
 willing to conduct the session. A value of 1 indicates rejection of
 the request. All other values are reserved.

 If the server rejects a Request-Session command, it SHOULD not close
 the TCP connection. The client MAY close it if it gets negative
 response to Request-Session.

 The meaning of Port in the response depends on the values of Conf-

Shalunov et al. [Page 13]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Sender and Conf-Receiver in the query that solicited the response.
 If both were set, Port field is unused. If only Conf-Sender was set,
 Port is the port to expect OWAMP-Test packets from. If only Conf-
 Receiver was set, Port is the port to send OWAMP-Test packets to.

 If only Conf-Sender was set, SID field in the response is unused.
 Otherwise, SID is a unique server-generated session identifier. It
 can be used later as handle to fetch the results of a session.

 SIDs SHOULD be constructed by concatenation of 4-octet IPv4 IP number
 belonging to the generating machine, 8-octet timestamp, and 4-octet
 random value. To reduce the probability of collisions, if the
 generating machine has any IPv4 addresses (with the exception of
 loopback), one of them SHOULD be used for SID generation, even if all
 communication is IPv6-based. If it has no IPv4 addresses at all, the
 last 4 octets of an IPv6 address can be used instead. Note that SID
 is always chosen by the receiver. If truly random values are not
 available, it is important that SID be made unpredictable as
 knowledge of SID might be used for access control.

5.4. Send Schedules

 The sender and the receiver need to both know the same send schedule.
 This way, when packets are lost, the receiver knows when they were
 sent. It is desirable to compress common schedules and still to be
 able to use an arbitrary one for the test sessions. In many cases,
 the schedule will consist of repeated sequences of packets: this way,
 the sequence performs some test, and the test is repeated a number of
 times to gather statistics.

 To implement this, we have a schedule with a given number of `slots'.
 Each slots has a type and a parameter. Two types are supported:
 exponentially distributed pseudo-random quantity (denoted by a code
 of 0) and a fixed quantity (denoted by a code of 1). The parameter
 is expressed as a timestamp and specifies a time interval. For a
 type 0 slot (exponentially distributed pseudo-random quantity) this
 interval is the mean value (or 1/lambda if the distribution density
 function is expressed as lambda*exp(-lambda*x) for positive values of
 x). For a type 1 slot, the parameter is the delay itself. The
 sender starts with the beginning of the schedule, and `executes' the
 instructions in the slots: for a slot of type 0, wait exponentially
 distributed time with mean of the specified parameter and then send a
 test packet (and proceed to the next slot); for a slot of type 1,
 wait the specified time and send a test packet (and proceed to the
 next slot). The schedule is circular: when there are no more slots,
 the sender returns to the first slot.

Shalunov et al. [Page 14]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 The sender and the receiver must be able to reproducibly execute the
 entire schedule (so if a packet is lost, the receiver can still
 attach a send timestamp to it). Slots of type 1 are trivial to
 reproducibly execute. To reproducibly execute slots of type 0, we
 need to be able to generate pseudo-random exponentially distributed
 quantities in a reproducible manner. The way this is accomplished is
 discussed later.

 Using this mechanism one can easily specify common testing scenarios:

 + Poisson stream: a single slot of type 0;

 + Periodic stream: a single slot of type 1;

 + Poisson stream of back-to-back packet pairs: two slots -- type 0
 with a non-zero parameter and type 1 with a zero parameter.

 A completely arbitrary schedule can be specified (albeit
 inefficiently) by making the number of test packets equal to the
 number of schedule slots. In this case, the complete schedule is
 transmitted in advance of an OWAMP-Test session.

5.5. Starting Test Sessions

 Having requested one or more test sessions and received affirmative
 Accept-Session responses, an OWAMP client may start the execution of
 the requested test sessions by sending a Start-Sessions message to
 the server.

 The format of this message is as follows:

Shalunov et al. [Page 15]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | |
 +-+-+-+-+-+-+-+-+ |
 | Unused (15 octets) |
 | |
 | |
 +-+
 | |
 | Integrity Zero Padding (16 octets) |
 | |
 | |
 +-+

 The server MUST respond with an Control-Ack message (which SHOULD be
 sent as quickly as possible). Control-Ack messages have the following
 format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Accept | |
 +-+-+-+-+-+-+-+-+ |
 | Unused (15 octets) |
 | |
 | |
 +-+
 | |
 | Integrity Zero Padding (16 octets) |
 | |
 | |
 +-+

 If Accept is 1, the Start-Sessions request was rejected; zero means
 that the command was accepted. All other values are reserved. The
 server MAY and the client SHOULD close the connection in the case of
 a negative response.

 The server SHOULD start all OWAMP-Test streams immediately after it
 sends the response or immediately after their specified start times,
 whichever is later. (Note that a client can effect an immediate
 start by specifying in Request-Session a Start Time in the past.) If
 the client represents a Sender, the client SHOULD start its OWAMP-
 Test streams immediately after it sees the Control-Ack response from
 the Server.

Shalunov et al. [Page 16]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

5.6. Stop-Sessions

 The Stop-Sessions message may be issued by either the Control-Client
 or the Server. The format of this command is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 3 | Accept | Unused |
 +-+
 | Number of Sessions |
 +-+
 | Unused (8 octets) |
 | |
 +-+
 | |
 | Integrity Zero Padding (16 octets) |
 | |
 | |
 +-+

 This is immediately followed by 0 or more session packets sent
 descriptions (the number of session packets sent records is specified
 in the 'Number of Sessions' field above):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-|
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | Session Packets Sent |
 +-+
 | |
 | Integrity Zero Padding (12 octets) |
 | |
 +-+

 All these messages comprise one logical message: the Stop-Session
 command.

 Above, the first octet (3) indicates that this is the Stop-Session
 command.

 Accept values of 1 indicate a failure of some sort. Zero values
 indicate normal (but possibly premature) completion. All other

Shalunov et al. [Page 17]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 values are reserved.

 If Accept had a non-zero value (from either party) results of all
 OWAMP-Test sessions spawned by this OWAMP-Control session SHOULD be
 considered invalid, even if a Fetch-Session with SID from this
 session works for a different OWAMP-Control session. If Accept was
 not transmitted at all (for whatever reason, including the TCP
 connection used for OWAMP-Control breaking), the results of all
 OWAMP-Test sessions spawned by this OWAMP-control session MAY be
 considered invalid.

 Number of Sessions indicates the number of session packets sent
 records that immediately follow the Stop-Sessions message.

 Number of Sessions MUST contain the number of send sessions started
 by the local side of the control connection that have not been
 previously terminated by a Stop-Sessions command. (i.e. The Control-
 Client MUST account for each accepted Request-Session where Conf-
 Receiver was set. The Control-Server MUST account for each accepted
 Request-Session where Conf-Sender was set.) If the Stop-Sessions
 message does not account for all the send sessions controlled by that
 side, then it is to be considered invalid and the connection SHOULD
 be closed and any results obtained considered invalid.

 Each session packets sent record represents one OWAMP-Test session
 and contains the session identifier (SID) and the number of packets
 sent in that session. For completed sessions, Session Packets Sent
 will equal NumPackets from the Request-Session. Session Packets Sent
 MAY be all ones (0xFFFFFFFF); in this case, the sender of the Stop-
 Sessions command could not determine the number of packets sent
 (perhaps, due to some internal error such as a process crash); this
 special value SHOULD NOT be sent under normal operating conditions.

 If the OWAMP-Control connection associated with an OWAMP-Test
 receiver receives the (0xFFFFFFFF) special value for the Session
 Packets Sent, or if the OWAMP-Control connection breaks when the
 Stop-Sessions command is sent, the receiver MAY not completely
 invalidate the session results. It MUST discard any records of lost
 packets that follow (in other words, have greater sequence number
 than) the last packet that was actually received. This will help
 differentiate between packet losses that occurred in the network and
 the sender crashing. When the results of such an OWAMP-Test session
 or an OWAMP-Test session that was prematurely aborted successfully
 (with confirmation) are later fetched using Fetch-Session, the
 original number of packets MUST be supplied in the reproduction of
 the Request-Session command.

 If a receiver of an OWAMP-Test session learns through OWAMP-Control

Shalunov et al. [Page 18]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Stop-Sessions message that the OWAMP-Test sender's last sequence
 number is lower than any sequence number actually received, the
 results of the complete OWAMP-Test session MUST be invalidated.

 A receiver of an OWAMP-Test session, upon receipt of an OWAMP-Control
 Stop-Sessions command, MUST discard any packet records -- including
 lost packet records -- with a (computed) send time that falls between
 the current time minus timeout and the current time. This ensures
 statistical consistency for the measurement of loss and duplicates in
 the event that the timeout is greater than the time it takes for the
 Stop-Sessions command to take place.

 To effect complete sessions, each side of the control connection
 SHOULD wait until all Sessions are complete before sending the Stop-
 Sessions message. The completed time of each sessions is determined
 as Timeout after the scheduled time for the last sequence number.
 Endpoints MAY add a small increment to the computed completed time
 for send endpoints to ensure the Stop-Sessions message reaches the
 receiver endpoint after Timeout.

 To effect a premature stop of sessions, the party that initiates this
 command MUST stop its OWAMP-Test send streams to send the Session
 Packets Sent values before sending this command. That party SHOULD
 wait until receiving the response Stop-Sessions message before
 stopping the receiver streams so that it can use the values from the
 received Stop-Sessions message to validate the data.

5.7. Fetch-Session

 The format of this client command is as follows:

Shalunov et al. [Page 19]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 4 | |
 +-+-+-+-+-+-+-+-+ |
 | Unused (7 octets) |
 +-+
 | Begin Seq |
 +-+
 | End Seq |
 +-+
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | |
 | Integrity Zero Padding (16 octets) |
 | |
 | |
 +-+

 Begin Seq is the sequence number of the first requested packet. End
 Seq is the sequence number of the last requested packet. If Begin
 Seq is all zeros and End Seq is all ones, complete session is said to
 be requested.

 If a complete session is requested and the session is still in
 progress, or has terminated in any way other than normal, the request
 to fetch session results MUST be denied. If an incomplete session is
 requested, all packets received so far that fall into the requested
 range SHOULD be returned. Note that since no commands can be issued
 between Start-Sessions and Stop-Sessions, incomplete requests can
 only happen on a different OWAMP-Control connection (from the same or
 different host as Control-Client).

 The server MUST respond with a Control-Ack message. Again, 1 in the
 Accept field means rejection of command. Zero means that data will
 follow. All other values are reserved.

 If Accept was 0, the server then MUST send the OWAMP-Test session
 data in question, followed by 16 octets of Integrity Zero Padding.

 The OWAMP-Test session data consists of the following (concatenated):

 + A reproduction of the Request-Session command that was used to
 start the session; it is modified so that actual sender and
 receiver port numbers that were used by the OWAMP-Test session

Shalunov et al. [Page 20]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 always appear in the reproduction.

 + The number of packet records that will follow represented as an
 unsigned 4-octet integer. This number might be less than the
 Number of Packets in the reproduction of the Request-Session
 command because of a session that ended prematurely; or it might
 be greater because of duplicates.

 + 12 octets of Integrity Zero Padding.

 + Zero or more (as specified) packet records.

 Each packet record is 24 octets, and includes 4 octets of sequence
 number, 8 octets of send timestamp, 2 octets of send timestamp error
 estimate, 8 octets of receive timestamp, and 2 octets of receive
 timestamp error estimate (in this order). Packet records are sent
 out in the same order they are made when the results of the session
 are recorded. Therefore, the data is in arrival order.

 Note that lost packets (if any losses were detected during the OWAMP-
 Test session) MUST appear in the sequence of packets. They can
 appear either at the point when the loss was detected or at any later
 point. Lost packet records are distinguished by the receive
 timestamp consisting of a string of zero bits and an error estimate
 with Multiplier=1, Scale=64, and S=0 (see OWAMP-Test description for
 definition of these quantities and explanation of timestamp format
 and error estimate format).

 The last (possibly full, possibly incomplete) block (16 octets) of
 data is padded with zeros if necessary. (These zeros are simple
 padding and should be distinguished from the 16 octets of Integrity
 Zero Padding that follow the session data and conclude the response
 to Fetch-Session.)

6. OWAMP-Test

 This section describes OWAMP-Test protocol. It runs over UDP using
 sender and receiver IP and port numbers negotiated during Request-
 Session exchange.

 As OWAMP-Control, OWAMP-Test has three modes: unauthenticated,
 authenticated, and encrypted. All OWAMP-Test sessions spawned by an
 OWAMP-Control session inherit its mode.

 OWAMP-Control client, OWAMP-Control server, OWAMP-Test sender, and
 OWAMP-Test receiver can potentially all be different machines. (In a

Shalunov et al. [Page 21]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 typical case we expect that there will be only two machines.)

6.1. Sender Behavior

 The sender sends the receiver a stream of packets with schedule as
 specified in the Request-Session command. The format of the body of
 a UDP packet in the stream depends on the mode being used.

 For unauthenticated mode:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence Number |
 +-+
 | Timestamp |
 | |
 +-+
 | Error Estimate | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 . .
 . Packet Padding .
 . .
 | |
 +-+

 For authenticated and encrypted modes:

Shalunov et al. [Page 22]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence Number |
 +-+
 | |
 | Integrity Zero Padding (12 octets) |
 | |
 +-+
 | Timestamp |
 | |
 +-+
 | Error Estimate | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | Integrity Zero Padding (6 octets) |
 +-+
 | |
 . .
 . Packet Padding .
 . .
 | |
 +-+

 The format of the timestamp is the same as in RFC 1305 and is as
 follows: first 32 bits represent the unsigned integer number of
 seconds elapsed since 0h on 1 January 1900; next 32 bits represent
 the fractional part of a second that has elapsed since then.

 So, Timestamp is represented as follows:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Integer part of seconds |
 +-+
 | Fractional part of seconds |
 +-+

 The Error Estimate specifies the estimate of the error and
 synchronization. It has the following format:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S|Z| Scale | Multiplier |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The first bit S SHOULD be set if the party generating the timestamp
 has a clock that is synchronized to UTC using an external source

https://datatracker.ietf.org/doc/html/rfc1305

Shalunov et al. [Page 23]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 (e.g., the bit should be set if GPS hardware is used and it indicates
 that it has acquired current position and time or if NTP is used and
 it indicates that it has synchronized to an external source, which
 includes stratum 0 source, etc.); if there is no notion of external
 synchronization for the time source, the bit SHOULD NOT be set. The
 next bit has the same semantics as MBZ fields elsewhere: it MUST be
 set to zero by the sender and ignored by everyone else. The next six
 bits Scale form an unsigned integer; Multiplier is an unsigned
 integer as well. They are interpreted as follows: the error estimate
 is equal to Multiplier*2^(-32)*2^Scale (in seconds). [Notation
 clarification: 2^Scale is two to the power of Scale.] Multiplier
 MUST NOT be set to zero. If Multiplier is zero, the packet SHOULD be
 considered corrupt and discarded.

 Sequence numbers start with 0 and are incremented by 1 for each
 subsequent packet.

 The minimum data segment length is therefore 14 octets in
 unauthenticated mode, and 32 octets in authenticated mode and
 encrypted modes.

 The OWAMP-Test packet layout is the same in authenticated and
 encrypted modes. The encryption operations are, however, different.
 The difference is that in encrypted mode both the sequence number and
 the timestamp are encrypted to provide maximum data integrity
 protection while in authenticated mode the sequence number is
 encrypted and the timestamp is sent in clear text. Sending the
 timestamp in clear text in authenticated mode allows to reduce the
 time between a timestamp is obtained by a sender and the packet is
 shipped out. In encrypted mode, the sender has to fetch the
 timestamp, encrypt it, and send it; in authenticated mode, the middle
 step is removed improving accuracy (the sequence number can be
 encrypted before the timestamp is fetched).

 In authenticated mode, the first block (16 octets) of each packet is
 encrypted using AES ECB mode. The key to use is the same key as is
 used for the corresponding OWAMP-Control session (where it is used in
 a different chaining mode). Electronic Cookbook (ECB) mode does not
 involve any actual chaining; this way, lost, duplicated, or reordered
 packets do not cause problems with deciphering any packet in an
 OWAMP-Test session.

 In encrypted mode, the first two blocks (32 octets) are encrypted
 using AES CBC mode. The key to use is the same key as is used for
 the corresponding OWAMP-Control session. Each OWAMP-Test packet is
 encrypted as a separate stream, with just one chaining operation;
 chaining does not span multiple packets so that lost, duplicated, or
 reordered packets do not cause problems.

Shalunov et al. [Page 24]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 In unauthenticated mode, no encryption is applied.

 Packet Padding in OWAMP-Test SHOULD be pseudo-random (it MUST be
 generated independently of any other pseudo-random numbers mentioned
 in this document). However, implementations MUST provide a
 configuration parameter, an option, or a different means of making
 Packet Padding consist of all zeros.

 The time elapsed between packets is computed according to the slot
 schedule as mentioned in Request-Session command description. At
 that point we skipped over the issue of computing exponentially
 distributed pseudo-random numbers in a reproducible fashion.

7. Computing Exponentially Distributed Pseudo-Random Numbers

 Here we describe the way exponential random quantities used in the
 protocol are generated. While there is a fair number of algorithms
 for generating exponential random variables, most of them rely on
 having logarithmic function as a primitive, resulting in potentially
 different values, depending on the particular implementation of the
 math library. We use algorithm 3.4.1.S in [KNUTH], which is free
 of the above mentioned problem, and guarantees the same output on any
 implementation. The algorithm belongs to the 'ziggurat' family
 developed in the 1970s by G.Marsaglia, M.Sibuya and J.H.Ahrens
 [ZIGG]. It replaces the use of logarithmic function by clever bit
 manipulation, still producing the exponential variates on output.

7.1. High-Level Description of the Algorithm

 For ease of exposition, the algorithm is first described with all
 arithmetic operations being interpreted in their natural sense.
 Later, exact details on data types, arithmetic, and generation of the
 uniform random variates used by the algorithm are given. It is an
 almost verbatim quotation from [KNUTH], p.133.

 Algorithm S: Given a real positive number 'mu', produce an
 exponential random variate with mean 'mu'.

 First, the constants

 Q[k] = (ln2)/(1!) + (ln2)^2/(2!) + ... + (ln2)^k/(k!), 1 <= k <= 11

 are computed in advance. The exact values which MUST be used by all
 implementations are given in the reference code (see Appendix). This
 is necessary to insure that exactly the same pseudo-random sequences
 are produced by all implementations.

Shalunov et al. [Page 25]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 S1. [Get U and shift.] Generate a 32-bit uniform random binary
 fraction

 U = (.b0 b1 b2 ... b31) [note the decimal point]

 Locate the first zero bit b_j, and shift off the leading (j+1) bits,
 setting U <- (.b_{j+1} ... b31)

 NOTE: in the rare case that the zero has not been found it is
 prescribed that the algorithm return (mu*32*ln2).

 S2. [Immediate acceptance?] If U < ln2, set X <- mu*(j*ln2 + U) and
 terminate the algorithm. (Note that Q[1] = ln2.)

 S3. [Minimize.] Find the least k >= 2 such that U < Q[k]. Generate k
 new uniform random binary fractions U1,...,Uk and set V <-
 min(U1,...,Uk).

 S4. [Deliver the answer.] Set X <- mu*(j + V)*ln2.

7.2. Data Types, Representation and Arithmetic

 The high-level algorithm operates on real numbers -- typically
 represented as floating point numbers. This specification prescribes
 that unsigned 64-bit integers be used instead.

 u_int64_t integers are interpreted as real numbers by placing the
 decimal point after the first 32 bits. In other words, conceptually
 the interpretation is given by the map:

 u_int64_t u;

 u |--> (double)u / (2**32)

 The algorithm produces a sequence of such u_int64_t integers which is
 guaranteed to be the same on any implementation. Any further
 interpretation (such as given by (1)) is done by the application, and
 is not part of this specification.

 We specify that the u_int64_t representations of the first 11 values
 of the Q array in the high-level algorithm be as follows:

Shalunov et al. [Page 26]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 #1 0xB17217F8,
 #2 0xEEF193F7,
 #3 0xFD271862,
 #4 0xFF9D6DD0,
 #5 0xFFF4CFD0,
 #6 0xFFFEE819,
 #7 0xFFFFE7FF,
 #8 0xFFFFFE2B,
 #9 0xFFFFFFE0,
 #10 0xFFFFFFFE,
 #11 0xFFFFFFFF

 For example, Q[1] = ln2 is indeed approximated by 0xB17217F8/(2**32)
 = 0.693147180601954; for j > 11, Q[j] is 0xFFFFFFFF

 Small integer 'j' in the high-level algorithm is represented as
 u_int64_t value j * (2**32);

 Operation of addition is done as usual on u_int64_t numbers; however,
 the operation of multiplication in the high-level algorithm should be
 replaced by

 (u, v) |---> (u * v) >> 32

 Implementations MUST compute (u * v) exactly. For example, a
 fragment of unsigned 128-bit arithmetic can be implemented for this
 purpose (see sample implementation below).

7.3. Uniform Random Quantities

 The procedure for obtaining a sequence of 32-bit random numbers (such
 as 'U' in algorithm S) relies on using AES encryption in counter
 mode. To describe the exact working of the algorithm we introduce two
 primitives from Rijndael. Their prototypes and specification are
 given below, and they are assumed to be provided by the supporting
 Rijndael implementation, such as [RIJN].

 + This function initializes a Rijndael key with bytes from 'seed'

 void KeyInit(unsigned char seed[16]);

 + This function encrypts the 16-octet block 'inblock' with the 'key'
 returning a 16-octet encrypted block. Here 'keyInstance' is an
 opaque type used to represent Rijndael keys.

 void BlockEncrypt(keyInstance key, unsigned char inblock[16]);

Shalunov et al. [Page 27]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 Algorithm Unif: given a 16-octet quantity seed, produce a sequence of
 unsigned 32-bit pseudo-random uniformly distributed integers. In
 OWAMP, the SID (session ID) from Control protocol plays the role of
 seed.

 U1. [Initialize Rijndael key] key <- KeyInit(seed) [Initialize an
 unsigned 16-octet (network byte order) counter] c <- 0 U2. [Need
 more random bytes?] Set i <- c mod 4. If (i == 0) set s <-
 BlockEncrypt(key, c)

 U3. [Increment the counter as unsigned 16-octet quantity] c <- c + 1

 U4. [Do output] Output the i_th quartet of octets from s starting
 from high-order octets, converted to native byte order and
 represented as OWPNum64 value (as in 3.b).

 U5. [Loop] Go to step U2.

7.4. Receiver Behavior

 Receiver knows when the sender will send packets. The following
 parameter is defined: Timeout (from Request-Session). Packets that
 are delayed by more that Timeout are considered lost (or `as good as
 lost'). Note that there is never an actual assurance of loss by the
 network: a `lost' packet might still be delivered at any time. The
 original specification for IPv4 required that packets be delivered
 within TTL seconds or never (with TTL having a maximum value of 255).
 To the best of the authors' knowledge, this requirement was never
 actually implemented (and of course only a complete and universal
 implementation would ensure that packets don't travel for longer than
 TTL seconds). Further, IPv4 specification makes no claims about the
 time it takes the packet to traverse the last link of the path.

 The choice of a reasonable value of Timeout is a problem faced by a
 user of OWAMP protocol, not by an implementor. A value such as two
 minutes is very safe. Note that certain applications (such as
 interactive `one-way ping') might wish to obtain the data faster than
 that.

 As packets are received,

 + Timestamp the received packet.

 + In authenticated or encrypted mode, decrypt first block (16
 octets) of packet body.

Shalunov et al. [Page 28]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 + Store the packet sequence number, send times, and receive times
 for the results to be transferred.

 + Packets not received within the Timeout are considered lost. They
 are recorded with their seqno, presumed send time, and receive
 time consisting of a string of zero bits.

 Packets that are actually received are recorded in the order of
 arrival. Lost packet records serve as indications of the send times
 of lost packets. They SHOULD be placed either at the point where the
 receiver learns about the loss or at any later point; in particular,
 one MAY place all the records that correspond to lost packets at the
 very end.

 Packets that have send time in the future MUST be recorded normally,
 without changing their send timestamp, unless they have to be
 discarded. (Send timestamps in the future would normally indicate
 clocks that differ by more than the delay. Some data -- such as
 jitter -- can be extracted even without knowledge of time difference.
 For other kinds of data, the adjustment is best handled by the data
 consumer on the basis of the complete information in a measurement
 session as well as possibly external data.)

 Packets with a sequence number that was already observed (duplicate
 packets) MUST be recorded normally. (Duplicate packets are sometimes
 introduced by IP networks. The protocol has to be able to measure
 duplication.)

 If any of the following is true, packet MUST be discarded:

 + Send timestamp is more than Timeout in the past or in the future.

 + Send timestamp differs by more than Timeout from the time when the
 packet should have been sent according to its seqno.

 + In authenticated or encrypted mode, any of the bits of zero
 padding inside the first 16 octets of packet body is non-zero.

Shalunov et al. [Page 29]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

8. Security Considerations

 The goal of authenticated mode to let one passphrase-protect service
 provided by a particular OWAMP-Control server. One can imagine a
 variety of circumstances where this could be useful. Authenticated
 mode is designed to prohibit theft of service.

 Additional design objective of authenticated mode was to make it
 impossible for an attacker who cannot read traffic between OWAMP-Test
 sender and receiver to tamper with test results in a fashion that
 affects the measurements, but not other traffic.

 The goal of encrypted mode is quite different: To make it hard for a
 party in the middle of the network to make results look `better' than
 they should be. This is especially true if one of client and server
 doesn't coincide with neither sender nor receiver.

 Encryption of OWAMP-Control using AES CBC mode with blocks of zeros
 after each message aims to achieve two goals: (i) to provide secrecy
 of exchange; (ii) to provide authentication of each message.

 OWAMP-Test sessions directed at an unsuspecting party could be used
 for denial of service (DoS) attacks. In unauthenticated mode servers
 should limits receivers to hosts they control or to the OWAMP-Control
 client.

 OWAMP-Test sessions could be used as covert channels of information.
 Environments that are worried about covert channels should take this
 into consideration.

 Notice that AES in counter mode is used for pseudo-random number
 generation, so implementation of AES MUST be included even in a
 server that only supports unauthenticated mode.

9. IANA Considerations

 IANA is requested to allocate a well-known TCP port number for OWAMP-
 Control part of the OWAMP protocol.

Shalunov et al. [Page 30]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

10. Internationalization Considerations

 The protocol does not carry any information in a natural language.

11. Appendix: Sample Implementation of Exponential Deviate Computation

/*
** Example usage: generate a stream of exponential (mean 1)
** random quantities (ignoring error checking during initialization).
** If a variate with some mean mu other than 1 is desired, the output
** of this algorithm can be multiplied by mu according to the rules
** of arithmetic we described.

** Assume that a 16-octet 'seed' has been initialized
** (as the shared secret in OWAMP, for example)
** unsigned char seed[16];

** OWPrand_context next;

** (initialize state)
** OWPrand_context_init(&next, seed);

** (generate a sequence of exponential variates)
** while (1) {
** u_int64_t num = OWPexp_rand64(&next);
 <do something with num here>
 ...
** }
*/

#include <stdlib.h>

typedef u_int64_t u_int64_t;

/* (K - 1) is the first k such that Q[k] > 1 - 1/(2^32). */
#define K 12

#define BIT31 0x80000000UL /* see if first bit in the lower
 32 bits is zero */
#define MASK32(n) ((n) & 0xFFFFFFFFUL)

#define EXP2POW32 0x100000000ULL

typedef struct OWPrand_context {
 unsigned char counter[16]; /* 16-octet counter (network byte order) */
 keyInstance key; /* key used to encrypt the counter. */

Shalunov et al. [Page 31]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 unsigned char out[16]; /* the encrypted block is kept there. */
} OWPrand_context;

/*
** The array has been computed according to the formula:
**
** Q[k] = (ln2)/(1!) + (ln2)^2/(2!) + ... + (ln2)^k/(k!)
**
** as described in algorithm S. (The values below have been
** multiplied by 2^32 and rounded to the nearest integer.)
** These exact values MUST be used so that different implementation
** produce the same sequences.
*/
static u_int64_t Q[K] = {
 0, /* Placeholder - so array indices start from 1. */
 0xB17217F8,
 0xEEF193F7,
 0xFD271862,
 0xFF9D6DD0,
 0xFFF4CFD0,
 0xFFFEE819,
 0xFFFFE7FF,
 0xFFFFFE2B,
 0xFFFFFFE0,
 0xFFFFFFFE,
 0xFFFFFFFF
};

/* this element represents ln2 */
#define LN2 Q[1]

/*
** Convert an unsigned 32-bit integer into a u_int64_t number..
*/
u_int64_t
OWPulong2num64(u_int32_t a)
{
 return ((u_int64_t)1 << 32) * a;
}

/*
** Arithmetic functions on u_int64_t numbers.
*/

/*
** Addition.
*/
u_int64_t

Shalunov et al. [Page 32]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

OWPnum64_add(u_int64_t x, u_int64_t y)
{
 return x + y;
}

/*
** Multiplication. Allows overflow. Straightforward implementation
** of Algorithm 4.3.1.M (p.268) from [KNUTH]
*/
u_int64_t
OWPnum64_mul(u_int64_t x, u_int64_t y)
{
 unsigned long w[4];
 u_int64_t xdec[2];
 u_int64_t ydec[2];

 int i, j;
 u_int64_t k, t, ret;

 xdec[0] = MASK32(x);
 xdec[1] = MASK32(x>>32);
 ydec[0] = MASK32(y);
 ydec[1] = MASK32(y>>32);

 for (j = 0; j < 4; j++)
 w[j] = 0;

 for (j = 0; j < 2; j++) {
 k = 0;
 for (i = 0; ;) {
 t = k + (xdec[i]*ydec[j]) + w[i + j];
 w[i + j] = t%EXP2POW32;
 k = t/EXP2POW32;
 if (++i < 2)
 continue;
 else {
 w[j + 2] = k;
 break;
 }
 }
 }

 ret = w[2];
 ret <<= 32;
 return w[1] + ret;
}

Shalunov et al. [Page 33]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

/*
** Seed the random number generator using a 16-byte quantity 'seed'
** (== the session ID in OWAMP). This function implements step U1
** of algorithm Unif.
*/

void
OWPrand_context_init(OWPrand_context *next, unsigned char *seed)
{
 int i;

 /* Initialize the key */
 rijndaelKeyInit(next->key, seed);

 /* Initialize the counter with zeros */
 memset(next->out, 0, 16);
 for (i = 0; i < 16; i++)
 next->counter[i] = 0UL;
}

/*
** Random number generating functions.
*/

/*
** Generate and return a 32-bit uniform random string (saved in the less
** significant half of the u_int64_t). This function implements steps U2-U4
** of the algorithm Unif.
*/
u_int64_t
OWPunif_rand64(OWPrand_context *next)
{
 int j;
 u_int8_t *buf;
 u_int64_t ret = 0;

 /* step U2 */
 u_int8_t i = next->counter[15] & (u_int8_t)3;
 if (!i)
 rijndaelEncrypt(next->key, next->counter, next->out);

 /* Step U3. Increment next.counter as a 16-octet single quantity
 in network byte order for AES counter mode. */
 for (j = 15; j >= 0; j--)
 if (++next->counter[j])
 break;

Shalunov et al. [Page 34]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 /* Step U4. Do output. The last 4 bytes of ret now contain the
 random integer in network byte order */
 buf = &next->out[4*i];
 for(j=0;j<4;j++){
 ret <<= 8;
 ret += *buf++;
 }
 return ret;
}

/*
** Generate a mean 1 exponential deviate.
*/
u_int64_t
OWPexp_rand64(OWPrand_context *next)
{

 unsigned long i, k;
 u_int32_t j = 0;
 u_int64_t U, V, J, tmp;

 /* Step S1. Get U and shift */
 U = OWPunif_rand64(next);

 while ((U & BIT31) && (j < 32)){ /* shift until find first '0' */
 U <<= 1;
 j++;
 }
 /* remove the '0' itself */
 U <<= 1;

 U = MASK32(U); /* Keep only the fractional part. */
 J = OWPulong2num64(j);

 /* Step S2. Immediate acceptance? */
 if (U < LN2) /* return (j*ln2 + U) */
 return OWPnum64_add(OWPnum64_mul(J, LN2), U);

 /* Step S3. Minimize. */
 for (k = 2; k < K; k++)
 if (U < Q[k])
 break;
 V = OWPunif_rand64(next);
 for (i = 2; i <= k; i++){
 tmp = OWPunif_rand64(next);
 if (tmp < V)
 V = tmp;
 }

Shalunov et al. [Page 35]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 /* Step S4. Return (j+V)*ln2 */
 return OWPnum64_mul(OWPnum64_add(J, V), LN2);
}

12. Normative References

 [AES] Advanced Encryption Standard (AES),
http://csrc.nist.gov/encryption/aes/

 [RFC1305] D. Mills, `Network Time Protocol (Version 3) Specification,
 Implementation and Analysis', RFC 1305, March 1992.

 [RFC1321] R. Rivest, `The MD5 Message-Digest Algorithm', RFC 1321,
 April 1992.

 [RFC2026] S. Bradner, `The Internet Standards Process -- Revision 3',
RFC 2026, October 1996.

 [RFC2119] S. Bradner, `Key words for use in RFCs to Indicate
 Requirement Levels', RFC 2119, March 1997.

 [RFC2330] V. Paxon, G. Almes, J. Mahdavi, M. Mathis, `Framework for
 IP Performance Metrics' RFC 2330, May 1998.

 [RFC2474] K. Nichols, S. Blake, F. Baker, D. Black, `Definition of
 the Differentiated Services Field (DS Field) in the IPv4 and
 IPv6 Headers', RFC 2474, December 1998.

 [RFC2679] G. Almes, S. Kalidindi, and M. Zekauskas, `A One-way Delay
 Metric for IPPM', RFC 2679, September 1999.

 [RFC2680] G. Almes, S. Kalidindi, and M. Zekauskas, `A One-way Packet
 Loss Metric for IPPM', RFC 2680, September 1999.

 [RFC2836] S. Brim, B. Carpenter, F. Le Faucheur, `Per Hop Behavior
 Identification Codes', RFC 2836, May 2000.

13. Informative References

 [ZIGG] G. Marsaglia, M. Sibuya and J.H. Ahrens, Communications of
 ACM, 15 (1972), 876-877

 [KNUTH] D. Knuth, The Art of Computer Programming, vol.2, 3rd
 edition, 1998

http://csrc.nist.gov/encryption/aes/
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2680
https://datatracker.ietf.org/doc/html/rfc2836

Shalunov et al. [Page 36]

INTERNET-DRAFT One-way Active Measurement Protocol May 2003

 [RIJN] Reference ANSI C implementation of Rijndael
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaelref.zip

 [RIPE] RIPE NCC Test-Traffic Measurements home,
http://www.ripe.net/test-traffic/.

 [RIPE-NLUUG] H. Uijterwaal and O. Kolkman, `Internet Delay
 Measurements Using Test-Traffic', Spring 1998 Dutch Unix User
 Group Meeting, http://www.ripe.net/test-

traffic/Talks/9805_nluug.ps.gz.

 [SURVEYOR] Surveyor Home Page, http://www.advanced.org/surveyor/.

 [SURVEYOR-INET] S. Kalidindi and M. Zekauskas, `Surveyor: An
 Infrastructure for Network Performance Measurements',
 Proceedings of INET'99, June 1999.

http://www.isoc.org/inet99/proceedings/4h/4h_2.htm

14. Authors' Addresses

 Stanislav Shalunov <shalunov@internet2.edu>

 Benjamin Teitelbaum <ben@internet2.edu>

 Anatoly Karp <karp@math.wisc.edu>

 Jeff Boote <boote@internet2.edu>

 Matthew J. Zekauskas <matt@internet2.edu>

 Expiration date: November 2003

http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaelref.zip
http://www.ripe.net/test-traffic/
http://www.ripe.net/test-traffic/Talks/9805_nluug.ps.gz
http://www.ripe.net/test-traffic/Talks/9805_nluug.ps.gz
http://www.advanced.org/surveyor/
http://www.isoc.org/inet99/proceedings/4h/4h_2.htm

Shalunov et al. [Page 37]

