
Network Working Group Stanislav Shalunov
Internet Draft Benjamin Teitelbaum
Expiration Date: April 2005 Anatoly Karp
 Jeff W. Boote
 Matthew J. Zekauskas
 Internet2
 October 2004

A One-way Active Measurement Protocol (OWAMP)
<draft-ietf-ippm-owdp-11.txt>

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Copyright Notice

 Copyright (C) The Internet Society 2004. All Rights Reserved.

Abstract

 With growing availability of good time sources to network nodes, it
 becomes increasingly possible to measure one-way IP performance
 metrics with high precision. To do so in an interoperable manner, a
 common protocol for such measurements is required. The One-Way
 Active Measurement Protocol (OWAMP) can measure one-way delay, as
 well as other unidirectional characteristics, such as one-way loss.

Shalunov et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-owdp-11.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

Table of Contents

1. Introduction . 3
1.1. Relationship of Test and Control Protocols 4
1.2. Logical Model . 5

2. Protocol Overview . 6
3. OWAMP-Control . 7

3.1. Connection Setup 7
3.2. Values of the Accept Field 10
3.3. OWAMP-Control Commands 11
3.4. Creating Test Sessions 11
3.5. Send Schedules . 16
3.6. Starting Test Sessions 17
3.7. Stop-Sessions . 19
3.8. Fetch-Session . 22

4. OWAMP-Test . 26
4.1. Sender Behavior 26

4.1.1. Packet Timings 26
4.1.2. Packet Format and Content 27

4.2. Receiver Behavior 30
 5. Computing Exponentially Distributed Pseudo-Random Numbers . 32

5.1. High-Level Description of the Algorithm 32
5.2. Data Types, Representation, and Arithmetic 33
5.3. Uniform Random Quantities 34

6. Security Considerations 35
6.1. Introduction . 35
6.2. Preventing Third-Party Denial of Service 35
6.3. Covert Information Channels 35
6.4. Requirement to Include AES in Implementations 35
6.5. Resource Use Limitations 36
6.6. Use of Cryptographic Primitives in OWAMP 37
6.7. Required Properties of MD5 38
6.8. The Use of AES-CBC-MAC 39

7. IANA Considerations . 40
8. Internationalization Considerations 40
9. Appendix A: Sample C Code for Exponential Deviates 41
10. Appendix B: Test Vectors for Exponential Deviates 46
11. Normative References 46
12. Informative References 47
13. Authors' Addresses . 48

Shalunov et al. [Page 2]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

1. Introduction

 The IETF IP Performance Metrics (IPPM) working group has proposed
 draft standard metrics for one-way packet delay [RFC2679] and loss
 [RFC2680] across Internet paths. Although there are now several
 measurement platforms that implement collection of these metrics
 [SURVEYOR], [RIPE], there is not currently a standard that would
 permit initiation of test streams or exchange of packets to collect
 singleton metrics in an interoperable manner.

 With the increasingly wide availability of affordable global
 positioning systems (GPS) and CDMA-based time sources, hosts
 increasingly have available to them very accurate time
 sources--either directly or through their proximity to Network Time
 Protocol (NTP) primary (stratum 1) time servers. By standardizing a
 technique for collecting IPPM one-way active measurements, we hope to
 create an environment where IPPM metrics may be collected across a
 far broader mesh of Internet paths than is currently possible. One
 particularly compelling vision is of widespread deployment of open
 OWAMP servers that would make measurement of one-way delay as
 commonplace as measurement of round-trip time using an ICMP-based
 tool like ping.

 Additional design goals of OWAMP include being hard to detect and
 manipulate, security, logical separation of control and test
 functionality, and support for small test packets.

 OWAMP test traffic is hard to detect because it is simply a stream of
 UDP packets from and to negotiated port numbers, with potentially
 nothing static in the packets (size is negotiated, as well). OWAMP
 also supports an encrypted mode that further obscures the traffic, at
 the same time making it impossible to alter timestamps undetectably.

 Security features include optional authentication and/or encryption
 of control and test messages. These features may be useful to
 prevent unauthorized access to results or man-in-the-middle attackers
 who attempt to provide special treatment to OWAMP test streams or who
 attempt to modify sender-generated timestamps to falsify test
 results.

 The key words "MUST", "REQUIRED", "SHOULD", "RECOMMENDED", and "MAY"
 in this document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2680
https://datatracker.ietf.org/doc/html/rfc2119

Shalunov et al. [Page 3]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

1.1. Relationship of Test and Control Protocols

 OWAMP actually consists of two inter-related protocols: OWAMP-Control
 and OWAMP-Test. OWAMP-Control is used to initiate, start, and stop
 test sessions and fetch their results, while OWAMP-Test is used to
 exchange test packets between two measurement nodes.

 Although OWAMP-Test may be used in conjunction with a control
 protocol other than OWAMP-Control, the authors have deliberately
 chosen to include both protocols in the same draft to encourage the
 implementation and deployment of OWAMP-Control as a common
 denominator control protocol for one-way active measurements. Having
 a complete and open one-way active measurement solution that is
 simple to implement and deploy is crucial to assuring a future in
 which inter-domain one-way active measurement could become as
 commonplace as ping. We neither anticipate nor recommend that
 OWAMP-Control form the foundation of a general-purpose extensible
 measurement and monitoring control protocol.

 OWAMP-Control is designed to support the negotiation of one-way
 active measurement sessions and results retrieval in a
 straightforward manner. At session initiation, there is a negotiation
 of sender and receiver addresses and port numbers, session start
 time, session length, test packet size, the mean Poisson sampling
 interval for the test stream, and some attributes of the very general

RFC 2330 notion of packet type, including packet size and per-hop
 behavior (PHB) [RFC2474], which could be used to support the
 measurement of one-way network characteristics across differentiated
 services networks. Additionally, OWAMP-Control supports per-session
 encryption and authentication for both test and control traffic,
 measurement servers that can act as proxies for test stream
 endpoints, and the exchange of a seed value for the pseudo-random
 Poisson process that describes the test stream generated by the
 sender.

 We believe that OWAMP-Control can effectively support one-way active
 measurement in a variety of environments, from publicly accessible
 measurement beacons running on arbitrary hosts to network monitoring
 deployments within private corporate networks. If integration with
 Simple Network Management Protocol (SNMP) or proprietary network
 management protocols is required, gateways may be created.

https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2474

Shalunov et al. [Page 4]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

1.2. Logical Model

 Several roles are logically separated to allow for broad flexibility
 in use. Specifically, we define:

 Session-Sender the sending endpoint of an OWAMP-Test session;

 Session-Receiver the receiving endpoint of an OWAMP-Test session;

 Server an end system that manages one or more OWAMP-Test
 sessions, is capable of configuring per-session
 state in session endpoints, and is capable of
 returning the results of a test session;

 Control-Client an end system that initiates requests for
 OWAMP-Test sessions, triggers the start of a set
 of sessions, and may trigger their termination; and

 Fetch-Client an end system that initiates requests to fetch
 the results of completed OWAMP-Test sessions.

 One possible scenario of relationships between these roles is shown
 below.

 +----------------+ +------------------+
 | Session-Sender |--OWAMP-Test-->| Session-Receiver |
 +----------------+ +------------------+
 ^ ^
 | |
 | |
 | |
 | +----------------+<----------------+
 | | Server |<-------+
 | +----------------+ |
 | ^ |
 | | |
 | OWAMP-Control OWAMP-Control
 | | |
 v v v
 +----------------+ +-----------------+
 | Control-Client | | Fetch-Client |
 +----------------+ +-----------------+

 (Unlabeled links in the figure are unspecified by this draft and may
 be proprietary protocols.)

 Different logical roles can be played by the same host. For example,
 in the figure above, there could actually be only two hosts: one

Shalunov et al. [Page 5]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 playing the roles of Control-Client, Fetch-Client, and
 Session-Sender, and the other playing the roles of Server and
 Session-Receiver. This is shown below.

 +-----------------+ +------------------+
 | Control-Client |<--OWAMP-Control-->| Server |
 | Fetch-Client | | |
 | Session-Sender |---OWAMP-Test----->| Session-Receiver |
 +-----------------+ +------------------+

 Finally, because many Internet paths include segments that transport
 IP over ATM, delay and loss measurements can include the effects of
 ATM segmentation and reassembly (SAR). Consequently, OWAMP has been
 designed to allow for small test packets that would fit inside the
 payload of a single ATM cell (this is only achieved in
 unauthenticated and encrypted modes).

2. Protocol Overview

 As described above, OWAMP consists of two inter-related protocols:
 OWAMP-Control and OWAMP-Test. The former is layered over TCP and is
 used to initiate and control measurement sessions and to fetch their
 results. The latter protocol is layered over UDP and is used to send
 singleton measurement packets along the Internet path under test.

 The initiator of the measurement session establishes a TCP connection
 to a well-known port on the target point and this connection remains
 open for the duration of the OWAMP-Test sessions. IANA will be
 requested to allocate a well-known port number for OWAMP-Control
 sessions. An OWAMP server SHOULD listen to this well-known port.

 OWAMP-Control messages are transmitted only before OWAMP-Test
 sessions are actually started and after they complete (with the
 possible exception of an early Stop-Sessions message).

 The OWAMP-Control and OWAMP-Test protocols support three modes of
 operation: unauthenticated, authenticated, and encrypted. The
 authenticated or encrypted modes require endpoints to possess a
 shared secret.

 All multi-octet quantities defined in this document are represented
 as unsigned integers in network byte order unless specified
 otherwise.

Shalunov et al. [Page 6]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

3. OWAMP-Control

 Each type of OWAMP-Control message has a fixed length. The recipient
 will know the full length of a message after examining the first 16
 octets of it. No message is shorter than 16 octets.

 If the full message is not received within 30 minutes after it is
 expected, connection SHOULD be dropped.

3.1. Connection Setup

 Before either a Control-Client or a Fetch-Client can issue commands
 of a Server, it has to establish a connection to the server.

 First, a client opens a TCP connection to the server on a well-known
 port. The server responds with a server greeting:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Unused (12 octets) |
 | |
 |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Modes |
 +-+
 | |
 | Challenge (16 octets) |
 | |
 | |
 +-+

 The following Mode values are meaningful: 1 for unauthenticated, 2
 for authenticated, and 4 for encrypted. The value of the Modes field
 sent by the server is the bit-wise OR of the mode values that it is
 willing to support during this session. Thus, the last three bits of
 the Modes 32-bit value are used. The first 29 bits MUST be zero. A
 client MUST ignore the values in the first 29 bits of the Modes
 value. (This way, the bits are available for future protocol
 extensions. This is the only intended extension mechanism.)

 Challenge is a random sequence of octets generated by the server; it
 is used subsequently by the client to prove possession of a shared
 secret in a manner prescribed below.

 If Modes value is zero, the server does not wish to communicate with
 the client and MAY close the connection immediately. The client

Shalunov et al. [Page 7]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 SHOULD close the connection if it receives a greeting with Modes
 equal to zero. The client MAY close the connection if the client's
 desired mode is unavailable.

 Otherwise, the client MUST respond with the following message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Mode |
 +-+
 | |
 . .
 . Username (16 octets) .
 . .
 | |
 +-+
 | |
 . .
 . Token (32 octets) .
 . .
 | |
 +-+
 | |
 . .
 . Client-IV (16 octets) .
 . .
 | |
 +-+

 Here Mode is the mode that the client chooses to use during this
 OWAMP-Control session. It will also be used for all OWAMP-Test
 sessions started under control of this OWAMP-Control session. In
 Mode, one or zero bits MUST be set within last three bits. The first
 29 bits of Mode MUST be zero. A server MUST ignore the values of the
 first 29 bits.

 In unauthenticated mode, Username, Token, and Client-IV are unused.

 Otherwise, Username is a 16-octet indicator that tells the server
 which shared secret the client wishes to use to authenticate or
 encrypt, while Token is the concatenation of a 16-octet challenge and
 a 16-octet Session-key, encrypted using the AES (Advanced Encryption
 Standard) [AES] in Cipher Block Chaining (CBC). Encryption MUST be
 performed using an Initialization Vector (IV) of zero and a key value
 that is the shared secret associated with Username. (Both the server
 and the client use the same mappings from user names to secret keys.
 The server, being prepared to conduct sessions with more than one

Shalunov et al. [Page 8]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 client, uses user names to choose the appropriate secret key; a
 client would typically have different secret keys for different
 servers. The situation is analogous to that of passwords, except
 that secret keys, rather than being the typical low-entropy
 passwords, are suitable for use as AES keys.) The shared secret will
 typically be provided as a passphrase; in this case, the MD5 sum
 [RFC1321] of the passphrase (without possible newline character(s) at
 the end of the passphrase) SHOULD be used as a key for encryption by
 the client and decryption by the server (the passphrase also SHOULD
 NOT contain newlines in the middle).

 Session-key and Client-IV are generated randomly by the client.
 Session-key MUST be generated with sufficient entropy not to reduce
 the security of the underlying cipher. Client-IV merely needs to be
 unique (i.e., it MUST never be repeated for different sessions using
 the same secret key; a simple way to achieve that without the use of
 cumbersome state is to generate the Client-IV strings using a
 cryptographically secure pseudo-random number source: if this is
 done, the first repetition is unlikely to occur before 2^64 sessions
 with the same secret key are conducted).

 The server MUST respond with the following message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Unused, MBZ (15 octets) |
 | |
 | +-+-+-+-+-+-+-+-+
 | | Accept |
 +-+
 | |
 | Server-IV (16 octets) |
 | |
 | |
 +-+
 | Uptime (Timestamp) |
 | |
 +-+
 | IZP (8 octets) |
 | |
 +-+

 The Unused 15-octet part MUST be zero. The client MUST ignore its
 value. MBZ (MUST be zero) fields here and hereafter have the same
 semantics: the party that sends the message MUST set the field to a
 string of zero bits; the party that interprets the message MUST

https://datatracker.ietf.org/doc/html/rfc1321

Shalunov et al. [Page 9]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 ignore the value. (This way the field could be used for future
 extensions.)

 Server-IV is generated randomly by the server. In unauthenticated
 mode, Server-IV is unused.

 The Accept field indicates the server's willingness to continue
 communication. A zero value in the Accept field means that the
 server accepts the authentication and is willing to conduct further
 transactions. Non-zero values indicate that the server does not
 accept the authentication or, for some other reason, is not willing
 to conduct further transactions in this OWAMP-Control session. The
 full list of available Accept values is described in the ``Values of
 the Accept Field'' section.

 If a negative (non-zero) response is sent, the server MAY and the
 client SHOULD close the connection after this message.

 Uptime is a timestamp representing the time when the current
 instantiation of the server started operating. (For example, in a
 multi-user general purpose operating system (OS), it could be the
 time when the server process was started.) If Accept is non-zero,
 Uptime SHOULD be set to a string of zeros. In authenticated and
 encrypted modes, Uptime is encrypted as described in the next
 section, unless Accept is non-zero. (Authenticated and encrypted mode
 cannot be entered unless the control connection can be initialized.)

 Timestamp format is described in ``Sender Behavior'' section below.
 The same instantiation of the server SHOULD report the same exact
 Uptime value to each client in each session.

 Integrity Zero Padding (IZP) is treated the same way as IZP in the
 next section and beyond.

 The previous transactions constitute connection setup.

3.2. Values of the Accept Field

 Accept values are used throughout the OWAMP-Control protocol to
 communicate the server response to client requests. The full set of
 valid Accept field values are:

 0 OK.

 1 Failure, reason unspecified (catch-all).

 2 Internal error.

Shalunov et al. [Page 10]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 3 Some aspect of request is not supported.

 4 Cannot perform request due to permanent resource limitations.

 5 Cannot perform request due to temporary resource limitations.

 All other values are reserved. The sender of the message MAY use the
 value of 1 for all non-zero Accept values. A message sender SHOULD
 use the correct Accept value if it is going to use other values. The
 message receiver MUST interpret all values of Accept other than these
 reserved values as 1. This way, other values are available for
 future extensions.

3.3. OWAMP-Control Commands

 In authenticated or encrypted mode (which are identical as far as
 OWAMP-Control is concerned, and only differ in OWAMP-Test) all
 further communications are encrypted with the Session-key, using CBC
 mode. The client encrypts its stream using Client-IV. The server
 encrypts its stream using Server-IV.

 The following commands are available for the client: Request-Session,
 Start-Sessions, Stop-Sessions, and Fetch-Session. The command
 Stop-Sessions is available to both the client and the server. (The
 server can also send other messages in response to commands it
 receives.)

 After Start-Sessions is sent/received by the client/server, and
 before it both sends and receives Stop-Sessions (order unspecified),
 it is said to be conducting active measurements.

 While conducting active measurements, the only command available is
 Stop-Sessions.

 These commands are described in detail below.

3.4. Creating Test Sessions

 Individual one-way active measurement sessions are established using
 a simple request/response protocol. An OWAMP client MAY issue zero or
 more Request-Session messages to an OWAMP server, which MUST respond
 to each with an Accept-Session message. An Accept-Session message
 MAY refuse a request.

 The format of Request-Session message is as follows:

Shalunov et al. [Page 11]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 1 | MBZ | IPVN | Conf-Sender | Conf-Receiver |
 +-+
 | Number of Schedule Slots |
 +-+
 | Number of Packets |
 +-+
 | Sender Port | Receiver Port |
 +-+
 | Sender Address |
 +-+
 | |
 | Sender Address (cont.) or MBZ |
 | |
 +-+
 | Receiver Address |
 +-+
 | |
 | Receiver Address (cont.) or MBZ |
 | |
 +-+
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | Padding Length |
 +-+
 | Start Time |
 | |
 +-+
 | Timeout |
 | |
 +-+
 | Type-P Descriptor |
 +-+
 | MBZ |
 | |
 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 This is immediately followed by one or more schedule slot

Shalunov et al. [Page 12]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 descriptions (the number of schedule slots is specified in the
 `Number of Schedule Slots' field above):

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Slot Type | |
 +-+-+-+-+-+-+-+-+ MBZ |
 | |
 +-+
 | Slot Parameter (Timestamp) |
 | |
 +-+

 These are immediately followed by IZP:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 All these messages comprise one logical message: the Request-Session
 command.

 Above, the first octet (1) indicates that this is Request-Session
 command.

 IPVN is the IP version numbers for Sender and Receiver. When the IP
 version number is 4, 12 octets follow the 4-octet IPv4 address stored
 in Sender Address and Receiver Address. These octets MUST be set to
 zero by the client and MUST be ignored by the server. Currently
 meaningful IPVN values are 4 and 6.

 Conf-Sender and Conf-Receiver MUST be set to 0 or 1 by the client.
 The server MUST interpret any non-zero value as 1. If the value is
 1, the server is being asked to configure the corresponding agent
 (sender or receiver). In this case, the corresponding Port value
 SHOULD be disregarded by the server. At least one of Conf-Sender and
 Conf-Receiver MUST be 1. (Both can be set, in which case the server
 is being asked to perform a session between two hosts it can
 configure.)

 Number of Schedule Slots, as mentioned before, specifies the number
 of slot records that go between the two blocks of IZP. It is used by

Shalunov et al. [Page 13]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 the sender to determine when to send test packets (see next section).

 Number of Packets is the number of active measurement packets to be
 sent during this OWAMP-Test session (note that both server and client
 can abort the session early).

 If Conf-Sender is not set, Sender Port is the UDP port from which
 OWAMP-Test packets will be sent. If Conf-Receiver is not set,
 Receiver Port is the UDP port OWAMP-Test to which packets are
 requested to be sent.

 The Sender Address and Receiver Address fields contain, respectively,
 the sender and receiver addresses of the end points of the Internet
 path over which an OWAMP test session is requested.

 SID is the session identifier. It can be used in later sessions as
 an argument for the Fetch-Session command. It is meaningful only if
 Conf-Receiver is 0. This way, the SID is always generated by the
 receiving side. See the end of the section for information on how
 the SID is generated.

 Padding length is the number of octets to be appended to the normal
 OWAMP-Test packet (see more on padding in discussion of OWAMP-Test).

 Start Time is the time when the session is to be started (but not
 before Start-Sessions command is issued). This timestamp is in the
 same format as OWAMP-Test timestamps.

 Timeout (or a loss threshold) is an interval of time (expressed as a
 timestamp). A packet belonging to the test session that is being set
 up by the current Request-Session command will be considered lost if
 it is not received during Timeout seconds after it is sent.

 Type-P Descriptor covers only a subset of (very large) Type-P space.
 If the first two bits of the Type-P Descriptor are 00, then
 subsequent six bits specify the requested Differentiated Services
 Codepoint (DSCP) value of sent OWAMP-Test packets, as defined in

RFC 2474. If the first two bits of Type-P descriptor are 01, then
 the subsequent 16 bits specify the requested PHB Identification Code
 (PHB ID), as defined in RFC 2836.

 Therefore, the value of all zeros specifies the default best-effort
 service.

 If Conf-Sender is set, the Type-P Descriptor is to be used to
 configure the sender to send packets according to its value. If
 Conf-Sender is not set, the Type-P Descriptor is a declaration of how
 the sender will be configured.

https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2836

Shalunov et al. [Page 14]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 If Conf-Sender is set and the server does not recognize the Type-P
 Descriptor, or it cannot or does not wish to set the corresponding
 attributes on OWAMP-Test packets, it SHOULD reject the session
 request. If Conf-Sender is not set, the server SHOULD accept or
 reject the session paying no attention to the value of the Type-P
 Descriptor.

 IZP MUST be all zeros in this and all messages that use IZP. The
 recipient of a message where IZP is not zero MUST reject the message,
 as it is an indication of tampering with the content of the message
 by an intermediary (or brokenness). If the message is part of
 OWAMP-Control, the session MUST be terminated and results
 invalidated. If the message is part of OWAMP-Test, it MUST be
 silently ignored. This will ensure data integrity. In
 unauthenticated mode, IZP is nothing more than a simple check. In
 authenticated and encrypted modes, however, it ensures, in
 conjunction with properties of CBC chaining mode, that everything
 received before was not tampered with. For this reason, it is
 important to check the IZP field as soon as possible, so that bad
 data doesn't get propagated.

 To each Request-Session message, an OWAMP server MUST respond with an
 Accept-Session message:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Accept | Unused | Port |
 +-|
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | |
 | IZP (12 octets) |
 | |
 +-+

 In this message, zero in the Accept field means that the server is
 willing to conduct the session. A non-zero value indicates rejection
 of the request. The full list of available Accept values is
 described in the ``Values of the Accept Field'' section.

 If the server rejects a Request-Session message, it SHOULD not close
 the TCP connection. The client MAY close it if it receives negative
 response to the Request-Session message.

Shalunov et al. [Page 15]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 The meaning of Port in the response depends on the values of
 Conf-Sender and Conf-Receiver in the query that solicited the
 response. If both were set, the Port field is unused. If only
 Conf-Sender was set, Port is the port from which to expect OWAMP-Test
 packets. If only Conf-Receiver was set, Port is the port to which
 OWAMP-Test packets are sent.

 If only Conf-Sender was set, the SID field in the response is unused.
 Otherwise, SID is a unique server-generated session identifier. It
 can be used later as handle to fetch the results of a session.

 SIDs SHOULD be constructed by concatenation of the 4-octet IPv4 IP
 number belonging to the generating machine, an 8-octet timestamp, and
 a 4-octet random value. To reduce the probability of collisions, if
 the generating machine has any IPv4 addresses (with the exception of
 loopback), one of them SHOULD be used for SID generation, even if all
 communication is IPv6-based. If it has no IPv4 addresses at all, the
 last four octets of an IPv6 address MAY be used instead. Note that
 SID is always chosen by the receiver. If truly random values are not
 available, it is important that the SID be made unpredictable, as
 knowledge of the SID might be used for access control.

3.5. Send Schedules

 The sender and the receiver both need to know the same send schedule.
 This way, when packets are lost, the receiver knows when they were
 supposed to be sent. It is desirable to compress common schedules
 and still to be able to use an arbitrary one for the test sessions.
 In many cases, the schedule will consist of repeated sequences of
 packets: this way, the sequence performs some test, and the test is
 repeated a number of times to gather statistics.

 To implement this, we have a schedule with a given number of slots.
 Each slot has a type and a parameter. Two types are supported:
 exponentially distributed pseudo-random quantity (denoted by a code
 of 0) and a fixed quantity (denoted by a code of 1). The parameter
 is expressed as a timestamp and specifies a time interval. For a
 type 0 slot (exponentially distributed pseudo-random quantity) this
 interval is the mean value (or 1/lambda if the distribution density
 function is expressed as lambda*exp(-lambda*x) for positive values of
 x). For a type 1 (fixed quantity) slot, the parameter is the delay
 itself. The sender starts with the beginning of the schedule, and
 executes the instructions in the slots: for a slot of type 0, wait an
 exponentially distributed time with a mean of the specified parameter
 and then send a test packet (and proceed to the next slot); for a
 slot of type 1, wait the specified time and send a test packet (and
 proceed to the next slot). The schedule is circular: when there are

Shalunov et al. [Page 16]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 no more slots, the sender returns to the first slot.

 The sender and the receiver need to be able to reproducibly execute
 the entire schedule (so, if a packet is lost, the receiver can still
 attach a send timestamp to it). Slots of type 1 are trivial to
 reproducibly execute. To reproducibly execute slots of type 0, we
 need to be able to generate pseudo-random exponentially distributed
 quantities in a reproducible manner. The way this is accomplished is
 discussed later.

 Using this mechanism one can easily specify common testing scenarios.
 Some examples include:

 + Poisson stream: a single slot of type 0;

 + Periodic stream: a single slot of type 1;

 + Poisson stream of back-to-back packet pairs: two slots -- type 0
 with a non-zero parameter and type 1 with a zero parameter.

 Further, a completely arbitrary schedule can be specified (albeit
 inefficiently) by making the number of test packets equal to the
 number of schedule slots. In this case, the complete schedule is
 transmitted in advance of an OWAMP-Test session.

3.6. Starting Test Sessions

 Having requested one or more test sessions and received affirmative
 Accept-Session responses, an OWAMP client MAY start the execution of
 the requested test sessions by sending a Start-Sessions message to
 the server.

 The format of this message is as follows:

Shalunov et al. [Page 17]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 2 | |
 +-+-+-+-+-+-+-+-+ |
 | Unused (15 octets) |
 | |
 | |
 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 The server MUST respond with an Start-Ack message (which SHOULD be
 sent as quickly as possible). Start-Ack messages have the following
 format:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Accept | |
 +-+-+-+-+-+-+-+-+ |
 | Unused (15 octets) |
 | |
 | |
 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 If Accept is non-zero, the Start-Sessions request was rejected; zero
 means that the command was accepted. The full list of available
 Accept values is described in the ``Values of the Accept Field''
 section. The server MAY, and the client SHOULD, close the connection
 in the case of a rejection.

 The server SHOULD start all OWAMP-Test streams immediately after it
 sends the response or immediately after their specified start times,
 whichever is later. If the client represents a Sender, the client
 SHOULD start its OWAMP-Test streams immediately after it sees the
 Start-Ack response from the Server (if the Start-Sessions command was
 accepted) or immediately after their specified start times, whichever
 is later. See more on OWAMP-Test sender behavior in a separate
 section below.

Shalunov et al. [Page 18]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

3.7. Stop-Sessions

 The Stop-Sessions message may be issued by either the Control-Client
 or the Server. The format of this command is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 3 | Accept | Unused |
 +-+
 | Number of Sessions |
 +-+
 | Unused (8 octets) |
 | |
 +-+

 This is immediately followed by zero or more session description
 records (the number of session description records is specified in
 the ``Number of Sessions'' field above). The session description
 record is used to indicate which packets were actually sent by the
 sender process (rather than skipped). The header of the session
 description record is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-|
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | Next Seqno |
 +-+
 | Number of Skip Ranges |
 +-+

 This is immediately followed by zero or more Skip Range descriptions
 as specified by the ``Number of Skip Ranges'' field above. Skip
 Ranges are simply two sequence numbers that, together, indicate a
 range of packets that were not sent:

Shalunov et al. [Page 19]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-|
 | First Seqno Skipped |
 +-+
 | Last Seqno Skipped |
 +-+

 The last (possibly full, possibly incomplete) block (16 octets) of
 data MUST be padded with zeros, if necessary. This ensures that the
 next session description record starts on a block boundary.

 Finally, a single block (16 octets) of IZP is concatenated on the end
 to complete the Stop-Sessions message.

 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 All these records comprise one logical message: the Stop-Sessions
 command.

 Above, the first octet (3) indicates that this is the Stop-Sessions
 command.

 Non-zero Accept values indicate a failure of some sort. Zero values
 indicate normal (but possibly premature) completion. The full list
 of available Accept values is described in the ``Values of the Accept
 Field'' section.

 If Accept had a non-zero value (from either party), results of all
 OWAMP-Test sessions spawned by this OWAMP-Control session SHOULD be
 considered invalid, even if a Fetch-Session with SID from this
 session works for a different OWAMP-Control session. If Accept was
 not transmitted at all (for whatever reason, including the TCP
 connection used for OWAMP-Control breaking), the results of all
 OWAMP-Test sessions spawned by this OWAMP-control session MAY be
 considered invalid.

 Number of Sessions indicates the number of session description
 records that immediately follow the Stop-Sessions header.

 Number of Sessions MUST contain the number of send sessions started
 by the local side of the control connection that have not been
 previously terminated by a Stop-Sessions command (i.e., the

Shalunov et al. [Page 20]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 Control-Client MUST account for each accepted Request-Session where
 Conf-Receiver was set; the Control-Server MUST account for each
 accepted Request-Session where Conf-Sender was set). If the
 Stop-Sessions message does not account for exactly the send sessions
 controlled by that side, then it is to be considered invalid and the
 connection SHOULD be closed and any results obtained considered
 invalid.

 Each session description record represents one OWAMP-Test session.

 SID is the session identifier (SID) used to indicate which send
 session is being described.

 Next Seqno indicates the next sequence number that would have been
 sent from this send session. For completed sessions, this will equal
 NumPackets from the Request-Session.

 Number of Skip Ranges indicates the number of holes that actually
 occurred in the sending process. This is a range of packets that were
 never actually sent by the sending process. For example, if a send
 session is started too late for the first 10 packets to be sent and
 this is the only hole in the schedule, then ``Number of Skip Ranges''
 would be 1. The single Skip Range description will have First Seqno
 Skipped equal to 0 and Last Seqno Skipped equal to 9. This is
 described further in the ``Sender Behavior'' section.

 If the OWAMP-Control connection breaks when the Stop-Sessions command
 is sent, the receiver MAY not completely invalidate the session
 results. It MUST discard all record of packets that follow (in other
 words, have greater sequence number than) the last packet that was
 actually received before before any lost packet records. This will
 help differentiate between packet losses that occurred in the network
 and packets the sending process may have never sent.

 If a receiver of an OWAMP-Test session learns, through an OWAMP-
 Control Stop-Sessions message, that the OWAMP-Test sender's last
 sequence number is lower than any sequence number actually received,
 the results of the complete OWAMP-Test session MUST be invalidated.

 A receiver of an OWAMP-Test session, upon receipt of an OWAMP-Control
 Stop-Sessions command, MUST discard any packet records -- including
 lost packet records -- with a (computed) send time that falls between
 the current time minus Timeout and the current time. This ensures
 statistical consistency for the measurement of loss and duplicates in
 the event that the Timeout is greater than the time it takes for the
 Stop-Sessions command to take place.

 To effect complete sessions, each side of the control connection

Shalunov et al. [Page 21]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 SHOULD wait until all sessions are complete before sending the
 Stop-Sessions message. The completed time of each sessions is
 determined as Timeout after the scheduled time for the last sequence
 number. Endpoints MAY add a small increment to the computed
 completed time for send endpoints to ensure the Stop-Sessions message
 reaches the receiver endpoint after Timeout.

 To effect a premature stop of sessions, the party that initiates this
 command MUST stop its OWAMP-Test send streams to send the Session
 Packets Sent values before sending this command. That party SHOULD
 wait until receiving the response Stop-Sessions message before
 stopping the receiver streams so that it can use the values from the
 received Stop-Sessions message to validate the data.

3.8. Fetch-Session

 The format of this client command is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | 4 | |
 +-+-+-+-+-+-+-+-+ |
 | Unused (7 octets) |
 +-+
 | Begin Seq |
 +-+
 | End Seq |
 +-+
 | |
 | SID (16 octets) |
 | |
 | |
 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 Begin Seq is the sequence number of the first requested packet. End
 Seq is the sequence number of the last requested packet. If Begin
 Seq is all zeros and End Seq is all ones, complete session is said to
 be requested.

 If a complete session is requested and the session is still in
 progress, or has terminated in any way other than normal, the request

Shalunov et al. [Page 22]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 to fetch session results MUST be denied. If an incomplete session is
 requested, all packets received so far that fall into the requested
 range SHOULD be returned. Note that, since no commands can be issued
 between Start-Sessions and Stop-Sessions, incomplete requests can
 only happen on a different OWAMP-Control connection (from the same or
 different host as Control-Client).

 The server MUST respond with a Fetch-Ack message. The format of this
 server response is as follows:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Accept | Complete | Unused (2 octets) |
 +-+
 | Next Seqno |
 +-+
 | Number of Skip Ranges |
 +-+
 | Number of Records |
 +-+
 | |
 | IZP (16 octets) |
 | |
 | |
 +-+

 Again, non-zero in the Accept field means a rejection of command.
 The server MUST specify zero for all remaining fields if Accept is
 non-zero. The client MUST ignore all remaining fields (except for the
 IZP) if Accept is non-zero. The full list of available Accept values
 is described in the ``Values of the Accept Field'' section.

 Complete is non-zero if the OWAMP-Test session has terminated.

 Next Seqno indicates the next sequence number that would have been
 sent from this send session. For completed sessions, this will equal
 NumPackets from the Request-Session.

 Number of Skip Ranges indicates the number of holes that actually
 occurred in the sending process.

 Number of Records is the number of packet records that fall within
 the requested range. This number might be less than the Number of
 Packets in the reproduction of the Request-Session command because of
 a session that ended prematurely or it might be greater because of
 duplicates.

Shalunov et al. [Page 23]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 If Accept was non-zero, this concludes the response to the Fetch-
 Session message. If Accept was 0, the server then MUST immediately
 send the OWAMP-Test session data in question.

 The OWAMP-Test session data consists of the following (concatenated):

 + A reproduction of the Request-Session command that was used to
 start the session; it is modified so that actual sender and
 receiver port numbers that were used by the OWAMP-Test session
 always appear in the reproduction.

 + 16 octets of IZP.

 + Zero or more (as specified) Skip Range descriptions. The last
 (possibly full, possibly incomplete) block (16 octets) of Skip
 Range descriptions is padded with zeros if necessary. (These
 zeros are simple padding and should be distinguished from the 16
 octets of IZP that follow.)

 + 16 octets of IZP.

 + Zero or more (as specified) packet records. The last (possibly
 full, possibly incomplete) block (16 octets) of data is padded
 with zeros if necessary. (These zeros are simple padding and
 should be distinguished from the 16 octets of IZP that follow.)

 + 16 octets of IZP.

 Skip Range descriptions are simply two sequence numbers that,
 together, indicate a range of packets that were not sent:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-|
 | First Seqno Skipped |
 +-+
 | Last Seqno Skipped |
 +-+

 Skip Range descriptions should be sent out in order, as sorted by
 First Seqno. If any Skip Ranges overlap, or are out of order, the
 session data is to be considered invalid and the connection SHOULD be
 closed and any results obtained considered invalid.

 Each packet record is 25 octets, and includes 4 octets of sequence
 number, 8 octets of send timestamp, 2 octets of send timestamp error
 estimate, 8 octets of receive timestamp, 2 octets of receive

Shalunov et al. [Page 24]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 timestamp error estimate, and 1 octet of Time To Live (TTL), or Hop
 Limit in IPv6:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 00| Seq Number |
 +-+
 04| Send Error Estimate | Receive Error Estimate |
 +-+
 08| Send Timestamp |
 12| |
 +-+
 16| Receive Timestamp |
 20| |
 +-+
 24| TTL |
 +-+-+-+-+-+-+-+-+

 Packet records are sent out in the same order the actual packets were
 received. Therefore, the data is in arrival order.

 Note that lost packets (if any losses were detected during the
 OWAMP-Test session) MUST appear in the sequence of packets. They can
 appear either at the point when the loss was detected or at any later
 point. Lost packet records are distinguished as follows:

 + A send timestamp filled with the presumed send time (as computed
 by the send schedule).

 + A send error estimate filled with Multiplier=1, Scale=64, and S=0
 (see the OWAMP-Test description for definition of these quantities
 and explanation of timestamp format and error estimate format).

 + A normal receive error estimate as determined by the error of the
 clock being used to declare the packet lost. (It is declared lost
 if it is not received by the Timeout after the presumed send time,
 as determined by the receiver's clock.)

 + A receive timestamp consisting of all zero bits.

 + A TTL value of 255.

Shalunov et al. [Page 25]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

4. OWAMP-Test

 This section describes OWAMP-Test protocol. It runs over UDP using
 sender and receiver IP and port numbers negotiated during the
 Request-Session exchange.

 As with OWAMP-Control, OWAMP-Test has three modes: unauthenticated,
 authenticated, and encrypted. All OWAMP-Test sessions that are
 spawned by an OWAMP-Control session inherit its mode.

 OWAMP-Control client, OWAMP-Control server, OWAMP-Test sender, and
 OWAMP-Test receiver can potentially all be different machines. (In a
 typical case, we expect that there will be only two machines.)

4.1. Sender Behavior

4.1.1. Packet Timings

 Send schedules based on slots, described previously, in conjunction
 with scheduled session start time, enable the sender and the receiver
 to compute the same exact packet sending schedule independently of
 each other. These sending schedules are independent for different
 OWAMP-Test sessions, even if they are governed by the same
 OWAMP-Control session.

 Consider any OWAMP-Test session. Once Start-Sessions exchange is
 complete, the sender is ready to start sending packets. Under normal
 OWAMP use circumstances, the time to send the first packet is in the
 near future (perhaps a fraction of a second away). The sender SHOULD
 send packets as close as possible to their scheduled time, with the
 following exception: if the scheduled time to send is in the past,
 and separated from the present by more than Timeout time, the sender
 MUST NOT send the packet. (Indeed, such a packet would be considered
 lost by the receiver anyway.) The sender MUST keep track of which
 packets it does not send. It will use this to tell the receiver what
 packets were not sent by setting Skip Ranges in the Stop-Sessions
 message from the sender to the receiver upon completion of the test.
 The Skip Ranges are also sent to a Fetch-Client as part of the
 session data results. These holes in the sending schedule can happen
 if a time in the past was specified in the Request-Session command,
 or if the Start-Sessions exchange took unexpectedly long, or if the
 sender could not start serving the OWAMP-Test session on time due to
 internal scheduling problems of the OS. Packets in the past, but
 separated from the present by less than Timeout value, SHOULD be sent
 as quickly as possible. With normal test rates and timeout values,
 the number of packets in such a burst is limited. Nevertheless,

Shalunov et al. [Page 26]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 hosts SHOULD NOT intentionally schedule sessions so that such bursts
 of packets occur.

 Regardless of any scheduling delays, each packet that is actually
 sent MUST have the best possible approximation of its real time of
 departure as its timestamp (in the packet).

4.1.2. Packet Format and Content

 The sender sends the receiver a stream of packets with the schedule
 specified in the Request-Session command. The sender SHOULD set the
 TTL in IPv4 (or Hop Limit in IPv6) in the UDP packet to 255. The
 format of the body of a UDP packet in the stream depends on the mode
 being used.

 For unauthenticated mode:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence Number |
 +-+
 | Timestamp |
 | |
 +-+
 | Error Estimate | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | |
 . .
 . Packet Padding .
 . .
 | |
 +-+

 For authenticated and encrypted modes:

Shalunov et al. [Page 27]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Sequence Number |
 +-+
 | |
 | IZP (12 octets) |
 | |
 +-+
 | Timestamp |
 | |
 +-+
 | Error Estimate | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
 | IZP (6 octets) |
 +-+
 | |
 . .
 . Packet Padding .
 . .
 | |
 +-+

 The format of the timestamp is the same as in [RFC 1305] and is as
 follows: first 32 bits represent the unsigned integer number of
 seconds elapsed since 0h on 1 January 1900; next 32 bits represent
 the fractional part of a second that has elapsed since then.

 So, Timestamp is represented as follows:
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Integer part of seconds |
 +-+
 | Fractional part of seconds |
 +-+

 The Error Estimate specifies the estimate of the error and
 synchronization. It has the following format:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |S|Z| Scale | Multiplier |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The first bit S SHOULD be set if the party generating the timestamp
 has a clock that is synchronized to UTC using an external source

https://datatracker.ietf.org/doc/html/rfc1305

Shalunov et al. [Page 28]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 (e.g., the bit should be set if GPS hardware is used and it indicates
 that it has acquired current position and time or if NTP is used and
 it indicates that it has synchronized to an external source, which
 includes stratum 0 source, etc.); if there is no notion of external
 synchronization for the time source, the bit SHOULD NOT be set. The
 next bit has the same semantics as MBZ fields elsewhere: it MUST be
 set to zero by the sender and ignored by everyone else. The next six
 bits, Scale, form an unsigned integer; Multiplier is an unsigned
 integer as well. They are interpreted as follows: the error estimate
 is equal to Multiplier*2^(-32)*2^Scale (in seconds). [Notation
 clarification: 2^Scale is two to the power of Scale.] Multiplier
 MUST NOT be set to zero. If Multiplier is zero, the packet SHOULD be
 considered corrupt and discarded.

 Sequence numbers start with zero and are incremented by one for each
 subsequent packet.

 The minimum data segment length is, therefore, 14 octets in
 unauthenticated mode, and 32 octets in both authenticated mode and
 encrypted modes.

 The OWAMP-Test packet layout is the same in authenticated and
 encrypted modes. The encryption operations are, however, different.
 The difference is that in encrypted mode both the sequence number and
 the timestamp are encrypted to provide maximum data integrity
 protection while in authenticated mode the sequence number is
 encrypted and the timestamp is sent in clear text. Sending the
 timestamp in clear text in authenticated mode allows one to reduce
 the time between when a timestamp is obtained by a sender and when
 the packet is shipped out. In encrypted mode, the sender has to
 fetch the timestamp, encrypt it, and send it; in authenticated mode,
 the middle step is removed, improving accuracy (the sequence number
 can be encrypted before the timestamp is fetched).

 In authenticated mode, the first block (16 octets) of each packet is
 encrypted using AES Electronic Cookbook (ECB) mode. The key to use
 is the same key as is used for the corresponding OWAMP-Control
 session (where it is used in a different chaining mode). ECB mode
 does not involve any actual chaining; this way, lost, duplicated, or
 reordered packets do not cause problems with deciphering any packet
 in an OWAMP-Test session.

 In encrypted mode, the first two blocks (32 octets) are encrypted
 using AES CBC mode. The key to use is the same key as is used for
 the corresponding OWAMP-Control session. Each OWAMP-Test packet is
 encrypted as a separate stream, with just one chaining operation;
 chaining does not span multiple packets so that lost, duplicated, or
 reordered packets do not cause problems.

Shalunov et al. [Page 29]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 In unauthenticated mode, no encryption is applied.

 Packet Padding in OWAMP-Test SHOULD be pseudo-random (it MUST be
 generated independently of any other pseudo-random numbers mentioned
 in this document). However, implementations MUST provide a
 configuration parameter, an option, or a different means of making
 Packet Padding consist of all zeros.

 The time elapsed between packets is computed according to the slot
 schedule as mentioned in Request-Session command description. At
 that point, we skipped over the issue of computing exponentially
 distributed pseudo-random numbers in a reproducible fashion. It is
 discussed later in a separate section.

4.2. Receiver Behavior

 The receiver knows when the sender will send packets. The following
 parameter is defined: Timeout (from Request-Session). Packets that
 are delayed by more than Timeout are considered lost (or `as good as
 lost'). Note that there is never an actual assurance of loss by the
 network: a `lost' packet might still be delivered at any time. The
 original specification for IPv4 required that packets be delivered
 within TTL seconds or never (with TTL having a maximum value of 255).
 To the best of the authors' knowledge, this requirement was never
 actually implemented (and, of course, only a complete and universal
 implementation would ensure that packets do not travel for longer
 than TTL seconds). In fact, in IPv6, the name of this field has
 actually been changed to Hop Limit. Further, IPv4 specification
 makes no claims about the time it takes the packet to traverse the
 last link of the path.

 The choice of a reasonable value of Timeout is a problem faced by a
 user of OWAMP protocol, not by an implementor. A value such as two
 minutes is very safe. Note that certain applications (such as
 interactive `one-way ping') might wish to obtain the data faster than
 that.

 As packets are received,

 + Timestamp the received packet.

 + In authenticated or encrypted mode, decrypt the first block (16
 octets) of the packet body.

 + Store the packet sequence number, send time, receive time, and the
 TTL for IPv4 (or Hop Limit for IPv6) from the packet IP header for
 the results to be transferred.

Shalunov et al. [Page 30]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 + Packets not received within the Timeout are considered lost. They
 are recorded with their true sequence number, presumed send time,
 receive time consisting of a string of zero bits, and TTL (or Hop
 Limit) of 255.

 Implementations SHOULD fetch the TTL/Hop Limit value from the IP
 header of the packet. If an implementation does not fetch the actual
 TTL value (the only good reason to not do so is inability to access
 the TTL field of arriving packets), it MUST record the TTL value as
 255.

 Packets that are actually received are recorded in the order of
 arrival. Lost packet records serve as indications of the send times
 of lost packets. They SHOULD be placed either at the point where the
 receiver learns about the loss or at any later point; in particular,
 one MAY place all the records that correspond to lost packets at the
 very end.

 Packets that have send time in the future MUST be recorded normally,
 without changing their send timestamp, unless they have to be
 discarded. (Send timestamps in the future would normally indicate
 clocks that differ by more than the delay. Some data -- such as
 jitter -- can be extracted even without knowledge of time difference.
 For other kinds of data, the adjustment is best handled by the data
 consumer on the basis of the complete information in a measurement
 session, as well as, possibly, external data.)

 Packets with a sequence number that was already observed (duplicate
 packets) MUST be recorded normally. (Duplicate packets are sometimes
 introduced by IP networks. The protocol has to be able to measure
 duplication.)

 If any of the following is true, the packet MUST be discarded:

 + Send timestamp is more than Timeout in the past or in the future.

 + Send timestamp differs by more than Timeout from the time when the
 packet should have been sent according to its sequence number.

 + In authenticated or encrypted mode, any of the bits of zero
 padding inside the first 16 octets of packet body is non-zero.

Shalunov et al. [Page 31]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

5. Computing Exponentially Distributed Pseudo-Random Numbers

 Here we describe the way exponential random quantities used in the
 protocol are generated. While there is a fair number of algorithms
 for generating exponential random variables, most of them rely on
 having logarithmic function as a primitive, resulting in potentially
 different values, depending on the particular implementation of the
 math library. We use algorithm 3.4.1.S in [KNUTH], which is free
 of the above-mentioned problem, and guarantees the same output on any
 implementation. The algorithm belongs to the ziggurat family
 developed in the 1970s by G. Marsaglia, M. Sibuya and J. H. Ahrens
 [ZIGG]. It replaces the use of logarithmic function by clever bit
 manipulation, still producing the exponential variates on output.

5.1. High-Level Description of the Algorithm

 For ease of exposition, the algorithm is first described with all
 arithmetic operations being interpreted in their natural sense.
 Later, exact details on data types, arithmetic, and generation of the
 uniform random variates used by the algorithm are given. It is an
 almost verbatim quotation from [KNUTH], p.133.

 Algorithm S: Given a real positive number 'mu', produce an
 exponential random variate with mean 'mu'.

 First, the constants

 Q[k] = (ln2)/(1!) + (ln2)^2/(2!) + ... + (ln2)^k/(k!), 1 <= k <= 11

 are computed in advance. The exact values which MUST be used by all
 implementations are given in the reference code (see Appendix A).
 This is necessary to insure that exactly the same pseudo-random
 sequences are produced by all implementations.

 S1. [Get U and shift.] Generate a 32-bit uniform random binary
 fraction

 U = (.b0 b1 b2 ... b31) [note the binary point]

 Locate the first zero bit b_j, and shift off the leading (j+1) bits,
 setting U <- (.b_{j+1} ... b31)

 Note: In the rare case that the zero has not been found, it is
 prescribed that the algorithm return (mu*32*ln2).

 S2. [Immediate acceptance?] If U < ln2, set X <- mu*(j*ln2 + U) and
 terminate the algorithm. (Note that Q[1] = ln2.)

Shalunov et al. [Page 32]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 S3. [Minimize.] Find the least k >= 2 such that U < Q[k]. Generate k
 new uniform random binary fractions U1,...,Uk and set V <-
 min(U1,...,Uk).

 S4. [Deliver the answer.] Set X <- mu*(j + V)*ln2.

5.2. Data Types, Representation, and Arithmetic

 The high-level algorithm operates on real numbers -- typically
 represented as floating point numbers. This specification prescribes
 that unsigned 64-bit integers be used instead.

 u_int64_t integers are interpreted as real numbers by placing the
 decimal point after the first 32 bits. In other words, conceptually,
 the interpretation is given by the map:

 u_int64_t u;

 u |--> (double)u / (2**32)

 The algorithm produces a sequence of such u_int64_t integers that,
 for any given value of SID, is guaranteed to be the same on any
 implementation.

 We specify that the u_int64_t representations of the first 11 values
 of the Q array in the high-level algorithm be as follows:

 #1 0xB17217F8,
 #2 0xEEF193F7,
 #3 0xFD271862,
 #4 0xFF9D6DD0,
 #5 0xFFF4CFD0,
 #6 0xFFFEE819,
 #7 0xFFFFE7FF,
 #8 0xFFFFFE2B,
 #9 0xFFFFFFE0,
 #10 0xFFFFFFFE,
 #11 0xFFFFFFFF

 For example, Q[1] = ln2 is indeed approximated by 0xB17217F8/(2**32)
 = 0.693147180601954; for j > 11, Q[j] is 0xFFFFFFFF.

 Small integer j in the high-level algorithm is represented as
 u_int64_t value j * (2**32).

 Operation of addition is done as usual on u_int64_t numbers; however,
 the operation of multiplication in the high-level algorithm should be

Shalunov et al. [Page 33]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 replaced by

 (u, v) |---> (u * v) >> 32.

 Implementations MUST compute the product (u * v) exactly. For
 example, a fragment of unsigned 128-bit arithmetic can be implemented
 for this purpose (see sample implementation below).

5.3. Uniform Random Quantities

 The procedure for obtaining a sequence of 32-bit random numbers (such
 as U in algorithm S) relies on using AES encryption in counter mode.
 To describe the exact working of the algorithm, we introduce two
 primitives from Rijndael. Their prototypes and specification are
 given below, and they are assumed to be provided by the supporting
 Rijndael implementation, such as [RIJN].

 + A function that initializes a Rijndael key with bytes from seed
 (the SID will be used as the seed):

 void KeyInit(unsigned char seed[16]);

 + A function that encrypts the 16-octet block inblock with the
 specified key, returning a 16-octet encrypted block. Here
 keyInstance is an opaque type used to represent Rijndael keys:

 void BlockEncrypt(keyInstance key, unsigned char inblock[16]);

 Algorithm Unif: given a 16-octet quantity seed, produce a sequence of
 unsigned 32-bit pseudo-random uniformly distributed integers. In
 OWAMP, the SID (session ID) from Control protocol plays the role of
 seed.

 U1. [Initialize Rijndael key] key <- KeyInit(seed) [Initialize an
 unsigned 16-octet (network byte order) counter] c <- 0 U2. [Need
 more random bytes?] Set i <- c mod 4. If (i == 0) set s <-
 BlockEncrypt(key, c)

 U3. [Increment the counter as unsigned 16-octet quantity] c <- c + 1

 U4. [Do output] Output the i_th quartet of octets from s starting
 from high-order octets, converted to native byte order and
 represented as OWPNum64 value (as in 3.b).

 U5. [Loop] Go to step U2.

Shalunov et al. [Page 34]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

6. Security Considerations

6.1. Introduction

 The goal of authenticated mode to let one passphrase-protect service
 provided by a particular OWAMP-Control server. One can imagine a
 variety of circumstances where this could be useful. Authenticated
 mode is designed to prohibit theft of service.

 An additional design objective of the authenticated mode was to make
 it impossible for an attacker who cannot read traffic between OWAMP-
 Test sender and receiver to tamper with test results in a fashion
 that affects the measurements, but not other traffic.

 The goal of encrypted mode is quite different: to make it hard for a
 party in the middle of the network to make results look `better' than
 they should be. This is especially true if one of client and server
 does not coincide with either sender or receiver.

 Encryption of OWAMP-Control using AES CBC mode with blocks of zeros
 after each message aims to achieve two goals: (i) to provide secrecy
 of exchange; (ii) to provide authentication of each message.

6.2. Preventing Third-Party Denial of Service

 OWAMP-Test sessions directed at an unsuspecting party could be used
 for denial of service (DoS) attacks. In unauthenticated mode,
 servers SHOULD limit receivers to hosts they control or to the OWAMP-
 Control client.

6.3. Covert Information Channels

 OWAMP-Test sessions could be used as covert channels of information.
 Environments that are worried about covert channels should take this
 into consideration.

6.4. Requirement to Include AES in Implementations

 Notice that AES, in counter mode, is used for pseudo-random number
 generation, so implementation of AES MUST be included, even in a
 server that only supports unauthenticated mode.

Shalunov et al. [Page 35]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

6.5. Resource Use Limitations

 An OWAMP server can consume resources of various kinds. The two most
 important kinds of resources are network capacity and memory (primary
 or secondary) for storing test results.

 Any implementation of OWAMP server MUST include technical mechanisms
 to limit the use of network capacity and memory. Mechanisms for
 managing the resources consumed by unauthenticated users and users
 authenticated with a username and passphrase SHOULD be separate. The
 default configuration of an implementation MUST enable these
 mechanisms and set the resource use limits to conservatively low
 values.

 One way to design the resource limitation mechanisms is as follows:
 assign each session to a user class. User classes are partially
 ordered with ``includes'' relation, with one class (``all users'')
 that is always present and that includes any other class. The
 assignment of a session to a user class can be based on the presence
 of authentication of the session, the user name, IP address range,
 time of day, and, perhaps, other factors. Each user class would have
 a limit for usage of network capacity (specified in units of
 bit/second) and memory for storing test results (specified in units
 of octets). Along with the limits for resource use, current use
 would be tracked by the server. When a session is requested by a
 user in a specific user class, the resources needed for this session
 are computed: the average network capacity use (based on the sending
 schedule) and the maximum memory use (based on the number of packets
 and number of octets each packet would need to be stored internally
 -- note that outgoing sessions would not require any memory use).
 These resource use numbers are added to the current resource use
 numbers for the given user class; if such addition would take the
 resource use outside of the limits for the given user class, the
 session is rejected. When resources are reclaimed, corresponding
 measures are subtracted from the current use. Network capacity is
 reclaimed as soon as the session ends. Memory is reclaimed when the
 data is deleted. For unauthenticated sessions, memory consumed by an
 OWAMP-Test session SHOULD be reclaimed after the OWAMP-Control
 connection that initiated the session is closed (gracefully or
 otherwise). For authenticated sessions, the administrator who
 configures the service should be able to decide the exact policy, but
 useful policy mechanisms that MAY be implemented are the ability to
 automatically reclaim memory when the data is retrieved and the
 ability to reclaim memory after a certain configurable (based on user
 class) period of time passes after the OWAMP-Test session terminates.

Shalunov et al. [Page 36]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

6.6. Use of Cryptographic Primitives in OWAMP

 At an early stage in designing the protocol, we considered using
 Transport Layer Security (TLS) and IPsec as cryptographic security
 mechanisms for OWAMP. The disadvantages of those are as follows (not
 an exhaustive list):

 Regarding TLS:

 + While TLS could be used to secure TCP-based OWAMP-Control, but
 difficult to use to secure UDP-based OWAMP-Test: OWAMP-Test
 packets, if lost, are not resent, so packets have to be
 (optionally) encrypted and authenticated while retaining
 individual usability. Stream-based TLS is not conducive of this.

 + Dealing with streams, does not authenticate individual messages
 (even in OWAMP-Control). The easiest way out would be to add some
 known-format padding to each message and verify that the format of
 the padding is intact before using the message. The solution
 would thus lose some of its appeal (``just use TLS''); it would
 also be much more difficult to evaluate the security of this
 scheme with the various modes and options of TLS -- it would
 almost certainly not be secure with all. The capacity of an
 attacker to replace parts of messages (namely, the end) with
 random garbage could have serious security implications and would
 need to be analyzed carefully: suppose, for example, that a
 parameter that is used in some form to control the rate were
 replaced by random garbage -- chances are the result (an unsigned
 integer) would be quite large.

 + Dependent on the mode of use, one can end up with a requirement
 for certificates for all users and a PKI. Even if one is to
 accept that PKI is desirable, there just isn't a usable one today.

 + TLS requires a fairly large implementation. OpenSSL, for example,
 is larger than our implementation of OWAMP as a whole. This can
 matter for embedded implementations.

 Regarding IPsec:

 + What we now call authenticated mode would not be possible (in
 IPsec you can't authenticate part of a packet).

 + The deployment paths of IPsec and OWAMP could be separate if OWAMP
 does not depend on IPsec. After nine years of IPsec, only 0.05%
 of traffic on an advanced backbone network such as Abilene uses
 IPsec (for comparison purposes with encryption above layer 4, SSH

Shalunov et al. [Page 37]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 use is at 2-4% and HTTPS use is at 0.2-0.6%). It is desirable to
 be able to deploy OWAMP on as large of a number of different
 platforms as possible.

 + The deployment problems of a protocol dependent on IPsec would be
 especially acute in the case of lightweight embedded devices.
 Ethernet switches, DSL ``modems,'' and other such devices mostly
 do not support IPsec.

 + The API for manipulation IPsec from an application is currently
 poorly understood. Writing a program that needs to encrypt some
 packets, authenticate some packets, and leave some open -- for the
 same destination -- would become more of an exercise in IPsec
 rather than IP measurement.

 For the enumerated reasons, we decided to use a simple cryptographic
 protocol (based on a block cipher in CBC mode) that is different from
 TLS and IPsec.

6.7. Required Properties of MD5

 The protocol makes use of the MD5 hash function to convert a
 user-supplied passphrase into a key that will be used to encrypt a
 short piece of random data (the session key).

 In this document we use cryptographic terminology of [MENEZES].

 It has long been suspected, and has been conclusively shown recently
 that MD5 is not a collision-resistant hash function. Since collision
 resistance was one of design goals of MD5, this casts strong
 suspicion on the other design goals of MD5, namely preimage
 resistance and 2nd preimage resistance.

 OWAMP does not rely on any of these properties.

 The properties of MD5 that are necessary are as follows: (1) it is a
 function that maps arbitrary length inputs into 128-bit outputs
 [fixed-length hash function], (2) a change in any bit of the input
 usually results in a change of a few bits of output [weakened
 avalanche property], (3) many 128-bit strings have preimages [almost
 surjective], and (4) the visible special structure of
 natural-language text possibly present in the passphrase is concealed
 after application of the function. These are very weak requirements
 that many functions satisfy. Something resembling CRC-128 would work
 just as well.

Shalunov et al. [Page 38]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 We chose MD5 here because it has the required properties and is
 widely implemented, understood, and documented. Alternatives would
 include (1) a non-cryptographic primitive, such as CRC-128, (2) SHA-1
 truncated to 128 bits, or (3) a hash function based on AES (using
 Matyas-Meyer-Oseas, Davies-Meyer, or Miyaguchi-Preneel constructions;
 we would probably gravitate towards the last one if a block-cipher-
 based cryptographically secure hash function were required). Note
 that option 1 would not have any cryptographically relevant
 properties. We chose not to use it because of lack of
 well-documented 128-bit checksums; this specification would incur an
 unnecessary burden precisely defining one, providing test vectors,
 etc., with no advantage over MD5. Option 2, SHA-1, belongs to the
 MD4 family that appears to be under suspicion in light of recent
 developments. To avoid creating an impression that any potential
 future changes in the status of SHA-1 can affect the status of OWAMP
 we chose not to use it. Option 3 would result in a hash function
 that, with the current state of knowledge, would probably be one of
 the most cryptographically sound. Our requirements 1-4 from the
 preceding paragraph, however, do not call for a cryptographically
 sound hash function. Just as with CRC-128, this specification would
 need to define the hash function and provide test vectors (and
 perhaps sample code); we see no advantage in this approach versus
 using MD5. (Note that the performance advantages of MD5 are
 irrelevant for this application, as the hash is computed on a
 relatively short human-supplied string only once per OWAMP-Control
 session, so if the Miyaguchi-Preneel construction were documented in
 an RFC, we might just as well have used that.)

6.8. The Use of AES-CBC-MAC

 OWAMP relies on AES-CBC-MAC for message authentication. Random IV
 choice is important for prevention of a codebook attack on the first
 block; it is unimportant for the purposes of CBC-MAC authentication
 (it should also be noted that, with its 128-bit block size, AES is
 more resistant to codebook attacks than ciphers with shorter blocks;
 we use random IV anyway).

 IZP, when decrypted, MUST be zero. It is crucial to check for this
 before using the message, otherwise existential forgery becomes
 possible. The complete message for which IZP is decrypted to non-
 zero MUST be discarded (for both short messages consisting of a few
 blocks and potentially long messages, such as a response to the
 Fetch-Session command).

 Since OWAMP messages can have different numbers of blocks, the
 existential forgery attack described in example 9.62 of [MENEZES]
 becomes a concern. To prevent it (and to simplify implementation),

Shalunov et al. [Page 39]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 the length of any message becomes known after decrypting the first
 block of it.

 A special case is the first (fixed-length) message sent by the
 client. There, the token is a concatenation of the 128-bit challenge
 (transmitted by the server in the clear) and a 128-bit session key
 (generated randomly by the client, encrypted with AES-CBC with IV=0.
 Since IV=0, the challenge (a single cipher block) is simply encrypted
 with the secret key. Therefore, we rely on resistance of AES to
 chosen plaintext attacks (as the challenge could be substituted by an
 attacker). It should be noted that the number of blocks of chosen
 plaintext an attacker can have encrypted with the secret key is
 limited by the number of sessions the client wants to initiate. An
 attacker who knows the encryption of a server's challenge can produce
 an existential forgery of the session key and thus disrupt the
 session; however, any attacker can disrupt a session by corrupting
 the protocol messages in an arbitrary fashion, therefore no new
 threat is created here; nevertheless, we require that the server
 never issues the same challenge twice (if challenges are generated
 randomly, a repetition would occur, on average, after 2^64 sessions;
 we deem this satisfactory as this is enough even for an implausibly
 busy server that participates in 1,000,000 sessions per second to go
 without repetitions for more than 500 centuries). With respect to
 the second part of the token, an attacker can produce an existential
 forgery of the session key by modifying the second half of the
 client's token while leaving the first part intact. This forgery,
 however, would be immediately discovered by the client when the IZP
 on the server's next message (acceptance or rejection of the
 connection) does not verify.

7. IANA Considerations

 IANA is requested to allocate a well-known TCP port number for the
 OWAMP-Control part of the OWAMP protocol.

8. Internationalization Considerations

 The protocol does not carry any information in a natural language.

Shalunov et al. [Page 40]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

9. Appendix A: Sample C Code for Exponential Deviates

 The values in array Q[] are the exact values that MUST be used by all
 implementations. The rest of this appendix only serves for
 illustrative purposes.

/*
** Example usage: generate a stream of exponential (mean 1)
** random quantities (ignoring error checking during initialization).
** If a variate with some mean mu other than 1 is desired, the output
** of this algorithm can be multiplied by mu according to the rules
** of arithmetic we described.

** Assume that a 16-octet 'seed' has been initialized
** (as the shared secret in OWAMP, for example)
** unsigned char seed[16];

** OWPrand_context next;

** (initialize state)
** OWPrand_context_init(&next, seed);

** (generate a sequence of exponential variates)
** while (1) {
** u_int64_t num = OWPexp_rand64(&next);
 <do something with num here>
 ...
** }
*/

#include <stdlib.h>

typedef u_int64_t u_int64_t;

/* (K - 1) is the first k such that Q[k] > 1 - 1/(2^32). */
#define K 12

#define BIT31 0x80000000UL /* See if first bit in the lower
 32 bits is zero. */
#define MASK32(n) ((n) & 0xFFFFFFFFUL)

#define EXP2POW32 0x100000000ULL

typedef struct OWPrand_context {
 unsigned char counter[16]; /* Counter (network byte order). */
 keyInstance key; /* Key to encrypt the counter. */
 unsigned char out[16]; /* The encrypted block. */

Shalunov et al. [Page 41]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

} OWPrand_context;

/*
** The array has been computed according to the formula:
**
** Q[k] = (ln2)/(1!) + (ln2)^2/(2!) + ... + (ln2)^k/(k!)
**
** as described in algorithm S. (The values below have been
** multiplied by 2^32 and rounded to the nearest integer.)
** These exact values MUST be used so that different implementation
** produce the same sequences.
*/
static u_int64_t Q[K] = {
 0, /* Placeholder - so array indices start from 1. */
 0xB17217F8,
 0xEEF193F7,
 0xFD271862,
 0xFF9D6DD0,
 0xFFF4CFD0,
 0xFFFEE819,
 0xFFFFE7FF,
 0xFFFFFE2B,
 0xFFFFFFE0,
 0xFFFFFFFE,
 0xFFFFFFFF
};

/* this element represents ln2 */
#define LN2 Q[1]

/*
** Convert an unsigned 32-bit integer into a u_int64_t number.
*/
u_int64_t
OWPulong2num64(u_int32_t a)
{
 return ((u_int64_t)1 << 32) * a;
}

/*
** Arithmetic functions on u_int64_t numbers.
*/

/*
** Addition.
*/
u_int64_t
OWPnum64_add(u_int64_t x, u_int64_t y)

Shalunov et al. [Page 42]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

{
 return x + y;
}

/*
** Multiplication. Allows overflow. Straightforward implementation
** of Algorithm 4.3.1.M (p.268) from [KNUTH].
*/
u_int64_t
OWPnum64_mul(u_int64_t x, u_int64_t y)
{
 unsigned long w[4];
 u_int64_t xdec[2];
 u_int64_t ydec[2];

 int i, j;
 u_int64_t k, t, ret;

 xdec[0] = MASK32(x);
 xdec[1] = MASK32(x>>32);
 ydec[0] = MASK32(y);
 ydec[1] = MASK32(y>>32);

 for (j = 0; j < 4; j++)
 w[j] = 0;

 for (j = 0; j < 2; j++) {
 k = 0;
 for (i = 0; ;) {
 t = k + (xdec[i]*ydec[j]) + w[i + j];
 w[i + j] = t%EXP2POW32;
 k = t/EXP2POW32;
 if (++i < 2)
 continue;
 else {
 w[j + 2] = k;
 break;
 }
 }
 }

 ret = w[2];
 ret <<= 32;
 return w[1] + ret;
}

/*

Shalunov et al. [Page 43]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

** Seed the random number generator using a 16-byte quantity 'seed'
** (== the session ID in OWAMP). This function implements step U1
** of algorithm Unif.
*/

void
OWPrand_context_init(OWPrand_context *next, unsigned char *seed)
{
 int i;

 /* Initialize the key */
 rijndaelKeyInit(next->key, seed);

 /* Initialize the counter with zeros */
 memset(next->out, 0, 16);
 for (i = 0; i < 16; i++)
 next->counter[i] = 0UL;
}

/*
** Random number generating functions.
*/

/*
** Generate and return a 32-bit uniform random string (saved in the less
** significant half of the u_int64_t). This function implements steps
** U2-U4 of the algorithm Unif.
*/
u_int64_t
OWPunif_rand64(OWPrand_context *next)
{
 int j;
 u_int8_t *buf;
 u_int64_t ret = 0;

 /* step U2 */
 u_int8_t i = next->counter[15] & (u_int8_t)3;
 if (!i)
 rijndaelEncrypt(next->key, next->counter, next->out);

 /* Step U3. Increment next.counter as a 16-octet single
 quantity in network byte order for AES counter mode. */
 for (j = 15; j >= 0; j--)
 if (++next->counter[j])
 break;

 /* Step U4. Do output. The last 4 bytes of ret now contain the

Shalunov et al. [Page 44]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 random integer in network byte order */
 buf = &next->out[4*i];
 for (j=0; j<4; j++) {
 ret <<= 8;
 ret += *buf++;
 }
 return ret;
}

/*
** Generate an exponential deviate with mean 1.
*/
u_int64_t
OWPexp_rand64(OWPrand_context *next)
{
 unsigned long i, k;
 u_int32_t j = 0;
 u_int64_t U, V, J, tmp;

 /* Step S1. Get U and shift */
 U = OWPunif_rand64(next);

 while ((U & BIT31) && (j < 32)) { /* Shift until first 0. */
 U <<= 1;
 j++;
 }
 /* Remove the 0 itself. */
 U <<= 1;

 U = MASK32(U); /* Keep only the fractional part. */
 J = OWPulong2num64(j);

 /* Step S2. Immediate acceptance? */
 if (U < LN2) /* return (j*ln2 + U) */
 return OWPnum64_add(OWPnum64_mul(J, LN2), U);

 /* Step S3. Minimize. */
 for (k = 2; k < K; k++)
 if (U < Q[k])
 break;
 V = OWPunif_rand64(next);
 for (i = 2; i <= k; i++) {
 tmp = OWPunif_rand64(next);
 if (tmp < V)
 V = tmp;
 }

 /* Step S4. Return (j+V)*ln2 */

Shalunov et al. [Page 45]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 return OWPnum64_mul(OWPnum64_add(J, V), LN2);
}

10. Appendix B: Test Vectors for Exponential Deviates

 It is important that the test schedules generated by different
 implementations from identical inputs be identical. The non-trivial
 part is the generation of pseudo-random exponentially distributed
 deviates. To aid implementors in verifying interoperability, several
 test vectors are provided. For each of the four given 128-bit values
 of SID represented as hexadecimal numbers, 1,000,000 exponentially
 distributed 64-bit deviates are generated as described above. As
 they are generated, they are all added to each other. The sum of all
 1,000,000 deviates is given as a hexadecimal number for each SID. An
 implementation MUST produce exactly these hexadecimal numbers. To
 aid in the verification of the conversion of these numbers to values
 of delay in seconds, approximate values are given (assuming
 lambda=1). An implementation SHOULD produce delay values in seconds
 that are close to the ones given below.

 SID = 0x2872979303ab47eeac028dab3829dab2
 SUM[1000000] = 0x000f4479bd317381 (1000569.739036 seconds)

 SID = 0x0102030405060708090a0b0c0d0e0f00
 SUM[1000000] = 0x000f433686466a62 (1000246.524512 seconds)

 SID = 0xdeadbeefdeadbeefdeadbeefdeadbeef
 SUM[1000000] = 0x000f416c8884d2d3 (999788.533277 seconds)

 SID = 0xfeed0feed1feed2feed3feed4feed5ab
 SUM[1000000] = 0x000f3f0b4b416ec8 (999179.293967 seconds)

11. Normative References

 [AES] Advanced Encryption Standard (AES),
http://csrc.nist.gov/encryption/aes/

 [RFC1305] D. Mills, `Network Time Protocol (Version 3) Specification,
 Implementation and Analysis', RFC 1305, March 1992.

 [RFC1321] R. Rivest, `The MD5 Message-Digest Algorithm', RFC 1321,
 April 1992.

 [RFC2026] S. Bradner, `The Internet Standards Process -- Revision 3',
RFC 2026, October 1996.

http://csrc.nist.gov/encryption/aes/
https://datatracker.ietf.org/doc/html/rfc1305
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2026

Shalunov et al. [Page 46]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 [RFC2119] S. Bradner, `Key words for use in RFCs to Indicate
 Requirement Levels', RFC 2119, March 1997.

 [RFC2330] V. Paxon, G. Almes, J. Mahdavi, M. Mathis, `Framework for
 IP Performance Metrics' RFC 2330, May 1998.

 [RFC2474] K. Nichols, S. Blake, F. Baker, D. Black, `Definition of
 the Differentiated Services Field (DS Field) in the IPv4 and
 IPv6 Headers', RFC 2474, December 1998.

 [RFC2679] G. Almes, S. Kalidindi, and M. Zekauskas, `A One-way Delay
 Metric for IPPM', RFC 2679, September 1999.

 [RFC2680] G. Almes, S. Kalidindi, and M. Zekauskas, `A One-way Packet
 Loss Metric for IPPM', RFC 2680, September 1999.

 [RFC2836] S. Brim, B. Carpenter, F. Le Faucheur, `Per Hop Behavior
 Identification Codes', RFC 2836, May 2000.

12. Informative References

 [ZIGG] G. Marsaglia, M. Sibuya, and J. H. Ahrens, Communications of
 ACM, 15 (1972), 876-877.

 [MENEZES] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
 Handbook of Applied Cryptography, CRC Press, revised reprint
 with updates, 1997.

 [KNUTH] D. Knuth, The Art of Computer Programming, vol.2, 3rd
 edition, 1998.

 [RIJN] Reference ANSI C Implementation of Rijndael
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaelref.zip

 [RIPE] RIPE NCC Test-Traffic Measurements home,
http://www.ripe.net/test-traffic/.

 [RIPE-NLUUG] H. Uijterwaal and O. Kolkman, `Internet Delay
 Measurements Using Test-Traffic', Spring 1998 Dutch Unix User
 Group Meeting,

http://www.ripe.net/test-traffic/Talks/9805_nluug.ps.gz.

 [SURVEYOR] Surveyor Home Page, http://www.advanced.org/surveyor/.

 [SURVEYOR-INET] S. Kalidindi and M. Zekauskas, `Surveyor: An
 Infrastructure for Network Performance Measurements',

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2330
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2680
https://datatracker.ietf.org/doc/html/rfc2836
http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaelref.zip
http://www.ripe.net/test-traffic/
http://www.ripe.net/test-traffic/Talks/9805_nluug.ps.gz
http://www.advanced.org/surveyor/

Shalunov et al. [Page 47]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 Proceedings of INET'99, June 1999.
http://www.isoc.org/inet99/proceedings/4h/4h_2.htm

13. Authors' Addresses

 Stanislav Shalunov
 Internet2
 3025 Boardwalk Dr, Suite 200
 Ann Arbor, MI 48108
 Telephone: +1-734-995-7060
 Email: shalunov@internet2.edu
 SIP: shalunov@internet2.edu

 Benjamin Teitelbaum
 Internet2
 3025 Boardwalk Dr, Suite 200
 Ann Arbor, MI 48108
 Email: ben@internet2.edu
 SIP: ben@internet2.edu

 Anatoly Karp
 4710 Regent St, Apt 81B
 Madison, WI 53705
 Telephone: +1-608-347-6255
 Email: ankarp@charter.net

 Jeff W. Boote
 Internet2
 3025 Boardwalk Dr, Suite 200
 Ann Arbor, MI 48108
 Email: boote@internet2.edu
 SIP: boote@internet2.edu

 Matthew J. Zekauskas
 Internet2
 3025 Boardwalk Dr, Suite 200
 Ann Arbor, MI 48108
 Email: matt@internet2.edu

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information

http://www.isoc.org/inet99/proceedings/4h/4h_2.htm

Shalunov et al. [Page 48]

INTERNET-DRAFT One-way Active Measurement Protocol October 2004

 on the procedures with respect to rights in RFC documents can be found
 in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

Acknowledgments

 We would like to thank Guy Almes, Hamid Asgari, Steven Van den
 Berghe, Eric Boyd, Robert Cole, Joan Cucchiara, Stephen Donnelly,
 Kaynam Hedayat, Petri Helenius, Kitamura Yasuichi, Daniel H. T. R.
 Lawson, Will E. Leland, Bruce A. Mah, Allison Mankin, Al Morton,
 Attila Pasztor, Randy Presuhn, Matthew Roughan, Andy Scherrer, Henk
 Uijterwaal, and Sam Weiler for their comments, suggestions, reviews,
 helpful discussion and proof-reading.

Expiration date: April 2005

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Shalunov et al. [Page 49]

