
Network Working Group S. Shalunov
Internet-Draft
Intended status: Standards Track M. Swany
Expires: January 14, 2011 University of Delaware
 July 13, 2010

Reporting IP Performance Metrics to Users
draft-ietf-ippm-reporting-05.txt

Abstract

 The aim of this document is to define a small set of metrics that are
 robust, easy to understand, orthogonal, relevant, and easy to
 compute. The IPPM WG has defined a large number of richly
 parameterized metrics because network measurement has many purposes.
 Often, the ultimate purpose is to report a concise set of metrics
 describing a network's current state to an end user. It is for this
 purpose that the present set of metrics is defined, and the document
 is principally concerned with "short-term" reporting considerations
 (a few seconds or minutes as opposed to days, months or years.)

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 14, 2011.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Shalunov & Swany Expires January 14, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Shalunov & Swany Expires January 14, 2011 [Page 2]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

Table of Contents

1. Requirements Notation . 4
2. Introduction . 5
3. Applicability for Long-Term Measurements 7
4. Reportable Metrics Set . 8
4.1. Median Delay . 8
4.2. Loss Ratio . 8
4.3. Delay Spread . 8
4.4. Duplication . 9
4.5. Reordering . 9

5. Sample Source . 10
5.1. One-Way Active Measurement 10
5.2. Round-Trip Active Measurement 11
5.3. Passive Measurement 11

6. Security Considerations 12
7. Acknowledgments . 13
8. IANA Considerations . 14
9. Internationalization Considerations 15
10. Normative References . 16
Appendix A. Sample Source Code for Computing the Metrics 17
Appendix B. Example Report 41

 Authors' Addresses . 42

Shalunov & Swany Expires January 14, 2011 [Page 3]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Shalunov & Swany Expires January 14, 2011 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Reporting IP Performance Metrics to Users July 2010

2. Introduction

 The IPPM working group has defined many richly parameterized
 performance metrics with a number of variants (one-way delay, one-way
 loss, delay variation, reordering, etc.) and a protocol for obtaining
 the measurement data needed to compute these metrics (OWAMP). It
 would be beneficial to define a standard way to report a set of
 performance metrics to end users. Parameterization might be
 acceptable in such a set, but there must still be defaults for
 everything. It is especially important to get these defaults right.
 Such a set would enable different tools to produce results that can
 be compared against each other.

 Existing tools already report statistics about the network. This is
 done for varying reasons: network testing tools, such as the ping
 program available in UNIX-derived operating systems as well as in
 Microsoft Windows, report statistics with no knowledge of why the
 user is running the program; networked games might report statistics
 of the network connection to the server so users can better
 understand why they get the results they get (e.g., if something is
 slow, is this because of the network or the CPU?), so they can
 compare their statistics to those of others ("you're not lagged any
 more than I am") or perhaps so that users can decide whether they
 need to upgrade the connection to their home; IP telephony hardware
 and software might report the statistics for similar reasons. While
 existing tools report statistics, the particular set of metrics they
 choose is ad hoc; some metrics are not statistically robust, some are
 not relevant, and some are not easy to understand; more important
 than specific shortcomings, however, is the incompatibility: even if
 the sets of metrics were perfect, they would still be all different,
 and, therefore, metrics reported by different tools would not be
 comparable.

 The set of metrics of this document is meant for human consumption.
 It must therefore be small. A screen full of numbers is likely to be
 too confusing. Restricting output to a single number would likewise
 not be descriptive enough. (Would you pick loss? delay? throughput?
 something else?) In this document we aim for a "handful" of numbers.

 Each of the metrics must be statistically robust. Intuitively, this
 means that having a small number of bad data points and a small
 amount of noise must not dramatically change the metric.

 Each metric in the set must have, qualitatively, an immediate
 intuitive meaning that has to be obvious for an advanced end user
 without consulting documentation (that is, it has to be clear what
 rough meaning, intuitively, the larger values of a given metric
 have).

Shalunov & Swany Expires January 14, 2011 [Page 5]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 To be small, the set has to be orthogonal: each of the metrics has to
 express a property not covered by other metrics (otherwise, there's
 redundancy).

 The metrics in the set must be relevant. Partly, being easy to
 understand will help achieve this, but additional constraint may be
 placed by relevancy.

 Finally, while this set will most frequently be computed for small
 data sets, where efficiency is not a serious consideration, it must
 be possible to compute for large data sets, too. In particular, it
 must be possible to compute the metrics in a single pass over the
 data using a limited amount of memory (i.e., it must be possible to
 take a source of measurement data with a high data rate and compute
 the metrics on the fly, discarding each data point after it is
 processed).

Shalunov & Swany Expires January 14, 2011 [Page 6]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

3. Applicability for Long-Term Measurements

 The metrics in this document are most applicable to short-term
 network measurements (seconds or at most minutes) and are targeted
 for real-time display of such measurements.

 One consideration that would have to be addressed to make these
 metrics suitable for longer-term measurements (hours and days) is
 that of network availability: during such long periods of time the
 network may be completely down for some time and it does not seem to
 make sense to average out the reports in such a way that the network
 being down for 1% of the time becomes 1% packet loss.

Shalunov & Swany Expires January 14, 2011 [Page 7]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

4. Reportable Metrics Set

 The following metrics comprise the set:

 1. median delay;

 2. loss ratio;

 3. delay spread;

 4. duplication;

 5. reordering.

 Each of the above is represented by a single numeric quantity,
 computed as described below.

4.1. Median Delay

 The reported median delay is the median of all delays in the sample.
 When a packet is lost, its delay is to be considered +infinity for
 the purposes of this computation; therefore, if more than half of all
 packets are lost, the delay is +infinity.

 For more information, refer to section 5.2 (Type-P-One-way-Delay-
 Median) of RFC 2679 [RFC2679] (A One-way Delay Metric for IPPM), and
 supporting text.

4.2. Loss Ratio

 Loss Ratio is the fraction, expressed as a percentile, of packets
 that did not arrive intact within a given number of seconds (the
 timeout value) after being sent. Since this set of metrics often has
 to be reported to a waiting human user, the default timeout value
 should be small. By default, 2 seconds MUST be the timeout value.
 Use of a different timeout value MUST be reported.

 For more information, refer to Section 4.1 (Type-P-One-way-Packet-
 Loss-Average) of RFC 2680 [RFC2680] (A One-way Packet Loss Metric for
 IPPM). The Loss Ratio is 100*Type-P-One-way-Packet-Loss-Average.

4.3. Delay Spread

 Delay spread is the interquartile spread of observed delays. This is
 a metric to represent what is commonly referred to as "jitter".
 Delay spread is reported as the difference of the 75th and 25th
 percentiles of delay. When both percentiles are +infinity, the value
 of delay spread is undefined. Therefore, if less than 25% of packets

https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2680
https://datatracker.ietf.org/doc/html/rfc2680

Shalunov & Swany Expires January 14, 2011 [Page 8]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 are lost, it is defined and finite; if between 75% and 25% of packets
 are lost, it is +infinity; finally, if more than 75% of packets are
 lost, it is undefined.

 For more information, refer to section 5.1 (Type-P-One-way-Delay-
 Percentile) of RFC 2679 [RFC2679] (A One-way Delay Metric for IPPM),
 and supporting text. The Delay Spread is the 75th Type-P-One-way-
 Delay-Percentile minus the 25th Type-P-One-way-Delay-Percentile.

4.4. Duplication

 Duplication is the fraction of packets sent but not lost for which
 more than a single copy of the packet was received within the timeout
 period (ideally using the same timeout as in the definition of loss),
 expressed in percentage points.

 Note: while most received packets can be ones previously seen,
 duplication can never exceed 100%.

 For more information, see section 5.2 (Type-P-one-way-replicated-
 packet-rate) of RFC 5560 [RFC5560] (A One-Way Packet Duplication
 Metric). Duplication is Type-P-one-way-replicated-packet-rate
 expressed as a percentage.

4.5. Reordering

 Reordering is the fraction of unique packets received for which the
 sequence number of any given packet is less than the highest sequence
 number largest sequence number of any packet previously received.
 For the purposes of determining the sequence number of the preceding
 packets in this definition, assume sequence numbers starting with 1,
 and an extra packet at the start of the stream of received packets,
 with a sequence number of 0, is considered to be present (this extra
 packet, of course, is not counted for the purposes of computing the
 fraction).

 For more information, refer to section 4.1.3 (Type-P-Reordered-Ratio-
 Stream) of RFC 4737 [RFC4737] (Packet Reordering Metrics), and
 supporting text. The precise definition of a reordered packet is in

section 3.3.

 {Comment: As the non-normative sample code in Appendix A below shows,
 this is also related to the amount of 1-reordering (Section 5.3 RFC

4737 [RFC4737]). It is not, however, the degree of 1-reordering in
 5.3; because 1-reordering divides by the number of all packets
 received, instead of the number of non-duplicate packets received.}

https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc5560
https://datatracker.ietf.org/doc/html/rfc5560
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc4737

Shalunov & Swany Expires January 14, 2011 [Page 9]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

5. Sample Source

Section 4 describes the metrics to compute on a sample of
 measurements. The source of the sample in not discussed there, and,
 indeed, the metrics discussed (delay, loss, etc.) are simply
 estimators that could be applied to any sample whatsoever. For the
 names of the estimators to be applicable, of course, the measurements
 need to come from a packet delivery network.

 The data in the samples for the set of metrics discussed in this
 document can come from the following sources: one-way active
 measurement, round-trip measurement, and passive measurement. There
 infrequently is a choice between active and passive measurement, as,
 typically, only one is available; consequently, no preference is
 given to one over the other. In cases where clocks can be expected
 to be synchronized, in general, one-way measurements are preferred
 over round-trip measurements (as one-way measurements are more
 informative). When one-way measurements cannot be obtained, or when
 clocks cannot be expected to be synchronized, round-trip measurement
 MAY be used.

5.1. One-Way Active Measurement

 The default duration of the measurement interval is 10 seconds.

 The default sending schedule is a Poisson stream.

 The default sending rate is 10 packets/second on average. The
 default sending schedule is a Poisson stream. When randomized
 schedules, such as a Poisson stream, are used, the rate MUST be set
 with the distribution parameter(s). With a randomized schedule, the
 default sample size is 100 packets and the measurement window
 duration can vary to some extent depending on the values of the
 (pseudo-)random deviates.

 The default packet size is the minimum necessary for the measurement.

 Values other than the default ones MAY be used; if they are used,
 their use, and specific values used, MUST be reported.

 A one-way active measurement is characterized by the source IP
 address, the destination IP address, the time when measurement was
 taken, and the type of packets (e.g., UDP with given port numbers and
 a given DSCP) used in the measurement. For the time, the end of the
 measurement interval MUST be reported.

Shalunov & Swany Expires January 14, 2011 [Page 10]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

5.2. Round-Trip Active Measurement

 The same default parameters and characterization apply to round-trip
 measurement as to one-way measurement (Section 5.1).

5.3. Passive Measurement

 Passive measurement use whatever data it is natural to use. For
 example, an IP telephony application or a networked game would use
 the data that it sends. An analysis of performance of a link might
 use all the packets that traversed the link in the measurement
 interval. An analysis of performance of an Internet service
 provider's network might use all the packets that traversed the
 network in the measurement interval. An analysis of performance of a
 specific service from the point of view of a given site might use an
 appropriate filter to select only the relevant packets. In any case,
 the source needs to be reported.

 The same default duration applies to passive measurement as to one-
 way active measurement (Section 5.1).

 When the passive measurement data is reported in real time, or based
 on user demand, a sliding window SHOULD be used as a measurement
 period, so that recent data become more quickly reflected. For
 historical reporting purposes, a fixed interval may be preferable.

Shalunov & Swany Expires January 14, 2011 [Page 11]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

6. Security Considerations

 The reporting per se, not being a protocol, does not raise security
 considerations.

 An aspect of reporting relevant to security is how the reported
 metrics are used and how they are collected. If it is important that
 the metrics satisfy certain conditions (e.g., that the ISP whose
 network is being measured be unable to make the metrics appear better
 than they are), the collection mechanism MUST ensure that this is,
 indeed, so. The exact mechanisms to do so are outside of scope of
 this document and belong with discussion of particular measurement
 data collection protocols.

Shalunov & Swany Expires January 14, 2011 [Page 12]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

7. Acknowledgments

 We gratefully acknowledge discussion with, encouragement from, and
 contributions of Lawrence D. Dunn, Reza Fardid, Ruediger Geib,
 Matt Mathis, Al Morton, Carsten Schmoll, Henk Uijterwaal, and
 Matthew J. Zekauskas.

Shalunov & Swany Expires January 14, 2011 [Page 13]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

8. IANA Considerations

 This document requires no action from the IANA.

Shalunov & Swany Expires January 14, 2011 [Page 14]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

9. Internationalization Considerations

 The reported metrics, while they might occasionally be parsed by
 machine, are primarily meant for human consumption. As such, they
 MAY be reported in the language preferred by the user, using an
 encoding suitable for the purpose, such as UTF-8.

Shalunov & Swany Expires January 14, 2011 [Page 15]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

10. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2679] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
 Delay Metric for IPPM", RFC 2679, September 1999.

 [RFC2680] Almes, G., Kalidindi, S., and M. Zekauskas, "A One-way
 Packet Loss Metric for IPPM", RFC 2680, September 1999.

 [RFC4737] Morton, A., Ciavattone, L., Ramachandran, G., Shalunov,
 S., and J. Perser, "Packet Reordering Metrics", RFC 4737,
 November 2006.

 [RFC5560] Uijterwaal, H., "A One-Way Packet Duplication Metric",
RFC 5560, May 2009.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2679
https://datatracker.ietf.org/doc/html/rfc2680
https://datatracker.ietf.org/doc/html/rfc4737
https://datatracker.ietf.org/doc/html/rfc5560

Shalunov & Swany Expires January 14, 2011 [Page 16]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

Appendix A. Sample Source Code for Computing the Metrics

 This appendix only serves for illustrative purposes.

 /*
 * reporting.c -- performance metrics reporting as in Internet Draft
 * draft-ietf-ippm-reporting.
 *
 * Written by Stanislav Shalunov, http://www.internet2.edu/~shalunov/
 * Bernhard Lutzmann, belu@users.sf.net
 * Federico Montesino Pouzols, fedemp@altern.org
 *
 * This file is also available, under a different (BSD-style)
 * license, as part of thrulay.
 */

 /**
 * @file reporting.c
 *
 * @short metrics computation and reporting.
 **/

 #include <stdlib.h>
 #include <stdint.h>
 #include <float.h>
 #include <math.h>
 #include <string.h>
 #include <assert.h>

 #define min(a, b) ((a) < (b) ? (a) : (b))
 #define max(a, b) ((a) > (b) ? (a) : (b))

 /*
 * Reordering.
 */
 #define loop(x) ((x) >= 0 ? (x) : (x) + (int)reordering_max)

 /*
 * Duplication.
 */
 static uint64_t *bitfield = NULL; /* Bit field used to check for
 duplicated packets. */

 /*
 * Reordering.
 */
 static uint64_t reordering_max; /* We have m[j-1] == number of */

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-reporting
http://www.internet2.edu/~shalunov/

Shalunov & Swany Expires January 14, 2011 [Page 17]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 static uint64_t *reordering_m; /* We have m[j-1] == number of
 j-reordered packets. */
 static uint64_t *reordering_ring; /* Last sequence numbers seen */
 static int r = 0; /* Ring pointer for next write. */
 static int l = 0; /* Counter of sequence numbers. */

 /*
 * Quantiles
 *
 * Reference:
 *
 * [1] Manku, Rajagopalan, Lindsay: "Approximate Medians and other
 * Quantiles in One Pass and with Limited Memory",
 * http://www-db.stanford.edu/~manku/papers/98sigmod-quantiles.pdf
 */

 #define QUANTILE_EPS 0.005

 static uint16_t quantile_max_seq; /* Maximum number of sequences */
 static int *quantile_k; /* number of elements in buffer */

 static double **quantile_input; /* This is the buffer where the
 sequence of incoming packets is
 saved. If we received enough
 packets, we will write this
 buffer to a quantile buffer. */
 static int *quantile_input_cnt; /* number of elements in input
 * buffer */
 static int *quantile_empty_buffers; /* number of empty buffers */

 static int *quantile_b; /* number of buffers */

 static double **quantile_buf;

 static int *quantile_alternate; /* this is used to determine
 the offset in COLLAPSE (if
 weight is even) */

 static uint64_t *quantile_inf_cnt; /* this counter is for the
 additional -inf, +inf
 elements we added to NEW
 buffer to fill it up. */

 typedef struct quantile {
 struct quantile *next; /* pointer to next quantile
 * buffer */
 int weight; /* 0 if buffer is empty, > 0 if buffer is
 * full */

http://www-db.stanford.edu/~manku/papers/98sigmod-quantiles.pdf

Shalunov & Swany Expires January 14, 2011 [Page 18]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 int level;
 double *buffer;
 int pos; /* current position in buffer; used in
 quantile_collapse() */
 } quantile_t;

 static quantile_t **quantile_buffer_head;

 int
 reordering_init(uint64_t max)
 {
 reordering_max = max;
 reordering_m = calloc(reordering_max, sizeof(uint64_t));
 reordering_ring = calloc(reordering_max, sizeof(uint64_t));
 if (reordering_m == NULL) {
 return -1;
 } else {
 return 0;
 }
 }

 int
 reordering_checkin(uint64_t packet_sqn)
 {
 int j;

 for (j = 0; j < min(l, (int)reordering_max) &&

 packet_sqn < reordering_ring[loop(r-j-1)]; j++) {
 reordering_m[j]++;
 }
 reordering_ring[r] = packet_sqn;
 l++;
 r = (r + 1) % reordering_max;
 return 0;
 }

 double
 reordering_output(uint64_t j)
 {
 if (j >= reordering_max)
 return -1;
 else
 return (double)reordering_m[j] / l);
 }

 void
 reordering_exit(void)

Shalunov & Swany Expires January 14, 2011 [Page 19]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 {
 free(reordering_ring);
 free(reordering_m);
 }

 int
 duplication_init(uint64_t npackets)
 {
 uint64_t bitfield_len = 0; /* Number of sectors in bitfield */

 /* Allocate memory for bit field */
 bitfield_len = ((npackets % 64)?
 (npackets / 64 + 1) : npackets / 64);
 bitfield = calloc(bitfield_len, sizeof(uint64_t));
 if (bitfield == NULL) {
 return -1;
 } else {
 return 0;
 }
 }

 int
 duplication_check(uint64_t packet_sqn)
 {
 uint64_t bitfield_sec; /* Which sector in bitfield */
 uint64_t bitfield_bit; /* Which bit in sector */

 /* Calculate sector */
 bitfield_sec = packet_sqn >> 6;

 /* Calculate bit in sector */
 bitfield_bit = (uint64_t)1 << (packet_sqn & 63);

 if (bitfield[bitfield_sec] & bitfield_bit) {
 /* Duplicated packet */
 return 1;
 } else {
 /* Unique packet */
 bitfield[bitfield_sec] |= bitfield_bit;
 return 0;
 }
 }

 void
 duplication_exit(void)
 {
 free(bitfield);
 }

Shalunov & Swany Expires January 14, 2011 [Page 20]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 /* Calculate binomial coefficient C(n, k). */
 int64_t
 binomial (int n, int k)
 {
 int64_t bc = 0;
 int i, m;

 /* C(n, k) = C(n, n-k) */
 k = min(k, n-k);

 if (k >= 0) {
 bc = 1;
 m = max(k, n-k);

 for (i = 1; i <= k; i++) {
 bc = (bc * (m + i)) / i;
 }
 }

 return bc;
 }

 int
 quantile_compare(const void *d1, const void *d2)
 {
 if (*(double *)d1 < *(double *)d2) {
 return -1;
 } else if (*(double *)d1 == *(double *)d2) {
 return 0;
 } else {
 assert(*(double *)d1 > *(double *)d2);
 return 1;
 }
 }

 void
 quantile_sort (double *list, int length)
 {
 qsort(list, length, sizeof(double), quantile_compare);
 }

 /**
 * Implementation of NEW operation from section 3.1 of paper [1].
 *
 * Takes as input an empty buffer. Simply populates the quantile
 * buffer with the next k elements from the input sequence, labels
 * the buffer as full, and assigns it a weight of 1.
 *

Shalunov & Swany Expires January 14, 2011 [Page 21]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 * If there are not enough elements to fill up the buffer, we
 * alternately add -inf, +inf elements until buffer is full (-inf
 * == 0, +inf == DBL_MAX).
 *
 * NOTE: We sort the elements in the input buffer before we copy
 * them to the quantile buffer.
 *
 * @param seq Sequence index.
 *
 * @return
 * @retval 0 on success.
 * @retval -2 need an empty buffer.
 * @retval -3 bad input sequence length.
 **/
 int
 quantile_new(uint16_t seq, quantile_t *q, double *input, int k,
 int level)
 {
 int i;

 /* Check that buffer is really empty. */
 if (q->weight != 0) {
 return -2;
 }

 /* Sanity check for length of input sequence. */
 if (k > quantile_k[seq]) {
 return -3;
 }

 /* If there are not enough elements in the input buffer, fill
 * it up with -inf, +inf elements. */
 for (i = k; i < quantile_k[seq]; i++) {
 if (i % 2) {
 input[i] = DBL_MAX;
 } else {
 input[i] = 0;
 }

 /* Increment counter that indicates how many additional
 * elements we added to fill the buffer. */
 quantile_inf_cnt[seq]++;
 }

 quantile_sort(input, quantile_k[seq]);

 memcpy(q->buffer, input, sizeof(double) * quantile_k[seq]);

Shalunov & Swany Expires January 14, 2011 [Page 22]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 /* Mark buffer as full and set level. */
 q->weight = 1;
 q->level = level;

 /* Update number of empty quantile buffers. */
 quantile_empty_buffers[seq]--;

 return 0;
 }

 /* Implementation of COLLAPSE operation from section 3.2 of paper
 * [1].
 *
 * This is called from quantile_algorithm() if there are no empty
 * buffers. We COLLAPSE all the full buffers, where level has
 * value `level'. Output is written to the first buffer in linked
 * list with level set to `level'. The level of the output buffer
 * is increased by 1. All other buffers we used in the COLLAPSE
 * are marked empty. */
 int
 quantile_collapse(uint16_t seq, int level)
 {
 quantile_t *qp = NULL, *qp_out = NULL;
 int num_buffers = 0; /* number of buffers with level
 * `level' */
 int weight = 0; /* weight of the output buffer */
 int offset;
 int i, j;
 double min_dbl;
 long next_pos;
 long merge_pos = 0;

 /* Check that there are at least two full buffers with given
 * level. Also calculate weight of output buffer. */
 for (qp = quantile_buffer_head[seq]; qp != NULL; qp = qp->next) {
 if ((qp->weight != 0) && (qp->level == level)) {
 num_buffers++;
 weight += qp->weight;
 qp->pos = 0;
 } else {
 /* We mark the buffers that are not used in this
 * COLLAPSE. */
 qp->pos = -1;
 }
 }
 if (num_buffers < 2) {
 return -4;

Shalunov & Swany Expires January 14, 2011 [Page 23]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 }

 /* NOTE: The elements in full buffers are sorted. So we don't
 * have to do that again.
 */
 /* Search for first full buffer with matching level. This is
 * the buffer where we save the output. */
 for (qp_out = quantile_buffer_head[seq]; qp_out != NULL;
 qp_out = qp_out->next) {
 if (qp_out->pos != -1) {
 break;
 }
 }

 /* Calculate offset */
 if (weight % 2) {
 /* odd */
 offset = (weight + 1) / 2;
 } else {
 /* even - we alternate between two choices in each
 * COLLAPSE */
 if (quantile_alternate[seq] % 2) {
 offset = weight / 2;
 } else {
 offset = (weight + 2)/ 2;
 }
 quantile_alternate[seq] = (quantile_alternate[seq] + 1) % 2;
 }

 /* Initialize next position of element to save. Because first
 * position is at 0, we have to decrement offset by 1. */
 next_pos = offset - 1;

 for (i = 0; i < quantile_k[seq];) {

 /* Search for current minimal element in all buffers.
 * Because buffers are all sorted, we just have to check
 * the element at current position. */
 min_dbl = DBL_MAX;
 for (qp = quantile_buffer_head[seq]; qp != NULL;
 qp = qp->next) {
 /* Skip wrong buffers. */
 if (qp->pos == -1) {
 continue;
 }

 /* Check that we are not at the end of buffer. */
 if (qp->pos >= quantile_k[seq]) {

Shalunov & Swany Expires January 14, 2011 [Page 24]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 continue;
 }

 /* Update minimum element. */
 min_dbl = min(min_dbl, qp->buffer[qp->pos]);
 }

 /* Now process this minimal element in all buffers. */
 for (qp = quantile_buffer_head[seq]; qp != NULL;
 qp = qp->next) {
 /* Skip wrong buffers. */
 if (qp->pos == -1) {
 continue;
 }

 /* Now process minimal element in this buffer. */
 for (; (qp->buffer[qp->pos] == min_dbl) &&
 (qp->pos < quantile_k[seq]);
 qp->pos++) {

 /* We run this loop `qp->weight' times.
 * We check there if we are in a position
 * so we have to save this element in our
 * output buffer. */
 for (j = 0; j < qp->weight; j++) {

 if (next_pos == merge_pos) {
 quantile_buf[seq][i] = min_dbl;
 i++;

 if (i == quantile_k[seq]) {
 /* We have written
 * all elements to
 * output buffer, so
 * exit global loop. */
 goto out;
 }

 /* Update next position. */
 next_pos += weight;
 }

 merge_pos++;
 } /* for(j = 0; j < qp->weight; j++) */
 } /* for (; (qp->buffer[qp->pos] == min_dbl) &&
 (qp->pos < quantile_k[seq]); qp->pos++) */
 } /* for (qp = quantile_buffer_head[seq]; qp!=NULL;
 qp = qp->next) */

Shalunov & Swany Expires January 14, 2011 [Page 25]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 } /* for (i = 0; i < quantile_k[seq];) */

 out:
 memcpy(qp_out->buffer, quantile_buf[seq],
 sizeof(double) * quantile_k[seq]);

 /* Update weight of output buffer. */
 qp_out->weight = weight;
 qp_out->level = level+1;

 /* Update list of empty buffers. */
 for (qp = quantile_buffer_head[seq]; qp != NULL; qp = qp->next) {
 if ((qp->pos != -1) && (qp != qp_out)) {
 qp->weight = 0;
 qp->level = 0;
 }
 }
 quantile_empty_buffers[seq] += num_buffers - 1;
 return 0;
 }

 /**
 * Implementation of COLLAPSE policies from section 3.4 of paper
 * [1].
 *
 * There are three different algorithms noted in the paper. We use
 * the "New Algorithm".
 *
 * @param seq Sequence index.
 *
 * @return
 * @retval 0 on success.
 * @retval -1 quantiles not initialized.
 * @retval -2 need an empty buffer for new operation.
 * @retval -3 bad input sequence length in new operation.
 * @retval -4 not enough buffers for collapse operation.
 **/
 int
 quantile_algorithm (uint16_t seq, double *input, int k)
 {
 int rc;
 quantile_t *qp = NULL, *qp2 = NULL;
 int min_level = -1;

 /* This should always be true. */
 if (quantile_buffer_head[seq] != NULL) {
 min_level = quantile_buffer_head[seq]->level;
 } else {

Shalunov & Swany Expires January 14, 2011 [Page 26]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 return -1;
 }

 /* Get minimum level of all currently full buffers. */
 for (qp = quantile_buffer_head[seq]; qp != NULL; qp = qp->next) {
 if (qp->weight != 0) {
 /* Full buffer. */
 min_level = min(min_level, qp->level);
 }
 }

 if (quantile_empty_buffers[seq] == 0) {
 /* There are no empty buffers. Invoke COLLAPSE on the set
 * of buffers with minimum level. */

 rc = quantile_collapse(seq, min_level);
 if (rc < 0)
 return rc;
 } else if (quantile_empty_buffers[seq] == 1) {
 /* We have exactly one empty buffer. Invoke NEW and assign
 * it level `min_level'. */

 /* Search the empty buffer. */
 for (qp = quantile_buffer_head[seq]; qp != NULL;
 qp = qp->next) {
 if (qp->weight == 0) {
 /* Found empty buffer. */
 break;
 }
 }

 rc = quantile_new(seq, qp, input, k, min_level);
 if (rc < 0)
 return rc;
 } else {
 /* There are at least two empty buffers. Invoke NEW on each
 * and assign level `0' to each. */

 /* Search for two empty buffers. */
 for (qp = quantile_buffer_head[seq]; qp != NULL;
 qp = qp->next) {
 if (qp->weight == 0) {
 /* Found first empty buffer. */
 break;
 }
 }
 for (qp2 = qp->next; qp2 != NULL; qp2 = qp2->next) {
 if (qp2->weight == 0) {

Shalunov & Swany Expires January 14, 2011 [Page 27]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 /* Found second empty buffer. */
 break;
 }
 }

 if (k <= quantile_k[seq]) {
 /* This could happen if we call this after we
 * received all packets but don't have enough to
 * fill up two buffers. */

 rc = quantile_new(seq, qp, input, k, 0);
 if (rc < 0)
 return rc;
 } else {
 /* We have enough input data for two buffers. */
 rc = quantile_new(seq, qp, input, quantile_k[seq], 0);
 if (rc < 0)
 return rc;
 rc = quantile_new(seq, qp2, input + quantile_k[seq],
 k - quantile_k[seq], 0);
 if (rc < 0)
 return rc;
 }
 }
 return 0;
 }

 int
 quantile_init_seq(uint16_t seq)
 {
 quantile_t *qp = NULL;
 int i;

 if (seq >= quantile_max_seq)
 return -5;

 /* Allocate memory for quantile buffers. Buffers are linked
 * lists with a pointer to next buffer. We need `quantile_b'
 * buffers, where each buffer has space for `quantile_k'
 * elements. */
 for (i = 0; i < quantile_b[seq]; i++) {
 if (i == 0) {
 /* Initialize first buffer. */
 qp = malloc(sizeof(quantile_t));
 if (qp == NULL) {
 return -1;
 }
 quantile_buffer_head[seq] = qp;

Shalunov & Swany Expires January 14, 2011 [Page 28]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 } else {
 qp->next = malloc(sizeof(quantile_t));
 if (qp->next == NULL) {
 return -1;
 }
 qp = qp->next;
 }

 /* `qp' points to buffer that should be initialized. */
 qp->next = NULL;
 qp->weight = 0; /* empty buffers have weight of 0 */
 qp->level = 0;
 qp->buffer = malloc(sizeof(double) * quantile_k[seq]);
 if (qp->buffer == NULL) {
 return -1;
 }
 }
 /* Update number of empty quantile buffers. */
 quantile_empty_buffers[seq] = quantile_b[seq];

 return 0;
 }

 int
 quantile_init (uint16_t max_seq, double eps, uint64_t N)
 {
 int b, b_tmp = 0;
 int k, k_tmp = 0;
 int h, h_max = 0;
 int seq, rc;

 quantile_max_seq = max_seq;
 /* Allocate array for the requested number of sequences. */
 quantile_k = calloc(max_seq, sizeof(int));
 quantile_input = calloc(max_seq, sizeof(double*));
 quantile_input_cnt = calloc(max_seq, sizeof(int));
 quantile_empty_buffers = calloc(max_seq, sizeof(int));
 quantile_b = calloc(max_seq, sizeof(int));
 quantile_buf = calloc(max_seq, sizeof(double*));
 quantile_alternate = calloc(max_seq, sizeof(int));
 quantile_inf_cnt = calloc(max_seq, sizeof(uint64_t));
 quantile_buffer_head = calloc(max_seq, sizeof(quantile_t*));

 /* "In practice, optimal values for b and k can be computed by
 * trying out different values of b in the range 1 and 30." */
 for (b = 2; b <= 30; b++) {
 /* For each b, compute the largest integral h that
 * satisfies:

Shalunov & Swany Expires January 14, 2011 [Page 29]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 * (h-2) * C(b+h-2, h-1) - C(b+h-3, h-3) +
 * C(b+h-3, h-2) <= 2 * eps * N
 */
 for (h = 0; ; h++) {
 if (((h-2) * binomial(b+h-2, h-1) -
 binomial(b+h-3, h-3) +
 binomial(b+h-3, h-2)) >
 (2 * eps * N)) {
 /* This h does not satisfy the inequality from
 * above. */
 break;
 }
 h_max = h;
 }

 /* Now compute the smallest integral k that satisfies:
 * k * C(b+h-2, h-1) => N. */
 k = ceil(N / (double)binomial(b+h_max-2, h_max-1));

 /* Identify that b that minimizes b*k. */
 if ((b_tmp == 0) && (k_tmp == 0)) {
 /* Initialize values */
 b_tmp = b;
 k_tmp = k;
 }

 if ((b * k) < (b_tmp * k_tmp)) {
 /* Found b and k for which the product is smaller than
 * for the ones before. Because we want to minimize
 * b*k (required memory), we save them. */
 b_tmp = b;
 k_tmp = k;
 }
 }

 /* Set global quantile values. For now, all sequences share
 the same k and b values.*/
 for (seq = 0; seq < max_seq; seq++) {
 quantile_b[seq] = b_tmp;
 quantile_k[seq] = k_tmp;
 }

 /* Allocate memory for input buffer. We allocate enough space
 * to save up to `2 * quantile_k' elements. This space is
 * needed in the COLLAPSE policy if there are more than two
 * empty buffers. Because then we have to invoke NEW on two
 * buffers and thus need an input buffer with `2 * quantile_k'
 * elements. */

Shalunov & Swany Expires January 14, 2011 [Page 30]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 for (seq = 0; seq < quantile_max_seq; seq++) {
 quantile_input[seq] = malloc(sizeof(double) * 2 *
 quantile_k[seq]);
 if (quantile_input[seq] == NULL) {
 return -1;
 }
 quantile_input_cnt[seq] = 0;
 }

 /* Allocate memory for output buffer. This buffer is used in
 * COLLAPSE to store temporary output buffer before it gets
 * copied to one of the buffers used in COLLAPSE. */
 for (seq = 0; seq < quantile_max_seq; seq++) {
 quantile_buf[seq] = malloc(sizeof(double) * quantile_k[seq]);
 if (quantile_buf[seq] == NULL) {
 return -1;
 }
 }

 for (seq = 0; seq < max_seq; seq++) {
 rc = quantile_init_seq(seq);
 if (rc < 0)
 return rc;
 }

 return 0;
 }

 int
 quantile_value_checkin(uint16_t seq, double value)
 {
 int rc = 0;

 if (seq >= quantile_max_seq)
 return -5;

 quantile_input[seq][quantile_input_cnt[seq]++] = value;

 /* If we have at least two empty buffers,
 * we need input for two buffers, to twice
 * the value of `quantile_k'. */
 if (quantile_empty_buffers[seq] >= 2) {
 if (quantile_input_cnt[seq] ==
 (2 * quantile_k[seq])) {
 rc = quantile_algorithm(seq, quantile_input[seq],
 quantile_input_cnt[seq]);
 /* Reset counter. */
 quantile_input_cnt[seq] = 0;

Shalunov & Swany Expires January 14, 2011 [Page 31]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 }
 } else {
 /* There are 0 or 1 empty buffers */
 if (quantile_input_cnt[seq] == quantile_k[seq]) {
 rc = quantile_algorithm(seq, quantile_input[seq],
 quantile_input_cnt[seq]);
 /* Reset counter. */
 quantile_input_cnt[seq] = 0;
 }
 }
 return rc;
 }

 int
 quantile_finish(uint16_t seq)
 {
 int rc = 0;

 if (seq >= quantile_max_seq)
 return -5;

 if (quantile_input_cnt[seq] > 0) {
 rc = quantile_algorithm(seq, quantile_input[seq],
 quantile_input_cnt[seq]);
 }
 return rc;
 }

 void
 quantile_reset(uint16_t seq)
 {
 quantile_input_cnt[seq] = 0;
 quantile_empty_buffers[seq] = quantile_b[seq];
 memset(quantile_buf[seq],0,sizeof(double) * quantile_k[seq]);
 memset(quantile_input[seq],0,sizeof(double) * quantile_k[seq]);
 }

 /**
 * Deinitialize one quantile sequence.
 **/
 void
 quantile_exit_seq(uint16_t seq)
 {
 quantile_t *qp = NULL, *next;

 if (seq >= quantile_max_seq)
 return;

Shalunov & Swany Expires January 14, 2011 [Page 32]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 qp = quantile_buffer_head[seq];
 while (qp != NULL) {
 /* Save pointer to next buffer. */
 next = qp->next;

 /* Free buffer and list entry. */
 free(qp->buffer);
 free(qp);

 /* Set current buffer to next one. */
 qp = next;
 }

 quantile_buffer_head[seq] = NULL;
 quantile_input_cnt[seq] = 0;
 quantile_empty_buffers[seq] = quantile_b[seq];
 }

 void
 quantile_exit(void)
 {
 int seq;

 /* Free per sequence structures */
 for (seq = 0; seq < quantile_max_seq; seq++) {
 quantile_exit_seq(seq);

 /* Free output buffer. */
 free(quantile_buf[seq]);

 /* Free input buffer. */
 free(quantile_input[seq]);
 }

 free(quantile_buffer_head);
 free(quantile_inf_cnt);
 free(quantile_alternate);
 free(quantile_buf);
 free(quantile_b);
 free(quantile_empty_buffers);
 free(quantile_input_cnt);
 free(quantile_input);
 free(quantile_k);
 }

 int
 quantile_output (uint16_t seq, uint64_t npackets, double phi,
 double *result)

Shalunov & Swany Expires January 14, 2011 [Page 33]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 {
 quantile_t *qp = NULL;
 int num_buffers = 0;
 int weight = 0;
 int j;
 long next_pos = 0;
 long merge_pos = 0;
 double min_dbl;
 double beta;
 double phi2; /* this is phi' */

 if (seq >= quantile_max_seq)
 return -5;

 /* Check that there are at least two full buffers with given
 * level. */
 for (qp = quantile_buffer_head[seq]; qp != NULL; qp = qp->next) {
 if (qp->weight != 0) {
 num_buffers++;
 weight += qp->weight;
 qp->pos = 0;
 } else {
 qp->pos = -1;
 }
 }
 if (num_buffers < 2) {
 /* XXX: In section 3.3 "OUTPUT operation" of paper [1] is
 * says that OUTPUT takes c => 2 full input buffers. But
 * what if we just have one full input buffer?
 *
 * For example this happens if you run a UDP test with a
 * block size of 100k and a test duration of 3 seconds: $
 * ./thrulay -u 100k -t 3 localhost
 */

 if (num_buffers != 1) {
 return -1;
 }
 }

 /* Calculate beta and phi' */
 beta = 1 + quantile_inf_cnt[seq] / (double)npackets;
 assert(beta >= 1.0);

 assert(phi >= 0.0 && phi <= 1.0);
 phi2 = (2 * phi + beta - 1) / (2 * beta);

 next_pos = ceil(phi2 * quantile_k[seq] * weight);

Shalunov & Swany Expires January 14, 2011 [Page 34]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 /* XXX: If the client just sends a few packets, it is possible
 * that next_pos is too large. If this is the case, decrease
 * it. */
 if (next_pos >= (num_buffers * quantile_k[seq])) {
 next_pos --;
 }

 while (1) {

 /* Search for current minimal element in all buffers.
 * Because buffers are all sorted, we just have to check
 * the element at current position. */
 min_dbl = DBL_MAX;
 for (qp = quantile_buffer_head[seq]; qp != NULL;
 qp = qp->next) {
 /* Skip wrong buffers. */
 if (qp->pos == -1) {
 continue;
 }

 /* Check that we are not at the end of buffer. */
 if (qp->pos >= quantile_k[seq]) {
 continue;
 }

 /* Update minimum element. */
 min_dbl = min(min_dbl, qp->buffer[qp->pos]);
 }

 /* Now process this minimal element in all buffers. */
 for (qp = quantile_buffer_head[seq]; qp != NULL;
 qp = qp->next) {
 /* Skip wrong buffers. */
 if (qp->pos == -1) {
 continue;
 }

 /* Now process minimal element in this buffer. */
 for (; (qp->buffer[qp->pos] == min_dbl) &&
 (qp->pos < quantile_k[seq]);
 qp->pos++) {

 /* Increment merge position `qp->weight'
 * times. If we pass the position we seek,
 * return current minimal element. */
 for (j = 0; j < qp->weight; j++) {
 if (next_pos == merge_pos) {
 *result = min_dbl;

Shalunov & Swany Expires January 14, 2011 [Page 35]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 return 0;
 }
 merge_pos++;
 }
 }
 }
 }

 /* NOTREACHED */
 }

 #ifdef THRULAY_REPORTING_SAMPLE_LOOP

 #include <stdio.h>
 #include <strings.h>

 #ifndef NAN
 #define _ISOC99_SOURCE
 #include <math.h>
 #endif

 #define ERR_FATAL 0
 #define ERR_WARNING 1

 void __attribute__((noreturn))
 quantile_alg_error(int rc)
 {
 switch (rc) {
 case -1:
 fprintf(stderr, "Error: quantiles not initialized.");
 break;
 case -2:
 fprintf(stderr, "Error: NEW needs an empty buffer.");
 break;
 case -3:
 fprintf(stderr, "Error: Bad input sequence length.");
 break;
 case -4:
 fprintf(stderr, "Error: Not enough buffers for COLLAPSE.");
 break;
 default:
 fprintf(stderr, "Error: Unknown quantile_algorithm error.");
 }
 exit(1);
 }

 /**
 * Will read a sample data file (first and only parameter) whose

Shalunov & Swany Expires January 14, 2011 [Page 36]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 * lines give two values per line (per received packet): measured
 * packet delay and packet sequence number (in "%lf %lu"
 * format). As an exception, the first line specifies the number
 * of packets actually sent.
 * NOTE: The code as written assume there is no newline on the last
 * line. FIXME.
 * Example:
 * ----
 10
 0.101 1
 0.109 2
 0.12 2
 0.10 4
 0.14 5
 0.15 6
 0.13 3
 0.09 7
 0.1 9
 0.091 8
 * ----
 *
 * To compile this sample reporting main():
 *
 * gcc -std=c99 -DTHRULAY_REPORTING_SAMPLE_LOOP reporting.c -lm
 *
 **/
 int
 main(int argc, char *argv[])
 {
 FILE *sf;
 /* 'Measured data' */
 const int max_packets = 65535;
 /* 'Received' packets*/
 int npackets = 0;
 uint64_t packet_sqn[max_packets]; /* Fill in with sample data */
 double packet_delay[max_packets]; /* Fill in with sample data */
 uint64_t packets_sent = 0; /* Fill in with sample data */
 /* reordering */
 const uint64_t reordering_max = 100;
 char buffer_reord[reordering_max * 80];
 size_t r = 0;
 uint64_t j = 0;
 /* Stats */
 uint64_t unique_packets = 0, packets_dup = 0;
 double quantile_25, quantile_50, quantile_75;
 double delay, jitter;
 double packet_loss;
 char report_buffer[1000];

Shalunov & Swany Expires January 14, 2011 [Page 37]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 /* Auxiliary variables */
 int i, rc, rc2, rc3;

 memset(packet_sqn,0,sizeof(uint64_t)*max_packets);
 memset(packet_delay,0,sizeof(double)*max_packets);

 /* Inititalize duplication */
 rc = duplication_init(max_packets);
 if (-1 == rc) {
 perror("calloc");
 exit(1);
 }

 /* Initialize quantiles */
 rc = quantile_init(1, QUANTILE_EPS, max_packets);
 if (-1 == rc) {
 perror("malloc");
 exit(1);
 }

 /* Initialize reordering */
 rc = reordering_init(reordering_max);
 if (-1 == rc) {
 perror("calloc");
 exit(1);
 }

 /* Open sample file */
 if (2 == argc) {
 sf = fopen(argv[1],"r");
 } else {
 fprintf(stderr, "no input file\n");
 exit(1);
 }

 /* Process sample input file. */

 /* The sender somehow tells the receiver how many packets were
 actually sent. */
 fscanf(sf,"%lu",&packets_sent);

 for (i = 0; i < max_packets && !feof(sf); i++) {

 fscanf(sf,"%lf %lu",&packet_delay[i],&packet_sqn[i]);
 /* Take care of common issue of ending the file with a
 newline; feof would not have been set but there is
 no more data. Assume delay of 0.0 means we're done.
 */

Shalunov & Swany Expires January 14, 2011 [Page 38]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 if (packet_delay[i] == 0.0) break;
 npackets++;

 /*
 * Duplication
 */
 if (duplication_check(packet_sqn[i])) {
 /* Duplicated packet */
 packets_dup++;
 continue;
 } else {
 /* Unique packet */
 unique_packets++;
 }

 /*
 * Delay quantiles.
 */
 rc = quantile_value_checkin(0, packet_delay[i]);
 if (rc < 0)
 quantile_alg_error(rc);

 /*
 * Reordering
 */
 reordering_checkin(packet_sqn[i]);
 }

 /*
 * Perform last algorithm operation with a possibly not full
 * input buffer.
 */
 rc = quantile_finish(0);
 if (rc < 0)
 quantile_alg_error(rc);

 rc = quantile_output(0, unique_packets, 0.25, &quantile_25);
 rc2 = quantile_output(0, unique_packets, 0.50, &quantile_50);
 rc3 = quantile_output(0, unique_packets, 0.75, &quantile_75);
 if (-1 == rc || -1 == rc2 || -1 == rc3) {
 fprintf(stderr,"An error occurred while computing delay "
 "quantiles. %d %d %d\n",rc, rc2, rc3);
 exit(1);
 }

 /* Delay and jitter computation */
 packet_loss = packets_sent > unique_packets?
 (100.0*(packets_sent - unique_packets))/packets_sent: 0;

Shalunov & Swany Expires January 14, 2011 [Page 39]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

 delay = (packet_loss > 50.0)? INFINITY : quantile_50;
 if (packet_loss < 25.0) {
 jitter = quantile_75 - quantile_25;
 } else if (packet_loss > 75.0) {
 jitter = NAN;
 } else {
 jitter = INFINITY;
 }

 /* Format final report */
 snprintf(report_buffer, sizeof(report_buffer),
 "Delay: %3.3fms\n"
 "Loss: %3.3f%%\n"
 "Jitter: %3.3fms\n"
 "Duplication: %3.3f%%\n"
 "Reordering: %3.3f%%\n",
 1000.0 * delay,
 packet_loss,
 1000.0 * jitter,
 100 * (double)packets_dup/npackets,
 100.0 * reordering_output(0));

 printf("%s", report_buffer);

 /* Deallocate resources for statistics. */
 reordering_exit();
 quantile_exit();
 duplication_exit();

 fclose(sf);

 exit(0);
 }

 #endif /* THRULAY_REPORTING_SAMPLE_LOOP */

Shalunov & Swany Expires January 14, 2011 [Page 40]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

Appendix B. Example Report

 This appendix only serves for illustrative purposes.

 This report is produced by running the sample program in Appendix A
 on the sample input embedded in a comment in its source code:

 Delay: 109.000ms
 Loss: 10.000%
 Jitter: 40.000ms
 Duplication: 10.000%
 Reordering: 22.222%

Shalunov & Swany Expires January 14, 2011 [Page 41]

Internet-Draft Reporting IP Performance Metrics to Users July 2010

Authors' Addresses

 Stanislav Shalunov

 Email: shalunov@shlang.com
 URI: http://shlang.com/

 Martin Swany
 University of Delaware
 Department of Computer and Information Sciences
 Newark, DE 19716
 US

 Email: swany@cis.udel.edu
 URI: http://www.cis.udel.edu/~swany/

http://shlang.com/
http://www.cis.udel.edu/~swany/

Shalunov & Swany Expires January 14, 2011 [Page 42]

