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Responsiveness under Working Conditions

Abstract

For many years, a lack of responsiveness, variously called lag,

latency, or bufferbloat, has been recognized as an unfortunate, but

common, symptom in today's networks. Even after a decade of work on

standardizing technical solutions, it remains a common problem for

the end users.

Everyone "knows" that it is "normal" for a video conference to have

problems when somebody else at home is watching a 4K movie or

uploading photos from their phone. However, there is no technical

reason for this to be the case. In fact, various queue management

solutions have solved the problem.

Our networks remain unresponsive, not from a lack of technical

solutions, but rather a lack of awareness of the problem and

deployment of its solutions. We believe that creating a tool that

measures the problem and matches people's everyday experience will

create the necessary awareness, and result in a demand for

solutions.

This document specifies the "Responsiveness Test" for measuring

responsiveness. It uses common protocols and mechanisms to measure

user experience specifically when the network is under working

conditions. The measurement is expressed as "Round-trips Per Minute"

(RPM) and should be included with throughput (up and down) and idle

latency as critical indicators of network quality.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.
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1. Introduction

For many years, a lack of responsiveness, variously called lag,

latency, or bufferbloat, has been recognized as an unfortunate, but

common, symptom in today's networks [Bufferbloat]. Solutions like

fq_codel [RFC8290], PIE [RFC8033] or L4S [RFC9330] have been

standardized and are to some extent widely implemented.

Nevertheless, people still suffer from bufferbloat.

Although significant, the impact on user experience can be

transitory -- that is, its effect is not always visible to the user.

Whenever a network is actively being used at its full capacity,

buffers can fill up and create latency for traffic. The duration of

those full buffers may be brief: a medium-sized file transfer, like

an email attachment or uploading photos, can create bursts of

latency spikes. An example of this is lag occurring during a

videoconference, where a connection is briefly shown as unstable.

These short-lived disruptions make it hard to narrow down the cause.

We believe that it is necessary to create a standardized way to

measure and express responsiveness.

Including the responsiveness-under-working-conditions test among

other measurements of network quality (e.g., throughput and idle

latency) would raise awareness of the problem and establish the

expectation among users that their network providers deploy

solutions.

1.1. Terminology

A word about the term "bufferbloat" -- the undesirable latency that

comes from a router or other network equipment buffering too much

data. This document uses the term as a general description of bad

latency, using more precise wording where warranted.

"Latency" is a poor measure of responsiveness, because it can be

hard for the general public to understand. The units are unfamiliar

("what is a millisecond?") and counterintuitive ("100 msec -- that

sounds good -- it's only a tenth of a second!").
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Instead, we define the term "responsiveness under working

conditions" to make it clear that we are measuring all, not just

idle, conditions, and use "round-trips per minute" as the unit. The

advantage of using round-trips per minute as the unit are two-fold:

First, it allows for a unit that is "the higher the better". This

kind of unit is often more intuitive for end-users. Second, the

range of the values tends to be around the 4-digit integer range

which is also a value easy to compare and read, again allowing for a

more intuitive use. Finally, we abbreviate the unit to "RPM", a wink

to the "revolutions per minute" that we use for car engines.

This document defines an algorithm for the "Responsiveness Test"

that explicitly measures responsiveness under working conditions.

2. Design Constraints

There are many challenges to defining measurements of the Internet:

the dynamic nature of the Internet, the diverse nature of the

traffic, the large number of devices that affect traffic, the

difficulty of attaining appropriate measurement conditions, diurnal

traffic patterns, and changing routes.

In order to minimize the effects of these challenges, it's best to

keep the test duration relatively short.

TCP and UDP traffic, or traffic on ports 80 and 443, may take

significantly different paths over the network between source and

destination and be subject to entirely different Quality of Service

(QoS) treatment. A good test will use standard transport-layer

traffic -- typical for people's use of the network -- that is

subject to the transport layer's congestion control algorithms that

might reduce the traffic's rate and thus its buffering in the

network.

Traditionally, one thinks of bufferbloat happening in the network,

i.e., on routers and switches of the Internet. However, the

networking stacks of the clients and servers can have huge buffers.

Data sitting in TCP sockets or waiting for the application to send

or read causes artificial latency, and affects user experience the

same way as in-network bufferbloat.

Finally, it is crucial to recognize that significant queueing only

happens on entry to the lowest-capacity (or “bottleneck”) hop on a

network path. For any flow of data between two endpoints there is

always one hop along the path where the capacity available to that

flow at that hop is the lowest among all the hops of that flow’s

path at that moment in time. It is important to understand that the

existence of a lowest-capacity hop on a network path and a buffer to

smooth bursts of data is not itself a problem. In a heterogeneous
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network like the Internet it is inevitable that there must

necessarily be some hop along the path with the lowest capacity for

that path. If that hop were to be improved, then some other hop

would become the new lowest-capacity hop for that path. In this

context a “bottleneck” should not be seen as a problem to be fixed,

because any attempt to “fix” the bottleneck is futile -- such a

“fix” can never remove the existence of a bottleneck on a path; it

just moves the bottleneck somewhere else. Arguably, this

heterogeneity of the Internet is one of its greatest strengths.

Allowing individual technologies to evolve and improve at their own

pace, without requiring the entire Internet to change in lock-step,

has enabled enormous improvements over the years in technologies

like DSL, cable modems, Ethernet, and Wi-Fi, each advancing

independently as new developments became ready. As a result of this

flexibility we have moved incrementally, one step at a time, from

56kb/s dial-up modems in the 1990s to Gb/s home Internet service and

Gb/s wireless connectivity today.

Note that in a shared datagram network, conditions do not remain

static. The hop that is the current bottleneck may change from

moment to moment. For example, changes in simultaneous traffic may

result in changes to a flow’s share of a given hop. A user moving

around may cause the Wi-Fi transmission rate to vary widely, from a

few Mb/s when far from the Access Point, all the way up to Gb/s or

more when close to the Access Point.

Consequently, if we wish to enjoy the benefits of the Internet’s

great flexibility, we need software that embraces and celebrates

this diversity and adapts intelligently to the varying conditions it

encounters.

Because significant queueing only happens on entry to the bottleneck

hop, the queue management at this critical hop of the path almost

entirely determines the responsiveness of the entire flow. If the

bottleneck hop’s queue management algorithm allows an excessively

large queue to form, this results in excessively large delays for

packets sitting in that queue awaiting transmission, significantly

degrading overall user experience.

In order to discover the depth of the buffer at the bottleneck hop,

the proposed Responsiveness Test mimics normal network operations

and data transfers, with the goal of filling the bottleneck buffer

to capacity, and then measures the resulting end-to-end latency

under these so-called working conditions. A well-managed bottleneck

queue keeps its occupancy under control, resulting in consistently

low round-trip times and consistently good responsiveness. A poorly

managed bottleneck queue will not.
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3. Goals

The algorithm described here defines a Responsiveness Test that

serves as a good proxy for user experience. Therefore:

Because today's Internet traffic primarily uses HTTP/2 over

TLS, the test's algorithm should use that protocol.

As a side note: other types of traffic are gaining in

popularity (HTTP/3) and/or are already being used widely (RTP).

Traffic prioritization and QoS rules on the Internet may

subject traffic to completely different paths: these could also

be measured separately.

Because the Internet is marked by the deployment of countless

middleboxes like transparent TCP proxies or traffic

prioritization for certain types of traffic, the Responsiveness

Test algorithm must take into account their effect on TCP-

handshake [RFC0793], TLS-handshake, and request/response.

Because the goal of the test is to educate end users, the

results should be expressed in an intuitive, nontechnical form

and not commit the user to spend a significant amount of their

time (we target 20 seconds).

4. Measuring Responsiveness Under Working Conditions

Overall, the test to measure responsiveness under working conditions

proceeds in two steps:

Put the network connection into "working conditions"

Measure responsiveness of the network.

The following explains how the former and the latter are achieved.

4.1. Working Conditions

What are the conditions that best emulate how a network connection

is used? There is no one true answer to this question. It is a

tradeoff between using realistic traffic patterns and pushing the

network to its limits.

The Responsiveness Test defines working conditions as the condition

where the path between the measuring endpoints is utilized at its

end-to-end capacity and the queue at the bottleneck link is at (or

beyond) its maximum occupancy. Under these conditions, the network

connection's responsiveness will be at its worst.
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The Responsiveness Test algorithm for reaching working conditions

combines multiple standard HTTP transactions with very large data

objects according to realistic traffic patterns to create these

conditions.

This allows to create a stable state of working conditions during

which the bottleneck of the path between client and server has its

buffer filled up entirely, without generating DoS-like traffic

patterns (e.g., intentional UDP flooding). This creates a realistic

traffic mix representative of what a typical user’s network

experiences in normal operation.

Finally, as end-user usage of the network evolves to newer protocols

and congestion control algorithms, it is important that the working

conditions also can evolve to continuously represent a realistic

traffic pattern.

4.1.1. Single-flow vs multi-flow

A single TCP connection may not be sufficient to reach the capacity

and full buffer occupancy of a path quickly. Using a 4MB receive

window, over a network with a 32 ms round-trip time, a single TCP

connection can achieve up to 1Gb/s throughput. Additionally, deep

buffers along the path between the two endpoints may be

significantly larger than 4MB. TCP allows larger receive window

sizes, up to 1GB. However, most transport stacks aggressively limit

the size of the receive window to avoid consuming too much memory.

Thus, the only way to achieve full capacity and full buffer

occupancy on those networks is by creating multiple connections,

allowing to actively fill the bottleneck's buffer to achieve maximum

working conditions.

Even if a single TCP connection would be able to fill the

bottleneck's buffer, it may take some time for a single TCP

connection to ramp up to full speed. One of the goals of the

Responsiveness Test is to help the user quickly measure their

network. As a result, the test must load the network, take its

measurements, and then finish as fast as possible.

Finally, traditional loss-based TCP congestion control algorithms

react aggressively to packet loss by reducing the congestion window.

This reaction (intended by the protocol design) decreases the

queueing within the network, making it harder to determine the depth

of the bottleneck queue reliably.

The purpose of the Responsiveness Test is not to productively move

data across the network in a useful way, the way a normal

application does. The purpose of the Responsiveness Test is, as

quickly as possible, to simulate a representative traffic load as if
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real applications were doing sustained data transfers, measure the

resulting round-trip time occurring under those realistic

conditions. Because of this, using multiple simultaneous parallel

connections allows the Responsiveness Test to complete its task more

quickly, in a way that overall is less disruptive and less wasteful

of network capacity than a test using a single TCP connection that

would take longer to bring the bottleneck hop to a stable saturated

state.

In this document, we impose an upper bound on the number of parallel

load-generating connections to 16.

4.1.2. Parallel vs Sequential Uplink and Downlink

Poor responsiveness can be caused by queues in either (or both) the

upstream and the downstream direction. Furthermore, both paths may

differ significantly due to access link conditions (e.g., 5G

downstream and LTE upstream) or routing changes within the ISPs. To

measure responsiveness under working conditions, the algorithm must

explore both directions.

One approach could be to measure responsiveness in the uplink and

downlink in parallel. It would allow for a shorter test run-time.

However, a number of caveats come with measuring in parallel:

Half-duplex links may not permit simultaneous uplink and downlink

traffic. This restriction means the test might not reach the

path's capacity in both directions at once and thus not expose

all the potential sources of low responsiveness.

Debuggability of the results becomes harder: During parallel

measurement it is impossible to differentiate whether the

observed latency happens in the uplink or the downlink direction.

Thus, we recommend testing uplink and downlink sequentially.

Parallel testing is considered a future extension.

4.1.3. Achieving Full Buffer Utilization

The Responsiveness Test gradually increases the number of TCP

connections (known as load-generating connections) and measures

"goodput" (the sum of actual data transferred across all connections

in a unit of time) continuously. By definition, once goodput is

maximized, buffers will start filling up, creating the "standing

queue" that is characteristic of bufferbloat. At this moment the

test starts measuring the responsiveness until it, too, reaches

saturation. At this point we are creating the worst-case scenario

within the limits of the realistic traffic pattern.
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The algorithm notes that throughput increases rapidly until TCP

connections complete their TCP slow-start phase. At that point,

throughput eventually stalls, often due to receive window

limitations, particularly in cases of high network bandwidth, high

network round-trip time, low receive window size, or a combination

of all three. The only means to further increase throughput is by

adding more TCP connections to the pool of load-generating

connections. If new connections leave the throughput the same, full

link utilization has been reached. At this point, adding ore

connections will allow to achieve full buffer occupancy.

Responsiveness will gradually decrease from now on, until the

buffers are entirely full and reach stability of the responsiveness

as well.

4.2. Test parameters

A number of parameters serve as input to the test methodology. The

following lists their acronyms and default values. Hereafter the

detailed description of the methodology will explain how these

parameters are being used. Experience has shown that these

parameters allow for a low runtime and accurate results among a wide

range of environments.

Name Explanation
Default

Value

MAD
Moving Average Distance (number of intervals to

take into account for the moving average)
4

ID
Interval duration at which the algorithm

reevaluates stability
1 second

TMP Trimmed Mean Percentage to be trimmed 95%

SDT
Standard Deviation Tolerance for stability

detection
5%

MNP
Maximum number of parallel transport-layer

connections
16

MPS Maximum responsiveness probes per second 100

PTC
Percentage of Total Capacity the probes are allowed

to consume
5%

Table 1

4.3. Measuring Responsiveness

Measuring responsiveness while achieving working conditions is a

process of continuous measurement. It requires a sufficiently large

sample-size to have confidence in the results.
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The measurement of the responsiveness happens by sending probe-

requests. There are two types of probe requests:

A HTTP GET request on a separate connection ("foreign probes").

This test mimics the time it takes for a web browser to connect

to a new web server and request the first element of a web page

(e.g., "index.html"), or the startup time for a video streaming

client to launch and begin fetching media.

A HTTP GET request multiplexed on the load-generating

connections ("self probes"). This test mimics the time it takes

for a video streaming client to skip ahead to a different

chapter in the same video stream, or for a navigation client to

react and fetch new map tiles when the user scrolls the map to

view a different area. In a well functioning system fetching

new data over an existing connection should take less time than

creating a brand new TLS connection from scratch to do the same

thing.

Foreign probes will provide 3 sets of data-points. First, the

duration of the TCP-handshake (noted hereafter as tcp_f). Second,

the TLS round-trip-time (noted tls_f). For this, it is important to

note that different TLS versions have a different number of round-

trips. Thus, the TLS establishment time needs to be normalized to

the number of round-trips the TLS handshake takes until the

connection is ready to transmit data. And third, the HTTP elapsed

time between issuing the GET request for a 1-byte object and

receiving the entire response (noted http_f).

Self probes will provide a single data-point for the duration of

time between when the HTTP GET request for the 1-byte object is

issued on the load-generating connection and the full HTTP response

has been received (noted http_s).

tcp_f, tls_f, http_f and http_s are all measured in milliseconds.

The more probes that are sent, the more data available for

calculation. In order to generate as much data as possible, the

Responsiveness Test specifies that a client issue these probes

regularly. There is, however, a risk that on low-capacity networks

the responsiveness probes themselves will consume a significant

amount of the capacity. Because the test mandates first saturating

capacity before probing for responsiveness, we are able to

accurately estimate how much of the capacity the responsiveness

probes will consume and never send more probes than the network can

handle.

Limiting the data used by probes can be done by providing an

estimate of the number of bytes exchanged for a responsiveness
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probe. Taking TCP and TLS overheads into account, we can estimate

the amount of data exchanged for a probe on a foreign connection to

be around 5000 bytes. On load-generating connections we can expect

an overhead of no more than 1000 bytes.

Given this information, we recommend that each responsiveness

probing interval does not send more than MPS (Maximum responsiveness

Probes per Second - default to 100) probes per second. The probes

should be spread out equally over the duration of the interval with

an equal split between foreign and different load-generating

connections. For the probes on load-generating connections, the

connection should be selected randomly for each probe.

This would result in a total amount of data per second of 300 KB or

2400Kb, meaning a total capacity utilization of 2400 Kbps for the

probing.

On high-speed networks, this will provide a significant amount of

samples, while at the same time minimizing the probing overhead.

However, on severely capacity-constrained networks the probing

traffic could consume a significant portion of the available

capacity. The Responsiveness Test must adjust its probing frequency

in such a way that the probing traffic does not consume more than

PTC (Percentage of Total Capacity - default to 5%) of the available

capacity.

4.3.1. Aggregating the Measurements

The algorithm produces sets of 4 times for each probe, namely:

tcp_f, tls_f, http_f, http_l (from the previous section). The

responsiveness evolves over time as buffers gradually reach

saturation. Once the buffers are saturated responsiveness is stable

over time. Thus, the aggregation of the measurements considers the

last MAD (Moving Average Distance - default to 4) intervals worth of

completed responsiveness probes.

Over the timeframe of these intervals a potentially large number of

samples has been collected. These may be affected by noise in the

measurements, and outliers. Thus, to aggregate these we suggest to

use a trimmed mean at the TMP (Trimmed Mean Percentage - default to

95%) percentile, thus providing the following numbers: TM(tcp_f),

TM(tls_f), TM(http_f), TM(http_l).

The responsiveness is then calculated as the weighted mean:

This responsiveness value presents round-trips per minute (RPM).
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4.4. Final Algorithm

Considering the previous two sections, where we explain what the

meaning of working conditions is and the definition of

responsiveness, we can design the final algorithm. In order to

measure the worst-case latency we need to transmit traffic at the

full capacity of the path as well as ensure the buffers are filled

to the maximum. We can achieve this by continuously adding HTTP

sessions to the pool of connections in a ID (Interval duration -

default to 1 second) interval. This will ensure that we quickly

reach capacity and full buffer occupancy. First, the algorithm

reaches stability for the goodput. Once goodput stability has been

achieved, responsiveness probes are being transmitted until

responsiveness stability is reached.

We consider both, goodput and responsiveness to be stable, when the

standard deviation of the past MAD intervals is within SDT (Standard

Deviation Tolerance - default to 5%) of the last of the moving

averages.

The following algorithm reaches working conditions of a network by

using HTTP/2 upload (POST) or download (GET) requests of infinitely

large files. The algorithm is the same for upload and download and

uses the same term "load-generating connection" for each. The

actions of the algorithm take place at regular intervals. For the

current draft the interval is defined as one second.

Where

i: The index of the current interval. The variable i is

initialized to 0 when the algorithm begins and increases by one

for each interval.

moving average aggregate goodput at interval p: The number of

total bytes of data transferred within interval p and the three

immediately preceding intervals, divided by four times the

interval duration.

the steps of the algorithm are:

Create a load-generating connection.

At each interval:

Create an additional load-generating connection.

If goodput has not saturated:

Compute the moving average aggregate goodput at interval i

as current_average.
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If the standard deviation of the past MAD average goodput

values is less than SDT of the current_average, declare

saturation and move on to probe responsiveness.

If goodput has saturated:

Compute the responsiveness at interval i as

current_responsiveness.

If the standard deviation of the past MAD responsiveness

values is less than SDT of the current_responsiveness,

declare saturation and report current_responsiveness.

In Section 3, it is mentioned that one of the goals is that the test

finishes within 20 seconds. It is left to the implementation what to

do when stability is not reached within that time-frame. For

example, an implementation might gather a provisional responsiveness

measurement or let the test run for longer.

Finally, if at any point one of these connections terminates with an

error, the test should be aborted.

4.4.1. Confidence of test-results

As described above, a tool running the algorithm typically defines a

time-limit for the execution of each of the stages. For example, if

the tool allocates a total run-time of 40 seconds, and it executes a

full downlink followed by a uplink test, it may allocate 10 seconds

to each of the saturation-stages (downlink capacity saturation,

downlink responsiveness saturation, uplink capacity saturation,

uplink responsiveness saturation).

As the different stages may or may not reach stability, we can

define a "confidence score" for the different metrics (capacity and

responsiveness) the methodology was able to measure.

We define "Low" confidence in the result if the algorithm was not

even able to execute 4 iterations of the specific stage. Meaning,

the moving average is not taking the full window into account.

We define "Medium" confidence if the algorithm was able to execute

at least 4 iterations, but did not reach stability based on standard

deviation tolerance.

We define "High" confidence if the algorithm was able to fully reach

stability based on the defined standard deviation tolerance.

It must be noted that depending on the chosen standard deviation

tolerance or other paramenters of the methodology and the network-

environment it may be that a measurement never converges to a stable
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point. This is expected and part of the dynamic nature of networking

and the accompanying measurement inaccuracies. Which is why the

importance of imposing a time-limit is so crucial, together with an

accurate depiction of the "confidence" the methodology was able to

generate.

5. Interpreting responsiveness results

The described methodology uses a high-level approach to measure

responsiveness. By executing the test with regular HTTP requests a

number of elements come into play that will influence the result.

Contrary to more traditional measurement methods the responsiveness

metric is not only influenced by the properties of the network but

can significantly be influenced by the properties of the client and

the server implementations. This section describes how the different

elements influence responsiveness and how a user may differentiate

them when debugging a network.

5.1. Elements influencing responsiveness

Due to the HTTP-centric approach of the measurement methodology a

number of factors come into play that influence the results. Namely,

the client-side networking stack (from the top of the HTTP-layer all

the way down to the physical layer), the network (including

potential transparent HTTP "accelerators"), and the server-side

networking stack. The following outlines how each of these

contributes to the responsiveness.

5.1.1. Client side influence

As the driver of the measurement, the client-side networking stack

can have a large influence on the result. The biggest influence of

the client comes when measuring the responsiveness in the uplink

direction. Load-generation will cause queue-buildup in the transport

layer as well as the HTTP layer. Additionally, if the network's

bottleneck is on the first hop, queue-buildup will happen at the

layers below the transport stack (e.g., NIC firmware).

Each of these queue build-ups may cause latency and thus low

responsiveness. A well designed networking stack would ensure that

queue-buildup in the TCP layer is kept at a bare minimum with

solutions like TCP_NOTSENT_LOWAT [draft-ietf-tcpm-rfc793bis]. At the

HTTP/2 layer it is important that the load-generating data is not

interfering with the latency-measuring probes. For example, the

different streams should not be stacked one after the other but

rather be allowed to be multiplexed for optimal latency. The queue-

buildup at these layers would only influence latency on the probes

that are sent on the load-generating connections.
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Below the transport layer many places have a potential queue build-

up. It is important to keep these queues at reasonable sizes or that

they implement techniques like FQ-Codel. Depending on the techniques

used at these layers, the queue build-up can influence latency on

probes sent on load-generating connections as well as separate

connections. If flow-queuing is used at these layers, the impact on

separate connections will be negligible.

5.1.2. Network influence

The network obviously is a large driver for the responsiveness

result. Propagation delay from the client to the server as well as

queuing in the bottleneck node will cause latency. Beyond these

traditional sources of latency, other factors may influence the

results as well. Many networks deploy transparent TCP Proxies,

firewalls doing deep packet-inspection, HTTP "accelerators",... As

the methodology relies on the use of HTTP/2, the responsiveness

metric will be influenced by such devices as well.

The network will influence both kinds of latency probes that the

responsiveness tests sends out. Depending on the network's use of

Smart Queue Management and whether this includes flow-queuing or

not, the latency probes on the load-generating connections may be

influenced differently than the probes on the separate connections.

5.1.3. Server side influence

Finally, the server-side introduces the same kind of influence on

the responsiveness as the client-side, with the difference that the

responsiveness will be impacted during the downlink load generation.

5.2. Root-causing Responsiveness

Once a responsiveness result has been generated one might be tempted

to try to localize the source of a potential low responsiveness. The

responsiveness measurement is however aimed at providing a quick,

top-level view of the responsiveness under working conditions the

way end-users experience it. Localizing the source of low

responsiveness involves however a set of different tools and

methodologies.

Nevertheless, the Responsiveness Test allows to gain some insight

into what the source of the latency is. The previous section

described the elements that influence the responsiveness. From there

it became apparent that the latency measured on the load-generating

connections and the latency measured on separate connections may be

different due to the different elements.

For example, if the latency measured on separate connections is much

less than the latency measured on the load-generating connections,
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it is possible to narrow down the source of the additional latency

on the load-generating connections. As long as the other elements of

the network don't do flow-queueing, the additional latency must come

from the queue build-up at the HTTP and TCP layer. This is because

all other bottlenecks in the network that may cause a queue build-up

will be affecting the load-generating connections as well as the

separate latency probing connections in the same way.

6. Responsiveness Test Server API

The responsiveness measurement is built upon a foundation of

standard protocols: IP, TCP, TLS, HTTP/2. On top of this foundation,

a minimal amount of new “protocol” is defined, merely specifying the

URLs that used for GET and PUT in the process of executing the test.

Both the client and the server MUST support HTTP/2 over TLS. The

client MUST be able to send a GET request and a POST. The server

MUST be able to respond to both of these HTTP commands. The server

MUST have the ability to provide content upon a GET request. The

server MUST use a packet scheduling algorithm that minimizes

internal queueing to avoid affecting the client's measurement.

As clients and servers become deployed that use L4S congestion

control (e.g., TCP Prague with ECT(1) packet marking), for their

normal traffic when it is available, and fall back to traditional

loss-based congestion controls (e.g., Reno or CUBIC) otherwise, the

same strategy SHOULD be used for Responsiveness Test traffic. This

is RECOMMENDED so that the synthetic traffic generated by the

Responsiveness Test mimics real-world traffic for that server.

Delay-based congestion-control algorithms (e.g., Vegas, FAST, BBR)

SHOULD NOT be used for Responsiveness Test traffic because they take

much longer to discover the depth of the bottleneck buffers. Delay-

based congestion-control algorithms seek to mitigate the effects of

bufferbloat, by detecting and responding to early signs of

increasing round-trip delay, and reducing the amount of data they

have in flight before the bottleneck buffer fills up and overflows.

In a world where bufferbloat is common, this is a pragmatic

mitigation to allow software to work better in that environment.

However, that approach does not fix the underlying problem of

bufferbloat; it merely avoids it in some cases, and allows the

problem in the network to persist. For a diagnostic tool made to

identify symptoms of bufferbloat in the network so that they can be

fixed, using a transport protocol explicitly designed to mask those

symptoms would be a poor choice, and would require the test to run

for much longer to deliver the same results.
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The server MUST respond to 4 URLs:

A "small" URL/response: The server must respond with a status

code of 200 and 1 byte in the body. The actual message content

is irrelevant. The server SHOULD specify the content-type as

application/octet-stream. The server SHOULD minimize the size,

in bytes, of the response fields that are encoded and sent on

the wire.

A "large" URL/response: The server must respond with a status

code of 200 and a body size of at least 8GB. The server SHOULD

specify the content-type as application/octet-stream. The body

can be bigger, and may need to grow as network speeds increases

over time. The actual message content is irrelevant. The client

will probably never completely download the object, but will

instead close the connection after reaching working condition

and making its measurements.

An "upload" URL/response: The server must handle a POST request

with an arbitrary body size. The server should discard the

payload. The actual POST message content is irrelevant. The

client will probably never completely upload the object, but

will instead close the connection after reaching working

condition and making its measurements.

A .well-known URL [RFC8615] which contains configuration

information for the client to run the test (See Section 7,

below.)

The client begins the responsiveness measurement by querying for the

JSON [RFC8259] configuration. This supplies the URLs for creating

the load-generating connections in the upstream and downstream

direction as well as the small object for the latency measurements.

7. Responsiveness Test Server Discovery

It makes sense for a service provider (either an application service

provider like a video conferencing service or a network access

provider like an ISP) to host Responsiveness Test Server instances

on their network so customers can determine what to expect about the

quality of their connection to the service offered by that provider.

However, when a user performs a Responsiveness Test and determines

that they are suffering from poor responsiveness during the

connection to that service, the logical next questions might be,

"What's causing my poor performance?"

"Is it poor buffer management by my ISP?"

"Is it poor buffer management in my home Wi-Fi Access point?"
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"Something to do with the service provider?"

"Something else entirely?"

To help an end user answer these questions, it will be useful for

test clients to be able to easily discover Responsiveness Test

Server instances running in various places in the network (e.g.,

their home router, their Wi-Fi access point, their ISP's head-end

equipment, etc).

Consider this example scenario: A user has a cable modem service

offering 100 Mb/s download speed, connected via gigabit Ethernet to

one or more Wi-Fi access points in their home, which then offer

service to Wi-Fi client devices at different rates depending on

distance, interference from other traffic, etc. By having the cable

modem itself host a Responsiveness Test Server instance, the user

can then run a test between the cable modem and their computer or

smartphone, to help isolate whether bufferbloat they are

experiencing is occurring in equipment inside the home (like their

Wi-Fi access points) or somewhere outside the home.

7.1. Well-Known Uniform Resource Identifier (URI) For Test Server

Discovery

Any organization that wishes to host their own instance of a

Responsiveness Test Server can advertise that capability by hosting

at the network quality well-known URI a resource whose content type

is application/json and contains a valid JSON object meeting the

following criteria:

The server SHALL specify the content-type of the resource at the

well-known URI as application/json.

The content of the "version" field SHALL be "1". Integer values

greater than "1" are reserved for future versions of this protocol.

The content of the "large_download_url", "small_download_url", and

"upload_url" SHALL all be validly formatted "http" or "https" URLs.

See above for the semantics of the fields. All of the fields in the

sample configuration are required except "test_endpoint". If the

test server provider can pin all of the requests for a test run to a

4. ¶

5. ¶
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{

  "version": 1,

  "urls": {

    "large_download_url":"https://nq.example.com/api/v1/large",

    "small_download_url":"https://nq.example.com/api/v1/small",

    "upload_url":        "https://nq.example.com/api/v1/upload"

  }

  "test_endpoint": "hostname123.provider.com"

}
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specific host in the service (for a particular run), they can

specify that host name in the "test_endpoint" field.

For purposes of registration of the well-known URI [RFC8615], the

application name is "nq". The media type of the resource at the

well-known URI is "application/json" and the format of the resource

is as specified above. The URI scheme is "https". No additional path

components, query strings or fragments are valid for this well-known

URI.

7.2. DNS-Based Service Discovery for Test Server Discovery

To further aid the test client in discovering instances of the

Responsiveness Test Server, organizations wishing to host their own

instances of the Test Server MAY advertise their availability using

DNS-Based Service Discovery [RFC6763] using conventional, unicast

DNS [RFC1034] or multicast DNS [RFC6762] on the organization

network's local link(s).

The Responsiveness Test Service instances should advertise using the

service type [RFC6335] "_nq._tcp". Population of the appropriate DNS

zone with the relevant unicast discovery records can be performed

automatically using a Discovery Proxy [RFC8766], or in some

scenarios simply by having a human administrator manually enter the

required records.

7.2.1. Example

An obscure service provider hosting a Responsiveness Test Server

instance for their organization (obs.cr) on the "rpm.obs.cr" host

would return the following answers to PTR and SRV conventional DNS

queries:

Given those conventional DNS query responses, the client would

proceed to access the rpm.obs.cr host on port 443 at the .well-

known/nq well-known URI to begin the test.

8. Security Considerations

TBD

¶

¶
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$ nslookup -q=ptr _nq._tcp.obs.cr.

Non-authoritative answer:

_nq._tcp.obs.crname = rpm._nq._tcp.obs.cr.

$ nslookup -q=srv rpm._nq._tcp.obs.cr.

Non-authoritative answer:

rpm._nq._tcp.obs.crservice = 0 0 443 rpm.obs.cr.
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[Bufferbloat]

[draft-ietf-tcpm-rfc793bis]

[RFC0793]

[RFC1034]

[RFC6335]

[RFC6762]

[RFC6763]

[RFC8033]

9. IANA Considerations

IANA has been requested to record the service type “_nq._tcp”

(Network Quality) for advertising and discovery of Responsiveness

Test Server instances.
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Appendix A. Example Server Configuration

This section shows fragments of sample server configurations to host

an responsiveness measurement endpoint.

A.1. Apache Traffic Server

Apache Traffic Server starting at version 9.1.0 supports

configuration as a responsiveness server. It requires the generator

and the statichit plugin.

The sample remap configuration file then is:
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map https://nq.example.com/api/v1/config \

    http://localhost/ \

    @plugin=statichit.so \

    @pparam=--file-path=config.example.com.json \

    @pparam=--mime-type=application/json

map https://nq.example.com/api/v1/large \

    http://localhost/cache/8589934592/ \

    @plugin=generator.so

map https://nq.example.com/api/v1/small \

    http://localhost/cache/1/ \

    @plugin=generator.so

map https://nq.example.com/api/v1/upload \

    http://localhost/ \

    @plugin=generator.so
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