IPPM Working Group
Internet-Draft
Intended status: Standards Track
Expires: April 11, 2009
S. Niccolini
S. Tartarelli
J. Quittek
T. Dietz

NEC
M. Swany UDel
October 8, 2008

Information Model and XML Data Model for Traceroute Measurements draft-ietf-ippm-storetraceroutes-11

Status of this Memo

By submitting this Internet-Draft, each author represents that any applicable patent or other IPR claims of which he or she is aware have been or will be disclosed, and any of which he or she becomes aware will be disclosed, in accordance with Section 6 of BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as InternetDrafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 11, 2009.

Abstract

This document describes a standard way to store the configuration and the results of traceroute measurements. This document first of all describes the terminology used in this document and the traceroute tool itself; afterwards, the common information model is defined dividing the information elements in two semantically separated groups (configuration elements and results elements). Moreover an additional element is defined to relate configuration elements and results elements by means of a common unique identifier. On the

```
basis of the information model a data model based on XML is defined
to store the results of traceroute measurements.
```

Table of Contents

1. Introduction . 3
2. Terminology used in this document 3
3. The Traceroute tool and its operations 4
4. Results of traceroute measurements 4
5. Information Model for Traceroute Measurements $\underline{5}$
5.1. Data Types . 6
5.2. Information Elements $\mathbb{7}$
5.2.1. Relationship between the Information Elements 1
5.2.2. Configuration Information Elements 10
5.2.3. Results Information Elements 15
5.2.4. Information Element Correlating Configuration and
Results Elements 18
5.2.5. Information Elements to compare traceroute
measurements results one with each other 18
6. Data Model for Storing Traceroute Measurements 19
7. XML Schema for traceroute Measurements 20
8. Security Considerations 35
8.1. Conducting Traceroute Measurements 35
8.2. Securing Traceroute Measurements Information 36
9. IANA Considerations . 36
10. References . 36
10.1. Normative References 36
10.2. Informative References 37

Appendix A. Traceroute Default Configuration Parameters 38
A.1. Alternative Traceroute Implementations 41

Appendix B. Known Problems with Traceroute 42
B.1. Compatibility between traceroute measurements results
and IPPM metrics . 42

Appendix C. Differences to DISMAN-TRACEROUTE-MIB 42
C.1. Scope . 43
C.2. Naming . 44
C.3. Semantics . 45
C.4. Additional Information Elements 45

Appendix D. Traceroute Examples with XML representation 45
Authors' Addresses . 70
Intellectual Property and Copyright Statements 72

Niccolini, et al.

1. Introduction

Traceroutes are being used by lots of measurement efforts, either as an independent measurement or to get path information to support other measurement efforts. That is why there is the need to standardize the way the configuration and the results of traceroute measurements are stored. The standard metrics defined by the IPPM working group in matter of delay, connectivity and losses do not apply to the metrics returned by the traceroute tool; therefore, in order to compare results of traceroute measurements, the only possibility is to add to the stored results a specification of the operating system as well as name and version for the traceroute tool used. This document, in order to store results of traceroute measurements and allow comparison of them, defines a standard way to store them using a XML schema. The document is organized as follows: Section 2 defines the terminology used in this document, Section 3 describes the traceroute tool, Section 4 describes the results of a traceroute measurement as displayed to the screen from which the traceroute tool was launched. Section 5 and Section 6 respectively describe the information model and data model for storing configuration and results of the traceroute measurements. Section 7 contains the XML schema to be used as a template for storing and/or exchanging traceroute measurements information. The document ends with security considerations and IANA considerations in Section 8 and Section 9 respectively.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Terminology used in this document

The terminology used in this document is defined as follow:
o traceroute tool: a software tool for network diagnostic behaving as described in Section 3;
o traceroute measurement: an instance of the traceroute tool launched, with specific configuration parameters (traceroute measurement configuration parameters), from a specific host (initiator of the traceroute measurement) giving as output specific traceroute measurement results;
o traceroute probe: one of many IP packets send out by the traceroute tool during a traceroute measurement;
o traceroute measurement configuration parameters: the configuration parameters of a traceroute measurement;
o traceroute measurement results: the results of a traceroute measurement;
o traceroute measurement information: both the results and the configuration parameters of a traceroute measurement;
o traceroute measurement path: a sequence of hosts transited in order by traceroute probes during a traceroute measurement;

3. The Traceroute tool and its operations

Traceroute is a network diagnostic tool used to determine the hop by hop path from a source to a destination and the Round Trip Time (RTT) from the source to each hop. Traceroute can be therefore used to discover some information (hop counts, delays, etc.) about the path between the initiator of the traceroute measurement and other hosts.

Typically, the traceroute tool attempts to discover the path to a destination by sending UDP probes with specific time-to-live (TTL) values in the IP packet header and trying to elicit an ICMP TIME_EXCEEDED response from each gateway along the path to some host.

More in detail, a first set of probes with TTL equal to 1 are sent by the traceroute tool from the host initiating the traceroute measurement (some tool implementations allow setting the initial TTL to a value equal to "n" different from 1, so that the first "n-1" hops are skipped and the first hop that will be traced is the "n-th" in the path). Upon receiving a probe, the first hop host decreases the TTL value (by one or more). By observing a TTL value equal to zero, the host rejects the probe and typically returns an ICMP message with a TIME_EXCEEDED value. The traceroute tool can therefore derive the IP address of the first hop from the header of the ICMP message and evaluate the RTT between the host initiating the traceroute measurement and the first hop. The next hops are discovered following the same procedure, taking care of increasing at each step the TTL value of the probes by one. The TTL value is increased until either an ICMP PORT_UNREACHABLE message is received, meaning that the destination host has been reached, or the maximum configured number of hops has been hit.

Some implementations, use ICMP Echoes, instead of UDP datagrams. However, many routers do not return ICMP messages about ICMP messages, i.e. no ICMP TIME_EXCEEDED is returned for an ICMP Echo. Therefore, this document recommends to base implementations on UDP datagrams. Considerations on TCP-based implementations of the traceroute tool are reported in Appendix A.1.

4. Results of traceroute measurements

The following list reports the information fields provided as results

Niccolini, et al.
by all traceroute tool implementations considered. The order in which they are reported here is not relevant and it changes in different implementations. For each hop the information reported is:
o the hop index;
o the host symbolic address, provided that at least one of the probes received a response, the symbolic address could be resolved at the corresponding host and that the option to display only numerical addresses was not set;
o the host IP address, provided that at least one of the probes received a response;
o the RTT for each response to a probe. Depending on the traceroute tool implementation, additional information might be displayed in the output (for instance MPLSrelated information).

It might happen that some probes do not receive a response within the configured time-out (for instance if the probe is filtered out by a firewall). In this case, an "*" is displayed in place of the RTT. The information model reflects this using a string with the value of "RoundTripTimeNotAvailable" meaning either the probe was lost because of a time-out or it was not possible to transmit a probe. It may also happen that some implementations print the same line multiple times when a router decreases the TTL by more than one looking like multiple hops, the information model is not impacted by this since each line is handled separately and it is left to the applications handling the XML file how to deal with it. Moreover, for delays below 1 ms , some implementations reports 0 ms (e.g. UNIX and LINUX) while WINDOWS tracert reports "< 1 ms".

5. Information Model for Traceroute Measurements

The information model is composed of information elements; for defining these information elements, a template is used. Such template is specified in the list below:
o name - A unique and meaningful name for the information element. The preferred spelling for the name is to use mixed case if the name is compound, with an initial lower case letter, e.g., "sourceIpAddress".
o description - The semantics of this information element.
o dataType - One of the types listed in Section 5.1 of this document or in an extension of the information model. The type space for attributes is constrained to facilitate implementation.
o units - If the element is a measure of some kind, the units identify what the measure is.

Niccolini, et al.

5.1. Data Types

This section describes the set of basic valid data types of the information model.
o String - The type "String" represents a finite length string of valid characters from the Unicode character encoding set. Unicode allows for ASCII and many other international character sets to be used. It is expected that strings will be encoded in UTF-8 format, which is identical in encoding for USASCII characters, but also accommodates other Unicode multi-byte characters.
o String255 - Same type as "String" but with the restriction to 255 characters.
o InetAddressType - The type "InetAddressType" represents a type of Internet address. The allowed values are to be intended as imported from [RFC4001] (where the intent was to import only some of the values); additional allowed value are "asnumber" and "noSpecification".
o InetAddress - The type "InetAddress" denotes a generic Internet address. The allowed values are imported from [RFC4001] (the values imported are unknown, ipv4, ipv6 and dns), while non-global IPv4/IPv6 addresses (e.g. ipv4z and ipv6z) were excluded; an additional allowed value is the AS number to be indicated as the actual number plus the indication how the mapping from IP address to AS number was performed. "unknown" is used to indicate an IP address that is not in one of the formats defined.
o ipASNumberMappingType - The type "ipASNumberMappingType" represents a type of mapping from IP to AS number, it indicated the method that was used to do get the mapping (allowed values are "bgptables", "routingregistries", "nslookup", "others" or "unknown").
o Boolean - The type "boolean" represents a Boolean value according to XML standards [XML].
o UnsignedInt - The type "UnsignedInt" represents a value in the range (0..4294967295).
o UnsignedShort - The type "UnsignedShort" represents a value in the range (0..65535).
o UnsignedByte - The type "UnsignedByte" represents a value in the range (0..255).
o u8nonzero - The type "u8nonzero" represents a value in the range (1..255).
o ProbesType - The type "ProbesType" represents a way of indicating the protocol used for the traceroute probes. Values defined in this document are UDP, TCP and ICMP.
o OperationResponseStatus - The type "OperationResponseStatus" is used to report the result of an operation. The allowed values are to be intended as imported from [RFC4560].

Niccolini, et al.
o dateTime - The type "dateTime" represents a date-time specification according to XML standards [XML] but restricted to the values defined in [RFC3339].

5.2. Information Elements

This section describes the elements related to the storing of a traceroute measurement. The elements are grouped in two groups (Configuration and Results) according to their semantics. In order to relate configuration and results elements by means of a common unique identifier, an additional element is defined belonging to both the two groups.

5.2.1. Relationship between the Information Elements

Every traceroute measurement is represented by an instance of the "traceRoute" element. This class provides a standardized representation for traceroute measurement data. The "traceroute" element is an element that can be composed of (depending on the nature of the traceroute measurement):

```
o 1 optional "RequestMetadata" element;
```

o 0..4294967295 "Measurement" elements;
Each "Measurement" element contains:
o 1 optional "MeasurementMetadata" element;
o 0..4294967295 "MeasurementResult" elements;

The "RequestMetadata" element can be used for specifying parameters of a traceroute measurement to be performed at one or more nodes by one or more traceroute implementations. Depending on the capabilities of a traceroute implementation, not all requested parameters can be applied. Which parameters have actually been applied by for specific traceroute measurement is specified in a "MeasurementMetadata" element.

The "RequestMetadata" element is a sequence that contains:

```
o 1 "TestName" element;
o 1 optional "ToolVersion" element;
o 1 optional "ToolName" element;
o 1 "CtlTargetAddress" element;
o 1 optional "CtlBypassRouteTable" element;
o 1 optional "CtlProbeDataSize" element;
o 1 optional "CtlTimeOut" element;
```

```
o 1 optional "CtlProbesPerHop" element;
o 1 optional "CtlPort" element;
o 1 optional "CtlMaxTtl" element;
o 1 optional "CtlDSField" element;
o 1 optional "CtlSourceAddress" element;
o 1 optional "CtlIfIndex" element;
o 1 optional "CtlMiscOptions" element;
o 1 optional "CtlMaxFailures" element;
o 1 optional "CtlDontFragment" element;
o 1 optional "CtlInitialTtl" element;
o 1 optional "CtlDescr" element;
o 1 "CtlType" element;
```

If the "RequestMetadata" element is omitted from an XML file then it
means that the traceroute measurement configuration parameters
requested were all used and the "MeasurementMetadata" element list
them in detail.
The "MeasurementMetadata" element is a sequence that contains:

```
o 1 "TestName" element;
o 1 "OSName" element;
o 1 "OSVersion" element;
o 1 "ToolVersion" element;
o 1 "ToolName" element;
o 1 "CtlTargetAddressType" element;
o 1 "CtlTargetAddress" element;
o 1 "CtlBypassRouteTable" element;
o 1 "CtlProbeDataSize" element;
o 1 "CtlTimeOut" element;
o 1 "CtlProbesPerHop" element;
o 1 "CtlPort" element;
o 1 "CtlMaxTtl" element;
o 1 "CtlDSField" element;
o 1 "CtlSourceAddressType" element;
o 1 "CtlSourceAddress" element;
o 1 "CtlIfIndex" element;
o 1 optional "CtlMiscOptions" element;
o 1 "CtlMaxFailures" element;
o 1 "CtlDontFragment" element;
o 1 "CtlInitialTtl" element;
o 1 optional "CtlDescr" element;
o 1 "CtlType" element;
```

Configuration Information Elements can describe not just traceroute measurements that have already happened ("MeasurementMetadata" elements), but also configuration to be used when requesting a measurement to be made ("RequestMetadata" element). This is quite
different semantically, even if the individual information elements are similar. Due to this similarity both "RequestMetadata" as well as "MeasurementMetadata" are represented by the same type in the XML schema. All elements that are missing from the "RequestMetadata" or marked as optional in the "RequestMetadata" but mandatory in the "MeasurementMetadata" must be specified as empty elements.
Specifying them as empty elements means use the default value. The "CtlType" element could have been optional in the "RequestMetadata" but since default values cannot be specified for complex types in an XML schema the element is mandatory also in the "RequestMetadata".

The "MeasurementResult" element is a sequence that contains:
o 1 "TestName" element;
o 1 "ResultsStartDateAndTime" element;
o 1 "ResultsIpTgtAddrType" element;
o 1 "ResultsIpTgtAddr" element;
o 1 "ProbeResults" elements;
o 1 "ResultsEndDateAndTime" element;

Additionally it is important to say that each "ProbeResults" element is a sequence that contains:

```
o 1..255 "hop" elements;
```

Each "hop" element is a sequence that contains
o 1..10 "probe" elements;
o 1 optional "HopRawOutputData" element;

Each "probe" element contains:
o 1 "HopAddrType" element;
o 1 "HopAddr" element;
o 1 optional "HopName" element;
o 0.. 255 optional "MPLSLabelStackEntry" elements;
o 1 "ProbedRoundTripTime" element;
o 1 "ResponseStatus" element;
o 1 "Time" element;

Different numbers of appearances of the three basic elements in the XML file are meant for different scopes:
o a file with only 1 "RequestMetadata" element represents a file containing the traceroute measurement configuration parameters of a traceroute measurement, it can be used to distribute the traceroute measurement configuration parameters over multiple nodes asked to run the same traceroute measurement;

Niccolini, et al.
o a file with 1 "Measurement element containing 1
"MeasurementMetadata" and 1 "MeasurementResult" element represents a file containing the traceroute measurement information of a traceroute measurement;
o a file with 1 "Measurement element containing 1
"MeasurementMetadata" and n "MeasurementResult" elements represents a file containing the traceroute measurement information of a set of traceroute measurements run over different times with always the same traceroute measurement configuration parameters;
o a file with 1 "RequestMetadata" and 1 "Measurement element containing 1 "MeasurementMetadata" and 1 "Measurement" element represents a file containing the traceroute measurement information of a traceroute measurement (containing both the requested traceroute measurement configuration parameters and the ones actually used);
o other combinations are possible to store multiple traceroute measurements all in one XML file.

5.2.2. Configuration Information Elements

This section describes the elements specific to the configuration of the traceroute measurement (belonging to both "RequestMetadata" and "MeasurementMetadata" elements).

5.2.2.1. CtlTargetAddressType

o name - CtlTargetAddressType
o description - Specifies the type of address in the corresponding CtlTargetAddress element. This element is not directly reflected in the XML Schema of Section 7. The host address type can be determined by examining the inetAddress type name and the corresponding element value.
o dataType - InetAddressType
o units - N/A

5.2.2.2. CtlTargetAddress

o name - CtlTargetAddress
o description - In the "RequestMetadata" element it specifies the host address requested to be used in the traceroute measurement. In the "MeasurementMetadata" element it specifies the host address used in the traceroute measurement.
o dataType - InetAddress
o units - N/A

5.2.2.3. CtlBypassRouteTable

o name - CtlBypassRouteTable
o description - In the "RequestMetadata" element specifies if it is requested to enable the optional bypassing of the route table or not. In the "MeasurementMetadata" element, specifies if the optional bypassing of the route table was enabled or not. If enabled, the normal routing tables will be bypassed and the probes will be sent directly to a host on an attached network. If the host is not on a directly-attached network, an error is returned. This option can be used to perform the traceroute measurement to a local host through an interface that has no route defined. This object can be used when the setsockopt SOL_SOCKET SO_DONTROUTE option is supported and set (see [IEEE.1003-1G.1997]).
o dataType - Boolean
o units - N/A

5.2.2.4. CtlProbeDataSize

o name - CtlProbeDataSize
o description - Specifies the size of the probes of a traceroute measurement in octets (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element). If UDP datagrams are used as probes, then the value contained in this object is exact. If another protocol is used to transmit probes (i.e. TCP or ICMP) for which the specified size is not appropriate, then the implementation can use whatever size (appropriate to the method) is closest to the specified size. The maximum value for this object was computed by subtracting the smallest possible IP header size of 20 octets (IPv4 header with no options) and the UDP header size of 8 octets from the maximum IP packet size. An IP packet has a maximum size of 65535 octets (excluding IPv6 Jumbograms).
o dataType - UnsignedShort
o units - octets

5.2.2.5. CtlTime0ut

o name - CtlTimeOut
o description - Specifies the time-out value, in seconds, for each probe of a traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element).
o dataType - UnsignedByte
o units - seconds

5.2.2.6. CtlProbesPerHop

o name - CtlProbesPerHop
o description - Specifies the number of probes with the same time-to-live (TTL) value that are sent for each host (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element).
o dataType - UnsignedByte
o units - probes

5.2.2.7. CtlPort

o name - CtlPort
o description - Specifies the base port used by the traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element).
o dataType - UnsignedShort
o units - port number

5.2.2.8. CtlMaxTtl

o name - CtlMaxTtl
o description - Specifies the maximum TTL value for the traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element).
o dataType - u8nonzero
o units - time-to-live value

5.2.2.9. CtlDSField

o name - CtlDSField
o description - Specifies the value that was requested to be stored in the Differentiated Services (DS) field in the traceroute probe (if in the "RequestMetadata" element). Specifies the value that was stored in the Differentiated Services (DS) field in the traceroute probe (if in the "MeasurementMetadata" element). The DS Field is defined as the Type of Service (TOS) octet in a IPv4 header or as the Traffic Class octet in a IPv6 header (see section 7 of [RFC2460]). The value of this object must be a decimal integer in the range from 0 to 255. This option can be used to determine what effect an explicit $D S$ field setting has on a traceroute measurement and its probes. Not all values are legal or meaningful. Useful TOS octet values are probably '16' (low delay) and '8' (high throughput). Further references can be found in [RFC2474] for the definition of the Differentiated Services (DS) field and to [RFC1812] Section 5.3.2 for Type of Service (TOS).

```
o dataType - UnsignedByte
o units - N/A
```


5.2.2.10. CtlSourceAddressType

o name - CtlSourceAddressType
o description - Specifies the type of address in the corresponding CtlSourceAddress element. This element is not directly reflected in the XML Schema of Section 7. The host address type can be determined by examining the inetAddress type name and the corresponding element value. DNS names are not allowed for the CtlSourceAddress.
o dataType - InetAddressType
o units - N/A

5.2.2.11. CtlSourceAddress

o name - CtlSourceAddress
o description - Specifies the IP address (which has to be given as an IP number, not a hostname) as the source address in traceroute probes (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element). On hosts with more than one IP address, this option can be used in "RequestMetadata" element to force the source address to be something other than the primary IP address of the interface the probe is sent on; the value "unknown" means the default address will be used.
o dataType - InetAddress
o units - N/A

5.2.2.12. CtlIfIndex

o name - CtlIfIndex
o description - Specifies the interface index as defined in [RFC2863] that is requested to be used in the traceroute measurement for sending the traceroute probes (if in the "RequestMetadata" element). A value of 0 in the "RequestMetadata" indicates that no specific interface is requested. Specifies the one actually used if in the "MeasurementMetadata" element.
o dataType - UnsignedInt
o units - N/A

5.2.2.13. CtlMiscOptions

```
o name - CtlMiscOptions
o description - Specifies implementation dependent options
    (requested if in the "RequestMetadata" element, actually used if
    in the "MeasurementMetadata" element).
```

o dataType - String255
o units - N/A

5.2.2.14. CtlMaxFailures

o name - CtlMaxFailures
o description - Specifies the maximum number of consecutive timeouts allowed before terminating a traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element). A value of either 255 (maximum hop count/possible TTL value) or a 0 indicates that the function of terminating a remote traceroute measurement when a specific number of consecutive timeouts are detected was disabled. This element is included to give full compatibility with [RFC4560]. No known implementation of traceroute currently supports it.
o dataType - Unsigned8
o units - timeouts

5.2.2.15. CtlDontFragment

o name - CtlDontFragment
o description - Specifies if the don't fragment flag (DF) in the IP header for a probe was enabled or not (if in the "MeasurementMetadata" element). If in the "RequestMetadata", it specifies if the flag was requested to be enable or not. Setting the DF flag can be used for performing a manual PATH MTU test.
o dataType - Boolean
o units - N/A

5.2.2.16. CtlInitialTtl

o name - CtlInitialTtl
o description - Specifies the initial TTL value for a traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element). Such TTL setting is intended to bypass the initial (often well known) portion of a path.
o dataType - u8nonzero
o units - N/A

5.2.2.17. CtlDescr

o name - CtlDescr
o description - The purpose of this element is to provide a description of the traceroute measurement.
o dataType - String255

```
o units - N/A
```


5.2.2.18. CtlType

o name - CtlType
o description - Specifies the implementation method used for the traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element). It specifies if the traceroute is using TCP, UDP, ICMP or other type of probes. It is possible to specify other types of probes by using an element specified in another schema with a different namespace.
o dataType - ProbesType
o units - N/A

5.2.3. Results Information Elements

This section describes the elements specific to the results of the traceroute measurement.

5.2.3.1. ResultsStartDateAndTime

o name - ResultsStartDateAndTime
o description - Specifies the date and start time of the traceroute measurement. This is the time when the first probe was seen at the sending interface.
o dataType - DateTime
o units - N/A

5.2.3.2. ResultsIpTgtAddrType

o name - ResultsIpTgtAddrType
o description - Specifies the type of address in the corresponding ResultsIpTgtAddr element. This element is not directly reflected in the XML Schema of Section 7. The host address type can be determined by examining the inetAddress type name and the corresponding element value.
o dataType - InetAddressType
o units - N/A

5.2.3.3. ResultsIpTgtAddr

o name - ResultsIpTgtAddr
o description - Specifies the IP address associated with a CtlTargetAddress value when the destination address is specified as a DNS name. The value of this object should be "unknown" if a DNS name is not specified or when a specified DNS name fails to resolve.

```
o dataType - InetAddress
```

o units - N/A

5.2.3.4. HopAddrType

o name - HopAddrType
o description - Specifies the type of address in the corresponding HopAddr element. This element is not directly reflected in the XML Schema of Section 7. The host address type can be determined by examining the inetAddress type name and the corresponding element value. DNS names are not allowed for HopAddr.
o dataType - InetAddressType
o units - N/A

5.2.3.5. HopAddr

```
o name - HopAddr
o description - Specifies the address of a hop in the traceroute
    measurement path. This object is not allowed to be a DNS name.
o dataType - InetAddress
o units - N/A
```


5.2.3.6. HopName

o name - HopName
o description - Specifies the DNS name of the HopAddr if it is available. If it is not available the element is omitted.
o dataType - InetAddress
o units - N/A

5.2.3.7. MPLSLabelStackEntry

o name - MPLSLabelStackEntry
o description - Specifies entries of the MPLS label stack of a probe observed when the probe arrived at the hop that replied to the probe. This object contains one MPLS label stack entry as 32 bit value as it is observed on the MPLS label stack. Contained in this single number are the MPLS label, the Exp field, the S flag, and the MPLS TTL value as specified in [RFC3032]. If more than one MPLS label stack entry is reported then multiple instances of elements of this type are used. They must be ordered in the same order as on the label stack with the top label stack entry being reported first.
o dataType - UnsignedInt
o units - N/A

5.2.3.8. ProbeRoundTripTime

o name - ProbeRoundTripTime
o description - If this element contains the element roundTripTime this specifies the amount of time measured in milliseconds from when a probe was sent to when its response was received or when it timed out. The value of this element is reported as the truncation of the number reported by the traceroute tool (the output "< 1 ms " is therefore encoded as 0 ms). If it contains the element "roundTripTimeNotAvaiable" it means either the probe was lost because of a timeout or it was not possible to transmit a probe.
o dataType - UnsignedShort or String
o units - milliseconds or N/A

5.2.3.9. ResponseStatus

```
o name - ResponseStatus
```

o description - Specifies the result of a traceroute measurement made by the host for a particular probe.
o dataType - OperationResponseStatus
o units - N/A

5.2.3.10. Time

o name - Time
o description - Specifies the timestamp for the time the response to
the probe was received at the interface.
o dataType - DateTime
o units - N/A

5.2.3.11. ResultsEndDateAndTime

o name - ResultsEndDateAndTime
o description - Specifies the date and end time of the traceroute measurement. It is either the time when the response to the last probe of the traceroute measurement was received or the time when the last probe of the traceroute measurement was sent plus the relative timeout (in case of missing response).
o dataType - DateTime
o units - N/A

5.2.3.12. HopRawOutputData

o name - HopRawOutputData
o description - Specifies the raw output data returned by the traceroute measurement for a certain hop in a traceroute measurement path. It is an implementation-dependant printable

Niccolini, et al.

```
    string, expected to be useful for a human interpreting the
    traceroute results.
o dataType - String
o units - N/A
```


5.2.4. Information Element Correlating Configuration and Results Elements

This section defines an additional element belonging to both the two previous groups (configuration elements and result elements) named TestName. This element is defined in order to relate configuration elements and results ones by means of a common unique identifier (to be chosen in accordance to the specification of [RFC4560]).

5.2.4.1. TestName

o name - TestName
o description - Specifies the name of a traceroute measurement. This is not necessarily unique, within any well-defined scope (e.g. a specific host, initiator of the traceroute measurement). o dataType - String255
o units - N/A

5.2.5. Information Elements to compare traceroute measurements results one with each other

This section defines additional elements belonging to both the two previous groups (configuration elements and result elements); these elements were defined in order to allow traceroute measurements results comparison among different traceroute measurements.

5.2.5.1. OSName

o name - OSName
o description - Specifies the name of the operating system on which the traceroute measurement was launched. This element is ignored if used in the "RequestMetadata".
o dataType - String255
o units - N/A

5.2.5.2. OSVersion

o name - OSVersion
o description - Specifies the OS version on which the traceroute measurement was launched. This element is ignored if used in the "RequestMetadata".

```
o dataType - String255
o units - N/A
```


5.2.5.3. ToolVersion

o name - ToolVersion
o description - Specifies the version of the traceroute tool (requested to be used if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element).
o dataType - String255
o units - N/A

5.2.5.4. ToolName

o name - ToolName
o description - Specifies the name of the traceroute tool (requested to be used if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element).
o dataType - String255
o units - N/A

6. Data Model for Storing Traceroute Measurements

For storing and transmitting information according to the information model defined in the previous section, a data model is required that specifies how to encode the elements of the information model.

There are several design choices for a data model. It can use a binary or textual representation and it can be defined from scratch or use already existing frameworks and data models. In general, the use of already existing frameworks and models should be preferred.

Binary and textual representation both have advantages and disadvantages. Textual representations are (with some limitations) human readable while a binary representation consumes less resources for storing, transmitting and parsing data.

An already existing and closely related data model is the DISMAN-TRACEROUTE-MIB module [RFC4560], that specifies a SMIv2 encoding of [RFC2578], [RFC2579] and [RFC2580] for transmitting traceroute measurement information (configuration and results). This data model is well suited and supported within network management systems, but as a general format for storing and transmitting traceroute results it is not easily applicable.

Another binary representation would be an extension of traffic flow information encodings as specified for the IPFIX protocol [RFC5101],
[RFC5102]. The IPFIX protocol is extensible. However, the architecture behind this protocol [I-D.ietf-ipfix-architecture] is targeted at exporting passively measured flow information. Therefore, some obstacles are expected when trying to use it for transmitting traceroute measurements information.

For textual representations, using the extensible Markup Language (XML) [XML] is an obvious choice. XML supports clean structuring of data and syntax checking of records. With some limitations it is human readable. It is supported well by a huge pool of tools and standards for generating, transmitting, parsing and converting it to other data formats. Its disadvantages is the resource consumption for processing, storing, and transmitting information. Since the expected data volumes related to traceroute measurements in network operation and maintenance is not expected to be extremely high, the inefficient usage of resources is not a significant disadvantage. Therefore, XML was chosen as basis for the traceroute measurements information model that is specified in this section.

Section 7 contains the XML schema to be used as a template for storing and/or exchanging traceroute measurements information. The schema was designed in order to use an extensible approach based on templates (pretty similar to how IPFIX protocol is designed) where the traceroute configuration elements (both the requested parameters, Request, and the actual parameters used, MeasurementMetadata) are meta data to be referenced by results information elements (data) by means of the TestName element (used as unique identifier, chosen in accordance to the specification of [RFC4560]). Currently Open Grid Forum (OGF) is also using this approach and cross-requirements have been analyzed. As a result of this analysis the XML schema contained in Section 7 is compatible with OGF schema since it was designed in a way that both limits the unnecessary redundancy and a simple one-toone transformation between the two exist.

7. XML Schema for traceroute Measurements

This section presents the XML schema to be used as a template for storing and/or exchanging traceroute measurements information. The schema uses UTF-8 encoding defined in [RFC3629]. In documents conforming to the format presented here an XML declaration SHOULD be present specifying the version and the character encoding of the XML document. The document should be encoded using UTF-8. Since some of the strings can span multiple lines [RFC5198] applies. XML processing instructions and comments MUST be ignored. Mind that whitespace is significant in XML when writing documents conforming to this schema. Documents using the presented format must be valid according to the XML schema shown in this section. This includes all

Niccolini, et al.
elements. Since elements of type _CtlType may contain elements from unknown namespaces those elements MUST be ignored if their namespace is unknown to the processor. Values for elements using the XML schema type dateTime MUST be restricted to values defined in [RFC3339]. Future versions of this format MAY extend this schema by creating a new schema that redefines all or parts of the data types and elements defined in this version or by establishing a complete new schema.

Due to the limited line length some lines appear wrapped.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified"
targetNamespace="urn:ietf:params:xml:ns:traceroute-1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:tr="urn:ietf:params:xml:ns:traceroute-1.0">
<xs:simpleType name="string255">
xs:annotation
xs:documentationString restricted to 255
characters.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string"> <xs:maxLength value="255"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="u8nonzero">
xs:annotation
xs:documentationusginedByte with non zero value.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:unsignedByte"> <xs:minInclusive value="1"/>
</xs:restriction>
</xs:simpleType>

```
<xs:complexType name="_roundTripTime">
    <xs:choice>
        <xs:element name="roundTripTime">
                <xs:simpleType>
                        <xs:restriction base="xs:unsignedInt"/>
                </xs:simpleType>
        </xs:element>
```

 <xs:element name="roundTripTimeNotAvailable">
 <xs:complexType/>
    ```
        </xs:element>
        </xs:choice>
</xs:complexType>
    <xs:complexType name="_inetAddressUnknown"/>
    <xs:simpleType name="_inetAddressIpv4">
    <xs:restriction base="xs:string">
            <xs:pattern value="(([1-9]?[0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5
]).){3}([1-9]?[0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])"/>
    </xs:restriction>
    </xs:simpleType>
    <xs:simpleType name="_inetAddressIpv6">
        <xs:restriction base="xs:string">
            <xs:pattern value="(([\dA-Fa-f]{1,4}:){7}[\dA-Fa-f]{1,4})(:([\d
]{1,3}.){3}[\d]{1,3})?"/>
        </xs:restriction>
</xs:simpleType>
<xs:simpleType name="_inetAddressDns">
    <xs:restriction base="xs:string">
            <xs:maxLength value="256"/>
        </xs:restriction>
</xs:simpleType>
<xs:complexType name="_inetAddressASNumber">
    <xs:annotation>
        <xs:documentation>Specifies the AS number of a hop in the
        traceroute path as a 32 bit number and the indication how the
        mapping from IP address to AS number was
        performed.</xs:documentation>
    </xs:annotation>
    <xs:sequence>
        <xs:element name="asNumber" type="xs:unsignedInt"/>
            <xs:element name="ipASNumberMappingType">
                        <xs:simpleType>
                        <xs:restriction base="xs:string">
                        <xs:enumeration value="bgptables"/>
                        <xs:enumeration value="routingregistries"/>
                        <xs:enumeration value="nslookup"/>
                        <xs:enumeration value="others"/>
```

```
                    <xs:enumeration value="unknown"/>
                </xs:restriction>
            </xs:simpleType>
        </xs:element>
    </xs:sequence>
</xs:complexType>
<xs:complexType name="inetAddress">
    <xs:choice>
        <xs:element name="inetAddressUnknown"
                        type="tr:_inetAddressUnknown"/>
        <xs:element name="inetAddressIpv4" type="tr:_inetAddressIpv4"/>
        <xs:element name="inetAddressIpv6" type="tr:_inetAddressIpv6"/>
        <xs:element name="inetAddressASNumber"
                            type="tr:_inetAddressASNumber"/>
        <xs:element minOccurs="0" name="inetAddressDns"
                            type="tr:_inetAddressDns"/>
    </xs:choice>
</xs:complexType>
<xs:complexType name="inetAddressWithoutDns">
    <xs:sequence>
        <xs:choice>
            <xs:element name="inetAddressUnknown"
                            type="tr:_inetAddressUnknown"/>
            <xs:element name="inetAddressIpv4"
                            type="tr:_inetAddressIpv4"/>
            <xs:element name="inetAddressIpv6"
                            type="tr:_inetAddressIpv6"/>
            <xs:element name="inetAddressASNumber"
                            type="tr:_inetAddressASNumber"/>
        </xs:choice>
    </xs:sequence>
</xs:complexType>
<xs:simpleType name="operationResponseStatus">
    <xs:restriction base="xs:string">
        <xs:enumeration value="responseReceived"/>
        <xs:enumeration value="unknown"/>
```

```
        <xs:enumeration value="internalError"/>
        <xs:enumeration value="requestTimedOut"/>
        <xs:enumeration value="unknownDestinationAddress"/>
        <xs:enumeration value="noRouteToTarget"/>
        <xs:enumeration value="interfaceInactiveToTarget"/>
        <xs:enumeration value="arpFailure"/>
        <xs:enumeration value="maxConcurrentLimitReached"/>
        <xs:enumeration value="unableToResolveDnsName"/>
        <xs:enumeration value="invalidHostAddress"/>
    </xs:restriction>
</xs:simpleType>
<xs:complexType name="_CtlType">
    <xs:choice>
        <xs:element name="ТСР">
            <xs:complexType/>
        </xs:element>
        <xs:element name="UDP">
            <xs:complexType/>
        </xs:element>
        <xs:element name="ICMP">
            <xs:complexType/>
        </xs:element>
        <xs:any namespace="##other"/>
    </xs:choice>
</xs:complexType>
<xs:complexType name="_ProbeResults">
    <xs:sequence>
        <xs:element maxOccurs="255" name="hop">
            <xs:complexType>
                <xs:sequence>
                    <xs:element maxOccurs="10" name="probe">
                        <xs:complexType>
                        <xs:sequence>
                            <xs:element name="HopAddr"
                        type="tr:inetAddressWithoutDns">
```

```
    <xs:annotation>
        <xs:documentation>Specifies the address of a
        hop in the traceroute measurement path. This
        object is not allowed to be a DNS name. The
        address type can be determined by examining the
        inetAddress type name and the corresponding
        element value.</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element minOccurs="0" name="HopName"
                        type="tr:_inetAddressDns">
    <xs:annotation>
        <xs:documentation>Specifies the DNS name of
        the HopAddress if it is available. If it is
        not available the element is
        omitted.</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element max0ccurs="255" min0ccurs="0"
                name="MPLSLabelStackEntry">
    <xs:annotation>
        <xs:documentation>Specifies entries of the
        MPLS label stack of a probe observed when the
        probe arrived at the hop that replied to the
        probe. This object contains one MPLS label
        stack entry as 32 bit value as it is observed
        on the MPLS label stack. Contained in this
        single number are the MPLS label, the Exp
        field, the S flag, and the MPLS TTL value as
        specified in [RFC3032]. If more than one MPLS
        label stack entry is reported then multiple
        instances of elements of this type are used.
        They must be ordered in the same order as on
        the label stack with the top label stack
        entry being reported
        first.</xs:documentation>
    </xs:annotation>
    <xs:simpleType>
        <xs:restriction base="xs:unsignedInt">
            <xs:maxInclusive value="4294967295"/>
        </xs:restriction>
    </xs:simpleType>
</xs:element>
<xs:element name="ProbeRoundTripTime"
```

Niccolini, et al.

```
                    type="tr:_roundTripTime">
                <xs:annotation>
                    <xs:documentation>If this element contains
                        the element roundTripTime this specifies the
                        amount of time measured in milliseconds from
                        when a probe was sent to when its response
                        was received or when it timed out. The value
                        of this element is reported as the truncation
                        of the number reported by the traceroute tool
                        (the output "&lt; 1 ms" is therefore encoded
                        as 0 ms). If it contains the element
                        "roundTripTimeNotAvaiable" it means either
                        the probe was lost because of a timeout or it
                        was not possible to transmit a
                        probe.</xs:documentation>
                    </xs:annotation>
                </xs:element>
            <xs:element name="ResponseStatus"
                        type="tr:operationResponseStatus">
                    <xs:annotation>
                        <xs:documentation>Specifies the result of a
                        traceroute measurement made by the host for a
                        particular probe.</xs:documentation>
            </xs:annotation>
                </xs:element>
            <xs:element name="Time" type="xs:dateTime">
                    <xs:annotation>
                    <xs:documentation>Specifies the timestamp for
                    the time the response to the probe was
                    received at the interface.</xs:documentation>
                    </xs:annotation>
                </xs:element>
        </xs:sequence>
    </xs:complexType>
</xs:element>
<xs:element minOccurs="0" name="HopRawOutputData"
            type="tr:string255">
    <xs:annotation>
        <xs:documentation>Specifies the raw output data
        returned by the traceroute measurement for a
        certain hop in a traceroute measurement path. It is
        an implementation-dependant printable string,
        expected to be useful for a human interpreting the
        traceroute results.</xs:documentation>
    </xs:annotation>
```

```
                    </xs:element>
                    </xs:sequence>
            </xs:complexType>
        </xs:element>
    </xs:sequence>
</xs:complexType>
<xs:complexType name="_Metadata">
    <xs:annotation>
        <xs:documentation>Specifies the metadata for a traceroute
        operation. The parameters requested if used in
        "RequestMetadata" or the actual parameters used if used in
        "MeasurementMetadata".</xs:documentation>
    </xs:annotation>
    <xs:sequence>
        <xs:element name="TestName" type="tr:string255">
            <xs:annotation>
                    <xs:documentation>Specifies the name of a traceroute
                    measurement. This is not necessarily unique, within any
                    well-defined scope (e.g. a specific host, initiator of
                    the traceroute measurement).</xs:documentation>
        </xs:annotation>
        </xs:element>
        <xs:element default="" name="OSName" type="tr:string255">
            <xs:annotation>
                    <xs:documentation>Specifies the name of the operating
                    system on which the traceroute measurement was launched.
                    This element is ignored if used in the
                    "RequestMetadata".</xs:documentation>
        </xs:annotation>
    </xs:element>
        <xs:element default="" name="OSVersion" type="tr:string255">
            <xs:annotation>
                <xs:documentation>Specifies the OS version on which the
                traceroute measurement was launched. This element is
                ignored if used in the
                "RequestMetadata".</xs:documentation>
        </xs:annotation>
    </xs:element>
        <xs:element default="" name="ToolVersion" type="tr:string255">
            <xs:annotation>
                <xs:documentation>Specifies the version of the traceroute
                tool (requested to be used if in the "RequestMetadata"
                element, actually used if in the "MeasurementMetadata"
```

Niccolini, et al.

```
        element).</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element default="" name="ToolName" type="tr:string255">
    <xs:annotation>
        <xs:documentation>Specifies the name of the traceroute
        tool (requested to be used if in the "RequestMetadata"
        element, actually used if in the "MeasurementMetadata"
        element).</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element name="CtlTargetAddress" type="tr:inetAddress">
    <xs:annotation>
        <xs:documentation>In the "RequestMetadata" element it
        specifies the host address requested to be used in the
        traceroute measurement. In the "MeasurementMetadata"
        element it specifies the host address used in the
        traceroute measurement. The host address type can be
        determined by the examining the inetAddress type name and
        the corresponding element value.</xs:documentation>
    </xs:annotation>
</xs:element>
```

```
<xs:element default="false" name="CtlBypassRouteTable"
```

<xs:element default="false" name="CtlBypassRouteTable"
type="xs:boolean">
type="xs:boolean">
xs:annotation
xs:annotation
xs:documentationIn the "RequestMetadata" element
xs:documentationIn the "RequestMetadata" element
specifies if it is requested to enable the optional
specifies if it is requested to enable the optional
bypassing of the route table or not. In the
bypassing of the route table or not. In the
"MeasurementMetadata" element, specifies if the optional
"MeasurementMetadata" element, specifies if the optional
bypassing of the route table was enabled or not.If
bypassing of the route table was enabled or not.If
enabled, the normal routing tables will be bypassed and
enabled, the normal routing tables will be bypassed and
the probes will be sent directly to a host on an attached
the probes will be sent directly to a host on an attached
network. If the host is not on a directly-attached
network. If the host is not on a directly-attached
network, an error is returned. This option can be used to
network, an error is returned. This option can be used to
perform the traceroute measurement to a local host
perform the traceroute measurement to a local host
through an interface that has no route defined. This
through an interface that has no route defined. This
object can be used when the setsockopt SOL_SOCKET
object can be used when the setsockopt SOL_SOCKET
SO_DONTROUTE option is supported and set (see the POSIX
SO_DONTROUTE option is supported and set (see the POSIX
standard IEEE.1003-1G.1997).</xs:documentation>
standard IEEE.1003-1G.1997).</xs:documentation>
</xs:annotation>
</xs:annotation>
</xs:element>
</xs:element>
<xs:element default="0" name="CtlProbeDataSize">
xs:annotation
xs:documentationSpecifies the size of the probes of a

```
```

 traceroute measurement in octets (requested if in the
 "RequestMetadata" element, actually used if in the
 "MeasurementMetadata" element). If UDP datagrams are used
 as probes, then the value contained in this object is
 exact. If another protocol is used to transmit probes
 (i.e. TCP or ICMP) for which the specified size is not
 appropriate, then the implementation can use whatever
 size (appropriate to the method) is closest to the
 specified size. The maximum value for this object was
 computed by subtracting the smallest possible IP header
 size of 20 octets (IPv4 header with no options) and the
 UDP header size of 8 octets from the maximum IP packet
 size. An IP packet has a maximum size of 65535 octets
 (excluding IPv6 Jumbograms).</xs:documentation>
 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:unsignedShort">
 <xs:maxInclusive value="65507"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
<xs:element default="3" name="CtlTimeOut">
xs:annotation
xs:documentationSpecifies the time-out value, in
seconds, for each probe of a traceroute measurement
(requested if in the "RequestMetadata" element, actually
used if in the "MeasurementMetadata"
element).</xs:documentation>
</xs:annotation>
xs:simpleType
<xs:restriction base="xs:unsignedByte">
<xs:minInclusive value="1"/>
<xs:maxInclusive value="60"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element default="3" name="CtlProbesPerHop">
xs:annotation
xs:documentationSpecifies the number of probes with the
same time-to-live (TTL) value that are sent for each host
(requested if in the "RequestMetadata" element, actually
used if in the "MeasurementMetadata"
element).</xs:documentation>

```
```

 </xs:annotation>
 <xs:simpleType>
 <xs:restriction base="xs:unsignedByte">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="10"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
<xs:element default="33434" name="CtlPort">
xs:annotation
xs:documentationSpecifies the base port used by the
traceroute measurement (requested if in the
"RequestMetadata" element, actually used if in the
"MeasurementMetadata" element).</xs:documentation>
</xs:annotation>
xs:simpleType
<xs:restriction base="xs:unsignedShort">
<xs:minInclusive value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:element>

```
<xs:element default="30" name="CtlMaxTtl" type="tr:u8nonzero">
    <xs:annotation>
        <xs:documentation>Specifies the maximum TTL value for the
        traceroute measurement (requested if in the
        "RequestMetadata" element, actually used if in the
        "MeasurementMetadata" element).</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element default="0" name="CtlDSField"
                    type="xs:unsignedByte">
    <xs:annotation>
        <xs:documentation>Specifies the value that was requested
        to be stored in the Differentiated Services (DS) field in
        the traceroute probe (if in the "RequestMetadata"
        element). Specifies the value that was stored in the
        Differentiated Services (DS) field in the traceroute
        probe (if in the "MeasurementMetadata" element). The DS
        Field is defined as the Type of Service (TOS) octet in a
        IPv4 header or as the Traffic Class octet in a IPv6
        header (see section 7 of [RFC2460]). The value of this
        object must be a decimal integer in the range from 0 to

Niccolini, et al.
```

 255. This option can be used to determine what effect an
 explicit DS field setting has on a traceroute measurement
 and its probes. Not all values are legal or meaningful.
 Useful TOS octet values are probably '16' (low delay) and
 '8' (high throughput). Further references can be found in
 [RFC2474] for the definition of the Differentiated
 Services (DS) field and to [RFC1812] Section 5.3.2 for
 Type of Service (TOS).</xs:documentation>
 </xs:annotation>
 </xs:element>
<xs:element name="CtlSourceAddress"
type="tr:inetAddressWithoutDns">
xs:annotation
xs:documentationSpecifies the IP address (which has to
be given as an IP number, not a hostname) as the source
address in traceroute probes (requested if in the
"RequestMetadata" element, actually used if in the
"MeasurementMetadata" element). On hosts with more than
one IP address, this option can be used in
"RequestMetadata" element to force the source address to
be something other than the primary IP address of the
interface the probe is sent on; the value "unknown" means
the default address will be used. The address type can be
determined by examining the inetAddress type name and the
corresponding element value.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element default="0" name="CtlIfIndex"
type="xs:unsignedInt">
xs:annotation
xs:documentationSpecifies the interface index as
defined in [RFC2863] that is requested to be used in the
traceroute measurement for sending the traceroute probes
(if in the "RequestMetadata" element). A value of 0 in
the "RequestMetadata" indicates that no specific
interface is requested. Specifies the one actually used
if in the "MeasurementMetadata"
element.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element minOccurs="0" name="CtlMiscOptions"
type="tr:string255">
xs:annotation
xs:documentationSpecifies implementation dependent
options (requested if in the "RequestMetadata" element,

```
actually used if in the "MeasurementMetadata" element).</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element default="5" name="CtlMaxFailures" type="xs:unsignedByte">
<xs:annotation>
<xs:documentation>Specifies the maximum number of consecutive timeouts allowed before terminating a traceroute measurement (requested if in the "RequestMetadata" element, actually used if in the "MeasurementMetadata" element). A value of either 255 (maximum hop count/possible TTL value) or a 0 indicates that the function of terminating a remote traceroute measurement when a specific number of consecutive timeouts are detected was disabled. This element is included to give full compatibility with [RFC4560]. No known implementation of traceroute currently supports it.</xs:documentation> </xs:annotation>
</xs:element>
<xs:element default="false" name="CtlDontFragment"
                type="xs:boolean">
    <xs:annotation>
            <xs:documentation>Specifies if the don't fragment flag
            (DF) in the IP header for a probe was enabled or not (if
            in the "MeasurementMetadata" element). If in the
            "RequestMetadata", it specifies if the flag was requested
            to be enable or not. Setting the DF flag can be used for
            performing a manual PATH MTU test.</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element default="1" name="CtlInitialTtl"
                    type="tr:u8nonzero">
    <xs:annotation>
            <xs:documentation>Specifies the initial TTL value for a
            traceroute measurement (requested if in the
            "RequestMetadata" element, actually used if in the
            "MeasurementMetadata" element). Such TTL setting is
            intended to bypass the initial (often well known) portion
            of a path.</xs:documentation>
    </xs:annotation>
</xs:element>
<xs:element max0ccurs="1" minOccurs="0" name="CtlDescr"

Niccolini, et al.
```

 type="tr:string255">
 <xs:annotation>
 <xs:documentation>The purpose of this element is to
 provide a description of the traceroute
 measurement.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="CtlType" type="tr:_CtlType">
 <xs:annotation>
 <xs:documentation>Specifies the implementation method
 used for the traceroute measurement (requested if in the
 "RequestMetadata" element, actually used if in the
 "MeasurementMetadata" element). It specifies if the
 traceroute is using TCP, UDP, ICMP or other type of
 probes. It is possible to specify other types of probes
 by using an element specified in another schema with a
 different namespace.</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
<xs:complexType name="_Measurement">
xs:annotation
xs:documentationContains the actual traceroute measurement
results.</xs:documentation>
</xs:annotation>
xs:sequence
<xs:element name="TestName" type="tr:string255">
xs:annotation
xs:documentationSpecifies the name of a traceroute
measurement. This is not necessarily unique, within any
well-defined scope (e.g. a specific host, initiator of
the traceroute measurement).</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="ResultsStartDateAndTime" type="xs:dateTime">
xs:annotation
xs:documentationSpecifies the date and start time of
the traceroute measurement. This is the time when the
first probe was seen at the sending
interface.</xs:documentation>
</xs:annotation>
</xs:element>

```
```

 <xs:element name="ResultsIpTgtAddr"
 type="tr:inetAddressWithoutDns">
 <xs:annotation>
 <xs:documentation>Specifies the IP address associated
 with a CtlTargetAddress value when the destination
 address is specified as a DNS name. The value of this
 object should be "unknown" if a DNS name is not specified
 or when a specified DNS name fails to resolve. The
 address type can be determined by examining the inetAddress
 type name and the corresponding element
 value.</xs:documentation>
 </xs:annotation>
 </xs:element>
 <xs:element name="ProbeResults" type="tr:_ProbeResults"/>
 <xs:element name="ResultsEndDateAndTime" type="xs:dateTime">
 <xs:annotation>
 <xs:documentation>Specifies the date and end time of the
 traceroute measurement. It is either the time when the
 response to the last probe of the traceroute measurement
 was received or the time when the last probe of the
 traceroute measurement was sent plus the relative timeout
 (in case of missing response).</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
<xs:element name="traceRoute">
xs:complexType
xs:sequence
<xs:element minOccurs="0" name="RequestMetadata"
type="tr:_Metadata"/>
<xs:element maxOccurs="4294967295" minOccurs="0"
name="Measurement">
xs:complexType
xs:sequence
<xs:element minOccurs="0" name="MeasurementMetadata"
type="tr:_Metadata"/>
<xs:element maxOccurs="4294967295" minOccurs="0"
name="MeasurementResult"
type="tr:_Measurement"/>
</xs:sequence>
</xs:complexType>
</xs:element>

```
```

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:schema>

```

\section*{8. Security Considerations}

Security considerations discussed in this section are grouped into considerations related to conducting traceroute measurements and considerations related to storing and transmitting traceroute measurements information.

This memo does not specify an implementation of a traceroute tool. Neither does it specify a certain procedure for storing traceroute measurements information. Still it is considered desirable to discuss related security issues below.

\subsection*{8.1. Conducting Traceroute Measurements}

Conducting Internet measurements can raise both security and privacy concerns. Traceroute measurements, in which traffic is injected into the network, can be abused for denial-of-service attacks disguised as legitimate measurement activity.

Measurement parameters MUST be carefully selected so that the measurements inject trivial amounts of additional traffic into the networks they measure. If they inject "too much" traffic, they can skew the results of the measurement, and in extreme cases cause congestion and denial of service.

The measurements themselves could be harmed by routers giving measurement traffic a different priority than "normal" traffic, or by an attacker injecting artificial measurement traffic. If routers can recognize measurement traffic and treat it separately, the measurements will not reflect actual user traffic. If an attacker injects artificial traffic that is accepted as legitimate, the loss rate will be artificially lowered. Therefore, the measurement methodologies SHOULD include appropriate techniques to reduce the probability measurement traffic can be distinguished from "normal" traffic.

Authentication techniques, such as digital signatures, may be used where appropriate to guard against injected traffic attacks.

\subsection*{8.2. Securing Traceroute Measurements Information}

Traceroute measurement information are not considered highly sensitive. Still, they may contain sensitive information on network paths, routing states, used IP addresses, and roundtrip times, that operators of networks may want to protect for business or security reasons.

It is thus important to control access to Information acquired by conducting traceroute measurements, particularly when transmitting it over a networks but also when storing it. It is RECOMMENDED that transmission of traceroute measurement information over a network uses appropriate protection mechanisms for preserving privacy, integrity and authenticity. It is further RECOMMENDED that secure authentication and authorization are used for protecting stored traceroute measurement information.

\section*{9. IANA Considerations}

This document uses URNs to describe an XML namespace and an XML schema for traceroute measurements information storing and transmission conforming to a registry mechanism described in [RFC3688]. Two URI assignments are requested.
1. Registration request for the IPPM traceroute measurements namespace
* URI: urn:ietf:params:xml:ns:traceroute-1.0
* Registrant Contact: IESG
* XML: None. Namespace URIs do not represent an XML
2. Registration request for the IPPM traceroute measurements schema
* URI: urn:ietf:params:xml:schema:traceroute-1.0
* Registrant Contact: IESG
* XML: See the section Section 7 of this document.

\section*{10. References}

\subsection*{10.1. Normative References}
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, December 1998.
[RFC2863] McCloghrie, K. and F. Kastenholz, "The Interfaces Group MIB", RFC 2863, June 2000.
[RFC3032] Rosen, E., Tappan, D., Fedorkow, G., Rekhter, Y., Farinacci, D., Li, T., and A. Conta, "MPLS Label Stack Encoding", RFC 3032, January 2001.
[RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, July 2002.
[RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, November 2003.
[RFC4001] Daniele, M., Haberman, B., Routhier, S., and J. Schoenwaelder, "Textual Conventions for Internet Network Addresses", RFC 4001, February 2005.
[RFC4560] Quittek, J. and K. White, "Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations", RFC 4560, June 2006.
[RFC5198] Klensin, J. and M. Padlipsky, "Unicode Format for Network Interchange", RFC 5198, March 2008.

\subsection*{10.2. Informative References}
[I-D.ietf-ipfix-architecture]
Sadasivan, G., "Architecture for IP Flow Information Export", draft-ietf-ipfix-architecture-12 (work in progress), September 2006.
[IEEE.1003-1G.1997]
Institute of Electrical and Electronics Engineers, "Protocol Independent Interfaces", IEEE Standard 1003.1G, March 1997.
[RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC 1812, June 1995.
[RFC2474] Nichols, K., Blake, S., Baker, F., and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, December 1998.
[RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Structure of Management Information Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.
[RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J. Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD 58, RFC 2579, April 1999.

Niccolini, et al.
[RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder, "Conformance Statements for SMIv2", STD 58, RFC 2580, April 1999.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January 2004.
[RFC5101] Claise, B., "Specification of the IP Flow Information Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information", RFC 5101, January 2008.
[RFC5102] Quittek, J., Bryant, S., Claise, B., Aitken, P., and J. Meyer, "Information Model for IP Flow Information Export", RFC 5102, January 2008.
[XML] Yergeau et al., F., "Extensible Markup Language (XML) 1.0 (Third Edition)", W3C Recommendation, February 2004.

\section*{Appendix A. Traceroute Default Configuration Parameters}

This section lists traceroute measurement configuration parameters as well as their defaults on various platforms and illustrates how widely they may vary. This document considered four major traceroute tool implementations and compared them based on configurable parameters and default values. The LINUX (SUSE 9.1), BSD (FreeBSD 7.0) and UNIX (SunOS 5.9) implementations are based on UDP datagrams, while the WINDOWS (XP SP2) one uses ICMP Echoes. The comparison is summarized in the following table, where an N/A in the option column, means that such parameter is not configurable for the specific implementation. A comprehensive comparison of available implementations is outside the scope of this document; however, already by sampling a few different implementations, it can be observed that they can differ quite significantly in terms of configurable parameters and also default values. Note that in the following table only those options which are available in at least two of the considered implementations are reported.





\section*{A.1. Alternative Traceroute Implementations}

As stated above, the widespread use of firewalls might prevent UDP or ICMP based traceroutes to completely trace the path to a destination, since traceroute probes might end up being filtered. In some cases, such limitation might be overcome by sending instead TCP packets to

Niccolini, et al.
specific ports that hosts located behind the firewall are listening for connections on. TCP based implementations use TCP SYN or FIN probes and listen for TIME_EXCEEDED messages, TCP RESET and other messages from firewalls and gateways on the path. On the other hand, some firewalls filter out TCP SYN packets to prevent denial of service attacks, therefore the actual advantage of using TCP instead of UDP traceroute depends mainly on firewall configurations, which are not known in advance. A detailed analysis of TCP-based traceroute tools and measurements was outside the scope of this document, anyway for completeness reasons the information model supports the storing of TCP-based traceroute measurements, too.

\section*{Appendix B. Known Problems with Traceroute}

\section*{B.1. Compatibility between traceroute measurements results and IPPM metrics}

Because of implementation choices, a known inconsistency exists between the round-trip delay metric defined by the IPPM working group in RFC 2681 and the results returned by the current traceroute tool implementations. Unfortunately, it is unlikely that the traceroute tool implementations will implement the standard definition in the near future. The only possibility is therefore to compare results of different traceroute measurements one with each other; in order to do this, specifications both of the operating system (name and version) and of the traceroute tool version used were added to the metadata elements in order to help in comparing metrics between two different traceroute measurements results (if run using the same operating system and the same version of the tool). Moreover, the traceroute tool has built-in configurable mechanisms like time-outs and can experience problems related to the crossing of firewalls; therefore some of the packets that traceroute sends out end up being time-out or filtered. As a consequence, it might not be possible to trace the path to a node or there might not be a complete set of probes describing the RTT to reach it.

\section*{Appendix C. Differences to DISMAN-TRACEROUTE-MIB}

For performing remote traceroute operations at managed node, the IETF has standardized the DISMAN-TRACEROUTE-MIB module in [RFC4560]. This module allows:
o retrieving capability information of the traceroute tool implementation at the managed node,
o configuring traceroute measurements to be performed,
o retrieving information about ongoing and completed traceroute measurements,
o retrieving traceroute measurement statistics.

The traceroute storage format described in this document has significant overlaps with this MIB module. Particularly, the models for the traceroute measurement configuration and for the result from completed measurements are almost identical. But for other pats of the DISMAN-TRACEROUTE MIB module there is no need to model them in a traceroute measurements storage format. Particularly, the capability information, information about ongoing measurements and measurement statistics are not covered by the DISMAN traceroute storage model.

Concerning traceroute measurements and their results, there are structural differences between the two models caused by the different choices for the encoding of the specification. For DISMAN-TRACEROUTE-MIB, the Structure of Management Information (SMIv2, STD 58, RFC 2578 [RFC2578]) was used, while the IPPM traceroute measurements data model is encoded using XML.

This difference in structure implies that the DISMAN-TRACEROUTE-MIB module contains SMI-specific information element (managed objects) that concern tables of managed objects (specification, entry creation and deletion, status retrieval) that are not required for the XMLencoded traceroute measurements data model.

But for most of the remaining information elements that concern configuration of traceroute measurements and results of completed measurements, the semantics is identical between the DISMAN-TRACEROUTE-MIB module and the traceroute measurements data model. There are very few exceptions to this which are listed below. Also naming of information elements is identical between both models with a few exceptions. For the traceroute measurements data model, a few information elements have been added, some because of the different structure and some to provide additional information on completed measurements.

\section*{C.1. Scope}

There are some basic differences in nature and application between MIB modules and XML documents. This results in two major differences of Scope between the DISMAN-TRACEROUTE-MIB module and the traceroute measurements data model.

The first difference is the traceRouteResultsTable contained in the DISMAN-TRACEROUTE-MIB module. This table allows online observation of status and progress of an ongoing traceroute measurement. This
highly dynamic information is not included in the traceroute measurements data model, because it has not been envisioned to use the model for dynamically reporting progress of individual traceroute measurements. The traceroute measurements data model is rather intended to be used for reporting completed traceroute measurements.

The second difference is due to the fact that information in a MIB is typically tied to a local node hosting the MIB instance. The "RequestMetadata" element specified in the traceroute measurements data model can be used for specifying a measurement request that may be applied to several probes in a network. This concept does not exist in the DISMAN-TRACEROUTE-MIB module.

For the remaining elements in the DISMAN-TRACEROUTE-MIB module and in the traceroute measurements data model there is a very good match between the two worlds. The traceRouteCtlTable corresponds to the "MeasurementMetadata" element and the combination of the traceRouteProbeHistoryTable and the traceRouteHopsTable corresponds to a collection of "MeasurementResult" elements.

\section*{C.2. Naming}

Basically, names in both models are chosen using the same naming conventions.

For the traceroute measurement configuration information all names, such as CtlProbesPerHop, are identical in both models except for the traceRoute prefix that was removed to avoid unnecessary redundancy in the XML file and for CtlDataSize which was renamed to CtlProbeDataSize for clarification in the traceroute measurements data model.

Results of measurements in the DISMAN-TRACEROUTE-MIB modules are distributed over two tables, the traceRouteResultsTable containing mainly information about ongoing measurements and the traceRouteProbeHistoryTable containing only information about completed measurements. According to the SMIv2 naming conventions names of information elements in these tables have different prefixes (traceRouteResults and traceRouteProbeHistory). Since the traceroute measurements data model only reports on completed measurements, this separation is not needed anymore and the prefix "Results" is used for all related information elements.

Beyond that, there are only a few changes in element names. The renaming actions include:
o traceRouteProbeHistoryResponse to ProbeRoundTripTime,
o traceRouteProbeHistoryHAddr to HopAddr,
o traceRouteProbeHistoryTime to ResultsEndDateAndTime,
o traceRouteProbeHistoryLastRC to ResultsHopRawOutputData.

\section*{C.3. Semantics}

The semantics was changed for two information elements only.

For traceRouteProbeHistoryResponse in the DISMAN-TRACEROUTE-MIB, a value of 0 indicated, that it was not possible to transmit a probe. For the traceroute measurements data model, a value of 0 for element RoundTripTime indicates that the measured time was less than one millisecond, while for the case that it was not possible to transmit a probe a string is used that indicates the problem.

For traceRoutectlifIndex in the DISMAN-TRACEROUTE-MIB, a value of 0 indicated, that it the option to set the index is not available. This was translated to the traceroute measurements data model, such that a value of 0 for this element indicates that the used interface is unknown.

The element traceRouteProbeHistoryLastRC in the DISMAN-TRACEROUTE-MIB was replaced by element ResultsHopRawOutputData. While traceRouteProbeHistoryLastRC just reports a reply code, ResultsHopRawOutputData reports the full raw output data (per hop) produced by the traceroute measurements that was used.

\section*{C.4. Additional Information Elements}

Only a few information elements have been added to the model of the DISMAN-TRACEROUTE-MIB module.
o For providing information on the MPLS label stack entries of a probe in the traceroute measurement path MPLSLabelStackEntry was added.
o For providing additional timestamp beyond ResultsEndDateAndTime, ResultsStartDateAndTime and Time were added.
o For providing DNS names at the time of the execution of the traceroute for each HopAddr (which may change over time) HopName was added.

\section*{Appendix D. Traceroute Examples with XML representation}

This Section shows some examples of traceroute applications. In addition the encoding of requests and results is shown for some of those examples. Note that also in these XML examples some lines
appear wrapped due to the limited length of line.

A typical traceroute on a linux system looks like the following:
\# traceroute -f 4 www.example 1500
traceroute to ww.example (192.0.2.42), 30 hops max, 1500 byte packets
5 out.host1.example (192.0.2.254) \(6.066 \mathrm{~ms} \quad 5.625 \mathrm{~ms} \quad 6.095 \mathrm{~ms}\)
6 rtr4.host6.example (192.0.2.142) \(6.979 \mathrm{~ms} \quad 6.221 \mathrm{~ms} \quad 7.368 \mathrm{~ms}\)
7 hop7.rtr9.example (192.0.2.11) \(16.165 \mathrm{~ms} \quad 15.347 \mathrm{~ms} \quad 15.514 \mathrm{~ms}\)
8 192.0.2.222 (192.0.2.222) 32.796 ms 28.723 ms 26.988 ms
9 in.example (192.0.2.123) \(15.861 \mathrm{~ms} \quad 16.262 \mathrm{~ms} \quad 17.610 \mathrm{~ms}\)
10 in.example (192.0.2.123)(N!) 17.391 ms * *

This traceroute ignores the first 4 hops and uses 1500 byte packets. It does not reach its goal since the last listed hop says that the network is not reachable (N!). The XML representation for this trace follows:
<?xml version="1.0" encoding="UTF-8"?>
<traceRoute xmlns="urn:ietf:params:xml:ns:traceroute-1.0">
<RequestMetadata>
<TestName>Example 1</TestName>
<OSName/>
<OSVersion/>
<ToolVersion/>
<ToolName/>
<CtlTargetAddress>
<inetAddressDns>www.example</inetAddressDns>
</CtlTargetAddress>
<CtlBypassRouteTable/>
<CtlProbeDataSize>1500</CtlProbeDataSize>
<CtlTimeOut/>
<CtlProbesPerHop/>
<CtlPort/>
<CtlMaxTtl/>
<CtlDSField/>
<CtlSourceAddress>
<inetAddressUnknown/>
</CtlSourceAddress>
<CtlIfIndex/>
<CtlMiscOptions/>
<CtlMaxFailures/>
<CtlDontFragment/>
<CtlInitialTtl>4</CtlInitialTtl>
<CtlDescr>Show how it encodes in XML</CtlDescr> <CtlType><UDP/></CtlType>
</RequestMetadata>
<Measurement>
<MeasurementMetadata>
<TestName>Example 1</TestName>
```

 <OSName>Linux</OSName>
 <OSVersion>2.6.16.54-0.2.5-smp i386</OSVersion>
 <ToolVersion>1.0</ToolVersion>
 <ToolName>traceroute</ToolName>
 <CtlTargetAddress>
 <inetAddressDns>www.example</inetAddressDns>
 </CtlTargetAddress>
 <CtlBypassRouteTable/>
 <CtlProbeDataSize>1500</CtlProbeDataSize>
 <CtlTimeOut/>
 <CtlProbesPerHop/>
 <ctlPort/>
 <CtlMaxTtl/>
 <CtlDSField/>
 <CtlSourceAddress>
 <inetAddressIpv4>192.0.2.1</inetAddressIpv4>
 </CtlSourceAddress>
 <CtlIfIndex>2</CtlIfIndex>
 <CtlMiscOptions/>
 <CtlMaxFailures/>
 <CtlDontFragment/>
 <CtlInitialTtl>4</CtlInitialTtl>
 <CtlDescr>Show how it encodes in XML</CtlDescr>
 <CtlType><UDP/></CtlType>
 </MeasurementMetadata>
<MeasurementResult>
<TestName>Example 1</TestName>
<ResultsStartDateAndTime>2008-05-16T14:22:34+02:00</ResultsStar
tDateAndTime>
<ResultsIpTgtAddr>
<inetAddressIpv4>192.0.2.42</inetAddressIpv4>
</ResultsIpTgtAddr>
<ProbeResults>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
</HopAddr>
<HopName>out.host1.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>6</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:35+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>

```
```

 </HopAddr>
 <HopName>out.host1.example</HopName>
 <ProbeRoundTripTime><roundTripTime>5</roundTripTime></Pro
 beRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:35+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
</HopAddr>
<HopName>out.host1.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>6</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:35+02:00</Time>
</probe>
<HopRawOutputData> 5 out.host1.example (192.0.2.254) 6.06
6 ~ m s
5.625 ms 6.095 ms</HopRawOutputData>
</hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.142</inetAddressIpv4>
</HopAddr>
<HopName>rtr4.host6.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>6</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:36+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.142</inetAddressIpv4>
</HopAddr>
<HopName>rtr4.host6.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>6</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:36+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.142</inetAddressIpv4>
</HopAddr>

```
```

Internet-Draft

```
            <HopName>rtr4.host6.example</HopName>
```

 <HopName>rtr4.host6.example</HopName>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>7</roundTripTime>
 <roundTripTime>7</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-16T14:22:37+02:00</Time>
 <Time>2008-05-16T14:22:37+02:00</Time>
 </probe>
 </probe>
 <HopRawOutputData> 6 rtr4.host6.example (192.0.2.142) 6.9
 <HopRawOutputData> 6 rtr4.host6.example (192.0.2.142) 6.9
 79 ms
79 ms
6.221 ms 7.368 ms</HopRawOutputData>
6.221 ms 7.368 ms</HopRawOutputData>
</hop>
</hop>
<hop>
<hop>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>hop7.rtr9.example</HopName>
<HopName>hop7.rtr9.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>16</roundTripTime>
<roundTripTime>16</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:37+02:00</Time>
<Time>2008-05-16T14:22:37+02:00</Time>
</probe>
</probe>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>hop7.rtr9.example</HopName>
<HopName>hop7.rtr9.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>15</roundTripTime>
<roundTripTime>15</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:38+02:00</Time>
<Time>2008-05-16T14:22:38+02:00</Time>
</probe>
</probe>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>hop7.rtr9.example</HopName>
<HopName>hop7.rtr9.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>15</roundTripTime>
<roundTripTime>15</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-16T14:22:38+02:00</Time>
<Time>2008-05-16T14:22:38+02:00</Time>
</probe>
</probe>
<HopRawOutputData> 7 hop7.rtr9.example (192.0.2.11) 16.16
<HopRawOutputData> 7 hop7.rtr9.example (192.0.2.11) 16.16
5 ms 15.347 ms 15.514 ms</HopRawOutputData>
5 ms 15.347 ms 15.514 ms</HopRawOutputData>
</hop>
</hop>
<hop>

```
<hop>
```

```
        <probe>
            <HopAddr>
                <inetAddressIpv4>192.0.2.222</inetAddressIpv4>
    </HopAddr>
    <ProbeRoundTripTime>
                <roundTripTime>32</roundTripTime>
    </ProbeRoundTripTime>
    <ResponseStatus>responseReceived</ResponseStatus>
    <Time>2008-05-16T14:22:39+02:00</Time>
        </probe>
        <probe>
    <HopAddr>
            <inetAddressIpv4>192.0.2.222</inetAddressIpv4>
    </HopAddr>
    <ProbeRoundTripTime>
            <roundTripTime>38</roundTripTime>
    </ProbeRoundTripTime>
    <ResponseStatus>responseReceived</ResponseStatus>
    <Time>2008-05-16T14:22:39+02:00</Time>
        </probe>
        <probe>
            <HopAddr>
            <inetAddressIpv4>192.0.2.222</inetAddressIpv4>
    </HopAddr>
    <ProbeRoundTripTime>
            <roundTripTime>26</roundTripTime>
        </ProbeRoundTripTime>
    <ResponseStatus>responseReceived</ResponseStatus>
    <Time>2008-05-16T14:22:39+02:00</Time>
        </probe>
        <HopRawOutputData> 8 192.0.2.222 (192.0.2.222) 32.796 ms
28.723 ms 26.988 ms</HopRawOutputData>
    </hop>
    <hop>
        <probe>
            <HopAddr>
                <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
            </HopAddr>
            <HopName>in.example</HopName>
            <ProbeRoundTripTime>
                    <roundTripTime>15</roundTripTime>
            </ProbeRoundTripTime>
            <ResponseStatus>responseReceived</ResponseStatus>
            <Time>2008-05-16T14:22:40+02:00</Time>
        </probe>
        <probe>
            <HopAddr>
                    <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
```

Niccolini, et al.

```
Internet-Draft
```

 </HopAddr>
    ```
    </HopAddr>
    <HopName>in.example</HopName>
    <HopName>in.example</HopName>
    <ProbeRoundTripTime>
    <ProbeRoundTripTime>
            <roundTripTime>16</roundTripTime>
            <roundTripTime>16</roundTripTime>
    </ProbeRoundTripTime>
    </ProbeRoundTripTime>
    <ResponseStatus>responseReceived</ResponseStatus>
    <ResponseStatus>responseReceived</ResponseStatus>
    <Time>2008-05-16T14:22:40+02:00</Time>
    <Time>2008-05-16T14:22:40+02:00</Time>
    </probe>
    </probe>
    <probe>
    <probe>
        <HopAddr>
        <HopAddr>
            <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
            <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
        </HopAddr>
        </HopAddr>
        <HopName>in.example</HopName>
        <HopName>in.example</HopName>
        <ProbeRoundTripTime>
        <ProbeRoundTripTime>
            <roundTripTime>17</roundTripTime>
            <roundTripTime>17</roundTripTime>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>responseReceived</ResponseStatus>
        <ResponseStatus>responseReceived</ResponseStatus>
        <Time>2008-05-16T14:22:40+02:00</Time>
        <Time>2008-05-16T14:22:40+02:00</Time>
    </probe>
    </probe>
    <HopRawOutputData> 9 in.example (192.0.2.123) 15.861 ms
    <HopRawOutputData> 9 in.example (192.0.2.123) 15.861 ms
16.262 ms 17.610 ms</HopRawOutputData>
16.262 ms 17.610 ms</HopRawOutputData>
    </hop>
    </hop>
    <hop>
    <hop>
        <probe>
        <probe>
            <HopAddr>
            <HopAddr>
            <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
            <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
        </HopAddr>
        </HopAddr>
        <HopName>in.example</HopName>
        <HopName>in.example</HopName>
        <ProbeRoundTripTime>
        <ProbeRoundTripTime>
            <roundTripTime>17</roundTripTime>
            <roundTripTime>17</roundTripTime>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>noRouteToTarget</ResponseStatus>
        <ResponseStatus>noRouteToTarget</ResponseStatus>
        <Time>2008-05-16T14:22:41+02:00</Time>
        <Time>2008-05-16T14:22:41+02:00</Time>
        </probe>
        </probe>
        <probe>
        <probe>
            <HopAddr>
            <HopAddr>
                <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
                <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
                </HopAddr>
                </HopAddr>
                <HopName>in.example</HopName>
                <HopName>in.example</HopName>
                <ProbeRoundTripTime>
                <ProbeRoundTripTime>
                    <roundTripTimeNotAvailable/>
                    <roundTripTimeNotAvailable/>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>requestTimedOut</ResponseStatus>
        <ResponseStatus>requestTimedOut</ResponseStatus>
        <Time>2008-05-16T14:22:44+02:00</Time>
        <Time>2008-05-16T14:22:44+02:00</Time>
        </probe>
        </probe>
        <probe>
        <probe>
                <HopAddr>
                <HopAddr>
                    <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
```

 <inetAddressIpv4>192.0.2.123</inetAddressIpv4>
    ```

Niccolini, et al.
```

 </HopAddr>
 <HopName>in.example</HopName>
 <ProbeRoundTripTime>
 <roundTripTimeNotAvailable/>
 </ProbeRoundTripTime>
 <ResponseStatus>requestTimedOut</ResponseStatus>
 <Time>2008-05-16T14:22:44+02:00</Time>
 </probe>
 <HopRawOutputData>10 in.example (192.0.2.123)(N!) 17.391
 ms * *</HopRawOutputData>
</hop>
</ProbeResults>
<ResultsEndDateAndTime>2008-05-16T14:22:44+02:00</ResultsEndDat
eAndTime>
</MeasurementResult>
</Measurement>
</traceRoute>

```

The second example was generated on an OpenBSD system. On that system the traceroute looks the following:
\# traceroute -P tcp w2.example 128
traceroute to w2.example (192.0.2.254), 64 hops max, 160 byte packets
1 router1.example.org (192.0.2.22) 0.486 ms 0.486 ms 0.482 ms
2 router7.example.org (192.0.2.1) \(3.27 \mathrm{~ms} 1.420 \mathrm{~ms} \quad 1.873 \mathrm{~ms}\)
3 hop0.c.example (192.0.2.105) 3.177 ms 3.258 ms 3.859 ms
4 hop6.c.example (192.0.2.107) 5.994 ms 4.607 ms 5.678 ms
5 hop3.c.example (192.0.2.111) 20.341 ms 20.732 ms 19.505 ms
6 in.example.net (192.0.2.222) 20.333 ms 19.174 ms 19.856 ms
7 egress.example.net (192.0.2.227) \(20.268 \mathrm{~ms} 21.79 \mathrm{~ms} \quad 19.992 \mathrm{~ms}\)
8 routerin.example (192.0.2.253) 19.983 ms 19.931 ms 19.894 ms
9 routerdmz.example (192.0.2.249) 20.943 ms ! X * 19.829 ms ! X
It was executed with the TCP protocol and 128 byte packets (plus header). The traceroute ended at hop 9 because the packets are administratively filtered (!X). A corresponding XML representation follows:
<?xml version="1.0" encoding="UTF-8"?>
<traceRoute xmlns="urn:ietf:params:xml:ns:traceroute-1.0">
<RequestMetadata>
<TestName>Example 2</TestName>
<OSName/>
<OSVersion/>
<ToolVersion/>
<ToolName/>
<CtlTargetAddress>
<inetAddressDns>w2.example</inetAddressDns>
</CtlTargetAddress>

Niccolini, et al.
```

 <CtlBypassRouteTable/>
 <CtlProbeDataSize>128</CtlProbeDataSize>
 <CtlTimeOut/>
 <CtlProbesPerHop/>
 <CtlPort/>
 <CtlMaxTtl/>
 <CtlDSField/>
 <CtlSourceAddress>
 <inetAddressUnknown/>
 </CtlSourceAddress>
 <CtlIfIndex/>
 <CtlMiscOptions/>
 <CtlMaxFailures/>
 <CtlDontFragment/>
 <CtlInitialTtl/>
 <CtlDescr>Show how it encodes in XML</CtlDescr>
 <CtlType><TCP/></CtlType>
 </RequestMetadata>
<Measurement>
<MeasurementMetadata>
<TestName>Example 2</TestName>
<OSName>OpenBSD</OSName>
<OSVersion>4.1 i386</OSVersion>
<ToolVersion></ToolVersion>
<ToolName>traceroute</ToolName>
<CtlTargetAddress>
<inetAddressDns>w2.example</inetAddressDns>
</CtlTargetAddress>
<CtlBypassRouteTable/>
<CtlProbeDataSize>128</CtlProbeDataSize>
<CtlTimeOut/>
<CtlProbesPerHop/>
<CtlPort/>
<CtlMaxTtl/>
<CtlDSField/>
<CtlSourceAddress>
<inetAddressIpv4>192.0.2.42</inetAddressIpv4>
</CtlSourceAddress>
<CtlIfIndex>1</CtlIfIndex>
<CtlMiscOptions/>
<CtlMaxFailures/>
<CtlDontFragment/>
<CtlInitialTtl/>
<CtlDescr>Show how it encodes in XML</CtlDescr>
<CtlType><TCP/></CtlType>
</MeasurementMetadata>
<MeasurementResult>
<TestName>Example 2</TestName>

```
```

 <ResultsStartDateAndTime>2008-05-14T09:57:11+02:00</ResultsStar
 tDateAndTime>
<ResultsIpTgtAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
</ResultsIpTgtAddr>
<ProbeResults>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.22</inetAddressIpv4>
</HopAddr>
<HopName>router1.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:13+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.22</inetAddressIpv4>
</HopAddr>
<HopName>router1.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:13+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.22</inetAddressIpv4>
</HopAddr>
<HopName>router1.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:13+02:00</Time>
</probe>
</hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.1</inetAddressIpv4>
</HopAddr>
<HopName>router7.example.org</HopName>
<ProbeRoundTripTime>

```

Niccolini, et al.
```

Internet-Draft
<roundTripTime>3</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:13+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.1</inetAddressIpv4>
</HopAddr>
<HopName>router7.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>1</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:13+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.1</inetAddressIpv4>
</HopAddr>
<HopName>router7.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>1</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:14+02:00</Time>
</probe>
</hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.105</inetAddressIpv4>
</HopAddr>
<HopName>hop0.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>3</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:14+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.105</inetAddressIpv4>
</HopAddr>
<HopName>hop0.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>3</roundTripTime>
</ProbeRoundTripTime>

```

Niccolini, et al.
```

Internet-Draft
Traceroute Storage Format
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:14+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.105</inetAddressIpv4>
</HopAddr>
<HopName>hop0.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>3</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:14+02:00</Time>
</probe>
</hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.107</inetAddressIpv4>
</HopAddr>
<HopName>hop6.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>5</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:15+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.107</inetAddressIpv4>
</HopAddr>
<HopName>hop6.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>4</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:16+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.107</inetAddressIpv4>
</HopAddr>
<HopName>hop6.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>5</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:16+02:00</Time>

```
```

 </probe>
 </hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.111</inetAddressIpv4>
</HopAddr>
<HopName>hop3.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>20</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:17+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.111</inetAddressIpv4>
</HopAddr>
<HopName>hop3.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>20</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:18+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.111</inetAddressIpv4>
</HopAddr>
<HopName>hop3.c.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>19</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:19+02:00</Time>
</probe>
</hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.222</inetAddressIpv4>
</HopAddr>
<HopName>in.example.net</HopName>
<ProbeRoundTripTime>
<roundTripTime>20</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:20+02:00</Time>

```

Niccolini, et al.
```

 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.222</inetAddressIpv4>
 </HopAddr>
 <HopName>in.example.net</HopName>
 <ProbeRoundTripTime>
 <roundTripTime>19</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T09:57:20+02:00</Time>
 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.222</inetAddressIpv4>
 </HopAddr>
 <HopName>in.example.net</HopName>
 <ProbeRoundTripTime>
 <roundTripTime>19</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T09:57:21+02:00</Time>
 </probe>
 </hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.227</inetAddressIpv4>
</HopAddr>
<HopName>egress.example.net</HopName>
<ProbeRoundTripTime>
<roundTripTime>20</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:22+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.227</inetAddressIpv4>
</HopAddr>
<HopName>egress.example.net</HopName>
<ProbeRoundTripTime>
<roundTripTime>21</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:22+02:00</Time>
</probe>
<probe>

```
```

 <HopAddr>
 <inetAddressIpv4>192.0.2.227</inetAddressIpv4>
 </HopAddr>
 <HopName>egress.example.net</HopName>
 <ProbeRoundTripTime>
 <roundTripTime>19</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T09:57:23+02:00</Time>
 </probe>
 </hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.253</inetAddressIpv4>
</HopAddr>
<HopName>routerin.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>19</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:24+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.253</inetAddressIpv4>
</HopAddr>
<HopName>routerin.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>19</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:24+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.253</inetAddressIpv4>
</HopAddr>
<HopName>routerin.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>19</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T09:57:25+02:00</Time>
</probe>
</hop>
<hop>
<probe>

```
```

 <HopAddr>
 <inetAddressIpv4>192.0.2.249</inetAddressIpv4>
 </HopAddr>
 <HopName>routerdmz.example</HopName>
 <ProbeRoundTripTime>
 <roundTripTime>20</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>unknown</ResponseStatus>
 <Time>2008-05-14T09:57:26+02:00</Time>
 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.249</inetAddressIpv4>
 </HopAddr>
 <HopName>routerdmz.example</HopName>
 <ProbeRoundTripTime>
 <roundTripTimeNotAvailable/>
 </ProbeRoundTripTime>
 <ResponseStatus>requestTimedOut</ResponseStatus>
 <Time>2008-05-14T09:57:26+02:00</Time>
 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.249</inetAddressIpv4>
 </HopAddr>
 <HopName>routerdmz.example</HopName>
 <ProbeRoundTripTime>
 <roundTripTime>19</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>unknown</ResponseStatus>
 <Time>2008-05-14T09:57:30+02:00</Time>
 </probe>
 </hop>
 </ProbeResults>
 <ResultsEndDateAndTime>2008-05-14T09:57:30+02:00</ResultsEndDat
 eAndTime>
</MeasurementResult>
</Measurement>
</traceRoute>

```

The third and last example is based on the Microsoft Windows pendant of traceroute. On a MS Windows system the command is called "tracert" and typically looks as follows:
```


tracert -h 10 www.example.org

```

Tracing route to www.example.org [192.0.2.11]
over a maximum of 10 hops:
\begin{tabular}{rrrrl}
1 & 1 ms & 1 ms & 8 ms & 192.0.2.99 \\
2 & \(<1 \mathrm{~ms}\) & \(<1 \mathrm{~ms}\) & \(<1 \mathrm{~ms}\) & r1.provider4.example [192.0.2.102] \\
3 & \(<1 \mathrm{~ms}\) & \(<1 \mathrm{~ms}\) & \(<1 \mathrm{~ms}\) & rtr8.provider8.example [192.0.2.254] \\
4 & 1 ms & 1 ms & 1 ms & hop11.hoster7.example [192.0.2.4] \\
5 & 2 ms & 3 ms & 1 ms & sw6.provider2.example [192.0.2.201] \\
6 & 3 ms & 3 ms & 3 ms & out.provider2.example [192.0.2.111] \\
7 & \(*\) & 6 ms & 5 ms & 192.0 .2 .123 \\
8 & 5 ms & 5 ms & 5 ms & 192.0 .2 .42 \\
9 & 94 ms & 95 ms & 95 ms & ingress.example.org [192.0.2.199] \\
10 & 168 ms & 169 ms & 169 ms & 192.0 .2 .44
\end{tabular}

Trace complete.

In this example the trace was limited to 10 hops. So, the tenth and last hop of this example was not the final destination. Applying the XML schema defined in this document the trace could look as follows: <?xml version="1.0" encoding="UTF-8"?>
<traceRoute xmlns="urn:ietf:params:xml:ns:traceroute-1.0">
<RequestMetadata>
<TestName>Example 3</TestName>
<OSName/>
<OSVersion/>
<ToolVersion/>
<ToolName/>
<CtlTargetAddress>
<inetAddressDns>www.example.org</inetAddressDns>
</CtlTargetAddress>
<CtlBypassRouteTable/>
<CtlProbeDataSize/>
<CtlTimeOut/>
<CtlProbesPerHop/>
<CtlPort/>
<CtlMaxTtl>10</CtlMaxTtl>
<CtlDSField/>
<CtlSourceAddress>
<inetAddressUnknown/>
</CtlSourceAddress>
<CtlIfIndex/>
<CtlMiscOptions/>
<CtlMaxFailures/>
<CtlDontFragment/>
<CtlInitialTtl/>
<CtlDescr>Show how it encodes in XML</CtlDescr>
```

 <CtlType><TCP/></CtlType>
 </RequestMetadata>
 <Measurement>
 <MeasurementMetadata>
 <TestName>Example 3</TestName>
 <OSName>Windows</OSName>
 <OSVersion>XP SP2 32-bit</OSVersion>
 <ToolVersion></ToolVersion>
 <ToolName>tracert</ToolName>
 <CtlTargetAddress>
 <inetAddressDns>www.example.org</inetAddressDns>
 </CtlTargetAddress>
 <CtlBypassRouteTable/>
 <CtlProbeDataSize/>
 <CtlTimeOut/>
 <CtlProbesPerHop/>
 <CtlPort/>
 <CtlMaxTtl>10</CtlMaxTtl>
 <CtlDSField/>
 <CtlSourceAddress>
 <inetAddressIpv4>192.0.2.142</inetAddressIpv4>
 </CtlSourceAddress>
 <CtlIfIndex>3</CtlIfIndex>
 <CtlMiscOptions/>
 <CtlMaxFailures/>
 <CtlDontFragment/>
 <CtlInitialTtl/>
 <CtlDescr>Show how it encodes in XML</CtlDescr>
 <CtlType><TCP/></CtlType>
 </MeasurementMetadata>
 <MeasurementResult>
 <TestName>Example 3</TestName>
 <ResultsStartDateAndTime>2008-05-14T11:03:09+02:00</ResultsStar
 tDateAndTime>
<ResultsIpTgtAddr>
<inetAddressIpv4>192.0.2.11</inetAddressIpv4>
</ResultsIpTgtAddr>
<ProbeResults>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.99</inetAddressIpv4>
</HopAddr>
<ProbeRoundTripTime>
<roundTripTime>1</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:09+02:00</Time>

```
```

 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.99</inetAddressIpv4>
 </HopAddr>
 <ProbeRoundTripTime>
 <roundTripTime>1</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:09+02:00</Time>
 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.99</inetAddressIpv4>
 </HopAddr>
 <ProbeRoundTripTime>
 <roundTripTime>8</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:09+02:00</Time>
 </probe>
 </hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.102</inetAddressIpv4>
</HopAddr>
<HopName>r1.provider4.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:09+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.102</inetAddressIpv4>
</HopAddr>
<HopName>r1.provider4.example</HopName>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:09+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.102</inetAddressIpv4>

```
```

Internet-Draft

```
    </HopAddr>
```

 </HopAddr>
 <HopName>r1.provider4.example</HopName>
 <HopName>r1.provider4.example</HopName>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>0</roundTripTime>
 <roundTripTime>0</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:09+02:00</Time>
 <Time>2008-05-14T11:03:09+02:00</Time>
 </probe>
 </probe>
 </hop>
</hop>
<hop>
<hop>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>rtr8.provider8.example</HopName>
<HopName>rtr8.provider8.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:09+02:00</Time>
<Time>2008-05-14T11:03:09+02:00</Time>
</probe>
</probe>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>rtr8.provider8.example</HopName>
<HopName>rtr8.provider8.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:09+02:00</Time>
<Time>2008-05-14T11:03:09+02:00</Time>
</probe>
</probe>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
<inetAddressIpv4>192.0.2.254</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>rtr8.provider8.example</HopName>
<HopName>rtr8.provider8.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>0</roundTripTime>
<roundTripTime>0</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:09+02:00</Time>
<Time>2008-05-14T11:03:09+02:00</Time>
</probe>
</probe>
</hop>
</hop>
<hop>
<hop>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.4</inetAddressIpv4>

```
            <inetAddressIpv4>192.0.2.4</inetAddressIpv4>
```

```
Internet-Draft
                                    Traceroute Storage Format
```

```
    </HopAddr>
```

 </HopAddr>
 <HopName>hop11.hoster7.example</HopName>
 <HopName>hop11.hoster7.example</HopName>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>1</roundTripTime>
 <roundTripTime>1</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:09+02:00</Time>
 <Time>2008-05-14T11:03:09+02:00</Time>
 </probe>
 </probe>
 <probe>
 <probe>
 <HopAddr>
 <HopAddr>
 <inetAddressIpv4>192.0.2.4</inetAddressIpv4>
 <inetAddressIpv4>192.0.2.4</inetAddressIpv4>
 </HopAddr>
 </HopAddr>
 <HopName>hop11.hoster7.example</HopName>
 <HopName>hop11.hoster7.example</HopName>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>1</roundTripTime>
 <roundTripTime>1</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:10+02:00</Time>
 <Time>2008-05-14T11:03:10+02:00</Time>
 </probe>
 </probe>
 <probe>
 <probe>
 <HopAddr>
 <HopAddr>
 <inetAddressIpv4>192.0.2.4</inetAddressIpv4>
 <inetAddressIpv4>192.0.2.4</inetAddressIpv4>
 </HopAddr>
 </HopAddr>
 <HopName>hop11.hoster7.example</HopName>
 <HopName>hop11.hoster7.example</HopName>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>1</roundTripTime>
 <roundTripTime>1</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:10+02:00</Time>
 <Time>2008-05-14T11:03:10+02:00</Time>
 </probe>
 </probe>
 </hop>
</hop>
<hop>
<hop>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.201</inetAddressIpv4>
<inetAddressIpv4>192.0.2.201</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>sw6.provider2.example</HopName>
<HopName>sw6.provider2.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
<roundTripTime>2</roundTripTime>
<roundTripTime>2</roundTripTime>
</ProbeRoundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:10+02:00</Time>
<Time>2008-05-14T11:03:10+02:00</Time>
</probe>
</probe>
<probe>
<probe>
<HopAddr>
<HopAddr>
<inetAddressIpv4>192.0.2.201</inetAddressIpv4>
<inetAddressIpv4>192.0.2.201</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>sw6.provider2.example</HopName>

```
<HopName>sw6.provider2.example</HopName>
```

```
Internet-Draft
```

 <ProbeRoundTripTime>
    ```
    <ProbeRoundTripTime>
            <roundTripTime>3</roundTripTime>
            <roundTripTime>3</roundTripTime>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>responseReceived</ResponseStatus>
        <ResponseStatus>responseReceived</ResponseStatus>
        <Time>2008-05-14T11:03:11+02:00</Time>
        <Time>2008-05-14T11:03:11+02:00</Time>
    </probe>
    </probe>
    <probe>
    <probe>
        <HopAddr>
        <HopAddr>
            <inetAddressIpv4>192.0.2.201</inetAddressIpv4>
            <inetAddressIpv4>192.0.2.201</inetAddressIpv4>
        </HopAddr>
        </HopAddr>
        <HopName>sw6.provider2.example</HopName>
        <HopName>sw6.provider2.example</HopName>
        <ProbeRoundTripTime>
        <ProbeRoundTripTime>
            <roundTripTime>1</roundTripTime>
            <roundTripTime>1</roundTripTime>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>responseReceived</ResponseStatus>
        <ResponseStatus>responseReceived</ResponseStatus>
        <Time>2008-05-14T11:03:11+02:00</Time>
        <Time>2008-05-14T11:03:11+02:00</Time>
    </probe>
    </probe>
</hop>
</hop>
<hop>
<hop>
    <probe>
    <probe>
        <HopAddr>
        <HopAddr>
        <inetAddressIpv4>192.0.2.111</inetAddressIpv4>
        <inetAddressIpv4>192.0.2.111</inetAddressIpv4>
    </HopAddr>
    </HopAddr>
    <HopName>out.provider2.example</HopName>
    <HopName>out.provider2.example</HopName>
    <ProbeRoundTripTime>
    <ProbeRoundTripTime>
        <roundTripTime>3</roundTripTime>
        <roundTripTime>3</roundTripTime>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>responseReceived</ResponseStatus>
        <ResponseStatus>responseReceived</ResponseStatus>
        <Time>2008-05-14T11:03:11+02:00</Time>
        <Time>2008-05-14T11:03:11+02:00</Time>
    </probe>
    </probe>
    <probe>
    <probe>
        <HopAddr>
        <HopAddr>
            <inetAddressIpv4>192.0.2.111</inetAddressIpv4>
            <inetAddressIpv4>192.0.2.111</inetAddressIpv4>
        </HopAddr>
        </HopAddr>
        <HopName>out.provider2.example</HopName>
        <HopName>out.provider2.example</HopName>
        <ProbeRoundTripTime>
        <ProbeRoundTripTime>
            <roundTripTime>3</roundTripTime>
            <roundTripTime>3</roundTripTime>
        </ProbeRoundTripTime>
        </ProbeRoundTripTime>
        <ResponseStatus>responseReceived</ResponseStatus>
        <ResponseStatus>responseReceived</ResponseStatus>
        <Time>2008-05-14T11:03:11+02:00</Time>
        <Time>2008-05-14T11:03:11+02:00</Time>
        </probe>
        </probe>
    <probe>
    <probe>
        <HopAddr>
        <HopAddr>
            <inetAddressIpv4>192.0.2.111</inetAddressIpv4>
            <inetAddressIpv4>192.0.2.111</inetAddressIpv4>
</HopAddr>
</HopAddr>
<HopName>out.provider2.example</HopName>
<HopName>out.provider2.example</HopName>
<ProbeRoundTripTime>
<ProbeRoundTripTime>
    <roundTripTime>3</roundTripTime>
```

 <roundTripTime>3</roundTripTime>
    ```
```

 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:12+02:00</Time>
 </probe>
 </hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.123</inetAddressIpv4>
</HopAddr>
<ProbeRoundTripTime>
<roundTripTimeNotAvailable/>
</ProbeRoundTripTime>
<ResponseStatus>requestTimedOut</ResponseStatus>
<Time>2008-05-14T11:03:14+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.123</inetAddressIpv4>
</HopAddr>
<ProbeRoundTripTime>
<roundTripTime>6</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:15+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.123</inetAddressIpv4>
</HopAddr>
<ProbeRoundTripTime>
<roundTripTime>5</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:16+02:00</Time>
</probe>
</hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.42</inetAddressIpv4>
</HopAddr>
<ProbeRoundTripTime>
<roundTripTime>5</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:17+02:00</Time>
</probe>

```
```

 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.42</inetAddressIpv4>
 </HopAddr>
 <ProbeRoundTripTime>
 <roundTripTime>5</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:17+02:00</Time>
 </probe>
 <probe>
 <HopAddr>
 <inetAddressIpv4>192.0.2.42</inetAddressIpv4>
 </HopAddr>
 <ProbeRoundTripTime>
 <roundTripTime>5</roundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:17+02:00</Time>
 </probe>
 </hop>
<hop>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.199</inetAddressIpv4>
</HopAddr>
<HopName>ingress.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>94</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:19+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.199</inetAddressIpv4>
</HopAddr>
<HopName>ingress.example.org</HopName>
<ProbeRoundTripTime>
<roundTripTime>95</roundTripTime>
</ProbeRoundTripTime>
<ResponseStatus>responseReceived</ResponseStatus>
<Time>2008-05-14T11:03:19+02:00</Time>
</probe>
<probe>
<HopAddr>
<inetAddressIpv4>192.0.2.199</inetAddressIpv4>
</HopAddr>

```
```

Internet-Draft

```
            <HopName>ingress.example.org</HopName>
```

 <HopName>ingress.example.org</HopName>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>95</roundTripTime>
 <roundTripTime>95</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:19+02:00</Time>
 <Time>2008-05-14T11:03:19+02:00</Time>
 </probe>
 </probe>
 </hop>
 </hop>
 <hop>
 <hop>
 <probe>
 <probe>
 <HopAddr>
 <HopAddr>
 <inetAddressIpv4>192.0.2.44</inetAddressIpv4>
 <inetAddressIpv4>192.0.2.44</inetAddressIpv4>
 </HopAddr>
 </HopAddr>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>168</roundTripTime>
 <roundTripTime>168</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:20+02:00</Time>
 <Time>2008-05-14T11:03:20+02:00</Time>
 </probe>
 </probe>
 <probe>
 <probe>
 <HopAddr>
 <HopAddr>
 <inetAddressIpv4>192.0.2.44</inetAddressIpv4>
 <inetAddressIpv4>192.0.2.44</inetAddressIpv4>
 </HopAddr>
 </HopAddr>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>169</roundTripTime>
 <roundTripTime>169</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:21+02:00</Time>
 <Time>2008-05-14T11:03:21+02:00</Time>
 </probe>
 </probe>
 <probe>
 <probe>
 <HopAddr>
 <HopAddr>
 <inetAddressIpv4>192.0.2.44</inetAddressIpv4>
 <inetAddressIpv4>192.0.2.44</inetAddressIpv4>
 </HopAddr>
 </HopAddr>
 <ProbeRoundTripTime>
 <ProbeRoundTripTime>
 <roundTripTime>169</roundTripTime>
 <roundTripTime>169</roundTripTime>
 </ProbeRoundTripTime>
 </ProbeRoundTripTime>
 <ResponseStatus>responseReceived</ResponseStatus>
 <ResponseStatus>responseReceived</ResponseStatus>
 <Time>2008-05-14T11:03:23+02:00</Time>
 <Time>2008-05-14T11:03:23+02:00</Time>
 </probe>
 </probe>
 </hop>
 </hop>
 </ProbeResults>
 </ProbeResults>
 <ResultsEndDateAndTime>2008-05-14T11:03:23+02:00</ResultsEndDat
 <ResultsEndDateAndTime>2008-05-14T11:03:23+02:00</ResultsEndDat
 eAndTime>
eAndTime>
</MeasurementResult>
</MeasurementResult>
</Measurement>
</Measurement>
</traceRoute>

```
</traceRoute>
```

The three examples given in this section are intended to give an

```
impression on how a trace could be represented in XML. The
representation generated by an implementation may differ from the
examples here dependent on the system and the capabilities of the
traceroute implementation.
```

Authors' Addresses

Saverio Niccolini
NEC Laboratories Europe, NEC Europe Ltd.
Kurfuersten-Anlage 36
Heidelberg 69115
Germany

Phone: +49 (0) 62214342118
Email: saverio.niccolini@nw.neclab.eu
URI: http://www.nw.neclab.eu

```
Sandra Tartarelli
NEC Laboratories Europe, NEC Europe Ltd.
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 (0) 6221 4342 132
Email: sandra.tartarelli@nw.neclab.eu
URI: http://www.nw.neclab.eu
Juergen Quittek
NEC Laboratories Europe, NEC Europe Ltd.
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 (0) 6221 4342 115
Email: quittek@nw.neclab.eu
URI: http://www.nw.neclab.eu
```

Niccolini, et al. Expires April 11, 2009
[Page 70]

```
Thomas Dietz
NEC Laboratories Europe, NEC Europe Ltd.
Kurfuersten-Anlage 36
Heidelberg 69115
Germany
Phone: +49 (0) 6221 4342 128
Email: thomas.dietz@nw.neclab.eu
URI: http://www.nw.neclab.eu
Martin Swany
Dept. of Computer and Information Sciences, University of Delaware
Newark DE 19716
U.S.A.
```

Email: swany@UDel.Edu

Full Copyright Statement

Copyright (C) The IETF Trust (2008).

This document is subject to the rights, licenses and restrictions contained in BCP 78, and except as set forth therein, the authors retain all their rights.

This document and the information contained herein are provided on an "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The IETF takes no position regarding the validity or scope of any Intellectual Property Rights or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; nor does it represent that it has made any independent effort to identify any such rights. Information on the procedures with respect to rights in RFC documents can be found in BCP 78 and BCP 79.

Copies of IPR disclosures made to the IETF Secretariat and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementers or users of this specification can be obtained from the IETF on-line IPR repository at http://www.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights that may cover technology that may be required to implement this standard. Please address the information to the IETF at ietf-ipr@ietf.org.

