
 INTERNET-DRAFT Expires Aug 1999 INTERNET-DRAFT

 Network Working Group Matt Mathis
 INTERNET-DRAFT Pittsburgh Supercomputing Center
 Expiration Date: Aug 1999 Feb 1999

TReno Bulk Transfer Capacity

 < draft-ietf-ippm-treno-btc-03.txt >

 Status of this Document

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract:

 TReno is a tools to measure Bulk Transport Capacity (BTC) as defined
 in [ippm-btc-framework]. This document specifies specific details
 of the TReno algorithm as require by the BTC framework document.

 2. Introduction:

 This memo defines a Bulk Transport Capacity (BTC) based on the TReno
 (``tree-no'') diagnostic [Mathis97a]. It builds on notions
 introduced in the BTC framework document [ippm-btc-framework] and
 the IPPM Framework document, RFC 2330 [@@]; the reader is assumed to
 be familiar with both documents.

 The BTC framework document defines pure Congestion Avoidance
 Capacity (CAC) as the data rate (bits per second) of the Congestion

https://datatracker.ietf.org/doc/html/draft-ietf-ippm-treno-btc-03.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2330

 Avoidance algorithm, subject to the restriction that the
 Retransmission Timeout and Slow-Start algorithms are not invoked.
 In principle a CAC metric would be an ideal BTC metric, but there
 are rather substantial difficulty with using it as such. The
 Self-Clocking of the Congestion Avoidance algorithm can be very
 fragile, depending on the specific details of the Fast Retransmit,
 Fast Recovery or other advanced recovery algorithms. When TCP
 looses Self-Clock it is reestablished through a retransmission
 timeout and Slow-Start. These algorithms nearly always take more
 time than Congestion Avoidance would have taken.

 The TReno program implements BTC, CAC and ancillary metrics. The
 ancillary metrics are designed to instrument all network events that
 might cause discrepancies between an ideal CAC metric and the TReno
 BTC, other BTC metrics or real TCP implementations.

 We use this multiple metrics approach because the CAC metric is more
 suitable for analytic modeling while the BTC metrics is more suited
 to applied measurement. We believe that future research will lead
 to a strong analytic framework (A-frame) [ippm-btc-framework] that
 will result in understanding the relationship between CAC metrics
 and other metrics, including simple metrics (delay, loss) as well as
 the various different BTC metrics and TCP implementations.

 3. The TReno BTC Definition

 3.1. Metric Name:

 TReno-Type-P-Bulk-Transfer-Capacity

 3.2. Metric Parameters:

 + Src, the IP address of a host

 + Dst, the IP address of a host

 + Initial Maximum Segment size

 + a test duration

 + T, a time

 3.3. Metric Units:

 Bits per second

 3.4. Definition:

 The average data rate attained by the TReno program over the path
 under test.

 3.5 Congestion Control Algorithms

 The BTC framework document [ippm-btc-framework] makes the
 observation that the standard specifying congestion control
 algorithms [RFC2001.bis] allows more latitude in their
 implementation than is appropriate for a metric. Some of the
 details of the congestion control algorithms that are left to the
 discretion of the implementor must be fully specified in a metric.

 3.5.1 Congestion Avoidance details

 TReno computes the window size in bytes. Each acknowledgment opens
 the congestion window (cwnd) by MSS*MSS/cwnd bytes. The actual
 number of outstanding bytes in the network is always an integral
 number of segments such that the total size is less than or equal to
 cwnd.

 @@@ the framework needs to require that delayed Acks emulation be
 specified.

 When a loss is detected the window is reduced using a algorithm that
 sends one segment per two acknowledgments for exactly one round trip
 (as determied by sequence numbers). This reduces the window to
 exactly half of the data that was actually held by the network at
 the time the first loss was detected. This algorithm, called
 Rate-Halving, is described in detail in a separate technical note
 [facknote]. The new cwnd will be (old_cwnd - loss)/2.

 The technical not also describes an additional group of algoritms,
 collectivly called bounding parameters, that assure that rate
 halving always arrives at a reasonable congestioin window, even
 under pathological conditions. The bounding parameter algorithms
 have no effect on TReno under normal conditons. If the bounding
 parameters are invoked, they are instrumented and an exceptional
 network event.

 The one of the bounding parameters is to set ssthresh to 1/4 of
 the pre-recovery cwnd. Thus recovery normally ends with cwnd larger
 than ssthresh, so TReno does not do a one segment slow-start as
 permitted by RFC2001. However, if more than half a window of data
 was lost, rate having can arrive at a new cwnd which is smaller than
 ssthresh, resulting in a slow-start up to ssthresh (which would be
 1/4 the prior value of cwnd).

 3.5.2 Retransmission Timeouts

 The current version of TReno does not include an accurate model for
 the TCP retransmission timer. Under nearly all normal conditions
 the timers in TReno are much more conservative than real TCP
 implementations. TReno takes the view that timeouts indicate a
 failure to attain a CAC measurement, which an abnormality in the
 network that should be diagnosed. TReno doem not experience

https://datatracker.ietf.org/doc/html/rfc2001

 timeouts unless an entire window of data is lost.

 3.5.3 Slow-Start

 TReno invokes Slow-start if cwnd is equal to or less than ssthresh.
 Unlike most TCP implementations this condition is not normally true
 at the end of recovery.

 3.5.4 Advanced Recovery Algorithms

 The algorithm used by TReno to emulate the TCP reassembly queue
 naturally emulates SACK [RFC2018] with the Forward Acknowledgment
 Algorithm [Mathis96] as updated by [facknote].

 3.5.5 Segment Size

 TReno can dynamicly discover the correct Maximum Segment Size through
 path MTU discovery. A smaller MTU can be explicitly selected.

 3.6 Ancillary results:

 @@@ expand

 - Statistics over the entire test
 (data transferred, duration and average rate)
 - Statistics over the Congestion Avoidance portion of the test
 (data transferred, duration and average rate)
 - Path property statistics (MTU, minimum RTT, maximum congestion
 window during Congestion Avoidance and during Slow-start)
 - Direct measures of the analytic model parameters (Number
 of congestion signals, average RTT)
 - Indications of which TCP algorithms must be present to
 attain the same performance.
 - The estimated load/BW/buffering used on the return path
 - Warnings about data transmission abnormalities.
 (e.g. packets out-of-order, events that cause timeouts)
 - Warnings about conditions which may affect metric
 accuracy. (e.g. insufficient tester buffering)
 - Alarms about serious data transmission abnormalities.
 (e.g. data duplicated in the network)
 - Alarms about internal inconsistencies of the tester and
 events which might invalidate the results.
 - IP address/name of the responding target.
 - TReno version.

 3.7 Manual calibration checks:

 The following discussion assumes that the TReno diagnostic is
 implemented as a user mode program running under a standard
 operating system. Other implementations, such as those in dedicated
 measurement instruments, can have stronger built-in calibration
 checks.

https://datatracker.ietf.org/doc/html/rfc2018

 3.7.1 Tester performance

 Verify that the tester and target have sufficient data rates to
 sustain the test.

 The raw performance (data rate) limitations of both the tester and
 target should be measured by running TReno in a controlled
 environment (e.g. a bench test). Ideally the observed performance
 limits should be validated by determining the nature of the
 bottleneck and verifying that it agrees with other benchmarks of the
 tester and target (e.g. That TReno performance agrees with direct
 measures of backplane or memory bandwidth or other bottleneck as
 appropriate). Currently no routers are reliable targets, although
 under some conditions they can be used for meaningful measurements.
 When testing between a pair of modern computer systems at a few
 megabits per second or less, the tester and target are unlikely to
 be the bottleneck.

 TReno may be less accurate at average rates above half of the known
 tester or target limits. This is because during the initial
 Slow-start TReno needs to send bursts which are twice the average
 data rate.

 Likewise, if the link to the first hop is not more than twice as
 fast as the entire path, some of the path properties such as max
 congestion window during Slow-start may reflect the testers link
 interface, and not the path itself.

 3.7.2 Tester Buffering

 Verify that the tester and target have sufficient buffering to
 support the window needed by the test.

 If they do not have sufficient buffer space, then losses at their
 own queues may contribute to the apparent losses along the path.
 There are several difficulties in verifying the tester and target
 buffer capacity. First, there are no good tests of the targets
 buffer capacity at all. Second, all validation of the testers
 buffering depends in some way on the accuracy of reports by the
 tester's own operating system. Third, there is the confusing result
 that under many circumstances (particularly when there is much more
 than sufficient average tester performance) insufficient buffering
 in the tester does not adversely impact measured performance.

 TReno reports (as calibration alarms) any events in which transmit
 packets were refused due to insufficient buffer space. It reports a
 warning if the maximum measured congestion window is larger than the
 reported buffer space. Although these checks are likely to be
 sufficient in most cases they are probably not sufficient in all
 cases, and will be the subject of future research.

 Note that on a timesharing or multi-tasking system, other activity
 on the tester introduces burstiness due to operating system
 scheduler latency. Since some queuing disciplines discriminate
 against bursty sources, it is important that there be no other
 system activity during a test. This should be confirmed with other
 operating system specific tools.

 3.7.3 Return Path performance

 Verify that the return path is not a bottleneck at the load needed
 to sustain the test.

 In ICMP mode TReno measures the net effect of both the forward and
 return paths on a single data stream. Bottlenecks and packet losses
 in the forward and return paths are treated equally.

 In traceroute mode, TReno computes and reports the load it
 contributes to the return path. Unlike real TCP, TReno can not
 distinguish between losses on the forward and return paths, so
 ideally we want the return path to introduce as little loss as
 possible. A good way to test to see if the return path has a large
 effect on a measurement is to reduce the forward path messages down
 to ACK size (40 bytes), and verify that the measured packet rate is
 improved by at least factor of two. [More research is needed.]

3.8 Discussion:

 There are many possible reasons why a TReno measurement might not
 agree with the performance obtained by a TCP-based application.
 Some key ones include: older TCPs missing key algorithms such as MTU
 discovery, support for large windows or SACK, or miss-tuning of
 either the data source or sink. Network conditions which require
 the newer TCP algorithms are detected by TReno and reported in the
 ancillary results. Other documents will cover methods to diagnose
 the difference between TReno and TCP performance.

 People using the TReno metric as part of procurement documents
 should be aware that in many circumstances MTU has an intrinsic
 and large impact on overall path performance. Under some
 conditions the difficulty in meeting a given performance
 specifications is inversely proportional to the square of the
 path MTU. (e.g. Halving the specified MTU makes meeting the
 bandwidth specification 4 times harder.)

 When used as an end-to-end metric TReno presents exactly the same
 load to the network as a properly tuned state-of-the-art bulk TCP
 stream between the same pair of hosts. Although the connection
 is not transferring useful data, it is no more wasteful than
 fetching an unwanted web page with the same transfer time.

 References

 [Jacobson88] Jacobson, V., "Congestion Avoidance and Control",
 Proceedings of SIGCOMM '88, Stanford, CA., August 1988.

 [mathis96] Mathis, M. and Mahdavi, J. "Forward acknowledgment:
 Refining TCP congestion control", Proceedings of ACM SIGCOMM '96,
 Stanford, CA., August 1996.

 [RFC2018] Mathis, M., Mahdavi, J. Floyd, S., Romanow, A., "TCP
 Selective Acknowledgment Options", 1996 Obtain via:

ftp://ds.internic.net/rfc/rfc2018.txt

 [Mathis97a] Mathis, M., TReno source distribution, Obtain via:
ftp://ftp.psc.edu/pub/networking/tools/treno.shar

 [Mathis97b] Mathis, M., Semke, J., Mahdavi, J., Ott, T.,
 "The Macroscopic Behavior of the TCP Congestion Avoidance
 Algorithm", Computer Communications Review, 27(3), July 1997.

 [RFC2001] Stevens, W., "TCP Slow Start, Congestion Avoidance,
 Fast Retransmit, and Fast Recovery Algorithms",

ftp://ds.internic.net/rfc/rfc2001.txt

 [facknote] Mathis, M., Mahdavi, M., TCP Rate-Halving with Bounding
 Parameters http://www.psc.edu/networking/papers/FACKnotes/current/

 Author's Address

 Matt Mathis
 email: mathis@psc.edu
 Pittsburgh Supercomputing Center
 4400 Fifth Ave.
 Pittsburgh PA 15213

ftp://ds.internic.net/rfc/rfc2018.txt
ftp://ftp.psc.edu/pub/networking/tools/treno.shar
ftp://ds.internic.net/rfc/rfc2001.txt
http://www.psc.edu/networking/papers/FACKnotes/current/

