
IPSEC Working Group Dan Harkins
INTERNET-DRAFT Charlie Kaufman
 Radia Perlman
 editors
draft-ietf-ipsec-ikev2-00.txt November 2001

The Internet Key Exchange (IKE) Protocol
<draft-ietf-ipsec-ikev2-00.txt>

 Status of this Memo

 This document is an Internet Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [Bra96]. Internet Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and working groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 This document describes version 2 of the IKE (Internet Key Exchange)
 protocol. IKE performs mutual authentication and establishes an IKE
 security association that can be used to efficiently establish SAs
 for ESP, AH and/or IPcomp. This version greatly simplifies IKE by
 replacing the 8 possible phase 1 exchanges with a single exchange
 based on public signature keys. The single exchange provides
 identity hiding, yet works in 2 round trips (all the identity hiding
 exchanges in IKE v1 required 3 round trips). Latency of setup of an
 IPsec SA is further reduced from IKEv1 by allowing setup of an SA for
 ESP, AH, and/or IPcomp to be piggybacked on the initial IKE exchange.
 It also improves security by allowing the Responder to be stateless
 until it can be assured that the Initiator can receive at the claimed
 IP source address. This version also presents the entire protocol in
 a single self-contained document, in contrast to IKEv1, in which the
 protocol was described in ISAKMP (RFC 2408), IKE (RFC 2409), and the

Harkins Kaufman Perlman ^L[Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2409

INTERNET DRAFT November 2001

 DOI (RFC 2407) documents.

Table of Contents

1. Introduction..3
1.1 The IKE Protocol...3
1.2 Changes from IKEv1.......................................4
1.3 Requirements Terminology.................................5
2 Protocol Overview..5
2.1 Use of Retransmission Timers.............................6
2.2 Use of Sequence Numbers for Message ID...................6
2.3 Window Size for overlapping requests.....................7
2.4 State Synchronization and Connection Timeouts............7
2.5 Version Numbers and Forward Compatibility................8
2.6 Cookies..10
2.7 Cryptographic Algorithm Negotiation......................12
2.8 Rekeying...13
2.9 Traffic Selector Negotiation.............................14
2.10 Nonces..15
3 The Phase 1 Exchange.......................................15
3.1 Generating Keying Material for the IKE-SA................17
3.2 Authentication of the IKE-SA.............................17
4 The CREATE-CHILD-SA (Phase 2) Exchange.....................18
4.1 Generating Keying Material for Child-SAs.................19
4.2 Generating Keying Material for IKE-SAs during rollover...20
5 Informational (Phase 2) Exchange...........................20
6 Error Handling...22
7 Header and Payload Formats.................................23
7.1 The IKE Header...23
7.2 Generic Payload Header...................................26
7.3 Security Association Payload.............................27
7.3.1 Proposal Substructure..................................29
7.3.2 Transform Substructure.................................31
7.3.3 Mandatory Transform Types..............................34
7.3.4 Mandatory Transform-IDs................................34
7.3.5 Transform Attributes...................................35
7.3.6 Attribute Negotiation..................................36
7.4 Key Exchange Payload.....................................36
7.5 Identification Payload...................................37
7.6 Certificate Payload......................................39
7.7 Certificate Request Payload..............................40
7.8 Authentication Payload...................................41
7.9 Nonce Payload..42
7.10 Notify Payload..43
7.10.1 Notify Message Types..................................44
7.11 Delete Payload..48

https://datatracker.ietf.org/doc/html/rfc2407

Harkins Kaufman Perlman ^L[Page 2]

INTERNET DRAFT November 2001

7.12 Vendor ID Payload.......................................49
7.13 Traffic Selector Payload................................50
7.13.1 Traffic Selector Substructure.........................51
7.14 Other Payload types.....................................53
8 Diffie-Hellman Groups......................................53
9 Security Considerations....................................55
10 IANA Considerations.......................................56
10.1 Transform Types and Attribute Values....................56
10.2 Exchange Types..57
10.3 Payload Types...57
11 Acknowledgements..58
12 References..58
Appendix A: Attribute Assigned Numbers.......................61
Appendix B: Cryptographic Protection of IKE Data.............63

 Authors' Addresses...64

1. Introduction

 IP Security (IPsec) provides confidentiality, data integrity, and
 data source authentication to IP datagrams. These services are
 provided by maintaining shared state between the source and the sink
 of an IP datagram. This state defines, among other things, the
 specific services provided to the datagram, which cryptographic
 algorithms will be used to provide the services, and the keys used as
 input to the cryptographic algorithms.

 Establishing this shared state in a manual fashion does not scale
 well. Therefore a protocol to establish this state dynamically is
 needed. This memo describes such a protocol-- the Internet Key
 Exchange (IKE). This is version 2 of IKE. Version 1 of IKE was
 defined in RFCs 2407, 2408, and 2409. This single document is
 intended to replace all three of those RFCs.

1.1 The IKE Protocol

 IKE performs mutual authentication between two parties and
 establishes an IKE security association that includes shared secret
 information that can be used to efficiently establish SAs for ESP
 (RFC 2406), AH (RFC 2402) and/or IPcomp (RFC 2393). We call the IKE
 SA an "IKE-SA", and the SAs for ESP, AH, and/or IPcomp that get set
 up through that IKE-SA we call "child-SA"s.

 We call the setup of the IKE-SA "phase 1" and subsequent IKE
 exchanges "phase 2" even though setup of a child-SA can be
 piggybacked on the initial phase 1 exchange. The phase 1 exchange is
 two request/response pairs. A phase 2 exchange is one
 request/response pair, and can be used to create or delete a child-
 SA, rekey or delete the IKE-SA, or give information such as error

https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2393

Harkins Kaufman Perlman ^L[Page 3]

INTERNET DRAFT November 2001

 conditions.

 IKE message flow always consists of a request followed by a response.
 It is the responsibility of the requester to ensure reliability. If
 the response is not received within a timeout interval, the requester
 retransmits the request.

 The first request/response of a phase 1 exchange, which we'll call
 IKE_SA_init, negotiates security parameters for the IKE-SA, and sends
 Diffie-Hellman values. We call the response IKE_SA_init_response.

 The second request/response, which we'll call IKE_auth, transmits
 identities, proves knowledge of the private signature key, and
 optionally sets up an SA for AH and/or ESP and/or IPcomp. We call
 the response IKE_auth_response.

 If the Responder feels it is under attack, and wishes to use a
 stateless cookie (see section on cookies). it can respond to an
 IKE_SA_init with an IKE_SA_init_reject with a cookie value that must
 be sent with a subsequent IKE_SA_init_request. The Initiator then
 sends another IKE_SA_init, but this time including the Responder's
 cookie value.

 Phase 2 exchanges each consist of a single request/response pair. The
 types of exchanges are CREATE_CHILD_SA (creates a child-SA), or an
 informational exchange which deletes a child-SA or the IKE-SA or
 informs the other side of some error condition. All these messages
 require a response, so an informational message with no payloads can
 serve as a check for aliveness.

1.2 Changes from IKEv1

 The goals of this revision to IKE are:

 1) To define the entire IKE protocol in a single document, rather
 than three that cross reference one another;

 2) To simplify IKE by eliminating the Aggressive Mode option and all
 but one of the authentication algorithms making phase 1 a single
 exchange (based on public signature keys);

 3) To remove the Domain of Interpretation (DOI), Situation (SIT), and
 Labeled Domain Identifier fields, and the Commit and Authentication
 only bits;

 4) To decrease IKE's latency by making the initial exchange be 2
 round trips (4 messages), and allowing the ability to piggyback setup

Harkins Kaufman Perlman ^L[Page 4]

INTERNET DRAFT November 2001

 of a Child-SA on that exchange;

 5) To replace the cryptographic algorithms for protecting the IKE
 messages themselves with one based closely on ESP to simplify
 implementation and security analysis;

 6) To reduce the number of possible error states by making the
 protocol reliable (all messages are acknowledged) and sequenced. This
 allows shortening Phase 2 exchanges from 3 messages to 2;

 7) To increase robustness by allowing the Responder, if under attack,
 to require return of a cookie before the Responder commits any state
 to the exchange;

 8) To fix bugs such as the hash problem documented in [draft-ietf-
ipsec-ike-hash-revised-02.txt];

 9) To specify Traffic Selectors in their own payload type rather then
 overloading ID payloads, and making more flexible the Traffic
 Selectors that may be specified;

 10) To avoid unnecessary exponential explosion of space in attribute
 negotiation, by allowing choices when multiple algorithms of one type
 (say, encryption) can work with any of a number of acceptable
 algorithms of another type (say, integrity protection);

 11) To specify required behavior under certain error conditions or
 when data that is not understood is received in order to make it
 easier to make future revisions in a way that does not break
 backwards compatibility;

 12) To simplify and clarify how shared state is maintained in the
 presence of network failures and Denial of Service attacks; and

 13) To maintain existing syntax and magic numbers to the extent
 possible to make it likely that implementations of IKEv1 can be
 enhanced to support IKEv2 with minimum effort.

1.3 Requirements Terminology

 Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
 "MAY" that appear in this document are to be interpreted as described
 in [Bra97].

2 Protocol Overview

 IKE runs over UDP port 500. Since UDP is a datagram (unreliable)
 protocol, IKE includes in its definition recovery from transmission

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-hash-revised-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-hash-revised-02.txt

Harkins Kaufman Perlman ^L[Page 5]

INTERNET DRAFT November 2001

 errors, including packet loss, packet replay, and packet forgery. IKE
 is designed to function so long as at least one of a series of
 retransmitted packets reaches its destination before timing out and
 the channel is not so full of forged and replayed packets so as to
 exhaust the network or CPU capacities of either endpoint. Even in the
 absence of those minimum performance requirements, IKE is designed to
 fail cleanly (as though the network were broken).

2.1 Use of Retransmission Timers

 All messages in IKE exist in pairs: a request and a response. Either
 end of a security association may initiate requests at any time, and
 there can be many requests and responses "in flight" at any given
 moment. But each message is labelled as either a request or a
 response and for each pair one end of the security association is the
 Initiator and the other is the Responder.

 For every pair of messages, the Initiator is responsible for
 retransmission in the event of a timeout. The Responder will never
 retransmit a response unless it receives a retransmission of the
 request. In that event, the Responder MUST either ignore the
 retransmitted request except insofar as it triggers a retransmission
 of the response OR if the request is idempotent, the Responder may
 choose to process the request again and send a semantically
 equivalent reply.

 IKE is a reliable protocol, in the sense that the Initiator MUST
 retransmit a request until either it receives a corresponding reply
 OR it deems the IKE security association to have failed and it
 discards all state associated with the IKE-SA and any Child-SAs
 negotiated using that IKE-SA.

2.2 Use of Sequence Numbers for Message ID

 Every IKE message contains a Message ID as part of its fixed header.
 This Message ID is used to match up requests and responses, and to
 identify retransmissions of messages.

 The Message ID is a 32 bit quantity, with is zero for the first IKE
 message. Each endpoint in the IKE Security Association maintains two
 "current" Message IDs: the next one to be used for a request it
 initiates and the next one it expects to see from the other end.
 These counters increment as requests are generated and received.
 Responses always contain the same message ID as the corresponding
 request. That means that after the initial setup, each integer n will
 appear as the message ID in four distinct messages: The nth request
 from the original IKE Initiator, the corresponding response, the nth
 request from the original IKE Responder, and the corresponding

Harkins Kaufman Perlman ^L[Page 6]

INTERNET DRAFT November 2001

 response. If the two ends make very different numbers of requests,
 the Message IDs in the two directions can be very different. There is
 no ambiguity in the messages, however, because each packet contains
 enough information to determine which of the four messages a
 particular one is.

 In the case where the IKE_SA_init is rejected (e.g. in order to
 require a cookie), the second IKE_SA_init message will begin the
 sequence over with Message #0.

2.3 Window Size for overlapping requests

 In order to maximize IKE throughput, an IKE endpoint MAY issue
 multiple requests before getting a response to any of them. For
 simplicity, an IKE implementation MAY choose to process requests
 strictly in order and/or wait for a response to one request before
 issuing another. Certain rules must be followed to assure
 interoperability between implementations using different strategies.

 After an IKE-SA is set up, either end can initiate one or more
 requests. These requests may pass one another over the network. An
 IKE endpoint MUST be prepared to accept and process a request while
 it has a request outstanding in order to avoid a deadlock in this
 situation. An IKE endpoint SHOULD be prepared to accept and process
 multiple requests while it has a request outstanding.

 An IKE endpoint MUST NOT exceed the peer's stated window size (see
section 7.3.2) for transmitted IKE requests. In other words, if Bob

 stated his window size is N, then when Alice needs to make a request
 X, she MUST wait until she has received responses to all requests up
 through request X-N. An IKE endpoint MUST keep a copy of (or be able
 to regenerate exactly) each request it has sent until it receives the
 corresponding response. An IKE endpoint MUST keep a copy of (or be
 able to regenerate with semantic equivalence) the number of previous
 responses equal to its contracted window size in case its response
 was lost and the Initiator requests its retransmission by
 retransmitting the request.

 An IKE endpoint SHOULD be capable of processing incoming requests out
 of order to maximize performance in the event of network failures or
 packet reordering.

2.4 State Synchronization and Connection Timeouts

 An IKE endpoint is allowed to forget all of its state associated with
 an IKE-SA and the collection of corresponding child-SAs at any time.
 This is the anticipated behavior in the event of an endpoint crash
 and restart. It is important when an endpoint either fails or

Harkins Kaufman Perlman ^L[Page 7]

INTERNET DRAFT November 2001

 reinitializes its state that the other endpoint detect those
 conditions and not continue to waste network bandwidth by sending
 packets over those SAs and having them fall into a black hole.

 Since IKE is designed to operate in spite of Denial of Service (DoS)
 attacks from the network, an endpoint MUST NOT conclude that the
 other endpoint has failed based on any routing information (e.g. ICMP
 messages) or IKE messages that arrive without cryptographic
 protection (e.g., notify messages complaining about unknown SPIs). An
 endpoint MUST conclude that the other endpoint has failed only when
 repeated attempts to contact it have gone unanswered for a timeout
 period. An endpoint SHOULD suspect that the other endpoint has failed
 based on routing information and initiate a request to see whether
 the other endpoint is alive. To check whether the other side is
 alive, IKE provides a null query notify message that requires an
 acknowledgment. If a cryptographically protected message has been
 received from the other side recently, unprotected notifications MAY
 be ignored. Implementations MUST limit the rate at which they
 generate responses to unprotected messages.

 Numbers of retries and lengths of timeouts are not covered in this
 specification because they do not affect interoperability. It is
 suggested that messages be retransmitted at least a dozen times over
 a period of at least several minutes before giving up on an SA, but
 different environments may require different rules. An exception to
 this rule is that a Responder who has not received a
 cryptographically protected message on an IKE-SA MUST eventually time
 it out and delete it. Note that consuming state on an IKE Responder
 by setting up large numbers of half-open IKE-SAs is a likely denial
 of service attack, so the policy for timing these out and limiting
 the resources they consume should be considered carefully.

 Note that with these rules, there is no reason to negotiate and agree
 upon an SA lifetime. If IKE presumes the partner is dead, based on
 repeated lack of acknowledgment to an IKE message, then the IKE SA
 and all child-SAs set up through that IKE-SA are deleted.

 An IKE endpoint MAY delete inactive Child-SAs to recover resources
 used to hold their state. If an IKE endpoint chooses to do so, it
 MUST send Delete payloads to the other end notifying it of the
 deletion. It MAY similarly time out the IKE-SA. Closing the IKE-SA
 implicitly closes all associated Child-SAs. An IKE endpoint SHOULD
 send a Delete payload indicating that it has closed the IKE-SA.

2.5 Version Numbers and Forward Compatibility

 This document describes version 2.0 of IKE, meaning the major version
 number is 2 and the minor version number is zero. It is likely that

Harkins Kaufman Perlman ^L[Page 8]

INTERNET DRAFT November 2001

 some implementations will want to support both version 1.0 and
 version 2.0, and in the future, other versions.

 The major version number should only be incremented if the packet
 formats have changed so dramatically that an older version node would
 not be able to interoperate with messages in the new version format.
 The minor version number indicates new capabilities, and MUST be
 ignored by a node with a smaller minor version number, but used for
 informational purposes by the node with the larger minor version
 number. For example, it might indicate the ability to process a newly
 defined notification message. The node with the larger minor version
 number would simply note that its correspondent would not be able to
 understand that message and therefore would not send it.

 If you receive a message with a higher major version number, you MUST
 drop the message and SHOULD send an unauthenticated notification
 message containing the highest version number you support. If you
 support major version n, and major version m, you MUST support all
 versions between n and m. If you receive a message with a major
 version that you support, you MUST respond with that version number.
 In order to prevent two nodes from being tricked into corresponding
 with a lower major version number than the maximum that they both
 support, IKE has a flag that indicates that the node is capable of
 speaking a higher major version number.

 Thus the major version number in the IKE header indicates the version
 number of the message, not the highest version number that the
 transmitter supports. If A is capable of speaking versions n, n+1,
 and n+2, and B is capable of speaking versions n and n+1, then they
 will negotiate speaking n+1, where A will set the flag indicating
 ability to speak a higher version. If they mistakenly (perhaps
 through an active attacker sending error messages) negotiate to
 version n, then both will notice that the other side can support a
 higher version number, and they MUST break the connection and
 reconnect using version n+1.

 Note that v1 does not follow these rules, because there is no way in
 v1 of noting that you are capable of speaking a higher version
 number. So an active attacker can trick two v2-capable nodes into
 speaking v1. Given the design of v1, there is no way of preventing
 this, but this version number discipline will prevent such problems
 in future versions.

 Also for forward compatibility, all fields marked RESERVED MUST be
 set to zero by a version 2.0 implementation and their content MUST be
 ignored by a version 2.0 implementation ("Be conservative in what you
 send and liberal in what you receive"). In this way, future versions
 of the protocol can use those fields in a way that is guaranteed to

Harkins Kaufman Perlman ^L[Page 9]

INTERNET DRAFT November 2001

 be ignored by implementations that do not understand them.
 Similarly, field types that are not defined are reserved for future
 use and implementations of version 2.0 MUST skip over those fields
 and ignore their contents.

 IKEv2 adds a "critical" flag to each payload header for further
 flexibility for forward compatibility. If the critical flag is set
 and the payload type is unsupported, the message MUST be rejected and
 the response to the IKE request containing that payload MUST include
 a notify payload INVALID-PAYLOAD-TYPE, indicating an unsupported
 critical payload was included. If the critical flag is not set and
 the payload type is unsupported, that payload is simply skipped.

2.6 Cookies

 The term "cookies" originates with Karn and Simpson [RFC 2522] in
 Photurus, an early proposal for key managment with IPsec. It has
 persisted because the IETF has never rejected an offer involving
 cookies. In IKEv2, the cookies serve two purposes. First, they are
 used as IKE-SA identifiers in the headers of IKE messages. As with
 ESP and AH, in IKEv2 the recipient of a message chooses an IKE-SA
 identifier that uniquely defines that SA to that recipient. For this
 purpose (IKE-SA identifiers), it might be convenient for the cookie
 value to be chosen so as to be a table index for fast lookups of SAs.
 But this conflicts with the second purpose of the cookies (to be
 explained shortly).

 Unlike ESP and AH where only the recipient's SA identifier appears in
 the message, in IKE, the sender's IKE SA identifier is also sent in
 every message. In IKEv1 the IKE-SA identifier consisted of the pair
 (Initiator cookie, Responder cookie), whereas in IKEv2, the SA is
 uniquely defined by the recipient's SA identifier even though both
 are included in the IKEv2 header.

 The second use of cookies in IKEv2 is for a limited protection from
 denial of service attacks. Receipt of a request to start an SA can
 consume substantial resources. A likely denial of service attack
 against IKE is to overwhelm a system with large numbers of SA
 requests from forged IP addresses. This can consume CPU resources
 doing the crypto, and memory resources remembering the state of the
 "half open" connections until they time out. A robust design would
 limit the resources it is willing to devote to new connection
 establishment, but even so the denial of service attack could
 effectively prevent any new connections.

 This attack can be rendered more difficult by requiring that the
 Responder to an SA request do minimal computation and allocate no
 memory until the Initiator has proven that it can receive messages at

https://datatracker.ietf.org/doc/html/rfc2522

Harkins Kaufman Perlman ^L[Page 10]

INTERNET DRAFT November 2001

 the address it claims to be sending from. This is done in a stateless
 way by computing the cookie in a way that the Responder can recompute
 the same value, but the Initiator can't guess it. A recommended
 strategy is to compute the cookie as a cryptographic hash of the
 Initiator's IP address, the Initiator's cookie value (its chosen IKE
 security identifier), and a secret known only to the Responder. That
 secret should be changed periodically to prevent the "cookie jar"
 attack where an attacker accumulates lots of cookies from lots of IP
 addresses over time and then replays them all at once to overwhelm
 the Responder.

 In ISAKMP and IKEv1, the term cookie was used for the connection
 identifier, but the protocol did not permit their use against this
 particular denial of service attack. To avoid the cookie exchange
 adding extra messages to the protocol in the common case where the
 Responder is not under attack, IKEv2 goes back to the approach in
 Oakley (RFC 2412) where the cookie challenge is optional. Upon
 receipt of an IKE_SA_init, a Responder may either proceed with
 setting up the SA or may tell the Initiator to send another
 IKE_SA_init, this time providing a supplied cookie.

 It may be convenient for the IKE-SA identifier to be an index into a
 table. It is not difficult for the Initiator to choose an IKE-SA
 identifier that is convenient as a table identifier, since the
 Initiator does not need to use it as an anti-clogging token, and is
 keeping state. IKEv2 allows the Responder to initially choose a
 stateless anti-clogging type cookie by responding to an IKE_SA_init
 with a cookie request, and then upon receipt of an IKE_SA_init with a
 valid cookie, change his cookie value from the computed anti-clogging
 token to a more convenient value, by sending a different value for
 his cookie in the IKE_SA_init_response. This will not confuse the
 Initiator (Alice), because she will have chosen a unique cookie value
 A, so if her SA state for the partially set up IKE-SA says that Bob's
 cookie for the SA that Alice knows as "A" is B, and she receives a
 response from Bob with cookies (A,C), that means that Bob wants to
 change his value from B to C for the SA that Alice knows uniquely as
 "A".

 Another reason why Bob might want to change his cookie value is that
 it is possible (though unlikely) that Bob will choose the same cookie
 for multiple SAs if the hash of the Initiator cookie, Initiator IP
 address, and whatever other information might be included happens to
 hash to the same value.

 In IKEv2, like IKEv1, both 8-byte cookies appear in the message, but
 in IKEv2 (unlike v1), the value chosen by the message recipient
 always appears first in the message. This change eliminates a flaw in
 IKEv1, as well as having other advantages (allowing the recipient to

https://datatracker.ietf.org/doc/html/rfc2412

Harkins Kaufman Perlman ^L[Page 11]

INTERNET DRAFT November 2001

 look up the SA based on a small, conveniently chosen value rather
 than a 16-byte pseudorandom value.)

 The flaw in IKEv1 is that it was possible (though unlikely) for two
 connections to have the same set of cookies. For instance, if Alice
 chose A as the Initiator cookie when initiating a connection to Bob,
 she might subsequently receive a connection request from Carol, and
 Carol might also have chosen A as the Initiator cookie. Whatever
 value Alice responds to Carol, say B, might be selected as the
 Responder cookie by Bob for the Alice-Bob SA. Then Alice would be
 involved in two IKE sessions, both of which had Initiator cookie=A
 and Responder cookie=B. To minimize, but not eliminate, the
 probability of this happening, version 1 IKE recommended that cookies
 be chosen at random.

 One additional rule in IKEv2 is that the two cookie values have to be
 different. The Responder is responsible for choosing a value
 different from the one chosen by the Initiator. If the Responder's
 stateless cookie happens to be equal to the Initiator's cookie, that
 is legal provided that the Responder change his cookie value to
 something different from the Initiator's in his IKE_SA_init_response.
 The reason the cookies must be different in the two directions is to
 prevent reflection attacks. Another way reflection attacks could have
 been avoided was to compute different integrity and encryption keys
 in the two directions, but that would be another change from IKEv1.

 The cookies are one of the inputs into the function that computes the
 keying material. If the Responder initially sends a stateless cookie
 value in its IKE_SA_init_reject, and changes to a different value
 when it sends its IKE_SA_init_response, it is the cookie value in the
 IKE_SA_init_response that is the input for generating the keying
 material.

2.7 Cryptographic Algorithm Negotiation

 The payload type known as "SA" indicates a proposal for a set of
 choices of protocols (e.g., IKE, ESP, AH, and/or IPcomp) for the SA
 as well as cryptographic algorithms associated with each protocol. In
 IKEv1 it was extremely complex, and required a separate proposal for
 each possible combination. If there were n algorithms of one type
 (say encryption) that were acceptable and worked with any one of m
 algorithms of another type (say integrity protection), then it would
 take space proportional to n*m to express all of the possibilities.

 IKEv2 has simplified the format of the SA payload somewhat, but in
 addition to simplifying the format, solves the exponential explosion
 by allowing, within a proposal, multiple algorithms of the same type.
 If more than one algorithm of the same type (say encryption) appears

Harkins Kaufman Perlman ^L[Page 12]

INTERNET DRAFT November 2001

 in a proposal, that means that the sender of that SA proposal is
 willing to accept the proposal with any of those choices, and the
 recipient when it accepts the proposal selects exactly one of each of
 the types of algorithms from the choices offered within that
 proposal.

 An SA consists of one or more proposals. Each proposal has a number
 (so that the recipient can specify which proposal has been accepted),
 and contains a protocol (IKE, ESP, AH, or IPcomp), a SPI to identify
 the SA for ESP or AH or IPcomp, and set of transforms. Each transform
 consists of a type (e.g., encryption, integrity protection,
 authentication, Diffie-Hellman group, compression) and a transform ID
 (e.g., DES, IDEA, HMAC-MD5). To negotiate an SA that does ESP,
 IPcomp, and AH, the SA will contain three proposals with the same
 proposal number, one proposing ESP, a 4 byte SPI to be used with ESP,
 and a set of transforms; one proposing AH, a 4-byte SPI to be used
 with AH, and a set of transforms; and one proposing IPcomp, a 2-byte
 SPI to be used with IPcomp, and a set of transforms. If the recipient
 selects that proposal number, it means that SAs will be created for
 all of ESP, AH, and IPcomp.

 In IKEv2, since the Initiator sends her Diffie-Hellman value in the
 IKE_SA_init, she must guess at the Diffie-Hellman group that Bob will
 select from her list of supported groups. Her guess MUST be the first
 in the list to allow Bob to unambiguously identify which group the
 accompanying KE payload is from. If her guess is incorrect then Bob's
 response informs her of the group he would choose, and notifies her
 that her offer is invalid because the KE payload is not from the
 desired group. In this case Alice will send a new IKE_SA_init, with
 the same original choices in the list (this is important to prevent
 an active attacker from tricking them into using a weaker group than
 they would have agreed upon) but with Bob's preferred group first,
 and a KE payload containing an exponential from that group.

 If none of Alice's options are acceptable, then Bob notifies her
 accordingly.

2.8 Rekeying

 Security associations negotiated in both phase 1 and phase 2 contain
 secret keys which may only be used for a limited amount of time. This
 determines the lifetime of the entire security association. When the
 lifetime of a security association expires the security association
 MUST NOT be used. If there is demand, new security associations can
 be established. Reestablishment of security associations to take the
 place of ones which expire is referred to as "rekeying".

 To rekey a child-SA, create a new, equivalent SA (see section 4 and

Harkins Kaufman Perlman ^L[Page 13]

INTERNET DRAFT November 2001

 4.1 below), and when the new one is established, delete the old one.
 To rekey an IKE-SA, establish a new equivalent IKE-SA (see section 4
 and 4.2 below) with the peer to whom the old IKE-SA is shared using a
 Phase 2 negotiation within the existing IKE-SA. An IKE-SA so created
 inherits all of the original IKE-SA's child SAs. Use the new IKE-SA
 for all control messages needed to maintain the child-SAs created by
 the old IKE-SA, and delete the old IKE-SA.

 SAs SHOULD be rekeyed proactively, i.e., the new SA should be
 established before the old one expires and becomes unusable. Enough
 time should elapse between the time the new SA is established and the
 old one becomes unusable so that traffic can be switched over to the
 new SA.

 A difference between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes
 were negotiated. In IKEv2, each end of the SA is responsible for
 enforcing its own lifetime policy on the SA and rekeying the SA when
 necessary. If the two ends have different lifetime policies, the end
 with the shorter lifetime will end up always being the one to request
 the rekeying.

 If the two ends have the same lifetime policies, it is possible that
 both will initiate a rekeying at the same time (which will result in
 redundant SAs). To reduce the probability of this happening, the
 timing of rekeying requests should be dithered (delayed by a random
 amount of time).

 This form of rekeying will temporarily result in multiple similar SAs
 between the same pairs of nodes. When there are two SAs eligible to
 receive packets, a node MUST accept incoming packets through either
 SA. The node that initiated the rekeying SHOULD delete the older SA
 after the new one is established.

2.9 Traffic Selector Negotiation

 When an IP packet is received by an RFC2401 compliant IPsec subsystem
 and matches a "protect" selector in its SPD, the subsystem MUST
 protect that packet with IPsec. When no SA exists yet it is the task
 of IKE to create it. Information about the traffic that needs
 protection is transmitted to the IKE subsystem in a manner outside
 the scope of this document (see [PFKEY] for an example). This
 information is negotiated between the two IKE endpoints using TS
 (Traffic Selector) payloads.

 The TS payload consists of a set of individual traffic selectors.
 The selector from the SPD has "source" and "destination" components
 and these are represented in IKE as a pair of TS payloads, TSi
 (traffic selector-initiator) and TSr (traffic selector-responder).

https://datatracker.ietf.org/doc/html/rfc2401

Harkins Kaufman Perlman ^L[Page 14]

INTERNET DRAFT November 2001

 TSi describes the addresses and ports that the Initiator will send
 from over the SA and which it will accept packets for. TSr describes
 the addresses and ports that the Initiator will sent to over the SA
 and which it will accept packets from.

 The Responder is allowed to narrow the choices by selecting a subset
 of the traffic, for instance by eliminating one or more members of
 the set of traffic selectors provided the set does not become the
 NULL set.

 Note that the traffic selectors apply to both child-SAs (from the
 Initiator to the Responder and from the Responder to the Initiator),
 but the Responder does not change the order of the TS payloads. An
 address within the selector of TSi would appear as a source address
 in the child-SA from the Initiator, and would appear as a destination
 address in traffic on the child-SA to the Initiator (from the
 Responder).

 IKEv2 is more flexible than IKEv1. IKEv2 allows sets of ranges of
 both addresses and ports, and allows the Responder to choose a subset
 of the requested traffic rather than simply responding "not
 acceptable".

2.10 Nonces

 The IKE_SA_init_request and the IKE_SA_init_response each contain a
 nonce. These nonces are used as inputs to cryptographic functions.
 The child-create-request and the child-create-response also contain a
 nonce. These nonces are used to add freshness to the key derivation
 technique used to obtain keys for child SAs. Nonces used in IKEv2
 MUST therefore have strong pseudo-random properties (see RFC1715).

3 The Phase 1 Exchange

 The base Phase 1 exchange is a four message exchange (two
 request/response pairs). The first pair of messages, the IKE_SA_init
 exchange, negotiate cryptographic algorithms, indicate trusted CA
 names, exchange nonces, and do a Diffie-Hellman exchange. This pair
 might be repeated if the response indicates that none of the
 cryptographic proposals are acceptable, or the Diffie-Hellman group
 chosen by the Initiator for sending her Diffie-Hellman value is not
 the group that the Responder would have chosen, of if the Responder
 is under attack and will only answer IKE_SA_init requests containing
 a valid returned cookie value.

 The second pair of messages, the IKE_auth and the IKE_auth_response,
 authenticate the previous messages, exchange identities and
 certificates, and optionally also establish a child_SA. This pair of

https://datatracker.ietf.org/doc/html/rfc1715

Harkins Kaufman Perlman ^L[Page 15]

INTERNET DRAFT November 2001

 messages is encrypted with a key established through the IKE_SA_init
 exchange, so the identities are hidden from eavesdroppers.

 In the following description, the payloads contained in the message
 are indicated by names such as SA. The details of the contents of
 each payload are described later. Payloads which may optionally
 appear will be shown in brackets, such as [CERTREQ], would indicate
 that optionally a certificate request payload can be included. The
 certificate request payload indicates a CA name trusted by the
 sender. If the sender trusts multiple CAs, it includes multiple
 CERTREQ payloads, one for each trusted CA.

 The Phase 1 exchange is as follows:

 Initiator Responder
 ----------- -----------
 HDR, SA, KE, Ni [,CERTREQ] -->

 The SA payload states the cryptographic algorithms the Initiator
 supports. The KE payload sends the Initiator's Diffie-Hellman value.
 Ni is the Initiator's nonce, sent in an N payload.

 <-- HDR, SA, KE, Nr [,CERTREQ]

 The Responder chooses among the Initiator's cryptographic algorithms
 and expresses that choice in the SA payload, completes the Diffie-
 Hellman exchange with the KE payload, and sends its nonce in the N
 payload (with an "r" to signify the Responder's nonce).

 At this point in time each party generates SKEYSEED and its
 derivatives. The following two messages, the SA_auth and
 SA_auth_response, are encrypted (as indicated by the '*' following
 the IKE header) and the encryption bit in the IKE header is set.

 HDR*, ID, AUTH, [CERT,]
 SA, TSi, TSr -->

 The Initiator identifies herself with the ID payload, authenticates
 herself to the Responder with the AUTH payload, optionally sends one
 or more certificates, and begins negotiation of a child-SA using the
 SA payload and the Traffic Selector payloads: TSi (which describes
 sources of packets to be sent over the child-SA), and TSr (which
 describes destinations of packets to be sent over the child-SA). The
 protocol (ESP, AH, and/or IPcomp) and the SPI she wants to use to
 identify her inbound child-SA are placed in the "protocol" and "SPI"
 fields, respectively, in the SA payload.

Harkins Kaufman Perlman ^L[Page 16]

INTERNET DRAFT November 2001

 <-- HDR*, ID, AUTH, [CERT,]
 SA, TSi, TSr

 The Responder identifies himself with an ID payload authenticates
 himself with the AUTH payload, optionally sends one or more
 certificates, and completes negotiation of a child-SA using the SA
 payload. The Responder places the SPI he wants to use to identify his
 inbound child-SA in the SA payload. The TSi and TSr, respectively,
 describe the sources and destinations of packets to be sent over the
 child-SA. These MUST be equal to, or a subset of, the ones suggested
 by the Initiator.

3.1 Generating Keying Material for the IKE-SA

 The shared secret information is computed as follows. A quantity
 called SKEYSEED is calculated from the nonces exchanged during the
 IKE_SA_init exchange, and the Diffie-Hellman shared secret
 established during that exchange. SKEYSEED is used to calculate
 three other secrets: SKEYSEED_d used for deriving new keys for the
 child-SAs established with this IKE-SA; SKEYSEED_a used for
 authenticating the component messages of subsequent exchanges; and
 SKEYSEED_e used for encrypting (and of course decrypting) all
 subsequent exchanges. SKEYSEED and its derivatives are computed as
 follows:

 SKEYSEED = prf(Ni | Nr, g^ir)
 SKEYSEED_d = prf(SKEYSEED, g^ir | CKY-I | CKY-R | 0)
 SKEYSEED_a = prf(SKEYSEED, SKEYSEED_d | g^ir | CKY-I | CKY-R | 1)
 SKEYSEED_e = prf(SKEYSEED, SKEYSEED_a | g^ir | CKY-I | CKY-R | 2)

 CKY-I and CKY-R are the Initiator's and Responder's cookie,
 respectively, from the IKE header. g^ir is the shared secret from the
 ephemeral Diffie-Hellman exchange. Ni and Nr are the nonces,
 stripped of any headers. 0, 1, and 2 are represented by a single byte
 containing the value 0, 1, or 2 (the values, not the ASCII
 representation of the digits). prf is the "pseudo-random"
 cryptographic function negotiated in the IKE-SA-init exchange. The
 pseudo-random functions defined for IKE are HMAC_MD5 and HMAC_SHA,
 defined in RFC 2104.

3.2 Authentication of the IKE-SA

 The peers are authenticated by having each sign the concatenation of
 the first two messages of the exchange. Optionally, they MAY include
 a certificate or certificate chain providing evidence that the public
 key they are using belongs to the name in the ID payload. The public
 key signature will be computed using algorithms chosen by the signer,
 most commonly an RSA-signed PKCS1-padded-SHA1-hash of the

https://datatracker.ietf.org/doc/html/rfc2104

Harkins Kaufman Perlman ^L[Page 17]

INTERNET DRAFT November 2001

 concatenated messages or a DSS-signed SHA1-hash of the concatenated
 messages. There is no requirement that the Initiator and Responder
 sign with the same cryptographic algorithms. The choice of
 cryptographic algorithms depends on the type of public key each has.
 This type is either indicated in the certificate supplied or, if the
 public keys were exchanged out of band, the key types must have been
 similarly learned.

4 The CREATE-CHILD-SA (Phase 2) Exchange

 A phase 2 exchange is one request/response pair, and can be used to
 create or delete a child-SA, delete the IKE-SA, or deliver
 information such as error conditions. It is encrypted and integrity
 protected using the keys negotiated during the creation of the IKE-
 SA. The two directions of flow use the same keys.

 Messages are cryptographically protected using the cryptographic
 algorithms and keys negotiated in the first two messages of the IKE
 exchange using a syntax based on the encoding in ESP (see Appendix

B). Encryption uses a key derived from SKEYSEED_e; Integrity uses a
 key derived from SKEYSEED_a.

 Either side may initiate a phase 2 exchange. A child-SA is created by
 sending a CREATE_CHILD_SA request. If PFS for the child-SA is
 desired, the CREAT_CHILD_SA request contains KE payloads for an
 additional Diffie-Hellman exchange. The keying material for the
 child_SA is a function of SKEYSEED_d established during the
 establishment of the IKE-SA, the nonces exchanged during the
 CREATE_CHILD_SA exchange, and the Diffie-Hellman value, if KE
 payloads are included in the CREATE_CHILD_SA exchange. If the Diffie-
 Hellman group for the child-SA is desired to be different from the
 group for the IKE-SA, then a Diffie-Hellman group transform MUST be
 included in the SA payload. If it is absent, the Diffie-Hellman group
 is assumed to be the same as the one in the IKE-SA.

 The CREATE_CHILD_SA request contains:

 Initiator Responder
 ----------- -----------
 HDR*, SA, Ni, [KEi,]
 TSi, TSr -->

 The Initiator sends SA offer(s) in the SA payload(s), a nonce in the
 Ni payload, optionally a Diffie-Hellman value in the KE payload, and
 the proposed traffic selectors in the TSi and TSr payloads. The
 message past the header is encrypted and the message including the
 header is integrity protected using the cryptographic algorithms
 negotiated in Phase 1.

Harkins Kaufman Perlman ^L[Page 18]

INTERNET DRAFT November 2001

 The CREATE_CHILD_SA response contains:

 <-- HDR*, SA, Nr, [KEr,]
 TSi, TSr

 The Responder replies (using the same Message ID to respond) with the
 accepted offer in an SA payload, optionally a Diffie-Hellman value in
 the KE payload, and the traffic selectors for traffic to be sent on
 that SA in the TS payloads, which may be a subset of what the
 Initiator of the child-SA proposed.

4.1 Generating Keying Material for IPsec SAs

 Child-SAs are created either by being piggybacked on the phase 1
 exchange, or in a phase 2 CREATE_CHILD_SA exchange. Keying material
 for them is generated as follows:

 KEYMAT = prf(SKEYSEED_d, protocol | SPId | Ns | Nd)

 For phase 2 exchanges with PFS the keying material is defined as:

 KEYMAT = prf(SKEYSEED_d, g(p2)^ir | protocol | SPId | Ns | Nd)

 where g(p2)^ir is the shared secret from the ephemeral Diffie-Hellman
 exchange of this phase 2 exchange.

 In either case, "protocol", and "SPI", are from the SA payload that
 contained the negotiated (and accepted) proposal, Ns is the body of
 the Source's nonce payload (minus the generic header), and Nr is the
 body of the Destination's nonce payload (minus the generic header).

 A single child-SA negotiation results in two security associations--
 one inbound and one outbound. Different Nonces and SPIs for each SA
 (one chosen by the Initiator, the other by the Responder) guarantee a
 different key for each direction. The SPI chosen by the destination
 of the SA and the Nonces (ordered source followed by destination) are
 used to derive KEYMAT for that SA.

Harkins Kaufman Perlman ^L[Page 19]

INTERNET DRAFT November 2001

 For situations where the amount of keying material desired is greater
 than that supplied by the prf, KEYMAT is expanded by feeding the
 results of the prf back into itself and concatenating results until
 the required keying material has been reached. In other words,

 KEYMAT = K1 | K2 | K3 | ...
 where:
 K1 = prf(SKEYSEED_d, [g(p2)^ir |] protocol | SPId | Ns | Nd)
 K2 = prf(SKEYSEED_d, K1 | [g(p2)^ir |] protocol | SPId | Ns | Nd)
 K3 = prf(SKEYSEED_d, K2 | [g(p2)^ir |] protocol | SPId | Ns | Nd)
 etc.

 This keying material (whether with PFS or without) MUST be used with
 the negotiated SA. In the case of an ESP SA needing two keys for
 encryption and authentication, the encryption key is taken from the
 first bytes of KEYMAT and the authentication key is taken from the
 next bytes.

4.2 Generating Keying Material for IKE-SAs from a create-child exchange

 The create-child exchange can be used to re-key an existing IKE-SA
 (see section 2.8). When used for this purpose the create-child
 exchange MUST be done with the PFS option. New Initiator and
 Responder cookies are supplied in the SPI fields. The TS payloads are
 omitted when rekeying an IKE-SA. SKEYSEED for the new IKE-SA is
 computed using SKEYSEED_d from the existing IKE-SA as follows:

 SKEYSEED = prf(SKEYSEED_d (old), g(p2)^ir | 0 | CKY-I | CKY-R
 | Ni | Nr)

 where g(p2)^ir is the shared secret from the ephemeral Diffie-Hellman
 exchange of this phase 2 exchange, CKY-I is the 8-byte "SPI" from the
 SA payload in the CREATE_CHILD_SA request, CKY-R is the 8-byte "SPI"
 from the SA payload in the CREATE_CHILD_SA response, and Ni and Nr
 are the two nonces stripped of any headers. "0" is a single byte
 containing the value zero (the protocol ID of IKE).

 SKEYSEED_d, SKEYSEED_a, and SKEYSEED_e are computed from SKEYSEED as
 specified in section 3.1.

5 Informational (Phase 2) Exchange

 At various points during an IKE-SA, peers may desire to convey
 control messages to each other regarding errors or notifications of
 certain events. To accomplish this IKE defines a (reliable)
 Informational exchange. Usually Informational exchanges happen
 during phase 2 and are cryptographically protected with the IKE
 exchange.

Harkins Kaufman Perlman ^L[Page 20]

INTERNET DRAFT November 2001

 Control messages that pertain to an IKE-SA MUST be sent under that
 IKE-SA. Control messages that pertain to Child-SAs MUST be sent under
 the protection of the IKE-SA which generated them.

 There are two cases in which there is no IKE-SA to protect the
 information. One is in the response to an IKE_SA_init_request to
 request a cookie or to refuse the SA proposal. This would be conveyed
 in a Notify payload of the IKE_SA_init_response.

 The other case in which there is no IKE-SA to protect the information
 is when a packet is received with an unknown SPI. In that case the
 notification of this condition will be sent in an informational
 exchange that is cryptographically unprotected.

 Messages in an Informational Exchange contain zero or more
 Notification or Delete payloads. The Recipient of an Informational
 Exchange request MUST send some response (else the Sender will assume
 the message was lost in the network and will retransmit it). That
 response can be a message with no payloads. Actually, the request
 message in an Informational Exchange can also contain no payloads.
 This is the expected way an endpoint can ask the other endpoint to
 verify that it is alive.

 ESP, AH, and IPcomp SAs always exist in pairs, with one SA in each
 direction. When an SA is closed, both members of the pair MUST be
 closed. When SAs are nested, as when data is encapsulated first with
 IPcomp, then with ESP, and finally with AH between the same pair of
 endpoints, all of the SAs (up to six) must be deleted together. To
 delete an SA, an Informational Exchange with one or more delete
 payloads is sent listing the SPIs (as known to the recipient) of the
 SAs to be deleted. The recipient MUST close the designated SAs.
 Normally, the reply in the Informational Exchange will contain delete
 payloads for the paired SAs going in the other direction. There is
 one exception. If by chance both ends of a set of SAs independently
 decide to close them, each may send a delete payload and the two
 requests may cross in the network. If a node receives a delete
 request for SAs that it has already issued a delete request for, it
 MUST delete the incoming SAs while processing the request and the
 outgoing SAs while processing the response. In that case, the
 responses MUST NOT include delete payloads for the deleted SAs, since
 that would result in duplicate deletion and could in theory delete
 the wrong SA.

 A node SHOULD regard half open connections as anomalous and audit
 their existence should they persist. Note that this specification
 nowhere specifies time periods, so it is up to individual endpoints
 to decide how long to wait. A node MAY refuse to accept incoming data
 on half open connections but MUST NOT unilaterally close them and

Harkins Kaufman Perlman ^L[Page 21]

INTERNET DRAFT November 2001

 reuse the SPIs. If connection state becomes sufficiently messed up, a
 node MAY close the IKE-SA which will implicitly close all SAs
 negotiated under it. It can then rebuild the SA's it needs on a clean
 base under a new IKE-SA.

 The Informational Exchange is defined as:

 Initiator Responder
 ----------- -----------
 HDR*, N, ..., D, ... -->
 <-- HDR*, N, ..., D, ...

 The processing of an Informational Exchange is determined by its
 component payloads.

6 Error Handling

 There are many kinds of errors that can occur during IKE processing.
 If a request is received that is badly formatted or unacceptable for
 reasons of policy (e.g. no matching cryptographic algorithms), the
 response MUST contain a Notify payload indicating the error. If an
 error occurs outside the context of an IKE request (e.g. the node is
 getting ESP messages on a non-existent SPI), the node SHOULD initiate
 an Informational Exchange with a Notify payload describing the
 problem.

 Errors that occur before a cryptographically protected IKE-SA is
 established must be handled very carefully. There is a trade-off
 between wanting to be helpful in diagnosing a problem and responding
 to it and wanting to avoid being a dupe in a denial of service attack
 based on forged messages.

 If a node receives a message on UDP port 500 outside the context of
 an IKE-SA (and not a request to start one), it may be the result of a
 recent crash. If the message is marked as a response, the node MAY
 audit the suspicious event but MUST NOT respond. If the message is
 marked as a request, the node MAY audit the suspicious event and MAY
 send a response. If a response is sent, the response MUST be sent to
 the IP address from whence it came with the IKE cookies reversed in
 the header and the Message ID copied. The response MUST NOT be
 cryptographically protected and MUST contain a notify payload
 indicating the nature of the problem.

 A node receiving such a message MUST NOT respond and MUST NOT change
 the state of any existing SAs. The message might be a forgery or
 might be a response the genuine correspondent was tricked into
 sending. A node SHOULD treat such a message (and also a network
 message like ICMP destination unreachable) as a hint that there might

Harkins Kaufman Perlman ^L[Page 22]

INTERNET DRAFT November 2001

 be problems with SAs to that IP address and SHOULD initiate a
 liveness test for any such IKE-SA. An implementation SHOULD limit the
 frequency of such tests to avoid being tricked into participating in
 a denial of service attack.

 A node receiving a suspicious message from an IP address with which
 it has an IKE-SA MAY send an IKE notify payload in an IKE
 Informational exchange over that SA. The recipient MUST NOT change
 the state of any SA's as a result but SHOULD audit the event to aid
 in diagnosing malfunctions. A node MUST limit the rate at which it
 will send messages in response to unprotected messages.

7 Header and Payload Formats

7.1 The IKE Header

 IKE messages use UDP port 500, with one IKE message per UDP datagram.
 Information from the UDP header is largely ignored except that the IP
 addresses from the headers are reversed and used for return packets.
 Each IKE message begins with the IKE header, denoted HDR in this
 memo. Following the header are one or more IKE payloads each
 identified by a "Next Payload" field in the preceding payload.
 Payloads are processed in the order in which they appear in an IKE
 message by invoking the appropriate processing routine according to
 the "Next Payload" field in the IKE header and subsequently according
 to the "Next Payload" field in the IKE payload itself until a "Next
 Payload" field of zero indicates that no payloads follow.

 The Recipient SPI in the header identifies an instance of an IKE
 security association. It is therefore possible for a single instance
 of IKE to multiplex distinct sessions with multiple peers.

Harkins Kaufman Perlman ^L[Page 23]

INTERNET DRAFT November 2001

 The format of the IKE header is shown in Figure 1.
 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Recipient !
 ! SPI (aka Cookie) !
 +-+
 ! Sender !
 ! SPI (aka Cookie) !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+
 ~ Initialization Vector ~
 +-+

 Figure 1: IKE Header Format

 o Recipient SPI (aka Cookie) (8 bytes) - A value chosen by the
 recipient to identify a unique IKE security association.
 [NOTE: this is a deviation from ISAKMP and IKEv1, where the
 cookies were always sent with the Initiator of the IKE-SA's
 cookie first and the Responder's second. See section 2.6.]

 o Sender SPI (aka Cookie) (8 bytes) - A value chosen by the
 sender to identify a unique IKE security association.

 o Next Payload (1 byte) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload is defined below.

 o Major Version (4 bits) - indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 (or ignore) messages containing a version number greater than
 2.

 o Minor Version (4 bits) - indicates the minor version of the
 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the minor
 version number of received messages.

 o Exchange Type (1 byte) - indicates the type of exchange being

Harkins Kaufman Perlman ^L[Page 24]

INTERNET DRAFT November 2001

 used. This dictates the payloads sent in each message and
 message orderings in the exchanges.

 Exchange Type Value

 RESERVED 0
 Reserved for ISAKMP 1 - 31
 Reserved for IKEv1 32 - 33
 Phase One 34
 CREATE-CHILD-SA 35
 Informational 36
 Reserved for IKEv2+ 37-239
 Reserved for private use 240-255

 o Flags (1 byte) - indicates specific options that are set for
 the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags byte.

 -- E(ncryption) (bit 0 of Flags) - If set, all payloads
 following the header are encrypted and integrity
 protected using the algorithms negotiated during
 session establishment and a key derived during the key
 exchange portion of IKE. If not set, the payloads are
 not protected. All payloads MUST be protected if a key
 has been negotiated and any unprotected payload may
 only be used to establish a new session or indicate a
 problem.

 -- C(ommit) (bit 1 of Flags) - This bit is defined by
 ISAKMP but not used by IKEv2. Implementations of IKEv2
 MUST clear this bit when sending and SHOULD ignore it
 in incoming messages.

 -- A(uthentication Only) (bit 2 of Flags) - This bit is
 defined by ISAKMP but not used by IKEv2. Implementations
 of IKEv2 MUST clear this bit when sending and SHOULD
 ignore it in incoming messages.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the Initiator of an exchange and MUST
 be cleared in messages sent by the Responder. It is
 used by the recipient to determine whether the message
 number should be interpreted in the context of its
 initiating state or its responding state.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that

Harkins Kaufman Perlman ^L[Page 25]

INTERNET DRAFT November 2001

 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field.

 -- R(eserved) (bits 5-7 of Flags) - These bit MUST be
 cleared in messages sent and received messages with
 these bits set MUST be rejected.

 o Message ID (4 bytes) - Message identifier used to control
 retransmission of lost packets and matching of requests and
 responses. See section 2.2. In the first message of a Phase 1
 negotiation, the value MUST be set to 0. The response to that
 message MUST also have a Message ID of 0.

 o Length (4 bytes) - Length of total message (header + payloads)
 in bytes. Session encryption can expand the size of an IKE
 message and that is reflected in the total length of the
 message.

 o Initialization Vector (variable) - random bytes used to provide
 initialization to an encryption mode-- e.g.
 cipher block chaining (CBC) mode. This field MUST be present
 when the encryption bit is set in the flags field (see below)
 and MUST NOT be present otherwise. The length of the
 Initialization Vector is cipher and mode dependent.

7.2 Generic Payload Header

 Each IKE payload defined in sections 7.3 through 7.13 begins with a
 generic header, shown in Figure 2. Figures for each payload below
 will include the generic payload header but for brevity a repeat of
 the description of each field will be omitted. The construction and
 processing of the generic payload header is identical for each
 payload and will similarly be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 2: Generic Payload Header

 The Generic Payload Header fields are defined as follows:

 o Next Payload (1 byte) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides

Harkins Kaufman Perlman ^L[Page 26]

INTERNET DRAFT November 2001

 a "chaining" capability whereby additional payloads can be
 added to a message by appending it to the end of the message
 and setting the "Next Payload" field of the preceding payload
 to indicate the new payload's type.

 o Critical (1 bit) - MUST be set to zero if the sender wants
 the recipient to skip this payload if he does not
 understand the payload type code. MUST be set to one if the
 sender wants the recipient to reject this entire message
 if he does not understand this payload type. MUST be ignored
 by recipient if the recipient understands the payload type
 code. MUST be set to zero for payload types defined in this
 document. Note that the critical bit applies to the current
 payload rather than the "next" payload whose type code
 appears in the first byte.

 o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored.

 o Payload Length (2 bytes) - Length in bytes of the current
 payload, including the generic payload header.

7.3 Security Association Payload

 The Security Association Payload, denoted SA in this memo, is used to
 negotiate attributes of a security association. Assembly of Security
 Association Payloads requires great peace of mind. An SA may contain
 multiple proposals. Each proposal may contain multiple protocols
 (where a protocol is IKE, ESP, AH, or IPCOMP), each protocol may
 contain multiple transforms, and each transform may contain multiple
 attributes. When parsing an SA, an implementation MUST check that the
 total Payload Length is consistent with the payload's internal
 lengths and counts. Proposals, Transforms, and Attributes each have
 their own variable length encodings. They are nested such that the
 Payload Length of an SA includes the combined contents of the SA,
 Proposal, Transform, and Attribute information. The length of a
 Proposal includes the lengths of all Transforms and Attributes it
 contains. The length of a Transform includes the lengths of all
 Attributes it contains.

 The syntax of Security Associations, Proposals, Transforms, and
 Attributes is based on ISAKMP, however the semantics are somewhat
 different. The reason for the complexity and the hierarchy is to
 allow for multiple possible combinations of algorithms to be encoded
 in a single SA. Sometimes there is a choice of multiple algorithms,
 while other times there is a combination of algorithms. For example,
 an Initiator might want to propose using (AH w/MD5 and ESP w/3DES) OR
 (ESP w/MD5 and 3DES).

Harkins Kaufman Perlman ^L[Page 27]

INTERNET DRAFT November 2001

 One of the reasons the semantics of the SA payload has changed from
 ISAKMP and IKEv1 is to make the encodings more compact in common
 cases.

 The Proposal structure contains within it a Proposal # and a
 Protocol-id. Each structure MUST have the same Proposal # as the
 previous one or one greater. The first Proposal MUST have a Proposal
 # of one. If two successive structures have the same Proposal number,
 it means that the proposal consists of the first structure AND the
 second. So a proposal of AH AND ESP would have two proposal
 structures, one for AH and one for ESP and both would have Proposal
 #1. A proposal of AH OR ESP would have two proposal structures, one
 for AH with proposal #1 and one for ESP with proposal #2.

 Each Proposal/Protocol structure is followed by one or more transform
 structures. The number of different transforms is generally
 determined by the Protocol. AH generally has a single transform: an
 integrity check algorithm. ESP generally has two: an encryption
 algorithm AND an integrity check algorithm. IKE generally has five
 transforms: a Diffie-Hellman group, an authentication algorithm, an
 integrity check algorithm, a PRF algorithm, and an encryption
 algorithm. For each Protocol, the set of permissible transforms are
 assigned transform ID numbers, which appear in the header of each
 transform.

 If there are multiple transforms with the same Transform Type, the
 proposal is an OR of those transforms. If there are multiple
 Transforms with different Transform Types, the proposal is an AND of
 the different groups. For example, to propose ESP with (3DES or IDEA)
 and (HMAC-MD5 or HMAC-SHA), the ESP proposal would contain two
 Transform Type 1 candidates (one for 3DES and one for IDEA) and two
 Transform Type 2 candidates (one for HMAC-MD5 and one for HMAC-SHA).
 This effectively proposes four combinations of algorithms. If the
 Initiator wanted to propose only a subset of those - say (3DES and
 HMAC-MD5) or (IDEA and HMAC-SHA), there is no way to encode that as
 multiple transforms within a single Proposal/Protocol. Instead, the
 Initiator would have to construct two different Proposals, each with
 two transforms.

 A given transform MAY have one or more Attributes. Attributes are
 necessary when the transform can be used in more than one way, as
 when an encryption algorithm has a variable key size. The transform
 would specify the algorithm and the attribute would specify the key
 size. Most transforms do not have attributes.

 Note that the semantics of Transforms and Attributes are quite
 different than in IKEv1. In IKEv1, a single Transform carried
 multiple algorithms for a protocol with one carried in the Transform

Harkins Kaufman Perlman ^L[Page 28]

INTERNET DRAFT November 2001

 and the others carried in the Attributes.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ <Proposals> ~
 ! !
 +-+

 Figure 3: Security Association Payload

 o Proposals (variable) - one or more proposal substructures.

 The payload type for the Security Association Payload is one (1).

7.3.1 Proposal Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol-Id ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 4: Proposal Substructure

 o 0 (last) or 2 (more) (1 byte) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal
 could be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal, and the first
 four bytes of the Proposal structure are designed to look
 somewhat like the header of a Payload.

 o RESERVED (1 byte) - MUST be sent as zero; MUST be ignored.

 o Proposal Length (2 bytes) - Length of this proposal,
 including all transforms and attributes that follow.

Harkins Kaufman Perlman ^L[Page 29]

INTERNET DRAFT November 2001

 o Proposal # (1 byte) - When a proposal is made, the first
 proposal in an SA MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating
 an AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the
 SA must be the same and must match the number on the
 proposal sent that was accepted.

 o Protocol-Id (1 byte) - Specifies the protocol identifier
 for the current negotiation. During phase 1 negotiation
 this field MUST be zero (0). During phase 2 it will be the
 protocol of the SA being established as assigned by IANA,
 for example, 50 for ESP, 51 for AH, and 108 for IPComp.

 o SPI Size (1 byte) - During phase 1 negotiation this field
 MUST be zero. During phase 2 negotiation it is equal to the
 size, in bytes, of the SPI of the corresponding protocol
 (4 for ESP and AH, 2 for IPcomp).

 o # of Transforms (1 byte) - Specifies the number of
 transforms in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI
 Size is not a multiple of 4 bytes, there is no padding
 applied to the payload. When the SPI Size field is zero,
 this field is not present in the Security Association
 payload. This case occurs when negotiating the IKE-SA.

 o Proposal # (1 byte) - Identifies the immediate proposal. The
 first proposal has the number of one (1) and each subsequent
 proposal has a number which is one greater than the last.

 o Proposal Length (2 bytes) - Length in bytes of the proposal
 including all SA Attributes.

 o SA Attributes (variable length) - This field contains SA
 attributes for the immediate transform. The SA Attributes
 MUST be represented using the Transform Attributes format
 described below.

 o RESERVED (1 byte) - MUST be sent as zero; MUST be ignored.

 o Transforms (variable) - one or more transform substructures.

Harkins Kaufman Perlman ^L[Page 30]

INTERNET DRAFT November 2001

7.3.2 Transform Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED2 ! Transform ID !
 +-+
 ! !
 ~ Transform Attributes ~
 ! !
 +-+

 Figure 5: Transform Substructure

 o 0 (last) or 3 (more) (1 byte) - Specifies whether this is the
 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform, and
 the first four bytes of the Transform structure are designed
 to look somewhat like the header of a Payload.

 o RESERVED (1 byte) - MUST be sent as zero; MUST be ignored.

 o Transform Length - The length (in bytes) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 byte) - The type of transform being specified
 in this transform. Different protocols support different
 transform types. For some protocols, some of the transforms
 may be optional.

 o Transform-ID (2 bytes) - The specific instance of the transform
 type being proposed.

Harkins Kaufman Perlman ^L[Page 31]

INTERNET DRAFT November 2001

 Transform Type Values

 Transform Used In
 Type
 Encryption Algorithm 1 (IKE and ESP)
 Pseudo-random Function 2 (IKE)
 Authentication Method 3 (IKE)
 Integrity Algorithm 4 (IKE, AH, and optional in ESP)
 Diffie-Hellman Group 5 (IKE and optional in AH and
 ESP)
 Compression 6 (IPcomp)
 Window Size 7 (IKE)

 values 8-240 are reserved to IANA. Values 241-255 are for
 private use among mutually consenting parties.

 For Transform Type 1 (Encryption Algorithm), defined Transform-IDs
 are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405)
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451)
 ENCR_CAST 6 (RFC2451)
 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 ENCR_RC4 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES 12

 values 12-240 are reserved to IANA. Values 241-255 are for
 private use among mutually consenting parties.

 For Transform Type 2 (Pseudo-random Function), defined Transform-IDs
 are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104)
 PRF_HMAC_SHA 2 (RFC2104)
 PRF_HMAC_TIGER 3 (RFC2104)

 values 3-240 are reserved to IANA. Values 241-255 are for
 private use among mutually consenting parties.

https://datatracker.ietf.org/doc/html/rfc1827
https://datatracker.ietf.org/doc/html/rfc2405
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104

Harkins Kaufman Perlman ^L[Page 32]

INTERNET DRAFT November 2001

 For Transform Type 3 (Authentication Method), defined Transform-IDs
 are:

 Name Number Defined In
 RESERVED 0
 Methods in IKEv1 1 - 5 (RFC2409)
 Authenticated Diffie-Hellman 6 (this memo)

 values 7-240 are reserved to IANA. Values 241-255 are for
 private use among mutually consenting parties.

 For Transform Type 4 (Integrity Algorithm), defined Transform-IDs
 are:

 Name Number Defined In
 RESERVED 0
 AUTH_HMAC_MD5 1 (RFC2403)
 AUTH_HMAC_SHA 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)

 For Transform Type 5 (Diffie-Hellman Group), defined Transform-IDs
 are:

 Name Number
 RESERVED 0
 Pre-defined (see section 8) 1 - 5
 RESERVED 6 - 200
 MODP (exponentiation) 201 (w/attributes)
 ECP (elliptic curve over GF[P] 202 (w/attributes)
 EC2N (elliptic curve over GF[2^N]) 203 (w/attributes)

 values 6-200 are reserved to IANA for new MODP, ECP or EC2N
 groups. Values 204-255 are for private use among mutually
 consenting parties. Specification of values 201, 202 or 203
 allow peers to define a new Diffie-Hellman group in-line as
 part of the exchange. Private use of values 204-255 may entail
 complete definition of a group or may require attributes to
 accompany them. Attributes MUST NOT accompany groups using
 values between 6 and 200.

https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2403
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc1826

Harkins Kaufman Perlman ^L[Page 33]

INTERNET DRAFT November 2001

 For Transform Type 6 (Compression), defined Transform-IDs are:

 Name Number Defined In
 RESERVED 0
 IPCOMP_OUI 1 (w/attributes)
 IPCOMP_DEFLATE 2
 (RFC2394)
 IPCOMP_LZS 3
 (RFC2395)

 values 4-240 are reserved to IANA. Values 241-255 are for
 private use among mutually consenting parties.

 For Transform Type 7 (Window Size), the Transform-ID specifies the
 window size a peer is contracting to support to handle overlapping
 requests (see section 2.3).

7.3.3 Mandatory Transform Types

 The number and type of transforms that accompany an SA payload are
 dependent on the protocol in the SA itself. An SA payload proposing
 the establishment of an SA has the following mandatory and optional
 transform types. A compliant implementation MUST support all
 mandatory and optional types for each protocol it supports. Whether
 the optional types are present in a particular proposal depends
 solely on the discretion of the sender.

 Protocol Mandatory Types Optional Types
 IKE 1, 2, 3, 5, 7
 ESP 1 4, 5
 AH 4 5
 IPCOMP 6

7.3.4 Mandatory Transform-IDs

 Each transform type has corresponding transform IDs to specify the
 specific transform. Some transforms are mandatory to support and
 others are optional to support. The mandatory transform IDs for AH,
 ESP, and IPCOMP are left to their respective RFCs, RFC2402, RFC2406,
 and RFC2393. The transform IDs that are mandatory to support for
 IKEv2 are:

 Name TransType Mandatory Transform-ID
 Encryption Algorithm 1 12 (ENCR_AES)
 Pseudo-Random Function 2 2 (PRF_HMAC_SHA)
 Authentication Method 3 6 (signed D-H)
 Diffie-Hellman Group 5 5 (1536 bit MODP)
 Window Size 7 1

https://datatracker.ietf.org/doc/html/rfc2394
https://datatracker.ietf.org/doc/html/rfc2395
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2393

Harkins Kaufman Perlman ^L[Page 34]

INTERNET DRAFT November 2001

 All other transform-IDs for a given transform type are optional to
 support. While implementations MUST have a window size of at least 1
 they SHOULD support a window size of at least 10 and MAY support
 larger window sizes.

7.3.4 Transform Attributes

 Each transform in a Security Association payload may include
 attributes that modify or complete the specification of the
 transform. These attributes are type/value pairs and are defined in

Appendix A. For example, if an encryption algorithm has a variable
 length key, the key length to be used may be specified as an
 attribute. Attributes can have a value with a fixed two byte length
 or a variable length value. For the latter the attribute is the form
 of type/length/value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !A! Attribute Type ! AF=0 Attribute Length !
 !F! ! AF=1 Attribute Value !
 +-+
 ! AF=0 Attribute Value .
 ! AF=1 Not Transmitted .
 +-+

 Figure 6: Data Attributes

 o Attribute Type (2 bytes) - Unique identifier for each type of
 attribute. The identifiers for IKE are defined in Appendix A.

 The most significant bit of this field is the Attribute Format
 bit (AF). It indicates whether the data attributes follow the
 Type/Length/Value (TLV) format or a shortened Type/Value (TV)
 format. If the AF bit is zero (0), then the Data Attributes
 are of the Type/Length/Value (TLV) form. If the AF bit is a
 one (1), then the Data Attributes are of the Type/Value form.

 o Attribute Length (2 bytes) - Length in bytes of the Attribute
 Value. When the AF bit is a one (1), the Attribute Value is
 only 2 bytes and the Attribute Length field is not present.

 o Attribute Value (variable length) - Value of the Attribute
 associated with the Attribute Type. If the AF bit is a
 zero (0), this field has a variable length defined by the
 Attribute Length field. If the AF bit is a one (1), the
 Attribute Value has a length of 2 bytes.

Harkins Kaufman Perlman ^L[Page 35]

INTERNET DRAFT November 2001

7.3.5 Attribute Negotiation

 During security association negotiation Initiators present offers to
 Responders. Responders MUST select a single complete set of
 parameters from the offers (or reject all offers if none are
 acceptable). If there are multiple proposals, the Responder MUST
 choose a single proposal number and return all of the Proposal
 substructures with that Proposal number. If there are multiple
 Transforms with the same type the Responder MUST choose a single one.
 Any attributes of a selected transform MUST be returned unmodified.
 The Initiator of an exchange MUST check that the accepted offer is
 consistent with one of its proposals, and if not that response MUST
 be rejected.

 Negotiating Diffie-Hellman groups presents some special challenges.
 Diffie-Hellman groups are specified either using a defined group
 description (section 5) or by defining all attributes of a group (see

Appendix A) in an IKE policy offer. Group attributes, such as group
 type or prime number MUST NOT be offered in conjunction with a
 previously defined group. SA offers include proposed attributes and a
 Diffie-Hellman public number (KE) in the same message. If the
 Initiator offers to use one of several Diffie-Hellman groups, it
 SHOULD pick the one the Responder is most likely to accept and
 include a KE corresponding to that group. If the guess turns out to
 be wrong, the Responder will indicate the correct group in the
 response and the Initiator SHOULD start over this time using a
 different group (see section 2.7).

 Implementation Note:

 Certain negotiable attributes can have ranges or could have
 multiple acceptable values. These are the Diffie-Hellman group and
 the key length of a variable key length symmetric cipher. To
 further interoperability and to support upgrading endpoints
 independently, implementers of this protocol SHOULD accept values
 which they deem to supply greater security. For instance if a peer
 is configured to accept a variable lengthed cipher with a key
 length of X bits and is offered that cipher with a larger key
 length an implementation SHOULD accept the offer.

 Support of this capability allows an implementation to express a
 concept of "at least" a certain level of security-- "a key length
 of _at least_ X bits for cipher foo".

7.4 Key Exchange Payload

 The Key Exchange Payload, denoted KE in this memo, is used to
 exchange Diffie-Hellman public numbers as part of a Diffie-Hellman

Harkins Kaufman Perlman ^L[Page 36]

INTERNET DRAFT November 2001

 key exchange. The Key Exchange Payload consists of the IKE generic
 header followed by the Diffie-Hellman public value itself.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Key Exchange Data ~
 ! !
 +-+

 Figure 7: Key Exchange Payload Format

 A key exchange payload is constructed by copying one's Diffie-Hellman
 public value into the "Key Exchange Data" portion of the payload.
 The length of the Diffie-Hellman public value MUST be equal to the
 length of the prime modulus over which the exponentiation was
 performed, prepending zero bits to the value if necessary.

 A key exchange payload is processed by first checking whether the
 length of the key exchange data (the "Payload Length" from the
 generic header minus the size of the generic header) is equal to the
 length of the prime modulus over which the exponentiation was
 performed.

 The payload type for the Key Exchange payload is four (4).

7.5 Identification Payload

 The Identification Payload, denoted ID in this memo, allows peers to
 identify themselves to each other. In Phase 1, the ID Payload names
 the identity to be authenticated with the signature. In Phase 2, the
 ID Payload is optional and if present names an identity asserted to
 be responsible for this SA. An example use would be a shared computer
 opening an IKE-SA to a server and asserting the name of its logged in
 user for the Phase 2 SA. If missing, this defaults to the Phase 1
 identity.

 NOTE: In IKEv1, two ID payloads were used in each direction in Phase
 2 to hold Traffic Selector information for data passing over the SA.
 In IKEv2, this information is carried in Traffic Selector (TS)
 payloads (see section 7.13).

 The Identification Payload consists of the IKE generic header
 followed by identification fields as follows:

Harkins Kaufman Perlman ^L[Page 37]

INTERNET DRAFT November 2001

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 8: Identification Payload Format

 o ID Type (1 byte) - Specifies the type of Identification being
 used.

 o RESERVED - MUST be sent as zero; MUST be ignored.

 o Identification Data (variable length) - Value, as indicated by
 the Identification Type. The length of the Identification Data
 is computed from the size in the ID payload header.

 The payload type for the Identification Payload is five (5).

 The following table lists the assigned values for the Identification
 Type field, followed by a description of the Identification Data
 which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) byte IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "lounge.org". The string MUST not contain any
 terminators (e.g. NULL, CR, etc.).

 ID_USER_FQDN 3

 A fully-qualified username string, An example of a
 ID_USER_FQDN is, "lizard@lounge.org". The string MUST not
 contain any terminators.

Harkins Kaufman Perlman ^L[Page 38]

INTERNET DRAFT November 2001

 ID_IPV6_ADDR 5

 A single sixteen (16) byte IPv6 address.

 ID_DER_ASN1_DN 9

 The binary DER encoding of an ASN.1 X.500 Distinguished Name
 [X.501].

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque byte stream which may be used to pass vendor-
 specific information necessary to do certain proprietary
 forms of identification.

7.6 Certificate Payload

 The Certificate Payload, denoted CERT in this memo, provides a means
 to transport certificates or other certificate-related information
 via IKE. Certificate payloads SHOULD be included in an exchange if
 certificates are available to the sender.

 The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certificate Data ~
 ! !
 +-+

 Figure 9: Certificate Payload Format

 o Certificate Encoding (1 byte) - This field indicates the type
 of certificate or certificate-related information contained
 in the Certificate Data field.

Harkins Kaufman Perlman ^L[Page 39]

INTERNET DRAFT November 2001

 Certificate Encoding Value
 -------------------- -----
 NONE 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 X.509 Certificate - Key Exchange 5
 Kerberos Tokens 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 RESERVED 11 - 255

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated
 by the Certificate Encoding field.

 The payload type for the Certificate Payload is six (6).

7.7 Certificate Request Payload

 The Certificate Request Payload, denoted CERTREQ in this memo,
 provides a means to request preferred certificates via IKE and can
 appear in the first, second, or third message of Phase 1.
 Certificate Request payloads SHOULD be included in an exchange
 whenever the peer may have multiple certificates, some of which might
 be trusted while others are not. If multiple root CA's are trusted,
 then multiple Certificate Request payloads SHOULD be transmitted.

 The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 10: Certificate Request Payload Format

 o Certificate Encoding (1 byte) - Contains an encoding of the type
 of certificate requested. Acceptable values are listed in

Harkins Kaufman Perlman ^L[Page 40]

INTERNET DRAFT November 2001

section 7.6.

 o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of
 certificate requested.

 The payload type for the Certificate Request Payload is seven (7).

 The Certificate Request Payload is constructed by setting the "Cert
 Encoding" field to be the type of certificate being desired and the
 "Certification Authority" field to a proper encoding of a
 certification authority for the specified certificate. For example,
 for an X.509 certificate this field would contain the Distinguished
 Name encoding of the Issuer Name of an X.509 certification authority
 acceptable to the sender of this payload.

 The Certificate Request Payload is processed by inspecting the "Cert
 Encoding" field to determine whether the processor has any
 certificates of this type. If so the "Certification Authority" field
 is inspected to determine if the processor has any certificates which
 can be validated up to the specified certification authority. This
 can be a chain of certificates. If a certificate exists which
 satisfies the criteria specified in the Certificate Request Payload
 it MUST be sent back to the certificate requestor; if a certificate
 chain exists which goes back to the certification authority specified
 in the request the entire chain MUST be sent back to the certificate
 requestor. If no certificates exist then no further processing is
 performed-- this is not an error condition of the protocol.

7.8 Authentication Payload

 The Authentication Payload, denoted AUTH in this memo, contains data
 used for authentication purposes. The only authentication method
 defined in this memo is digital signatures and therefore the contents
 of this payload when used with this memo will be the output generated
 by a digital signature function.

 The Authentication Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Authentication Data ~
 ! !
 +-+

Harkins Kaufman Perlman ^L[Page 41]

INTERNET DRAFT November 2001

 Figure 11: Authentication Payload Format

 o Authentication Data (variable length) - Data that results from
 applying the digital signature function to the IKE state
 (see section 3).

 The payload type for the Authentication Payload is nine (9).

 The Authentication Payload is constructed by computing a digital
 signature over the concatentation of the two IKE messages in the
 initial unprotected IKE-SA-INIT exchange and placing the result in
 the "Authentication Data" portion of the payload. The signature MUST
 be a PKCS#1 encoded signature using the cryptographic hash and
 signature algorithms chosen by the signer. The algorithms used by
 the two ends MAY be different. The payload length is the size of the
 generic header plus the size of the "Authentication Data" portion of
 the payload which depends on the specific digital signature algorithm
 being used.

 The Authentication Payload is processed by extracting the
 "Authentication Data" from the payload and verifying it according to
 the specific digital signature being used. If authentication fails a
 NOTIFY Error message of AUTHENTICATION-FAILED MUST be sent back to
 the peer and the connection closed.

7.9 Nonce Payload

 The Nonce Payload, denoted Ni and Nr in this memo for the Initiator's
 and Responder's nonce respectively, contains random data used to
 guarantee liveness during an exchange and protect against replay
 attacks.

 The Nonce Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Nonce Data ~
 ! !
 +-+

 Figure 12: Nonce Payload Format

 o Nonce Data (variable length) - Contains the random data generated
 by the transmitting entity.

Harkins Kaufman Perlman ^L[Page 42]

INTERNET DRAFT November 2001

 The payload type for the Nonce Payload is ten (10).

 The Nonce Payload is constructed by computing a pseudo-random value
 and copying it into the "Nonce Data" field. The size of a Nonce in
 this memo must be between eight (8) and two-hundred fifty-six (256)
 bytes inclusive.

7.10 Notify Payload

 The Notify Payload, denoted NOTIFY in this memo, is used to transmit
 informational data, such as error conditions and state transitions to
 an IKE peer. A Notify Payload may appear in a response message
 (usually specifying why a request was rejected), or in an
 Informational Exchange (to report an error not in an IKE request).

 The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol-ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 13: Notification Payload Format

 o Protocol-Id (1 byte) - Specifies the protocol about which
 this notification is being sent. For phase 1 notifications,
 this field MUST be zero (0). For phase 2 notifications
 concerning IPsec SAs this field will contain an IPsec
 protocol (either ESP, AH, or IPcomp). For notifications
 for which no protocol ID is relevant, this field MUST be
 sent as zero and MUST be ignored.

 o SPI Size (1 byte) - Length in bytes of the SPI as defined by
 the Protocol-Id or zero if no SPI is applicable. For phase 1
 notification concerning the IKE-SA, the SPI Size MUST be zero.

 o Notify Message Type (2 bytes) - Specifies the type of

Harkins Kaufman Perlman ^L[Page 43]

INTERNET DRAFT November 2001

 notification message.

 o SPI (variable length) - Security Parameter Index.

 o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are message specific, see below.

 The payload type for the Notification Payload is eleven (11).

7.10.1 Notify Message Types

 Notification information can be error messages specifying why an SA
 could not be established. It can also be status data that a process
 managing an SA database wishes to communicate with a peer process.
 For example, a secure front end or security gateway may use the
 Notify message to synchronize SA communication. The table below
 lists the Notification messages and their corresponding values.

 NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----
 INVALID-PAYLOAD-TYPE 1

 Only sent if the payload has the "critical" bit set.
 Notification Data contains the one byte payload type.

 INVALID-COOKIE 4

 Indicates an IKE message was received with an unrecognized
 destination cookie. This usually indicates that the
 recipient has rebooted and forgotten the existence of an
 IKE-SA.

 INVALID-MAJOR-VERSION 5

 Indicates the recipient cannot handle the version of IKE
 specified in the header. The closest version number that the
 recipient can support will be in the reply header.

 INVALID-EXCHANGE-TYPE 7

 Notification Data contains the one byte Exchange Type.

 INVALID-FLAGS 8

 Notification Data contains one byte with the unacceptable
 flag bits set.

Harkins Kaufman Perlman ^L[Page 44]

INTERNET DRAFT November 2001

 INVALID-MESSAGE-ID 9

 Sent when either an IKE MESSAGE-ID more that ten greater
 than the highest acknowledged MESSAGE-ID. This Notify MUST
 NOT be sent in a response; the invalid request MUST NOT be
 acknowledged. Instead, inform the other side by initiating
 an Informational exchange with Notification data containing
 the four byte invalid MESSAGE-ID.

 INVALID-PROTOCOL-ID 10

 Notification Data contains the one byte invalid protocol ID.

 INVALID-SPI 11

 MAY be sent in an IKE Informational Exchange when a node
 receives an ESP or AH packet with an invalid SPI. address
 as the source address in the invalid packet. This usually
 indicates a node has rebooted and forgotten an SA. This
 Informational Message is sent outside the context of an IKE-
 SA, and therefore should only be used by the recipient as a
 "hint" that something might be wrong (because it could
 easily be forged).

 INVALID-TRANSFORM-ID 12

 Notification Data contains the one byte invalid transform
 ID.

 ATTRIBUTES-NOT-SUPPORTED 13

 The "Notification Data" for this type are the attribute or
 attributes that are not supported.

 NO-PROPOSAL-CHOSEN 14

 BAD-PROPOSAL-SYNTAX 15

 PAYLOAD-MALFORMED 16

 INVALID-KEY-INFORMATION 17

 The KE field is the wrong length. This can occur where there
 is no error if the Initiator guesses incorrectly which
 Diffie-Hellman group the Responder will accept.
 Notification data contains the Transform Substructure
 describing the chosen Diffie-Hellman group.

Harkins Kaufman Perlman ^L[Page 45]

INTERNET DRAFT November 2001

 INVALID-ID-INFORMATION 18

 INVALID-CERT-ENCODING 19

 The "Notification Data" for this type are the "Cert
 Encoding" field from a Certificate Payload or Certificate
 Request Payload.

 INVALID-CERTIFICATE 20

 The "Notification Data" for this type are the "Certificate
 Data" field from a Certificate Payload.

 CERT-TYPE-UNSUPPORTED 21

 This is identical to the INVALID-CERT-ENCODING error.

 INVALID-CERT-AUTHORITY 22

 The "Notification Data" for this type are the "Cert
 Encoding" field from a Certificate Payload or Certificate
 Request Payload.

 AUTHENTICATION-FAILED 24

 INVALID-SIGNATURE 25

 ADDRESS-NOTIFICATION 26

 Don't understand.

 UNSUPPORTED-EXCHANGE-TYPE 29

 The "Notification Data" for this type are the Exchange Type
 field from the IKE header.

 UNEQUAL-PAYLOAD-LENGTHS 30

 The "Notification Data" for this type are the entire message
 in which the unequal lengths were observed. Receipt of this
 notify MAY be logged for debugging purposes.

 UNSUPPORTED-NOTIFY-TYPE 31

 The "Notification Data" for this type is the two byte Notify
 Type that was not supported.

 IKE-SA-INIT-REJECT 32

Harkins Kaufman Perlman ^L[Page 46]

INTERNET DRAFT November 2001

 This notification is sent in an IKE-SA-RESPONSE to request
 that the Initiator retry the request with the supplied
 cookie (and optionally the supplied Diffie-Hellman group).
 This is not really an error, but is processed like one in
 that it indicates that the connection request was rejected.
 The Notification Data, if present, contains the Transform
 Substructure describing the preferred Diffie-Hellman group.

 INVALID-KE-PAYLOAD 33

 This error indicates that the KE payload does not match the
 chosen Diffie-Hellman group. It can occur legitimately in
 either Phase 1 or Phase 2 if the Initiator supports multiple
 Diffie-Hellman groups and incorrectly anticipates which one
 the Responder will choose.

 SINGLE-PAIR-REQUIRED 34

 This error indicates that a Phase 2 SA request is
 unacceptable because the Responder requires a separate SA
 for each source / destination address pair. The Initiator is
 expected to respond by requesting an SA for only the
 specific traffic he is trying to forward.

 RESERVED - Errors 34 - 8191

 Private Use - Errors 8192 - 16383

 NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 RESERVED 16384 - 24577

 INITIAL-CONTACT 24578

 This notification indicates that this IKE-SA is the only
 IKE-SA currently active between the authenticated
 identities. It MAY be sent when an IKE-SA is established
 after a crash, and the recipient MAY use this information to
 delete any other IKE-SA's it has to the same authenticated
 identity without waiting for a timeout. This notification
 MUST NOT be sent by an entity that may be replicated (e.g. a
 roaming user's credentials where the user is allowed to
 connect to the corporate firewall from two remote systems at
 the same time).

Harkins Kaufman Perlman ^L[Page 47]

INTERNET DRAFT November 2001

 RESERVED 24578 - 40959

 Private Use - STATUS 40960 - 65535

7.11 Delete Payload

 The Delete Payload, denoted DEL in this memo, contains a protocol-
 specific security association identifier that the sender has removed
 from its security association database and is, therefore, no longer
 valid. Figure 14 shows the format of the Delete Payload. It is
 possible to send multiple SPIs in a Delete payload, however, each SPI
 MUST be for the same protocol. Mixing of Protocol Identifiers MUST
 NOT be performed with the Delete payload. It is permitted, however,
 to include multiple Delete payloads in a single Informational
 Exchange where each Delete payload lists SPIs for a different
 protocol.

 Deletion of the IKE-SA is indicated by a Protocol-Id of 0 (IKE) but
 no SPIs. Deletion which is concerned with a Child-SA, such as ESP or
 AH, will contain the Protocol-Id of that protocol (e.g. ESP, AH) and
 the SPI is the receiving entity's SPI(s).

 NOTE: What's the deal with IPcomp SAs. This mechanism is probably not
 appropriate for deleting them!!

 The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol-Id ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 14: Delete Payload Format

 o Protocol-Id (1 byte) - Must be zero for an IKE-SA, [] for
 ESP, [] for AH, and [] for IPcomp.

 o SPI Size (1 byte) - Length in bytes of the SPI as defined by
 the Protocol-Id. Zero for IKE (SPI is in message header),
 four for AH and ESP, two for IPcomp.

Harkins Kaufman Perlman ^L[Page 48]

INTERNET DRAFT November 2001

 o # of SPIs (2 bytes) - The number of SPIs contained in the Delete
 payload. The size of each SPI is defined by the SPI Size field.

 o Security Parameter Index(es) (variable length) - Identifies the
 specific security association(s) to delete.
 The length of this field is
 determined by the SPI Size and # of SPIs fields.

 The payload type for the Delete Payload is twelve (12).

7.12 Vendor ID Payload

 The Vendor ID Payload contains a vendor defined constant. The
 constant is used by vendors to identify and recognize remote
 instances of their implementations. This mechanism allows a vendor
 to experiment with new features while maintaining backwards
 compatibility.

 The Vendor ID payload is not an announcement from the sender that it
 will send private payload types but rather an announcement of the
 sort of private payloads it is willing to accept. The implementation
 sending the Vendor ID MUST not make any assumptions about private
 payloads that it may send unless a Vendor ID of like stature is
 received as well. Multiple Vendor ID payloads MAY be sent. An
 implementation is NOT REQUIRED to send any Vendor ID payload at all.

 A Vendor ID payload may be sent as part of any message. Reception of
 a familiar Vendor ID payload allows an implementation to make use of
 Private USE numbers described throughout this memo-- private
 payloads, private exchanges, private notifications, etc. Unfamiliar
 Vendor ID's MUST be ignored.

 Writers of Internet-Drafts who wish to extend this protocol MUST
 define a Vendor ID payload to announce the ability to implement the
 extension in the Internet-Draft. It is expected that Internet-Drafts
 which gain acceptance and are standardized will be given "magic
 numbers" out of the Future Use range by IANA and the requirement to
 use a Vendor ID will go away.

Harkins Kaufman Perlman ^L[Page 49]

INTERNET DRAFT November 2001

 The Vendor ID Payload fields are defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Vendor ID (VID) ~
 ! !
 +-+

 Figure 15: Vendor ID Payload Format

 o Vendor ID (variable length) - It is the responsibility of
 the person choosing the Vendor ID to assure its uniqueness
 in spite of the absence of any central registry for IDs.
 Good practice is to include a company name, a person name
 or some such. If you want to show off, you might include
 the latitude and longitude and time where you were when
 you chose the ID and some random input. A message digest
 of a long unique string is preferable to the long unique
 string itself.

 The payload type for the Vendor ID Payload is thirteen (13).

7.13 Traffic Selector Payload

 The Traffic Selector Payload, denoted TS in this memo, allows peers
 to identify packet flows for processing by IPsec security services.
 The Traffic Selector Payload consists of the IKE generic header
 followed by selector information fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+
 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 16: Traffic Selectors Payload Format

Harkins Kaufman Perlman ^L[Page 50]

INTERNET DRAFT November 2001

 o Number of TSs (1 byte) - Number of traffic selectors
 being provided.

 o RESERVED - This field MUST be sent as zero and MUST be ignored.

 o Traffic Selectors (variable length) - one or more traffic
 selector substructures.

 The length of the Traffic Selector payload includes the TS header and
 all the traffic selector substructures.
 The payload type for the Traffic Selector payload is fourteen (14).

7.13.1 Traffic Selector Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! TS Type ! Protocol ID | Selector Length |
 +-+
 | Start-Port | End-Port |
 +-+
 ! !
 ~ Address Selector Data ~
 ! !
 +-+

 Figure 17: Traffic Selector Substructure

 o TS Type (one byte) - Specifies the type of traffic selector.

 o Protocol ID (1 byte) - Value specifying an associated IP
 protocol ID (e.g. UDP/TCP). A value of zero means that the
 Protocol ID is not relevant to this traffic selector--
 the SA can carry all protocols.

 o Selector Length - Specifies the length of this Traffic
 Selector Substructure including the header.

 o Start-Port (2 bytes) - Value specifying the smallest port
 number allowed by this Traffic Selector. For protocols for
 which port is undefined, or if all ports are allowed by
 this Traffic Selector, this field MUST be zero.

 o End-Port (2 bytes) - Value specifying the largest port
 number allowed by this Traffic Selector. For protocols for
 which port is undefined, or it all ports are allowed by
 this Traffic Selector, this field MUST be 65535.

Harkins Kaufman Perlman ^L[Page 51]

INTERNET DRAFT November 2001

 o Address Selector Data - a specification of one or more
 addresses included in this Traffic Selector with format
 determined by TS type.

 The following table lists the assigned values for the Traffic
 Selector Type field and the corresponding Address Selector Data.

 TS Type Value
 ------- -----
 RESERVED 0

 TS_IPV4_ADDR 1

 A four (4) byte IPv4 address

 TS_IPV4_ADDR_SUBNET 4

 An IPv4 subnet represented by a pair of four (4) byte
 values. The first value is an IPv4 address. The second is
 an IPv4 network mask. Note that ones (1s) in the network
 mask indicate that the corresponding bit in the address is
 fixed, while zeros (0s) indicate a "wildcard" bit.

 TS_IPV6_ADDR 5

 A sixteen (16) byte IPv6 address

 TS_IPV6_ADDR_SUBNET 6

 An IPv6 subnet represented by a pair sixteen (16) byte
 values. The first value is an IPv6 address. The second is
 an IPv6 network mask. Note that ones (1s) in the network
 mask indicate that the corresponding bit in the address is
 fixed, while zeros (0s) indicate a "wildcard" bit.

 TS_IPV4_ADDR_RANGE 7

 A range of IPv4 addresses, represented by two four (4) byte
 values. The first value is the beginning IPv4 address
 (inclusive) and the second value is the ending IPv4 address
 (inclusive). All addresses falling between the two specified
 addresses are considered to be within the list.

 TS_IPV6_ADDR_RANGE 8

 A range of IPv6 addresses, represented by two sixteen (16)
 byte values. The first value is the beginning IPv6 address
 (inclusive) and the second value is the ending IPv6 address

Harkins Kaufman Perlman ^L[Page 52]

INTERNET DRAFT November 2001

 (inclusive). All addresses falling between the two specified
 addresses are considered to be within the list.

7.14 Other Payload Types

 Payload type values 15-127 are reserved to IANA for future assignment
 in IKEv2 (see section 10). Payload type values 128-255 are for
 private use among mutually consenting parties.

8 Diffie-Hellman Groups

 There are 5 groups different Diffie-Hellman groups defined for use in
 IKE. These groups were generated by Richard Schroeppel at the
 University of Arizona. Properties of these primes are described in
 [Orm96].

 The strength supplied by group one may not be sufficient for the
 mandatory-to-implement encryption algorithm and is here for historic
 reasons.

8.1 First Group

 IKE implementations MAY support a MODP group with the following prime
 and generator. This group is assigned id 1 (one).

 The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 }
 Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
 A63A3620 FFFFFFFF FFFFFFFF

 The generator is: 2.

8.2 Second Group

 IKE implementations SHOULD support a MODP group with the following
 prime and generator. This group is assigned id 2 (two).

Harkins Kaufman Perlman ^L[Page 53]

INTERNET DRAFT November 2001

 The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
 Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
 49286651 ECE65381 FFFFFFFF FFFFFFFF

 The generator is 2 (decimal)

8.3 Third Group

 IKE implementations SHOULD support a EC2N group with the following
 characteristics. This group is assigned id 3 (three). The curve is
 based on the Galois Field GF[2^155]. The field size is 155. The
 irreducible polynomial for the field is:
 u^155 + u^62 + 1.
 The equation for the elliptic curve is:
 y^2 + xy = x^3 + ax^2 + b.

 Field Size: 155
 Group Prime/Irreducible Polynomial:
 0x0800000000000000000000004000000000000001
 Group Generator One: 0x7b
 Group Curve A: 0x0
 Group Curve B: 0x07338f
 Group Order: 0x0800000000000000000057db5698537193aef944

 The data in the KE payload when using this group is the value x from
 the solution (x,y), the point on the curve chosen by taking the
 randomly chosen secret Ka and computing Ka*P, where * is the
 repetition of the group addition and double operations, P is the
 curve point with x coordinate equal to generator 1 and the y
 coordinate determined from the defining equation. The equation of
 curve is implicitly known by the Group Type and the A and B
 coefficients. There are two possible values for the y coordinate;
 either one can be used successfully (the two parties need not agree
 on the selection).

8.4 Fourth Group

 IKE implementations SHOULD support a EC2N group with the following
 characteristics. This group is assigned id 4 (four). The curve is
 based on the Galois Field GF[2^185]. The field size is 185. The
 irreducible polynomial for the field is:
 u^185 + u^69 + 1.

Harkins Kaufman Perlman ^L[Page 54]

INTERNET DRAFT November 2001

 The equation for the elliptic curve is:
 y^2 + xy = x^3 + ax^2 + b.

 Field Size: 185
 Group Prime/Irreducible Polynomial:
 0x020000000000000000000000000000200000000000000001
 Group Generator One: 0x18
 Group Curve A: 0x0
 Group Curve B: 0x1ee9
 Group Order: 0x01ffffffffffffffffffffffdbf2f889b73e484175f94ebc

 The data in the KE payload when using this group will be identical to
 that as when using Oakley Group 3 (three).

8.5 Fifth Group

 IKE implementations MUST support a MODP group with the following
 prime and generator. This group is assigned id 5 (five).

 The prime is 2^1536 - 2^1472 - 1 + 2^64 * {[2^1406 pi] + 741804}.
 Its hexadecimal value is

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

 The generator is 2.

9 Security Considerations

 Repeated re-keying using Phase 2 without PFS can consume the entropy
 of the Diffie-Hellman shared secret. Implementers should take note of
 this fact and set a limit on Phase 2 Exchanges between
 exponentiations. This memo does not prescribe such a limit.

 The strength of a key derived from a Diffie-Hellman exchange using
 any of the groups defined here depends on the inherent strength of
 the group, the size of the exponent used, and the entropy provided by
 the random number generator used. Due to these inputs it is difficult
 to determine the strength of a key for any of the defined groups. The
 default Diffie-Hellman group (number two) when used with a strong
 random number generator and an exponent no less than 160 bits is
 sufficient to use for 3DES. Groups three through five provide

Harkins Kaufman Perlman ^L[Page 55]

INTERNET DRAFT November 2001

 greater security. Group one is for historic purposes only and does
 not provide sufficient strength to the required cipher (although it
 is sufficient for use with DES, which is also for historic use only).
 Implementations should make note of these conservative estimates when
 establishing policy and negotiating security parameters.

 Note that these limitations are on the Diffie-Hellman groups
 themselves. There is nothing in IKE which prohibits using stronger
 groups nor is there anything which will dilute the strength obtained
 from stronger groups. In fact, the extensible framework of IKE
 encourages the definition of more groups; use of elliptical curve
 groups will greatly increase strength using much smaller numbers.

 It is assumed that the Diffie-Hellman exponents in this exchange are
 erased from memory after use. In particular, these exponents MUST NOT
 be derived from long-lived secrets like the seed to a pseudo-random
 generator that is not erased after use.

 The security of this protocol is critically dependent on the
 randomness of the Diffie-Hellman exponents, which should be generated
 by a strong random or properly seeded pseudo-random source (see

RFC1715). While the protocol was designed to be secure even if the
 Nonces and other values specified as random are not strongly random,
 they should similarly be generated from a strong random source as
 part of a conservative design.

10 IANA Considerations

 This document contains many "magic numbers" to be maintained by the
 IANA. This section explains the criteria to be used by the IANA to
 assign additional numbers in each of these lists.

10.1 Transform Types and Attribute Values

10.1.1 Attributes

 Transform attributes are uses to modify or complete the specification
 of a particular transform. Requests for new transform attributes MUST
 be accompanied by a standards-track or Informational RFC which
 defines the transform which it modifies or completes and the method
 in which it does so.

10.1.2 Encryption Algorithm Transform Type

 Values of the Encryption Algorithm define an encryption algorithm to
 use when called for in this document. Requests for assignment of new
 encryption algorithm values must be accompanied by a reference to a
 standards-track or informational RFC that describes how to use this

https://datatracker.ietf.org/doc/html/rfc1715

Harkins Kaufman Perlman ^L[Page 56]

INTERNET DRAFT November 2001

 algorithm with ESP.

10.1.3 Pseudo-random function Transform Type

 Values for the pseudo-random function define which pseudo-random
 function is used in IKE for key generation and expansion. Requests
 for assignment of a new pseudo-random function MUST be accompanied by
 a reference to a standards-track or informational RFC describing this
 function.

10.1.4 Authentication Method Transform Type

 The only Authentication method defined in the memo is for digital
 signatures. Other methods of authentication are possible and MUST be
 accompanied by a standards-track or informational RFC which defines
 the following:

 - the cryptographic method of authentication.
 - content of the Authentication Data in the Authentication
 Payload.
 - new payloads, their construction and processing, if needed.
 - additions of payloads to any messages, if needed.

10.1.5 Diffie-Hellman Groups

 Values of the Diffie-Hellman Group Transform types define a group in
 which a Diffie-Hellman key exchange can be completed. Requests for
 assignment of a new Diffie-Hellman group type MUST be accompanied by
 a reference to a standards-track or informational RFC which fully
 defines the group.

10.2 Exchange Types

 This memo defines three exchange types for use with IKEv2. Requests
 for assignment of new exchange types MUST be accompanied by a
 standards-track or informational RFC which defines the following:

 - the purpose of and need for the new exchange.
 - the payloads (mandatory and optional) that accompany
 messages in the exchange.
 - the phase of the exchange.
 - requirements the new exchange has on existing
 exchanges which have assigned numbers.

10.3 Payload Types

 Payloads are defined in this memo to convey information between
 peers. New payloads may be required when defining a new

Harkins Kaufman Perlman ^L[Page 57]

INTERNET DRAFT November 2001

 authentication method or exchange. Requests for new payload types
 MUST be accompanied by a standards-track or informational RFC which
 defines the physical layout of the payload and the fields it
 contains. All payloads MUST use the same generic header defined in
 Figure 2.

11 Acknowledgements

 We would like to thank the many members of the IPsec working group
 that provided helpful and constructive suggestions on improving IKE.
 Special thanks go to those of you who've implemented it!

 This protocol is built on the shoulders of many designers who came
 before. While they have not necessarily reviewed or endorsed this
 version and should not be blamed for any defects, they deserve much
 of the credit for its design. We would like to acknowledge Oakley,
 SKEME and their authors, Hilarie Orman (Oakley), Hugo Krawczyk
 (SKEME). Without the hard work of Doug Maughan, Mark Schertler, Mark
 Schneider, Jeff Turner, Dave Carrel, and Derrell Piper, this memo
 would not exist. Their contributions to the IPsec WG have been
 considerable and critical.

12 References

 [CAST] Adams, C., "The CAST-128 Encryption Algorithm", RFC 2144,
 May 1997.

 [BLOW] Schneier, B., "The Blowfish Encryption Algorithm", Dr.
 Dobb's Journal, v. 19, n. 4, April 1994.

 [Bra96] Bradner, S., "The Internet Standards Process -- Revision 3",
BCP 9, RFC 2026, October 1996.

 [Bra97] Bradner, S., "Key Words for use in RFCs to indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [Ble98] Bleichenbacher, D., "Chosen Ciphertext Attacks against
 Protocols Based on RSA Encryption Standard PKCS#1", Advances
 in Cryptology Eurocrypt '98, Springer-Verlag, 1998.

 [BR94] Bellare, M., and Rogaway P., "Optimal Asymmetric
 Encryption", Advances in Cryptology Eurocrypt '94,
 Springer-Verlag, 1994.

 [DES] ANSI X3.106, "American National Standard for Information
 Systems-Data Link Encryption", American National Standards
 Institute, 1983.

https://datatracker.ietf.org/doc/html/rfc2144
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Harkins Kaufman Perlman ^L[Page 58]

INTERNET DRAFT November 2001

 [DH] Diffie, W., and Hellman M., "New Directions in
 Cryptography", IEEE Transactions on Information Theory, V.
 IT-22, n. 6, June 1977.

 [DSS] NIST, "Digital Signature Standard", FIPS 186, National
 Institute of Standards and Technology, U.S. Department of
 Commerce, May, 1994.

 [IDEA] Lai, X., "On the Design and Security of Block Ciphers," ETH
 Series in Information Processing, v. 1, Konstanz: Hartung-
 Gorre Verlag, 1992

 [KBC96] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [SKEME] Krawczyk, H., "SKEME: A Versatile Secure Key Exchange
 Mechanism for Internet", from IEEE Proceedings of the 1996
 Symposium on Network and Distributed Systems Security.

 [MD5] Rivest, R., "The MD5 Message Digest Algorithm", RFC 1321,
 April 1992.

 [MSST98] Maughhan, D., Schertler, M., Schneider, M., and J. Turner,
 "Internet Security Association and Key Management Protocol
 (ISAKMP)", RFC 2408, November 1998.

 [Orm96] Orman, H., "The Oakley Key Determination Protocol", RFC
2412, November 1998.

 [PFKEY] McDonald, D., Metz, C., and Phan, B., "PFKEY Key Management
 API, Version 2", RFC2367, July 1998.

 [PKCS1] Kaliski, B., and J. Staddon, "PKCS #1: RSA Cryptography
 Specifications Version 2", September 1998.

 [PK01] Perlman, R., and Kaufman, C., "Analysis of the IPsec key
 exchange Standard", WET-ICE Security Conference, MIT, 2001,

http://sec.femto.org/wetice-2001/papers/radia-paper.pdf.

 [Pip98] Piper, D., "The Internet IP Security Domain Of
 Interpretation for ISAKMP", RFC 2407, November 1998.

 [RC5] Rivest, R., "The RC5 Encryption Algorithm", Dr. Dobb's
 Journal, v. 20, n. 1, January 1995.

 [RSA] Rivest, R., Shamir, A., and Adleman, L., "A Method for
 Obtaining Digital Signatures and Public-Key Cryptosystems",

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2367
http://sec.femto.org/wetice-2001/papers/radia-paper.pdf
https://datatracker.ietf.org/doc/html/rfc2407

Harkins Kaufman Perlman ^L[Page 59]

INTERNET DRAFT November 2001

 Communications of the ACM, v. 21, n. 2, February 1978.

 [Sch96] Schneier, B., "Applied Cryptography, Protocols, Algorithms,
 and Source Code in C", 2nd edition.

 [SHA] NIST, "Secure Hash Standard", FIPS 180-1, National Institute
 of Standards and Technology, U.S. Department of Commerce,
 May 1994.

 [TIGER] Anderson, R., and Biham, E., "Fast Software Encryption",
 Springer LNCS v. 1039, 1996.

Harkins Kaufman Perlman ^L[Page 60]

INTERNET DRAFT November 2001

Appendix A

 Attribute Assigned Numbers

 Certain transforms negotiated in an SA payload can have associated
 attributes. Attribute types can be either Basic (B) or Variable-
 length (V). Encoding of these attributes is defined as Type/Value
 (Basic) and Type/Length/Value (Variable). See section 7.3.3.

 Attributes described as basic MUST NOT be encoded as variable.
 Variable length attributes MUST NOT be encoded as basic even if their
 value can fit into two bytes. NOTE: This is a change from IKEv1,
 where increased flexibility may have simplified the composer of
 messages but certainly complicated the parser.

 Attribute Classes

 class value type
 --
 RESERVED 0-5
 Group Prime/Irreducible Polynomial 6 V
 Group Generator One 7 V
 Group Generator Two 8 V
 Group Curve A 9 V
 Group Curve B 10 V
 RESERVED 11-13
 Key Length 14 B
 Field Size 15 B
 Group Order 16 V
 Block Size 17 B

 values 0-5, 11-13, and 18-16383 are reserved to IANA. Values
 16384-32767 are for private use among mutually consenting parties.

 - Group Prime/Irreducible Polynomial

 The prime number of a MODP Diffie-Hellman group or the irreducible
 polynomial of an elliptic curve when specifying a private Diffie-
 Hellman group.

 - Generator One, Generator Two

 The X- and Y-coordinate of a point on an elliptic curve. When the
 Y-coordinate (generator two) is not given it can be computed with
 the X-coordinate and the definition of the curve.

 - Curve A, Curve B

Harkins Kaufman Perlman ^L[Page 61]

INTERNET DRAFT November 2001

 Coefficients from the definition of an elliptic curve:

 y^2 + xy = x^3 + (curve A)x^2 + (curve B)

 - Key Length

 When using an Encryption Algorithm that has a variable length key,
 this attribute specifies the key length in bits. (MUST use network
 byte order). This attribute MUST NOT be used when the specified
 Encryption Algorithm uses a fixed length key.

 - Field Size

 The field size, in bits, of a Diffie-Hellman group.

 - Group Order

 The group order of an elliptical curve group. Note the length of
 this attribute depends on the field size.

 - Block Size

 The number of bits per block of a cipher with a variable block
 length.

Harkins Kaufman Perlman ^L[Page 62]

INTERNET DRAFT November 2001

Appendix B: Cryptographic Protection of IKE Data

 With the exception of the IKE-SA-INIT-REQUEST, IKE-SA-INIT-RESPONSE,
 and Informational Exchange error notifications when no IKE-SA exists,
 all IKE messages are encrypted and integrity protected. The
 algorithms for encryption and integrity protection are negotiated
 during IKE-SA setup, and the keys are computed as specified in
 sections 3 and 4.2.

 The encryption and integrity protection algorithms are the same as
 those available to the ESP protocol, through their application is
 slightly different. Whereas in ESP the header that is integrity
 protected but not encrypted is a total of 8 bytes (SPI+Sequence #)
 plus the IV, in IKE it is the IKE Header which is 28 bytes plus the
 IV (see section 7.1).

 All other aspects of cryptographic processing (including IV
 insertion, padding, key derivation, trailer insertion) are as
 specified in [ESP] and its supporting algorithm documents. The Next
 Header byte in the encrypted ESP payload MUST be set to zero.

 NOTE: This is a change from IKEv1, which along with its companion
 specifications defined its own algorithms for padding, encryption,
 and integrity protection and its own codes for cryptographic
 algorithms. Since most IKE implementations will also include ESP
 implementations, this alternative was thought to simplify both the
 specification and the implementation, as well as limit the number of
 techniques in need of analysis for soundness.

Harkins Kaufman Perlman ^L[Page 63]

INTERNET DRAFT November 2001

Expansion of SKEYSEED

 In some circumstances SKEYSEED_e may not be long enough to supply all
 the necessary keying material an algorithm requires. In this case the
 key is derived from feeding the results of the prf into itself,
 concatenating the results and taking the highest necessary bits.

 Consider a fictitious cipher AKULA which requires 320 bits of key and
 the prf used to generate SKEYSEED_e only generates 120 bits of
 material. The key for AKULA would be the first 320 bits of Ka where:

 Ka = K1 | K2 | K3

 and

 K1 = prf(SKEYSEED_e, 0)
 K2 = prf(SKEYSEED_e, K1)
 K3 = prf(SKEYSEED_e, K2)

 where 0 is represented by a single byte. Each result of the prf
 provides 120 bits of material for a total of 360 bits. AKULA would
 use the first 320 bits of that 360 bit string.

Authors' Addresses

Dan Harkins
dharkins@tibernian.com
Tibernian Systems

Charlie Kaufman
ckaufman@iris.com
IBM

Radia Perlman
radia.perlman@sun.com
Sun Microsystems

Harkins Kaufman Perlman ^L[Page 64]

