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                          Status of this Memo

   This document is an Internet Draft and is in full conformance with
   all provisions of Section 10 of RFC2026 [Bra96]. Internet Drafts are
   working documents of the Internet Engineering Task Force (IETF), its
   areas, and working groups. Note that other groups may also distribute
   working documents as Internet Drafts.

   Internet Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time. It is inappropriate to use Internet Drafts as reference
   material or to cite them other than as "work in progress."

     The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

     The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

   This document describes version 2 of the IKE (Internet Key Exchange)
   protocol.  IKE performs mutual authentication and establishes an IKE
   security association that can be used to efficiently establish SAs
   for ESP, AH and/or IPcomp. This version greatly simplifies IKE by
   replacing the 8 possible phase 1 exchanges with a single exchange
   based on public signature keys.  The single exchange provides
   identity hiding, yet works in 2 round trips (all the identity hiding
   exchanges in IKE v1 required 3 round trips).  Latency of setup of an
   IPsec SA is further reduced from IKEv1 by allowing setup of an SA for
   ESP, AH, and/or IPcomp to be piggybacked on the initial IKE exchange.
   It also improves security by allowing the Responder to be stateless
   until it can be assured that the Initiator can receive at the claimed
   IP source address.  This version also presents the entire protocol in
   a single self-contained document, in contrast to IKEv1, in which the
   protocol was described in ISAKMP (RFC 2408), IKE (RFC 2409), and the
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   DOI (RFC 2407) documents.

Table of Contents

1. Introduction..............................................3
1.1 The IKE Protocol.........................................3
1.2 Changes from IKEv1.......................................4
1.3 Requirements Terminology.................................5
2 Protocol Overview..........................................5
2.1 Use of Retransmission Timers.............................6
2.2 Use of Sequence Numbers for Message ID...................6
2.3 Window Size for overlapping requests.....................7
2.4 State Synchronization and Connection Timeouts............7
2.5 Version Numbers and Forward Compatibility................8
2.6 Cookies..................................................10
2.7 Cryptographic Algorithm Negotiation......................12
2.8 Rekeying.................................................13
2.9 Traffic Selector Negotiation.............................14
2.10 Nonces..................................................15
3 The Phase 1 Exchange.......................................15
3.1 Generating Keying Material for the IKE-SA................17
3.2 Authentication of the IKE-SA.............................17
4 The CREATE-CHILD-SA (Phase 2) Exchange.....................18
4.1 Generating Keying Material for Child-SAs.................19
4.2 Generating Keying Material for IKE-SAs during rollover...20
5 Informational (Phase 2) Exchange...........................20
6 Error Handling.............................................22
7 Header and Payload Formats.................................23
7.1 The IKE Header...........................................23
7.2 Generic Payload Header...................................26
7.3 Security Association Payload.............................27
7.3.1 Proposal Substructure..................................29
7.3.2 Transform Substructure.................................31
7.3.3 Mandatory Transform Types..............................34
7.3.4 Mandatory Transform-IDs................................34
7.3.5 Transform Attributes...................................35
7.3.6 Attribute Negotiation..................................36
7.4 Key Exchange Payload.....................................36
7.5 Identification Payload...................................37
7.6 Certificate Payload......................................39
7.7 Certificate Request Payload..............................40
7.8 Authentication Payload...................................41
7.9 Nonce Payload............................................42
7.10 Notify Payload..........................................43
7.10.1 Notify Message Types..................................44
7.11 Delete Payload..........................................48

https://datatracker.ietf.org/doc/html/rfc2407


Harkins Kaufman Perlman                                        ^L[Page 2]



INTERNET DRAFT                                             November 2001

7.12 Vendor ID Payload.......................................49
7.13 Traffic Selector Payload................................50
7.13.1 Traffic Selector Substructure.........................51
7.14 Other Payload types.....................................53
8 Diffie-Hellman Groups......................................53
9 Security Considerations....................................55
10 IANA Considerations.......................................56
10.1 Transform Types and Attribute Values....................56
10.2 Exchange Types..........................................57
10.3 Payload Types...........................................57
11 Acknowledgements..........................................58
12 References................................................58
Appendix A: Attribute Assigned Numbers.......................61
Appendix B: Cryptographic Protection of IKE Data.............63

   Authors' Addresses...........................................64

1. Introduction

   IP Security (IPsec) provides confidentiality, data integrity, and
   data source authentication to IP datagrams. These services are
   provided by maintaining shared state between the source and the sink
   of an IP datagram. This state defines, among other things, the
   specific services provided to the datagram, which cryptographic
   algorithms will be used to provide the services, and the keys used as
   input to the cryptographic algorithms.

   Establishing this shared state in a manual fashion does not scale
   well.  Therefore a protocol to establish this state dynamically is
   needed.  This memo describes such a protocol-- the Internet Key
   Exchange (IKE).  This is version 2 of IKE. Version 1 of IKE was
   defined in RFCs 2407, 2408, and 2409. This single document is
   intended to replace all three of those RFCs.

1.1 The IKE Protocol

   IKE performs mutual authentication between two parties and
   establishes an IKE security association that includes shared secret
   information that can be used to efficiently establish SAs for ESP
   (RFC 2406), AH (RFC 2402) and/or IPcomp (RFC 2393).  We call the IKE
   SA an "IKE-SA", and the SAs for ESP, AH, and/or IPcomp that get set
   up through that IKE-SA we call "child-SA"s.

   We call the setup of the IKE-SA "phase 1" and subsequent IKE
   exchanges "phase 2" even though setup of a child-SA can be
   piggybacked on the initial phase 1 exchange. The phase 1 exchange is
   two request/response pairs.  A phase 2 exchange is one
   request/response pair, and can be used to create or delete a child-
   SA, rekey or delete the IKE-SA, or give information such as error

https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2402
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   conditions.

   IKE message flow always consists of a request followed by a response.
   It is the responsibility of the requester to ensure reliability.  If
   the response is not received within a timeout interval, the requester
   retransmits the request.

   The first request/response of a phase 1 exchange, which we'll call
   IKE_SA_init, negotiates security parameters for the IKE-SA, and sends
   Diffie-Hellman values. We call the response IKE_SA_init_response.

   The second request/response, which we'll call IKE_auth, transmits
   identities, proves knowledge of the private signature key, and
   optionally sets up an SA for AH and/or ESP and/or IPcomp.  We call
   the response IKE_auth_response.

   If the Responder feels it is under attack, and wishes to use a
   stateless cookie (see section on cookies).  it can respond to an
   IKE_SA_init with an IKE_SA_init_reject with a cookie value that must
   be sent with a subsequent IKE_SA_init_request.  The Initiator then
   sends another IKE_SA_init, but this time including the Responder's
   cookie value.

   Phase 2 exchanges each consist of a single request/response pair. The
   types of exchanges are CREATE_CHILD_SA (creates a child-SA), or an
   informational exchange which deletes a child-SA or the IKE-SA or
   informs the other side of some error condition.  All these messages
   require a response, so an informational message with no payloads can
   serve as a check for aliveness.

1.2 Changes from IKEv1

   The goals of this revision to IKE are:

   1) To define the entire IKE protocol in a single document, rather
   than three that cross reference one another;

   2) To simplify IKE by eliminating the Aggressive Mode option and all
   but one of the authentication algorithms making phase 1 a single
   exchange (based on public signature keys);

   3) To remove the Domain of Interpretation (DOI), Situation (SIT), and
   Labeled Domain Identifier fields, and the Commit and Authentication
   only bits;

   4) To decrease IKE's latency by making the initial exchange be 2
   round trips (4 messages), and allowing the ability to piggyback setup
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   of a Child-SA on that exchange;

   5) To replace the cryptographic algorithms for protecting the IKE
   messages themselves with one based closely on ESP to simplify
   implementation and security analysis;

   6) To reduce the number of possible error states by making the
   protocol reliable (all messages are acknowledged) and sequenced. This
   allows shortening Phase 2 exchanges from 3 messages to 2;

   7) To increase robustness by allowing the Responder, if under attack,
   to require return of a cookie before the Responder commits any state
   to the exchange;

   8) To fix bugs such as the hash problem documented in [draft-ietf-
ipsec-ike-hash-revised-02.txt];

   9) To specify Traffic Selectors in their own payload type rather then
   overloading ID payloads, and making more flexible the Traffic
   Selectors that may be specified;

   10) To avoid unnecessary exponential explosion of space in attribute
   negotiation, by allowing choices when multiple algorithms of one type
   (say, encryption) can work with any of a number of acceptable
   algorithms of another type (say, integrity protection);

   11) To specify required behavior under certain error conditions or
   when data that is not understood is received in order to make it
   easier to make future revisions in a way that does not break
   backwards compatibility;

   12) To simplify and clarify how shared state is maintained in the
   presence of network failures and Denial of Service attacks; and

   13) To maintain existing syntax and magic numbers to the extent
   possible to make it likely that implementations of IKEv1 can be
   enhanced to support IKEv2 with minimum effort.

1.3 Requirements Terminology

   Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
   "MAY" that appear in this document are to be interpreted as described
   in [Bra97].

2 Protocol Overview

   IKE runs over UDP port 500. Since UDP is a datagram (unreliable)
   protocol, IKE includes in its definition recovery from transmission

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-hash-revised-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-hash-revised-02.txt
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   errors, including packet loss, packet replay, and packet forgery. IKE
   is designed to function so long as at least one of a series of
   retransmitted packets reaches its destination before timing out and
   the channel is not so full of forged and replayed packets so as to
   exhaust the network or CPU capacities of either endpoint. Even in the
   absence of those minimum performance requirements, IKE is designed to
   fail cleanly (as though the network were broken).

2.1 Use of Retransmission Timers

   All messages in IKE exist in pairs: a request and a response. Either
   end of a security association may initiate requests at any time, and
   there can be many requests and responses "in flight" at any given
   moment. But each message is labelled as either a request or a
   response and for each pair one end of the security association is the
   Initiator and the other is the Responder.

   For every pair of messages, the Initiator is responsible for
   retransmission in the event of a timeout. The Responder will never
   retransmit a response unless it receives a retransmission of the
   request. In that event, the Responder MUST either ignore the
   retransmitted request except insofar as it triggers a retransmission
   of the response OR if the request is idempotent, the Responder may
   choose to process the request again and send a semantically
   equivalent reply.

   IKE is a reliable protocol, in the sense that the Initiator MUST
   retransmit a request until either it receives a corresponding reply
   OR it deems the IKE security association to have failed and it
   discards all state associated with the IKE-SA and any Child-SAs
   negotiated using that IKE-SA.

2.2 Use of Sequence Numbers for Message ID

   Every IKE message contains a Message ID as part of its fixed header.
   This Message ID is used to match up requests and responses, and to
   identify retransmissions of messages.

   The Message ID is a 32 bit quantity, with is zero for the first IKE
   message. Each endpoint in the IKE Security Association maintains two
   "current" Message IDs: the next one to be used for a request it
   initiates and the next one it expects to see from the other end.
   These counters increment as requests are generated and received.
   Responses always contain the same message ID as the corresponding
   request. That means that after the initial setup, each integer n will
   appear as the message ID in four distinct messages: The nth request
   from the original IKE Initiator, the corresponding response, the nth
   request from the original IKE Responder, and the corresponding
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   response. If the two ends make very different numbers of requests,
   the Message IDs in the two directions can be very different. There is
   no ambiguity in the messages, however, because each packet contains
   enough information to determine which of the four messages a
   particular one is.

   In the case where the IKE_SA_init is rejected (e.g. in order to
   require a cookie), the second IKE_SA_init message will begin the
   sequence over with Message #0.

2.3 Window Size for overlapping requests

   In order to maximize IKE throughput, an IKE endpoint MAY issue
   multiple requests before getting a response to any of them. For
   simplicity, an IKE implementation MAY choose to process requests
   strictly in order and/or wait for a response to one request before
   issuing another. Certain rules must be followed to assure
   interoperability between implementations using different strategies.

   After an IKE-SA is set up, either end can initiate one or more
   requests. These requests may pass one another over the network. An
   IKE endpoint MUST be prepared to accept and process a request while
   it has a request outstanding in order to avoid a deadlock in this
   situation. An IKE endpoint SHOULD be prepared to accept and process
   multiple requests while it has a request outstanding.

   An IKE endpoint MUST NOT exceed the peer's stated window size (see
section 7.3.2) for transmitted IKE requests. In other words, if Bob

   stated his window size is N, then when Alice needs to make a request
   X, she MUST wait until she has received responses to all requests up
   through request X-N. An IKE endpoint MUST keep a copy of (or be able
   to regenerate exactly) each request it has sent until it receives the
   corresponding response. An IKE endpoint MUST keep a copy of (or be
   able to regenerate with semantic equivalence) the number of previous
   responses equal to its contracted window size in case its response
   was lost and the Initiator requests its retransmission by
   retransmitting the request.

   An IKE endpoint SHOULD be capable of processing incoming requests out
   of order to maximize performance in the event of network failures or
   packet reordering.

2.4 State Synchronization and Connection Timeouts

   An IKE endpoint is allowed to forget all of its state associated with
   an IKE-SA and the collection of corresponding child-SAs at any time.
   This is the anticipated behavior in the event of an endpoint crash
   and restart. It is important when an endpoint either fails or
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   reinitializes its state that the other endpoint detect those
   conditions and not continue to waste network bandwidth by sending
   packets over those SAs and having them fall into a black hole.

   Since IKE is designed to operate in spite of Denial of Service (DoS)
   attacks from the network, an endpoint MUST NOT conclude that the
   other endpoint has failed based on any routing information (e.g. ICMP
   messages) or IKE messages that arrive without cryptographic
   protection (e.g., notify messages complaining about unknown SPIs). An
   endpoint MUST conclude that the other endpoint has failed only when
   repeated attempts to contact it have gone unanswered for a timeout
   period. An endpoint SHOULD suspect that the other endpoint has failed
   based on routing information and initiate a request to see whether
   the other endpoint is alive. To check whether the other side is
   alive, IKE provides a null query notify message that requires an
   acknowledgment. If a cryptographically protected message has been
   received from the other side recently, unprotected notifications MAY
   be ignored. Implementations MUST limit the rate at which they
   generate responses to unprotected messages.

   Numbers of retries and lengths of timeouts are not covered in this
   specification because they do not affect interoperability. It is
   suggested that messages be retransmitted at least a dozen times over
   a period of at least several minutes before giving up on an SA, but
   different environments may require different rules. An exception to
   this rule is that a Responder who has not received a
   cryptographically protected message on an IKE-SA MUST eventually time
   it out and delete it. Note that consuming state on an IKE Responder
   by setting up large numbers of half-open IKE-SAs is a likely denial
   of service attack, so the policy for timing these out and limiting
   the resources they consume should be considered carefully.

   Note that with these rules, there is no reason to negotiate and agree
   upon an SA lifetime. If IKE presumes the partner is dead, based on
   repeated lack of acknowledgment to an IKE message, then the IKE SA
   and all child-SAs set up through that IKE-SA are deleted.

   An IKE endpoint MAY delete inactive Child-SAs to recover resources
   used to hold their state. If an IKE endpoint chooses to do so, it
   MUST send Delete payloads to the other end notifying it of the
   deletion. It MAY similarly time out the IKE-SA. Closing the IKE-SA
   implicitly closes all associated Child-SAs. An IKE endpoint SHOULD
   send a Delete payload indicating that it has closed the IKE-SA.

2.5 Version Numbers and Forward Compatibility

   This document describes version 2.0 of IKE, meaning the major version
   number is 2 and the minor version number is zero. It is likely that
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   some implementations will want to support both version 1.0 and
   version 2.0, and in the future, other versions.

   The major version number should only be incremented if the packet
   formats have changed so dramatically that an older version node would
   not be able to interoperate with messages in the new version format.
   The minor version number indicates new capabilities, and MUST be
   ignored by a node with a smaller minor version number, but used for
   informational purposes by the node with the larger minor version
   number. For example, it might indicate the ability to process a newly
   defined notification message. The node with the larger minor version
   number would simply note that its correspondent would not be able to
   understand that message and therefore would not send it.

   If you receive a message with a higher major version number, you MUST
   drop the message and SHOULD send an unauthenticated notification
   message containing the highest version number you support.  If you
   support major version n, and major version m, you MUST support all
   versions between n and m. If you receive a message with a major
   version that you support, you MUST respond with that version number.
   In order to prevent two nodes from being tricked into corresponding
   with a lower major version number than the maximum that they both
   support, IKE has a flag that indicates that the node is capable of
   speaking a higher major version number.

   Thus the major version number in the IKE header indicates the version
   number of the message, not the highest version number that the
   transmitter supports. If A is capable of speaking versions n, n+1,
   and n+2, and B is capable of speaking versions n and n+1, then they
   will negotiate speaking n+1, where A will set the flag indicating
   ability to speak a higher version. If they mistakenly (perhaps
   through an active attacker sending error messages) negotiate to
   version n, then both will notice that the other side can support a
   higher version number, and they MUST break the connection and
   reconnect using version n+1.

   Note that v1 does not follow these rules, because there is no way in
   v1 of noting that you are capable of speaking a higher version
   number. So an active attacker can trick two v2-capable nodes into
   speaking v1. Given the design of v1, there is no way of preventing
   this, but this version number discipline will prevent such problems
   in future versions.

   Also for forward compatibility, all fields marked RESERVED MUST be
   set to zero by a version 2.0 implementation and their content MUST be
   ignored by a version 2.0 implementation ("Be conservative in what you
   send and liberal in what you receive"). In this way, future versions
   of the protocol can use those fields in a way that is guaranteed to
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   be ignored by implementations that do not understand them.
   Similarly, field types that are not defined are reserved for future
   use and implementations of version 2.0 MUST skip over those fields
   and ignore their contents.

   IKEv2 adds a "critical" flag to each payload header for further
   flexibility for forward compatibility. If the critical flag is set
   and the payload type is unsupported, the message MUST be rejected and
   the response to the IKE request containing that payload MUST include
   a notify payload INVALID-PAYLOAD-TYPE, indicating an unsupported
   critical payload was included. If the critical flag is not set and
   the payload type is unsupported, that payload is simply skipped.

2.6 Cookies

   The term "cookies" originates with Karn and Simpson [RFC 2522] in
   Photurus, an early proposal for key managment with IPsec. It has
   persisted because the IETF has never rejected an offer involving
   cookies.  In IKEv2, the cookies serve two purposes. First, they are
   used as IKE-SA identifiers in the headers of IKE messages. As with
   ESP and AH, in IKEv2 the recipient of a message chooses an IKE-SA
   identifier that uniquely defines that SA to that recipient. For this
   purpose (IKE-SA identifiers), it might be convenient for the cookie
   value to be chosen so as to be a table index for fast lookups of SAs.
   But this conflicts with the second purpose of the cookies (to be
   explained shortly).

   Unlike ESP and AH where only the recipient's SA identifier appears in
   the message, in IKE, the sender's IKE SA identifier is also sent in
   every message. In IKEv1 the IKE-SA identifier consisted of the pair
   (Initiator cookie, Responder cookie), whereas in IKEv2, the SA is
   uniquely defined by the recipient's SA identifier even though both
   are included in the IKEv2 header.

   The second use of cookies in IKEv2 is for a limited protection from
   denial of service attacks. Receipt of a request to start an SA can
   consume substantial resources. A likely denial of service attack
   against IKE is to overwhelm a system with large numbers of SA
   requests from forged IP addresses. This can consume CPU resources
   doing the crypto, and memory resources remembering the state of the
   "half open" connections until they time out. A robust design would
   limit the resources it is willing to devote to new connection
   establishment, but even so the denial of service attack could
   effectively prevent any new connections.

   This attack can be rendered more difficult by requiring that the
   Responder to an SA request do minimal computation and allocate no
   memory until the Initiator has proven that it can receive messages at

https://datatracker.ietf.org/doc/html/rfc2522
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   the address it claims to be sending from. This is done in a stateless
   way by computing the cookie in a way that the Responder can recompute
   the same value, but the Initiator can't guess it. A recommended
   strategy is to compute the cookie as a cryptographic hash of the
   Initiator's IP address, the Initiator's cookie value (its chosen IKE
   security identifier), and a secret known only to the Responder.  That
   secret should be changed periodically to prevent the "cookie jar"
   attack where an attacker accumulates lots of cookies from lots of IP
   addresses over time and then replays them all at once to overwhelm
   the Responder.

   In ISAKMP and IKEv1, the term cookie was used for the connection
   identifier, but the protocol did not permit their use against this
   particular denial of service attack. To avoid the cookie exchange
   adding extra messages to the protocol in the common case where the
   Responder is not under attack, IKEv2 goes back to the approach in
   Oakley (RFC 2412) where the cookie challenge is optional. Upon
   receipt of an IKE_SA_init, a Responder may either proceed with
   setting up the SA or may tell the Initiator to send another
   IKE_SA_init, this time providing a supplied cookie.

   It may be convenient for the IKE-SA identifier to be an index into a
   table.  It is not difficult for the Initiator to choose an IKE-SA
   identifier that is convenient as a table identifier, since the
   Initiator does not need to use it as an anti-clogging token, and is
   keeping state.  IKEv2 allows the Responder to initially choose a
   stateless anti-clogging type cookie by responding to an IKE_SA_init
   with a cookie request, and then upon receipt of an IKE_SA_init with a
   valid cookie, change his cookie value from the computed anti-clogging
   token to a more convenient value, by sending a different value for
   his cookie in the IKE_SA_init_response. This will not confuse the
   Initiator (Alice), because she will have chosen a unique cookie value
   A, so if her SA state for the partially set up IKE-SA says that Bob's
   cookie for the SA that Alice knows as "A" is B, and she receives a
   response from Bob with cookies (A,C), that means that Bob wants to
   change his value from B to C for the SA that Alice knows uniquely as
   "A".

   Another reason why Bob might want to change his cookie value is that
   it is possible (though unlikely) that Bob will choose the same cookie
   for multiple SAs if the hash of the Initiator cookie, Initiator IP
   address, and whatever other information might be included happens to
   hash to the same value.

   In IKEv2, like IKEv1, both 8-byte cookies appear in the message, but
   in IKEv2 (unlike v1), the value chosen by the message recipient
   always appears first in the message. This change eliminates a flaw in
   IKEv1, as well as having other advantages (allowing the recipient to

https://datatracker.ietf.org/doc/html/rfc2412
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   look up the SA based on a small, conveniently chosen value rather
   than a 16-byte pseudorandom value.)

   The flaw in IKEv1 is that it was possible (though unlikely) for two
   connections to have the same set of cookies. For instance, if Alice
   chose A as the Initiator cookie when initiating a connection to Bob,
   she might subsequently receive a connection request from Carol, and
   Carol might also have chosen A as the Initiator cookie. Whatever
   value Alice responds to Carol, say B, might be selected as the
   Responder cookie by Bob for the Alice-Bob SA. Then Alice would be
   involved in two IKE sessions, both of which had Initiator cookie=A
   and Responder cookie=B.  To minimize, but not eliminate, the
   probability of this happening, version 1 IKE recommended that cookies
   be chosen at random.

   One additional rule in IKEv2 is that the two cookie values have to be
   different. The Responder is responsible for choosing a value
   different from the one chosen by the Initiator.  If the Responder's
   stateless cookie happens to be equal to the Initiator's cookie, that
   is legal provided that the Responder change his cookie value to
   something different from the Initiator's in his IKE_SA_init_response.
   The reason the cookies must be different in the two directions is to
   prevent reflection attacks. Another way reflection attacks could have
   been avoided was to compute different integrity and encryption keys
   in the two directions, but that would be another change from IKEv1.

   The cookies are one of the inputs into the function that computes the
   keying material. If the Responder initially sends a stateless cookie
   value in its IKE_SA_init_reject, and changes to a different value
   when it sends its IKE_SA_init_response, it is the cookie value in the
   IKE_SA_init_response that is the input for generating the keying
   material.

2.7 Cryptographic Algorithm Negotiation

   The payload type known as "SA" indicates a proposal for a set of
   choices of protocols (e.g., IKE, ESP, AH, and/or IPcomp) for the SA
   as well as cryptographic algorithms associated with each protocol. In
   IKEv1 it was extremely complex, and required a separate proposal for
   each possible combination. If there were n algorithms of one type
   (say encryption) that were acceptable and worked with any one of m
   algorithms of another type (say integrity protection), then it would
   take space proportional to n*m to express all of the possibilities.

   IKEv2 has simplified the format of the SA payload somewhat, but in
   addition to simplifying the format, solves the exponential explosion
   by allowing, within a proposal, multiple algorithms of the same type.
   If more than one algorithm of the same type (say encryption) appears
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   in a proposal, that means that the sender of that SA proposal is
   willing to accept the proposal with any of those choices, and the
   recipient when it accepts the proposal selects exactly one of each of
   the types of algorithms from the choices offered within that
   proposal.

   An SA consists of one or more proposals. Each proposal has a number
   (so that the recipient can specify which proposal has been accepted),
   and contains a protocol (IKE, ESP, AH, or IPcomp), a SPI to identify
   the SA for ESP or AH or IPcomp, and set of transforms. Each transform
   consists of a type (e.g., encryption, integrity protection,
   authentication, Diffie-Hellman group, compression) and a transform ID
   (e.g., DES, IDEA, HMAC-MD5). To negotiate an SA that does ESP,
   IPcomp, and AH, the SA will contain three proposals with the same
   proposal number, one proposing ESP, a 4 byte SPI to be used with ESP,
   and a set of transforms; one proposing AH, a 4-byte SPI to be used
   with AH, and a set of transforms; and one proposing IPcomp, a 2-byte
   SPI to be used with IPcomp, and a set of transforms. If the recipient
   selects that proposal number, it means that SAs will be created for
   all of ESP, AH, and IPcomp.

   In IKEv2, since the Initiator sends her Diffie-Hellman value in the
   IKE_SA_init, she must guess at the Diffie-Hellman group that Bob will
   select from her list of supported groups. Her guess MUST be the first
   in the list to allow Bob to unambiguously identify which group the
   accompanying KE payload is from. If her guess is incorrect then Bob's
   response informs her of the group he would choose, and notifies her
   that her offer is invalid because the KE payload is not from the
   desired group.  In this case Alice will send a new IKE_SA_init, with
   the same original choices in the list (this is important to prevent
   an active attacker from tricking them into using a weaker group than
   they would have agreed upon) but with Bob's preferred group first,
   and a KE payload containing an exponential from that group.

   If none of Alice's options are acceptable, then Bob notifies her
   accordingly.

2.8 Rekeying

   Security associations negotiated in both phase 1 and phase 2 contain
   secret keys which may only be used for a limited amount of time. This
   determines the lifetime of the entire security association. When the
   lifetime of a security association expires the security association
   MUST NOT be used.  If there is demand, new security associations can
   be established.  Reestablishment of security associations to take the
   place of ones which expire is referred to as "rekeying".

   To rekey a child-SA, create a new, equivalent SA (see section 4 and
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   4.1 below), and when the new one is established, delete the old one.
   To rekey an IKE-SA, establish a new equivalent IKE-SA (see section 4
   and 4.2 below) with the peer to whom the old IKE-SA is shared using a
   Phase 2 negotiation within the existing IKE-SA. An IKE-SA so created
   inherits all of the original IKE-SA's child SAs.  Use the new IKE-SA
   for all control messages needed to maintain the child-SAs created by
   the old IKE-SA, and delete the old IKE-SA.

   SAs SHOULD be rekeyed proactively, i.e., the new SA should be
   established before the old one expires and becomes unusable. Enough
   time should elapse between the time the new SA is established and the
   old one becomes unusable so that traffic can be switched over to the
   new SA.

   A difference between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes
   were negotiated. In IKEv2, each end of the SA is responsible for
   enforcing its own lifetime policy on the SA and rekeying the SA when
   necessary.  If the two ends have different lifetime policies, the end
   with the shorter lifetime will end up always being the one to request
   the rekeying.

   If the two ends have the same lifetime policies, it is possible that
   both will initiate a rekeying at the same time (which will result in
   redundant SAs). To reduce the probability of this happening, the
   timing of rekeying requests should be dithered (delayed by a random
   amount of time).

   This form of rekeying will temporarily result in multiple similar SAs
   between the same pairs of nodes. When there are two SAs eligible to
   receive packets, a node MUST accept incoming packets through either
   SA. The node that initiated the rekeying SHOULD delete the older SA
   after the new one is established.

2.9 Traffic Selector Negotiation

   When an IP packet is received by an RFC2401 compliant IPsec subsystem
   and matches a "protect" selector in its SPD, the subsystem MUST
   protect that packet with IPsec. When no SA exists yet it is the task
   of IKE to create it. Information about the traffic that needs
   protection is transmitted to the IKE subsystem in a manner outside
   the scope of this document (see [PFKEY] for an example).  This
   information is negotiated between the two IKE endpoints using TS
   (Traffic Selector) payloads.

   The TS payload consists of a set of individual traffic selectors.
   The selector from the SPD has "source" and "destination" components
   and these are represented in IKE as a pair of TS payloads, TSi
   (traffic selector-initiator) and TSr (traffic selector-responder).

https://datatracker.ietf.org/doc/html/rfc2401
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   TSi describes the addresses and ports that the Initiator will send
   from over the SA and which it will accept packets for. TSr describes
   the addresses and ports that the Initiator will sent to over the SA
   and which it will accept packets from.

   The Responder is allowed to narrow the choices by selecting a subset
   of the traffic, for instance by eliminating one or more members of
   the set of traffic selectors provided the set does not become the
   NULL set.

   Note that the traffic selectors apply to both child-SAs (from the
   Initiator to the Responder and from the Responder to the Initiator),
   but the Responder does not change the order of the TS payloads.  An
   address within the selector of TSi would appear as a source address
   in the child-SA from the Initiator, and would appear as a destination
   address in traffic on the child-SA to the Initiator (from the
   Responder).

   IKEv2 is more flexible than IKEv1. IKEv2 allows sets of ranges of
   both addresses and ports, and allows the Responder to choose a subset
   of the requested traffic rather than simply responding "not
   acceptable".

2.10 Nonces

   The IKE_SA_init_request and the IKE_SA_init_response each contain a
   nonce. These nonces are used as inputs to cryptographic functions.
   The child-create-request and the child-create-response also contain a
   nonce. These nonces are used to add freshness to the key derivation
   technique used to obtain keys for child SAs. Nonces used in IKEv2
   MUST therefore have strong pseudo-random properties (see RFC1715).

3 The Phase 1 Exchange

   The base Phase 1 exchange is a four message exchange (two
   request/response pairs). The first pair of messages, the IKE_SA_init
   exchange, negotiate cryptographic algorithms, indicate trusted CA
   names, exchange nonces, and do a Diffie-Hellman exchange. This pair
   might be repeated if the response indicates that none of the
   cryptographic proposals are acceptable, or the Diffie-Hellman group
   chosen by the Initiator for sending her Diffie-Hellman value is not
   the group that the Responder would have chosen, of if the Responder
   is under attack and will only answer IKE_SA_init requests containing
   a valid returned cookie value.

   The second pair of messages, the IKE_auth and the IKE_auth_response,
   authenticate the previous messages, exchange identities and
   certificates, and optionally also establish a child_SA. This pair of

https://datatracker.ietf.org/doc/html/rfc1715
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   messages is encrypted with a key established through the IKE_SA_init
   exchange, so the identities are hidden from eavesdroppers.

   In the following description, the payloads contained in the message
   are indicated by names such as SA. The details of the contents of
   each payload are described later. Payloads which may optionally
   appear will be shown in brackets, such as [CERTREQ], would indicate
   that optionally a certificate request payload can be included.  The
   certificate request payload indicates a CA name trusted by the
   sender. If the sender trusts multiple CAs, it includes multiple
   CERTREQ payloads, one for each trusted CA.

   The Phase 1 exchange is as follows:

       Initiator                          Responder
      -----------                        -----------
       HDR, SA, KE, Ni [,CERTREQ]  -->

   The SA payload states the cryptographic algorithms the Initiator
   supports.  The KE payload sends the Initiator's Diffie-Hellman value.
   Ni is the Initiator's nonce, sent in an N payload.

                                   <--    HDR, SA, KE, Nr [,CERTREQ]

   The Responder chooses among the Initiator's cryptographic algorithms
   and expresses that choice in the SA payload, completes the Diffie-
   Hellman exchange with the KE payload, and sends its nonce in the N
   payload (with an "r" to signify the Responder's nonce).

   At this point in time each party generates SKEYSEED and its
   derivatives.  The following two messages, the SA_auth and
   SA_auth_response, are encrypted (as indicated by the '*' following
   the IKE header) and the encryption bit in the IKE header is set.

       HDR*, ID, AUTH, [CERT,]
             SA, TSi, TSr         -->

   The Initiator identifies herself with the ID payload, authenticates
   herself to the Responder with the AUTH payload, optionally sends one
   or more certificates, and begins negotiation of a child-SA using the
   SA payload and the Traffic Selector payloads: TSi (which describes
   sources of packets to be sent over the child-SA), and TSr (which
   describes destinations of packets to be sent over the child-SA). The
   protocol (ESP, AH, and/or IPcomp) and the SPI she wants to use to
   identify her inbound child-SA are placed in the "protocol" and "SPI"
   fields, respectively, in the SA payload.
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                                   <--    HDR*, ID, AUTH, [CERT,]
                                                SA, TSi, TSr

   The Responder identifies himself with an ID payload authenticates
   himself with the AUTH payload, optionally sends one or more
   certificates, and completes negotiation of a child-SA using the SA
   payload. The Responder places the SPI he wants to use to identify his
   inbound child-SA in the SA payload. The TSi and TSr, respectively,
   describe the sources and destinations of packets to be sent over the
   child-SA. These MUST be equal to, or a subset of, the ones suggested
   by the Initiator.

3.1 Generating Keying Material for the IKE-SA

   The shared secret information is computed as follows.  A quantity
   called SKEYSEED is calculated from the nonces exchanged during the
   IKE_SA_init exchange, and the Diffie-Hellman shared secret
   established during that exchange.  SKEYSEED is used to calculate
   three other secrets: SKEYSEED_d used for deriving new keys for the
   child-SAs established with this IKE-SA; SKEYSEED_a used for
   authenticating the component messages of subsequent exchanges; and
   SKEYSEED_e used for encrypting (and of course decrypting) all
   subsequent exchanges.  SKEYSEED and its derivatives are computed as
   follows:

       SKEYSEED = prf(Ni | Nr, g^ir)
       SKEYSEED_d = prf(SKEYSEED, g^ir | CKY-I | CKY-R | 0)
       SKEYSEED_a = prf(SKEYSEED, SKEYSEED_d | g^ir | CKY-I | CKY-R | 1)
       SKEYSEED_e = prf(SKEYSEED, SKEYSEED_a | g^ir | CKY-I | CKY-R | 2)

   CKY-I and CKY-R are the Initiator's and Responder's cookie,
   respectively, from the IKE header. g^ir is the shared secret from the
   ephemeral Diffie-Hellman exchange.  Ni and Nr are the nonces,
   stripped of any headers. 0, 1, and 2 are represented by a single byte
   containing the value 0, 1, or 2 (the values, not the ASCII
   representation of the digits). prf is the "pseudo-random"
   cryptographic function negotiated in the IKE-SA-init exchange.  The
   pseudo-random functions defined for IKE are HMAC_MD5 and HMAC_SHA,
   defined in RFC 2104.

3.2 Authentication of the IKE-SA

   The peers are authenticated by having each sign the concatenation of
   the first two messages of the exchange. Optionally, they MAY include
   a certificate or certificate chain providing evidence that the public
   key they are using belongs to the name in the ID payload. The public
   key signature will be computed using algorithms chosen by the signer,
   most commonly an RSA-signed PKCS1-padded-SHA1-hash of the

https://datatracker.ietf.org/doc/html/rfc2104
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   concatenated messages or a DSS-signed SHA1-hash of the concatenated
   messages. There is no requirement that the Initiator and Responder
   sign with the same cryptographic algorithms. The choice of
   cryptographic algorithms depends on the type of public key each has.
   This type is either indicated in the certificate supplied or, if the
   public keys were exchanged out of band, the key types must have been
   similarly learned.

4 The CREATE-CHILD-SA (Phase 2) Exchange

   A phase 2 exchange is one request/response pair, and can be used to
   create or delete a child-SA, delete the IKE-SA, or deliver
   information such as error conditions. It is encrypted and integrity
   protected using the keys negotiated during the creation of the IKE-
   SA.  The two directions of flow use the same keys.

   Messages are cryptographically protected using the cryptographic
   algorithms and keys negotiated in the first two messages of the IKE
   exchange using a syntax based on the encoding in ESP (see Appendix

B).  Encryption uses a key derived from SKEYSEED_e; Integrity uses a
   key derived from SKEYSEED_a.

   Either side may initiate a phase 2 exchange. A child-SA is created by
   sending a CREATE_CHILD_SA request. If PFS for the child-SA is
   desired, the CREAT_CHILD_SA request contains KE payloads for an
   additional Diffie-Hellman exchange. The keying material for the
   child_SA is a function of SKEYSEED_d established during the
   establishment of the IKE-SA, the nonces exchanged during the
   CREATE_CHILD_SA exchange, and the Diffie-Hellman value, if KE
   payloads are included in the CREATE_CHILD_SA exchange. If the Diffie-
   Hellman group for the child-SA is desired to be different from the
   group for the IKE-SA, then a Diffie-Hellman group transform MUST be
   included in the SA payload. If it is absent, the Diffie-Hellman group
   is assumed to be the same as the one in the IKE-SA.

   The CREATE_CHILD_SA request contains:

       Initiator                                 Responder
      -----------                               -----------
       HDR*, SA, Ni, [KEi,]
             TSi, TSr             -->

   The Initiator sends SA offer(s) in the SA payload(s), a nonce in the
   Ni payload, optionally a Diffie-Hellman value in the KE payload, and
   the proposed traffic selectors in the TSi and TSr payloads.  The
   message past the header is encrypted and the message including the
   header is integrity protected using the cryptographic algorithms
   negotiated in Phase 1.
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   The CREATE_CHILD_SA response contains:

                                  <--    HDR*, SA, Nr, [KEr,]
                                               TSi, TSr

   The Responder replies (using the same Message ID to respond) with the
   accepted offer in an SA payload, optionally a Diffie-Hellman value in
   the KE payload, and the traffic selectors for traffic to be sent on
   that SA in the TS payloads, which may be a subset of what the
   Initiator of the child-SA proposed.

4.1 Generating Keying Material for IPsec SAs

   Child-SAs are created either by being piggybacked on the phase 1
   exchange, or in a phase 2 CREATE_CHILD_SA exchange. Keying material
   for them is generated as follows:

      KEYMAT = prf(SKEYSEED_d, protocol | SPId | Ns | Nd )

   For phase 2 exchanges with PFS the keying material is defined as:

      KEYMAT = prf(SKEYSEED_d, g(p2)^ir | protocol | SPId | Ns | Nd )

   where g(p2)^ir is the shared secret from the ephemeral Diffie-Hellman
   exchange of this phase 2 exchange.

   In either case, "protocol", and "SPI", are from the SA payload that
   contained the negotiated (and accepted) proposal, Ns is the body of
   the Source's nonce payload (minus the generic header), and Nr is the
   body of the Destination's nonce payload (minus the generic header).

   A single child-SA negotiation results in two security associations--
   one inbound and one outbound. Different Nonces and SPIs for each SA
   (one chosen by the Initiator, the other by the Responder) guarantee a
   different key for each direction. The SPI chosen by the destination
   of the SA and the Nonces (ordered source followed by destination) are
   used to derive KEYMAT for that SA.
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   For situations where the amount of keying material desired is greater
   than that supplied by the prf, KEYMAT is expanded by feeding the
   results of the prf back into itself and concatenating results until
   the required keying material has been reached. In other words,

   KEYMAT = K1 | K2 | K3 | ...
   where:
    K1 = prf(SKEYSEED_d, [ g(p2)^ir | ] protocol | SPId | Ns | Nd)
    K2 = prf(SKEYSEED_d, K1 | [ g(p2)^ir | ] protocol | SPId | Ns | Nd)
    K3 = prf(SKEYSEED_d, K2 | [ g(p2)^ir | ] protocol | SPId | Ns | Nd)
    etc.

   This keying material (whether with PFS or without) MUST be used with
   the negotiated SA.  In the case of an ESP SA needing two keys for
   encryption and authentication, the encryption key is taken from the
   first bytes of KEYMAT and the authentication key is taken from the
   next bytes.

4.2 Generating Keying Material for IKE-SAs from a create-child exchange

   The create-child exchange can be used to re-key an existing IKE-SA
   (see section 2.8). When used for this purpose the create-child
   exchange MUST be done with the PFS option. New Initiator and
   Responder cookies are supplied in the SPI fields. The TS payloads are
   omitted when rekeying an IKE-SA.  SKEYSEED for the new IKE-SA is
   computed using SKEYSEED_d from the existing IKE-SA as follows:

       SKEYSEED = prf(SKEYSEED_d (old), g(p2)^ir | 0 | CKY-I | CKY-R
                                                 | Ni | Nr)

   where g(p2)^ir is the shared secret from the ephemeral Diffie-Hellman
   exchange of this phase 2 exchange, CKY-I is the 8-byte "SPI" from the
   SA payload in the CREATE_CHILD_SA request, CKY-R is the 8-byte "SPI"
   from the SA payload in the CREATE_CHILD_SA response, and Ni and Nr
   are the two nonces stripped of any headers. "0" is a single byte
   containing the value zero (the protocol ID of IKE).

   SKEYSEED_d, SKEYSEED_a, and SKEYSEED_e are computed from SKEYSEED as
   specified in section 3.1.

5 Informational (Phase 2) Exchange

   At various points during an IKE-SA, peers may desire to convey
   control messages to each other regarding errors or notifications of
   certain events. To accomplish this IKE defines a (reliable)
   Informational exchange.  Usually Informational exchanges happen
   during phase 2 and are cryptographically protected with the IKE
   exchange.
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   Control messages that pertain to an IKE-SA MUST be sent under that
   IKE-SA. Control messages that pertain to Child-SAs MUST be sent under
   the protection of the IKE-SA which generated them.

   There are two cases in which there is no IKE-SA to protect the
   information. One is in the response to an IKE_SA_init_request to
   request a cookie or to refuse the SA proposal. This would be conveyed
   in a Notify payload of the IKE_SA_init_response.

   The other case in which there is no IKE-SA to protect the information
   is when a packet is received with an unknown SPI.  In that case the
   notification of this condition will be sent in an informational
   exchange that is cryptographically unprotected.

   Messages in an Informational Exchange contain zero or more
   Notification or Delete payloads. The Recipient of an Informational
   Exchange request MUST send some response (else the Sender will assume
   the message was lost in the network and will retransmit it). That
   response can be a message with no payloads. Actually, the request
   message in an Informational Exchange can also contain no payloads.
   This is the expected way an endpoint can ask the other endpoint to
   verify that it is alive.

   ESP, AH, and IPcomp SAs always exist in pairs, with one SA in each
   direction. When an SA is closed, both members of the pair MUST be
   closed. When SAs are nested, as when data is encapsulated first with
   IPcomp, then with ESP, and finally with AH between the same pair of
   endpoints, all of the SAs (up to six) must be deleted together. To
   delete an SA, an Informational Exchange with one or more delete
   payloads is sent listing the SPIs (as known to the recipient) of the
   SAs to be deleted. The recipient MUST close the designated SAs.
   Normally, the reply in the Informational Exchange will contain delete
   payloads for the paired SAs going in the other direction. There is
   one exception.  If by chance both ends of a set of SAs independently
   decide to close them, each may send a delete payload and the two
   requests may cross in the network. If a node receives a delete
   request for SAs that it has already issued a delete request for, it
   MUST delete the incoming SAs while processing the request and the
   outgoing SAs while processing the response. In that case, the
   responses MUST NOT include delete payloads for the deleted SAs, since
   that would result in duplicate deletion and could in theory delete
   the wrong SA.

   A node SHOULD regard half open connections as anomalous and audit
   their existence should they persist. Note that this specification
   nowhere specifies time periods, so it is up to individual endpoints
   to decide how long to wait. A node MAY refuse to accept incoming data
   on half open connections but MUST NOT unilaterally close them and
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   reuse the SPIs. If connection state becomes sufficiently messed up, a
   node MAY close the IKE-SA which will implicitly close all SAs
   negotiated under it. It can then rebuild the SA's it needs on a clean
   base under a new IKE-SA.

   The Informational Exchange is defined as:

       Initiator                        Responder
      -----------                      -----------
       HDR*, N, ..., D, ...    -->
                               <--      HDR*, N, ..., D, ...

   The processing of an Informational Exchange is determined by its
   component payloads.

6 Error Handling

   There are many kinds of errors that can occur during IKE processing.
   If a request is received that is badly formatted or unacceptable for
   reasons of policy (e.g. no matching cryptographic algorithms), the
   response MUST contain a Notify payload indicating the error. If an
   error occurs outside the context of an IKE request (e.g. the node is
   getting ESP messages on a non-existent SPI), the node SHOULD initiate
   an Informational Exchange with a Notify payload describing the
   problem.

   Errors that occur before a cryptographically protected IKE-SA is
   established must be handled very carefully. There is a trade-off
   between wanting to be helpful in diagnosing a problem and responding
   to it and wanting to avoid being a dupe in a denial of service attack
   based on forged messages.

   If a node receives a message on UDP port 500 outside the context of
   an IKE-SA (and not a request to start one), it may be the result of a
   recent crash. If the message is marked as a response, the node MAY
   audit the suspicious event but MUST NOT respond. If the message is
   marked as a request, the node MAY audit the suspicious event and MAY
   send a response. If a response is sent, the response MUST be sent to
   the IP address from whence it came with the IKE cookies reversed in
   the header and the Message ID copied. The response MUST NOT be
   cryptographically protected and MUST contain a notify payload
   indicating the nature of the problem.

   A node receiving such a message MUST NOT respond and MUST NOT change
   the state of any existing SAs. The message might be a forgery or
   might be a response the genuine correspondent was tricked into
   sending. A node SHOULD treat such a message (and also a network
   message like ICMP destination unreachable) as a hint that there might
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   be problems with SAs to that IP address and SHOULD initiate a
   liveness test for any such IKE-SA. An implementation SHOULD limit the
   frequency of such tests to avoid being tricked into participating in
   a denial of service attack.

   A node receiving a suspicious message from an IP address with which
   it has an IKE-SA MAY send an IKE notify payload in an IKE
   Informational exchange over that SA. The recipient MUST NOT change
   the state of any SA's as a result but SHOULD audit the event to aid
   in diagnosing malfunctions. A node MUST limit the rate at which it
   will send messages in response to unprotected messages.

7 Header and Payload Formats

7.1 The IKE Header

   IKE messages use UDP port 500, with one IKE message per UDP datagram.
   Information from the UDP header is largely ignored except that the IP
   addresses from the headers are reversed and used for return packets.
   Each IKE message begins with the IKE header, denoted HDR in this
   memo. Following the header are one or more IKE payloads each
   identified by a "Next Payload" field in the preceding payload.
   Payloads are processed in the order in which they appear in an IKE
   message by invoking the appropriate processing routine according to
   the "Next Payload" field in the IKE header and subsequently according
   to the "Next Payload" field in the IKE payload itself until a "Next
   Payload" field of zero indicates that no payloads follow.

   The Recipient SPI in the header identifies an instance of an IKE
   security association. It is therefore possible for a single instance
   of IKE to multiplex distinct sessions with multiple peers.
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   The format of the IKE header is shown in Figure 1.
                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                          Recipient                            !
      !                        SPI (aka Cookie)                       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                            Sender                             !
      !                        SPI (aka Cookie)                       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !  Next Payload ! MjVer ! MnVer ! Exchange Type !     Flags     !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                          Message ID                           !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                            Length                             !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                     Initialization Vector                     ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 1:  IKE Header Format

      o  Recipient SPI (aka Cookie) (8 bytes) - A value chosen by the
         recipient to identify a unique IKE security association.
         [NOTE: this is a deviation from ISAKMP and IKEv1, where the
         cookies were always sent with the Initiator of the IKE-SA's
         cookie first and the Responder's second. See section 2.6.]

      o  Sender SPI (aka Cookie) (8 bytes) - A value chosen by the
         sender to identify a unique IKE security association.

      o  Next Payload (1 byte) - Indicates the type of payload that
         immediately follows the header. The format and value of each
         payload is defined below.

      o  Major Version (4 bits) - indicates the major version of the IKE
         protocol in use.  Implementations based on this version of IKE
         MUST set the Major Version to 2. Implementations based on
         previous versions of IKE and ISAKMP MUST set the Major Version
         to 1. Implementations based on this version of IKE MUST reject
         (or ignore) messages containing a version number greater than
         2.

      o  Minor Version (4 bits) - indicates the minor version of the
         IKE protocol in use.  Implementations based on this version of
         IKE MUST set the Minor Version to 0. They MUST ignore the minor
         version number of received messages.

      o  Exchange Type (1 byte) - indicates the type of exchange being
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         used.  This dictates the payloads sent in each message and
         message orderings in the exchanges.

                       Exchange Type      Value

                       RESERVED                 0
                       Reserved for ISAKMP      1 - 31
                       Reserved for IKEv1       32 - 33
                       Phase One                34
                       CREATE-CHILD-SA          35
                       Informational            36
                       Reserved for IKEv2+      37-239
                       Reserved for private use 240-255

      o  Flags (1 byte) - indicates specific options that are set for
         the message. Presence of options are indicated by the
         appropriate bit in the flags field being set. The bits are
         defined LSB first, so bit 0 would be the least significant
         bit of the Flags byte.

       --  E(ncryption) (bit 0 of Flags) - If set, all payloads
           following the header are encrypted and integrity
           protected using the algorithms negotiated during
           session establishment and a key derived during the key
           exchange portion of IKE. If not set, the payloads are
           not protected. All payloads MUST be protected if a key
           has been negotiated and any unprotected payload may
           only be used to establish a new session or indicate a
           problem.

       --  C(ommit) (bit 1 of Flags) - This bit is defined by
           ISAKMP but not used by IKEv2. Implementations of IKEv2
           MUST clear this bit when sending and SHOULD ignore it
           in incoming messages.

       --  A(uthentication Only) (bit 2 of Flags) - This bit is
           defined by ISAKMP but not used by IKEv2. Implementations
           of IKEv2 MUST clear this bit when sending and SHOULD
           ignore it in incoming messages.

       --  I(nitiator) (bit 3 of Flags) - This bit MUST be set in
           messages sent by the Initiator of an exchange and MUST
           be cleared in messages sent by the Responder. It is
           used by the recipient to determine whether the message
           number should be interpreted in the context of its
           initiating state or its responding state.

       --  V(ersion) (bit 4 of Flags) - This bit indicates that
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           the transmitter is capable of speaking a higher major
           version number of the protocol than the one indicated
           in the major version number field.

       --  R(eserved) (bits 5-7 of Flags) - These bit MUST be
           cleared in messages sent and received messages with
           these bits set MUST be rejected.

      o  Message ID (4 bytes) - Message identifier used to control
         retransmission of lost packets and matching of requests and
         responses. See section 2.2. In the first message of a Phase 1
         negotiation, the value MUST be set to 0. The response to that
         message MUST also have a Message ID of 0.

      o  Length (4 bytes) - Length of total message (header + payloads)
         in bytes. Session encryption can expand the size of an IKE
         message and that is reflected in the total length of the
         message.

      o  Initialization Vector (variable) - random bytes used to provide
         initialization to an encryption mode-- e.g.
         cipher block chaining (CBC) mode. This field MUST be present
         when the encryption bit is set in the flags field (see below)
         and MUST NOT be present otherwise. The length of the
         Initialization Vector is cipher and mode dependent.

7.2 Generic Payload Header

   Each IKE payload defined in sections 7.3 through 7.13 begins with a
   generic header, shown in Figure 2. Figures for each payload below
   will include the generic payload header but for brevity a repeat of
   the description of each field will be omitted. The construction and
   processing of the generic payload header is identical for each
   payload and will similarly be omitted.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                         Figure 2:  Generic Payload Header

   The Generic Payload Header fields are defined as follows:

   o  Next Payload (1 byte) - Identifier for the payload type of the
      next payload in the message.  If the current payload is the last
      in the message, then this field will be 0.  This field provides
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      a "chaining" capability whereby additional payloads can be
      added to a message by appending it to the end of the message
      and setting the "Next Payload" field of the preceding payload
      to indicate the new payload's type.

   o  Critical (1 bit) - MUST be set to zero if the sender wants
      the recipient to skip this payload if he does not
      understand the payload type code. MUST be set to one if the
      sender wants the recipient to reject this entire message
      if he does not understand this payload type. MUST be ignored
      by recipient if the recipient understands the payload type
      code. MUST be set to zero for payload types defined in this
      document. Note that the critical bit applies to the current
      payload rather than the "next" payload whose type code
      appears in the first byte.

   o  RESERVED (7 bits) - MUST be sent as zero; MUST be ignored.

   o  Payload Length (2 bytes) - Length in bytes of the current
      payload, including the generic payload header.

7.3 Security Association Payload

   The Security Association Payload, denoted SA in this memo, is used to
   negotiate attributes of a security association. Assembly of Security
   Association Payloads requires great peace of mind. An SA may contain
   multiple proposals. Each proposal may contain multiple protocols
   (where a protocol is IKE, ESP, AH, or IPCOMP), each protocol may
   contain multiple transforms, and each transform may contain multiple
   attributes. When parsing an SA, an implementation MUST check that the
   total Payload Length is consistent with the payload's internal
   lengths and counts.  Proposals, Transforms, and Attributes each have
   their own variable length encodings. They are nested such that the
   Payload Length of an SA includes the combined contents of the SA,
   Proposal, Transform, and Attribute information. The length of a
   Proposal includes the lengths of all Transforms and Attributes it
   contains. The length of a Transform includes the lengths of all
   Attributes it contains.

   The syntax of Security Associations, Proposals, Transforms, and
   Attributes is based on ISAKMP, however the semantics are somewhat
   different. The reason for the complexity and the hierarchy is to
   allow for multiple possible combinations of algorithms to be encoded
   in a single SA. Sometimes there is a choice of multiple algorithms,
   while other times there is a combination of algorithms.  For example,
   an Initiator might want to propose using (AH w/MD5 and ESP w/3DES) OR
   (ESP w/MD5 and 3DES).
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   One of the reasons the semantics of the SA payload has changed from
   ISAKMP and IKEv1 is to make the encodings more compact in common
   cases.

   The Proposal structure contains within it a Proposal # and a
   Protocol-id.  Each structure MUST have the same Proposal # as the
   previous one or one greater. The first Proposal MUST have a Proposal
   # of one. If two successive structures have the same Proposal number,
   it means that the proposal consists of the first structure AND the
   second. So a proposal of AH AND ESP would have two proposal
   structures, one for AH and one for ESP and both would have Proposal
   #1. A proposal of AH OR ESP would have two proposal structures, one
   for AH with proposal #1 and one for ESP with proposal #2.

   Each Proposal/Protocol structure is followed by one or more transform
   structures. The number of different transforms is generally
   determined by the Protocol. AH generally has a single transform: an
   integrity check algorithm. ESP generally has two: an encryption
   algorithm AND an integrity check algorithm. IKE generally has five
   transforms: a Diffie-Hellman group, an authentication algorithm, an
   integrity check algorithm, a PRF algorithm, and an encryption
   algorithm.  For each Protocol, the set of permissible transforms are
   assigned transform ID numbers, which appear in the header of each
   transform.

   If there are multiple transforms with the same Transform Type, the
   proposal is an OR of those transforms. If there are multiple
   Transforms with different Transform Types, the proposal is an AND of
   the different groups. For example, to propose ESP with (3DES or IDEA)
   and (HMAC-MD5 or HMAC-SHA), the ESP proposal would contain two
   Transform Type 1 candidates (one for 3DES and one for IDEA) and two
   Transform Type 2 candidates (one for HMAC-MD5 and one for HMAC-SHA).
   This effectively proposes four combinations of algorithms. If the
   Initiator wanted to propose only a subset of those - say (3DES and
   HMAC-MD5) or (IDEA and HMAC-SHA), there is no way to encode that as
   multiple transforms within a single Proposal/Protocol. Instead, the
   Initiator would have to construct two different Proposals, each with
   two transforms.

   A given transform MAY have one or more Attributes. Attributes are
   necessary when the transform can be used in more than one way, as
   when an encryption algorithm has a variable key size. The transform
   would specify the algorithm and the attribute would specify the key
   size. Most transforms do not have attributes.

   Note that the semantics of Transforms and Attributes are quite
   different than in IKEv1. In IKEv1, a single Transform carried
   multiple algorithms for a protocol with one carried in the Transform



Harkins Kaufman Perlman                                       ^L[Page 28]



INTERNET DRAFT                                             November 2001

   and the others carried in the Attributes.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                          <Proposals>                          ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 3:  Security Association Payload

      o  Proposals (variable) - one or more proposal substructures.

      The payload type for the Security Association Payload is one (1).

7.3.1 Proposal Substructure

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! 0 (last) or 2 !   RESERVED    !         Proposal Length       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Proposal #    !  Protocol-Id  !    SPI Size   !# of Transforms!
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ~                        SPI (variable)                         ~
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                        <Transforms>                           ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 4:  Proposal Substructure

      o  0 (last) or 2 (more) (1 byte) - Specifies whether this is the
         last Proposal Substructure in the SA. This syntax is inherited
         from ISAKMP, but is unnecessary because the last Proposal
         could be identified from the length of the SA. The value (2)
         corresponds to a Payload Type of Proposal, and the first
         four bytes of the Proposal structure are designed to look
         somewhat like the header of a Payload.

      o  RESERVED (1 byte) - MUST be sent as zero; MUST be ignored.

      o  Proposal Length (2 bytes) - Length of this proposal,
         including all transforms and attributes that follow.
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      o  Proposal # (1 byte) - When a proposal is made, the first
         proposal in an SA MUST be #1, and subsequent proposals
         MUST either be the same as the previous proposal (indicating
         an AND of the two proposals) or one more than the previous
         proposal (indicating an OR of the two proposals). When a
         proposal is accepted, all of the proposal numbers in the
         SA must be the same and must match the number on the
         proposal sent that was accepted.

      o  Protocol-Id (1 byte) - Specifies the protocol identifier
         for the current negotiation. During phase 1 negotiation
         this field MUST be zero (0). During phase 2 it will be the
         protocol of the SA being established as assigned by IANA,
         for example, 50 for ESP, 51 for AH, and 108 for IPComp.

      o  SPI Size (1 byte) - During phase 1 negotiation this field
         MUST be zero. During phase 2 negotiation it is equal to the
         size, in bytes, of the SPI of the corresponding protocol
         (4 for ESP and AH, 2 for IPcomp).

      o  # of Transforms (1 byte) - Specifies the number of
         transforms in this proposal.

      o  SPI (variable) - The sending entity's SPI. Even if the SPI
         Size is not a multiple of 4 bytes, there is no padding
         applied to the payload. When the SPI Size field is zero,
         this field is not present in the Security Association
         payload. This case occurs when negotiating the IKE-SA.

      o  Proposal # (1 byte) - Identifies the immediate proposal. The
         first proposal has the number of one (1) and each subsequent
         proposal has a number which is one greater than the last.

      o  Proposal Length (2 bytes) - Length in bytes of the proposal
         including all SA Attributes.

      o  SA Attributes (variable length) - This field contains SA
         attributes for the immediate transform. The SA Attributes
         MUST be represented using the Transform Attributes format
         described below.

      o  RESERVED (1 byte) - MUST be sent as zero; MUST be ignored.

      o  Transforms (variable) - one or more transform substructures.
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7.3.2 Transform Substructure

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! 0 (last) or 3 !   RESERVED    !        Transform Length       !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !Transform Type !   RESERVED2   !         Transform ID          !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                      Transform Attributes                     ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 5:  Transform Substructure

   o  0 (last) or 3 (more) (1 byte) - Specifies whether this is the
      last Transform Substructure in the Proposal. This syntax is
      inherited from ISAKMP, but is unnecessary because the last
      Proposal could be identified from the length of the SA. The
      value (3) corresponds to a Payload Type of Transform, and
      the first four bytes of the Transform structure are designed
      to look somewhat like the header of a Payload.

   o  RESERVED (1 byte) - MUST be sent as zero; MUST be ignored.

   o  Transform Length - The length (in bytes) of the Transform
      Substructure including Header and Attributes.

   o  Transform Type (1 byte) - The type of transform being specified
      in this transform. Different protocols support different
      transform types. For some protocols, some of the transforms
      may be optional.

   o  Transform-ID (2 bytes) - The specific instance of the transform
      type being proposed.
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   Transform Type Values

                              Transform    Used In
                                 Type
          Encryption Algorithm     1     (IKE and ESP)
          Pseudo-random Function   2     (IKE)
          Authentication Method    3     (IKE)
          Integrity Algorithm      4     (IKE, AH, and optional in ESP)
          Diffie-Hellman Group     5     (IKE and optional in AH and
          ESP)
          Compression              6     (IPcomp)
          Window Size              7     (IKE)

          values 8-240 are reserved to IANA. Values 241-255 are for
          private use among mutually consenting parties.

   For Transform Type 1 (Encryption Algorithm), defined Transform-IDs
   are:

          Name                     Number           Defined In
          RESERVED                    0
          ENCR_DES_IV64               1              (RFC1827)
          ENCR_DES                    2              (RFC2405)
          ENCR_3DES                   3              (RFC2451)
          ENCR_RC5                    4              (RFC2451)
          ENCR_IDEA                   5              (RFC2451)
          ENCR_CAST                   6              (RFC2451)
          ENCR_BLOWFISH               7              (RFC2451)
          ENCR_3IDEA                  8              (RFC2451)
          ENCR_DES_IV32               9
          ENCR_RC4                   10
          ENCR_NULL                  11              (RFC2410)
          ENCR_AES                   12

          values 12-240 are reserved to IANA. Values 241-255 are for
          private use among mutually consenting parties.

   For Transform Type 2 (Pseudo-random Function), defined Transform-IDs
   are:

          Name                     Number                 Defined In
          RESERVED                    0
          PRF_HMAC_MD5                1                   (RFC2104)
          PRF_HMAC_SHA                2                   (RFC2104)
          PRF_HMAC_TIGER              3                   (RFC2104)

          values 3-240 are reserved to IANA. Values 241-255 are for
          private use among mutually consenting parties.

https://datatracker.ietf.org/doc/html/rfc1827
https://datatracker.ietf.org/doc/html/rfc2405
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
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   For Transform Type 3 (Authentication Method), defined Transform-IDs
   are:

          Name                        Number              Defined In
          RESERVED                      0
          Methods in IKEv1              1 - 5             (RFC2409)
          Authenticated Diffie-Hellman  6                 (this memo)

          values 7-240 are reserved to IANA. Values 241-255 are for
          private use among mutually consenting parties.

   For Transform Type 4 (Integrity Algorithm), defined Transform-IDs
   are:

          Name                     Number                 Defined In
          RESERVED                   0
          AUTH_HMAC_MD5              1                     (RFC2403)
          AUTH_HMAC_SHA              2                     (RFC2404)
          AUTH_DES_MAC               3
          AUTH_KPDK_MD5              4                     (RFC1826)

   For Transform Type 5 (Diffie-Hellman Group), defined Transform-IDs
   are:

          Name                                Number
          RESERVED                           0
          Pre-defined (see section 8)        1 - 5
          RESERVED                           6 - 200
          MODP (exponentiation)              201  (w/attributes)
          ECP (elliptic curve over GF[P]     202  (w/attributes)
          EC2N (elliptic curve over GF[2^N]) 203  (w/attributes)

          values 6-200 are reserved to IANA for new MODP, ECP or EC2N
          groups. Values 204-255 are for private use among mutually
          consenting parties. Specification of values 201, 202 or 203
          allow peers to define a new Diffie-Hellman group in-line as
          part of the exchange. Private use of values 204-255 may entail
          complete definition of a group or may require attributes to
          accompany them. Attributes MUST NOT accompany groups using
          values between 6 and 200.

https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2403
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc1826
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   For Transform Type 6 (Compression), defined Transform-IDs are:

          Name                     Number                 Defined In
          RESERVED                   0
          IPCOMP_OUI                 1 (w/attributes)
          IPCOMP_DEFLATE             2
          (RFC2394)
          IPCOMP_LZS                 3
          (RFC2395)

          values 4-240 are reserved to IANA. Values 241-255 are for
          private use among mutually consenting parties.

   For Transform Type 7 (Window Size), the Transform-ID specifies the
   window size a peer is contracting to support to handle overlapping
   requests (see section 2.3).

7.3.3 Mandatory Transform Types

   The number and type of transforms that accompany an SA payload are
   dependent on the protocol in the SA itself. An SA payload proposing
   the establishment of an SA has the following mandatory and optional
   transform types. A compliant implementation MUST support all
   mandatory and optional types for each protocol it supports. Whether
   the optional types are present in a particular proposal depends
   solely on the discretion of the sender.

          Protocol  Mandatory Types   Optional Types
            IKE      1, 2, 3, 5, 7
            ESP            1              4, 5
            AH             4              5
            IPCOMP         6

7.3.4 Mandatory Transform-IDs

   Each transform type has corresponding transform IDs to specify the
   specific transform. Some transforms are mandatory to support and
   others are optional to support. The mandatory transform IDs for AH,
   ESP, and IPCOMP are left to their respective RFCs, RFC2402, RFC2406,
   and RFC2393. The transform IDs that are mandatory to support for
   IKEv2 are:

             Name                  TransType     Mandatory Transform-ID
          Encryption Algorithm         1            12 (ENCR_AES)
          Pseudo-Random Function       2             2 (PRF_HMAC_SHA)
          Authentication Method        3             6 (signed D-H)
          Diffie-Hellman Group         5             5 (1536 bit MODP)
          Window Size                  7             1

https://datatracker.ietf.org/doc/html/rfc2394
https://datatracker.ietf.org/doc/html/rfc2395
https://datatracker.ietf.org/doc/html/rfc2402
https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2393
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   All other transform-IDs for a given transform type are optional to
   support. While implementations MUST have a window size of at least 1
   they SHOULD support a window size of at least 10 and MAY support
   larger window sizes.

7.3.4 Transform Attributes

   Each transform in a Security Association payload may include
   attributes that modify or complete the specification of the
   transform. These attributes are type/value pairs and are defined in

Appendix A. For example, if an encryption algorithm has a variable
   length key, the key length to be used may be specified as an
   attribute.  Attributes can have a value with a fixed two byte length
   or a variable length value. For the latter the attribute is the form
   of type/length/value.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !A!       Attribute Type        !    AF=0  Attribute Length     !
      !F!                             !    AF=1  Attribute Value      !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                   AF=0  Attribute Value                       .
      !                   AF=1  Not Transmitted                       .
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                      Figure 6:  Data Attributes

      o  Attribute Type (2 bytes) - Unique identifier for each type of
         attribute.  The identifiers for IKE are defined in Appendix A.

         The most significant bit of this field is the Attribute Format
         bit (AF). It indicates whether the data attributes follow the
         Type/Length/Value (TLV) format or a shortened Type/Value (TV)
         format.  If the AF bit is zero (0), then the Data Attributes
         are of the Type/Length/Value (TLV) form. If the AF bit is a
         one (1), then the Data Attributes are of the Type/Value form.

      o  Attribute Length (2 bytes) - Length in bytes of the Attribute
         Value.  When the AF bit is a one (1), the Attribute Value is
         only 2 bytes and the Attribute Length field is not present.

      o  Attribute Value (variable length) - Value of the Attribute
         associated with the Attribute Type.  If the AF bit is a
         zero (0), this field has a variable length defined by the
         Attribute Length field.  If the AF bit is a one (1), the
         Attribute Value has a length of 2 bytes.
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7.3.5 Attribute Negotiation

   During security association negotiation Initiators present offers to
   Responders. Responders MUST select a single complete set of
   parameters from the offers (or reject all offers if none are
   acceptable).  If there are multiple proposals, the Responder MUST
   choose a single proposal number and return all of the Proposal
   substructures with that Proposal number.  If there are multiple
   Transforms with the same type the Responder MUST choose a single one.
   Any attributes of a selected transform MUST be returned unmodified.
   The Initiator of an exchange MUST check that the accepted offer is
   consistent with one of its proposals, and if not that response MUST
   be rejected.

   Negotiating Diffie-Hellman groups presents some special challenges.
   Diffie-Hellman groups are specified either using a defined group
   description (section 5) or by defining all attributes of a group (see

Appendix A) in an IKE policy offer. Group attributes, such as group
   type or prime number MUST NOT be offered in conjunction with a
   previously defined group. SA offers include proposed attributes and a
   Diffie-Hellman public number (KE) in the same message. If the
   Initiator offers to use one of several Diffie-Hellman groups, it
   SHOULD pick the one the Responder is most likely to accept and
   include a KE corresponding to that group. If the guess turns out to
   be wrong, the Responder will indicate the correct group in the
   response and the Initiator SHOULD start over this time using a
   different group (see section 2.7).

   Implementation Note:

      Certain negotiable attributes can have ranges or could have
      multiple acceptable values. These are the Diffie-Hellman group and
      the key length of a variable key length symmetric cipher. To
      further interoperability and to support upgrading endpoints
      independently, implementers of this protocol SHOULD accept values
      which they deem to supply greater security. For instance if a peer
      is configured to accept a variable lengthed cipher with a key
      length of X bits and is offered that cipher with a larger key
      length an implementation SHOULD accept the offer.

      Support of this capability allows an implementation to express a
      concept of "at least" a certain level of security-- "a key length
      of _at least_ X bits for cipher foo".

7.4 Key Exchange Payload

   The Key Exchange Payload, denoted KE in this memo, is used to
   exchange Diffie-Hellman public numbers as part of a Diffie-Hellman
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   key exchange.  The Key Exchange Payload consists of the IKE generic
   header followed by the Diffie-Hellman public value itself.

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                       Key Exchange Data                       ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 7:  Key Exchange Payload Format

   A key exchange payload is constructed by copying one's Diffie-Hellman
   public value into the "Key Exchange Data" portion of the payload.
   The length of the Diffie-Hellman public value MUST be equal to the
   length of the prime modulus over which the exponentiation was
   performed, prepending zero bits to the value if necessary.

   A key exchange payload is processed by first checking whether the
   length of the key exchange data (the "Payload Length" from the
   generic header minus the size of the generic header) is equal to the
   length of the prime modulus over which the exponentiation was
   performed.

   The payload type for the Key Exchange payload is four (4).

7.5 Identification Payload

   The Identification Payload, denoted ID in this memo, allows peers to
   identify themselves to each other. In Phase 1, the ID Payload names
   the identity to be authenticated with the signature. In Phase 2, the
   ID Payload is optional and if present names an identity asserted to
   be responsible for this SA. An example use would be a shared computer
   opening an IKE-SA to a server and asserting the name of its logged in
   user for the Phase 2 SA. If missing, this defaults to the Phase 1
   identity.

   NOTE: In IKEv1, two ID payloads were used in each direction in Phase
   2 to hold Traffic Selector information for data passing over the SA.
   In IKEv2, this information is carried in Traffic Selector (TS)
   payloads (see section 7.13).

   The Identification Payload consists of the IKE generic header
   followed by identification fields as follows:
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !   ID Type     !                  RESERVED                     |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                   Identification Data                         ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 8:  Identification Payload Format

   o  ID Type (1 byte) - Specifies the type of Identification being
      used.

   o  RESERVED - MUST be sent as zero; MUST be ignored.

   o  Identification Data (variable length) - Value, as indicated by
      the Identification Type. The length of the Identification Data
      is computed from the size in the ID payload header.

   The payload type for the Identification Payload is five (5).

   The following table lists the assigned values for the Identification
   Type field, followed by a description of the Identification Data
   which follows:

      ID Type                           Value
      -------                           -----
      RESERVED                            0

      ID_IPV4_ADDR                        1

            A single four (4) byte IPv4 address.

      ID_FQDN                             2

            A fully-qualified domain name string.  An example of a
            ID_FQDN is, "lounge.org".  The string MUST not contain any
            terminators (e.g. NULL, CR, etc.).

      ID_USER_FQDN                        3

            A fully-qualified username string, An example of a
            ID_USER_FQDN is, "lizard@lounge.org".  The string MUST not
            contain any terminators.
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      ID_IPV6_ADDR                        5

            A single sixteen (16) byte IPv6 address.

      ID_DER_ASN1_DN                      9

            The binary DER encoding of an ASN.1 X.500 Distinguished Name
            [X.501].

      ID_DER_ASN1_GN                      10

            The binary DER encoding of an ASN.1 X.500 GeneralName
            [X.509].

      ID_KEY_ID                           11

            An opaque byte stream which may be used to pass vendor-
            specific information necessary to do certain proprietary
            forms of identification.

7.6 Certificate Payload

   The Certificate Payload, denoted CERT in this memo, provides a means
   to transport certificates or other certificate-related information
   via IKE. Certificate payloads SHOULD be included in an exchange if
   certificates are available to the sender.

   The Certificate Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Cert Encoding !                                               !
      +-+-+-+-+-+-+-+-+                                               !
      ~                       Certificate Data                        ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                Figure 9:  Certificate Payload Format

      o  Certificate Encoding (1 byte) - This field indicates the type
         of certificate or certificate-related information contained
         in the Certificate Data field.
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                 Certificate Encoding               Value
                 --------------------               -----
                 NONE                                 0
                 PKCS #7 wrapped X.509 certificate    1
                 PGP Certificate                      2
                 DNS Signed Key                       3
                 X.509 Certificate - Signature        4
                 X.509 Certificate - Key Exchange     5
                 Kerberos Tokens                      6
                 Certificate Revocation List (CRL)    7
                 Authority Revocation List (ARL)      8
                 SPKI Certificate                     9
                 X.509 Certificate - Attribute       10
                 RESERVED                          11 - 255

      o  Certificate Data (variable length) - Actual encoding of
         certificate data.  The type of certificate is indicated
         by the Certificate Encoding field.

   The payload type for the Certificate Payload is six (6).

7.7 Certificate Request Payload

   The Certificate Request Payload, denoted CERTREQ in this memo,
   provides a means to request preferred certificates via IKE and can
   appear in the first, second, or third message of Phase 1.
   Certificate Request payloads SHOULD be included in an exchange
   whenever the peer may have multiple certificates, some of which might
   be trusted while others are not.  If multiple root CA's are trusted,
   then multiple Certificate Request payloads SHOULD be transmitted.

   The Certificate Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Cert Encoding !                                               !
      +-+-+-+-+-+-+-+-+                                               !
      ~                    Certification Authority                    ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

            Figure 10:  Certificate Request Payload Format

   o  Certificate Encoding (1 byte) - Contains an encoding of the type
      of certificate requested.  Acceptable values are listed in
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section 7.6.

   o  Certification Authority (variable length) - Contains an encoding
      of an acceptable certification authority for the type of
      certificate requested.

      The payload type for the Certificate Request Payload is seven (7).

   The Certificate Request Payload is constructed by setting the "Cert
   Encoding" field to be the type of certificate being desired and the
   "Certification Authority" field to a proper encoding of a
   certification authority for the specified certificate. For example,
   for an X.509 certificate this field would contain the Distinguished
   Name encoding of the Issuer Name of an X.509 certification authority
   acceptable to the sender of this payload.

   The Certificate Request Payload is processed by inspecting the "Cert
   Encoding" field to determine whether the processor has any
   certificates of this type. If so the "Certification Authority" field
   is inspected to determine if the processor has any certificates which
   can be validated up to the specified certification authority. This
   can be a chain of certificates. If a certificate exists which
   satisfies the criteria specified in the Certificate Request Payload
   it MUST be sent back to the certificate requestor; if a certificate
   chain exists which goes back to the certification authority specified
   in the request the entire chain MUST be sent back to the certificate
   requestor. If no certificates exist then no further processing is
   performed-- this is not an error condition of the protocol.

7.8 Authentication Payload

   The Authentication Payload, denoted AUTH in this memo, contains data
   used for authentication purposes. The only authentication method
   defined in this memo is digital signatures and therefore the contents
   of this payload when used with this memo will be the output generated
   by a digital signature function.

   The Authentication Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                      Authentication Data                      ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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                 Figure 11:  Authentication Payload Format

   o  Authentication Data (variable length) - Data that results from
      applying the digital signature function to the IKE state
      (see section 3).

      The payload type for the Authentication Payload is nine (9).

   The Authentication Payload is constructed by computing a digital
   signature over the concatentation of the two IKE messages in the
   initial unprotected IKE-SA-INIT exchange and placing the result in
   the "Authentication Data" portion of the payload.  The signature MUST
   be a PKCS#1 encoded signature using the cryptographic hash and
   signature algorithms chosen by the signer.  The algorithms used by
   the two ends MAY be different.  The payload length is the size of the
   generic header plus the size of the "Authentication Data" portion of
   the payload which depends on the specific digital signature algorithm
   being used.

   The Authentication Payload is processed by extracting the
   "Authentication Data" from the payload and verifying it according to
   the specific digital signature being used. If authentication fails a
   NOTIFY Error message of AUTHENTICATION-FAILED MUST be sent back to
   the peer and the connection closed.

7.9 Nonce Payload

   The Nonce Payload, denoted Ni and Nr in this memo for the Initiator's
   and Responder's nonce respectively, contains random data used to
   guarantee liveness during an exchange and protect against replay
   attacks.

   The Nonce Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                            Nonce Data                         ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                   Figure 12:  Nonce Payload Format

   o  Nonce Data (variable length) - Contains the random data generated
      by the transmitting entity.
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      The payload type for the Nonce Payload is ten (10).

   The Nonce Payload is constructed by computing a pseudo-random value
   and copying it into the "Nonce Data" field. The size of a Nonce in
   this memo must be between eight (8) and two-hundred fifty-six (256)
   bytes inclusive.

7.10 Notify Payload

   The Notify Payload, denoted NOTIFY in this memo, is used to transmit
   informational data, such as error conditions and state transitions to
   an IKE peer. A Notify Payload may appear in a response message
   (usually specifying why a request was rejected), or in an
   Informational Exchange (to report an error not in an IKE request).

   The Notify Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !  Protocol-ID  !   SPI Size    !      Notify Message Type      !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                Security Parameter Index (SPI)                 ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                       Notification Data                       ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 13:  Notification Payload Format

   o  Protocol-Id (1 byte) - Specifies the protocol about which
      this notification is being sent. For phase 1 notifications,
      this field MUST be zero (0). For phase 2 notifications
      concerning IPsec SAs this field will contain an IPsec
      protocol (either ESP, AH, or IPcomp). For notifications
      for which no protocol ID is relevant, this field MUST be
      sent as zero and MUST be ignored.

   o  SPI Size (1 byte) - Length in bytes of the SPI as defined by
      the Protocol-Id or zero if no SPI is applicable.  For phase 1
      notification concerning the IKE-SA, the SPI Size MUST be zero.

   o  Notify Message Type (2 bytes) - Specifies the type of
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      notification message.

   o  SPI (variable length) - Security Parameter Index.

   o  Notification Data (variable length) - Informational or error data
      transmitted in addition to the Notify Message Type. Values for
      this field are message specific, see below.

      The payload type for the Notification Payload is eleven (11).

7.10.1 Notify Message Types

   Notification information can be error messages specifying why an SA
   could not be established.  It can also be status data that a process
   managing an SA database wishes to communicate with a peer process.
   For example, a secure front end or security gateway may use the
   Notify message to synchronize SA communication.  The table below
   lists the Notification messages and their corresponding values.

        NOTIFY MESSAGES - ERROR TYPES           Value
        -----------------------------           -----
        INVALID-PAYLOAD-TYPE                      1

            Only sent if the payload has the "critical" bit set.
            Notification Data contains the one byte payload type.

        INVALID-COOKIE                            4

            Indicates an IKE message was received with an unrecognized
            destination cookie. This usually indicates that the
            recipient has rebooted and forgotten the existence of an
            IKE-SA.

        INVALID-MAJOR-VERSION                     5

            Indicates the recipient cannot handle the version of IKE
            specified in the header. The closest version number that the
            recipient can support will be in the reply header.

        INVALID-EXCHANGE-TYPE                     7

            Notification Data contains the one byte Exchange Type.

        INVALID-FLAGS                             8

            Notification Data contains one byte with the unacceptable
            flag bits set.
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        INVALID-MESSAGE-ID                        9

            Sent when either an IKE MESSAGE-ID more that ten greater
            than the highest acknowledged MESSAGE-ID. This Notify MUST
            NOT be sent in a response; the invalid request MUST NOT be
            acknowledged.  Instead, inform the other side by initiating
            an Informational exchange with Notification data containing
            the four byte invalid MESSAGE-ID.

        INVALID-PROTOCOL-ID                      10

            Notification Data contains the one byte invalid protocol ID.

        INVALID-SPI                              11

            MAY be sent in an IKE Informational Exchange when a node
            receives an ESP or AH packet with an invalid SPI.  address
            as the source address in the invalid packet. This usually
            indicates a node has rebooted and forgotten an SA.  This
            Informational Message is sent outside the context of an IKE-
            SA, and therefore should only be used by the recipient as a
            "hint" that something might be wrong (because it could
            easily be forged).

        INVALID-TRANSFORM-ID                     12

            Notification Data contains the one byte invalid transform
            ID.

        ATTRIBUTES-NOT-SUPPORTED                 13

            The "Notification Data" for this type are the attribute or
            attributes that are not supported.

        NO-PROPOSAL-CHOSEN                       14

        BAD-PROPOSAL-SYNTAX                      15

        PAYLOAD-MALFORMED                        16

        INVALID-KEY-INFORMATION                  17

            The KE field is the wrong length. This can occur where there
            is no error if the Initiator guesses incorrectly which
            Diffie-Hellman group the Responder will accept.
            Notification data contains the Transform Substructure
            describing the chosen Diffie-Hellman group.
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        INVALID-ID-INFORMATION                   18

        INVALID-CERT-ENCODING                    19

            The "Notification Data" for this type are the "Cert
            Encoding" field from a Certificate Payload or Certificate
            Request Payload.

        INVALID-CERTIFICATE                      20

            The "Notification Data" for this type are the "Certificate
            Data" field from a Certificate Payload.

        CERT-TYPE-UNSUPPORTED                    21

            This is identical to the INVALID-CERT-ENCODING error.

        INVALID-CERT-AUTHORITY                   22

            The "Notification Data" for this type are the "Cert
            Encoding" field from a Certificate Payload or Certificate
            Request Payload.

        AUTHENTICATION-FAILED                    24

        INVALID-SIGNATURE                        25

        ADDRESS-NOTIFICATION                     26

            Don't understand.

        UNSUPPORTED-EXCHANGE-TYPE                29

            The "Notification Data" for this type are the Exchange Type
            field from the IKE header.

        UNEQUAL-PAYLOAD-LENGTHS                  30

            The "Notification Data" for this type are the entire message
            in which the unequal lengths were observed. Receipt of this
            notify MAY be logged for debugging purposes.

        UNSUPPORTED-NOTIFY-TYPE                  31

            The "Notification Data" for this type is the two byte Notify
            Type that was not supported.

        IKE-SA-INIT-REJECT                       32
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            This notification is sent in an IKE-SA-RESPONSE to request
            that the Initiator retry the request with the supplied
            cookie (and optionally the supplied Diffie-Hellman group).
            This is not really an error, but is processed like one in
            that it indicates that the connection request was rejected.
            The Notification Data, if present, contains the Transform
            Substructure describing the preferred Diffie-Hellman group.

        INVALID-KE-PAYLOAD                       33

            This error indicates that the KE payload does not match the
            chosen Diffie-Hellman group. It can occur legitimately in
            either Phase 1 or Phase 2 if the Initiator supports multiple
            Diffie-Hellman groups and incorrectly anticipates which one
            the Responder will choose.

        SINGLE-PAIR-REQUIRED                     34

            This error indicates that a Phase 2 SA request is
            unacceptable because the Responder requires a separate SA
            for each source / destination address pair. The Initiator is
            expected to respond by requesting an SA for only the
            specific traffic he is trying to forward.

        RESERVED - Errors                     34 - 8191

        Private Use - Errors                8192 - 16383

        NOTIFY MESSAGES - STATUS TYPES           Value
        ------------------------------           -----

        RESERVED                             16384 - 24577

        INITIAL-CONTACT                          24578

            This notification indicates that this IKE-SA is the only
            IKE-SA currently active between the authenticated
            identities. It MAY be sent when an IKE-SA is established
            after a crash, and the recipient MAY use this information to
            delete any other IKE-SA's it has to the same authenticated
            identity without waiting for a timeout.  This notification
            MUST NOT be sent by an entity that may be replicated (e.g. a
            roaming user's credentials where the user is allowed to
            connect to the corporate firewall from two remote systems at
            the same time).
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        RESERVED                             24578 - 40959

        Private Use - STATUS                 40960 - 65535

7.11 Delete Payload

   The Delete Payload, denoted DEL in this memo, contains a protocol-
   specific security association identifier that the sender has removed
   from its security association database and is, therefore, no longer
   valid.  Figure 14 shows the format of the Delete Payload. It is
   possible to send multiple SPIs in a Delete payload, however, each SPI
   MUST be for the same protocol. Mixing of Protocol Identifiers MUST
   NOT be performed with the Delete payload. It is permitted, however,
   to include multiple Delete payloads in a single Informational
   Exchange where each Delete payload lists SPIs for a different
   protocol.

   Deletion of the IKE-SA is indicated by a Protocol-Id of 0 (IKE) but
   no SPIs.  Deletion which is concerned with a Child-SA, such as ESP or
   AH, will contain the Protocol-Id of that protocol (e.g.  ESP, AH) and
   the SPI is the receiving entity's SPI(s).

   NOTE: What's the deal with IPcomp SAs. This mechanism is probably not
   appropriate for deleting them!!

   The Delete Payload is defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !  Protocol-Id  !   SPI Size    !           # of SPIs           !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~               Security Parameter Index(es) (SPI)              ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 14:  Delete Payload Format

   o  Protocol-Id (1 byte) - Must be zero for an IKE-SA, [] for
      ESP, [] for AH, and [] for IPcomp.

   o  SPI Size (1 byte) - Length in bytes of the SPI as defined by
      the Protocol-Id.  Zero for IKE (SPI is in message header),
      four for AH and ESP, two for IPcomp.
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   o  # of SPIs (2 bytes) - The number of SPIs contained in the Delete
      payload.  The size of each SPI is defined by the SPI Size field.

   o  Security Parameter Index(es) (variable length) - Identifies the
      specific security association(s) to delete.
      The length of this field is
      determined by the SPI Size and # of SPIs fields.

      The payload type for the Delete Payload is twelve (12).

7.12 Vendor ID Payload

   The Vendor ID Payload contains a vendor defined constant.  The
   constant is used by vendors to identify and recognize remote
   instances of their implementations.  This mechanism allows a vendor
   to experiment with new features while maintaining backwards
   compatibility.

   The Vendor ID payload is not an announcement from the sender that it
   will send private payload types but rather an announcement of the
   sort of private payloads it is willing to accept. The implementation
   sending the Vendor ID MUST not make any assumptions about private
   payloads that it may send unless a Vendor ID of like stature is
   received as well.  Multiple Vendor ID payloads MAY be sent. An
   implementation is NOT REQUIRED to send any Vendor ID payload at all.

   A Vendor ID payload may be sent as part of any message.  Reception of
   a familiar Vendor ID payload allows an implementation to make use of
   Private USE numbers described throughout this memo-- private
   payloads, private exchanges, private notifications, etc. Unfamiliar
   Vendor ID's MUST be ignored.

   Writers of Internet-Drafts who wish to extend this protocol MUST
   define a Vendor ID payload to announce the ability to implement the
   extension in the Internet-Draft. It is expected that Internet-Drafts
   which gain acceptance and are standardized will be given "magic
   numbers" out of the Future Use range by IANA and the requirement to
   use a Vendor ID will go away.
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   The Vendor ID Payload fields are defined as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                        Vendor ID (VID)                        ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                 Figure 15:  Vendor ID Payload Format

   o  Vendor ID (variable length) - It is the responsibility of
      the person choosing the Vendor ID to assure its uniqueness
      in spite of the absence of any central registry for IDs.
      Good practice is to include a company name, a person name
      or some such. If you want to show off, you might include
      the latitude and longitude and time where you were when
      you chose the ID and some random input. A message digest
      of a long unique string is preferable to the long unique
      string itself.

      The payload type for the Vendor ID Payload is thirteen (13).

7.13 Traffic Selector Payload

   The Traffic Selector Payload, denoted TS in this memo, allows peers
   to identify packet flows for processing by IPsec security services.
   The Traffic Selector Payload consists of the IKE generic header
   followed by selector information fields as follows:

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Next Payload  !C!  RESERVED   !         Payload Length        !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      ! Number of TSs !                 RESERVED                      !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                    <Traffic Selectors>                        ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

               Figure 16:  Traffic Selectors Payload Format
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   o  Number of TSs (1 byte) - Number of traffic selectors
      being provided.

   o  RESERVED - This field MUST be sent as zero and MUST be ignored.

   o  Traffic Selectors (variable length) - one or more traffic
      selector substructures.

   The length of the Traffic Selector payload includes the TS header and
   all the traffic selector substructures.
   The payload type for the Traffic Selector payload is fourteen (14).

7.13.1 Traffic Selector Substructure

                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !   TS Type     !  Protocol ID  |       Selector Length         |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |           Start-Port          |           End-Port            |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      !                                                               !
      ~                   Address Selector Data                       ~
      !                                                               !
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                  Figure 17: Traffic Selector Substructure

   o  TS Type (one byte) - Specifies the type of traffic selector.

   o  Protocol ID (1 byte) - Value specifying an associated IP
      protocol ID (e.g. UDP/TCP). A value of zero means that the
      Protocol ID is not relevant to this traffic selector--
      the SA can carry all protocols.

   o  Selector Length - Specifies the length of this Traffic
      Selector Substructure including the header.

   o  Start-Port (2 bytes) - Value specifying the smallest port
      number allowed by this Traffic Selector. For protocols for
      which port is undefined, or if all ports are allowed by
      this Traffic Selector, this field MUST be zero.

   o  End-Port (2 bytes) - Value specifying the largest port
      number allowed by this Traffic Selector. For protocols for
      which port is undefined, or it all ports are allowed by
      this Traffic Selector, this field MUST be 65535.
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   o  Address Selector Data - a specification of one or more
      addresses included in this Traffic Selector with format
      determined by TS type.

   The following table lists the assigned values for the Traffic
   Selector Type field and the corresponding Address Selector Data.

      TS Type                           Value
      -------                           -----
      RESERVED                            0

      TS_IPV4_ADDR                        1

            A four (4) byte IPv4 address

      TS_IPV4_ADDR_SUBNET                 4

            An IPv4 subnet represented by a pair of four (4) byte
            values.  The first value is an IPv4 address.  The second is
            an IPv4 network mask.  Note that ones (1s) in the network
            mask indicate that the corresponding bit in the address is
            fixed, while zeros (0s) indicate a "wildcard" bit.

      TS_IPV6_ADDR                        5

            A sixteen (16) byte IPv6 address

      TS_IPV6_ADDR_SUBNET                 6

            An IPv6 subnet represented by a pair sixteen (16) byte
            values.  The first value is an IPv6 address.  The second is
            an IPv6 network mask.  Note that ones (1s) in the network
            mask indicate that the corresponding bit in the address is
            fixed, while zeros (0s) indicate a "wildcard" bit.

      TS_IPV4_ADDR_RANGE                  7

            A range of IPv4 addresses, represented by two four (4) byte
            values.  The first value is the beginning IPv4 address
            (inclusive) and the second value is the ending IPv4 address
            (inclusive). All addresses falling between the two specified
            addresses are considered to be within the list.

      TS_IPV6_ADDR_RANGE                  8

            A range of IPv6 addresses, represented by two sixteen (16)
            byte values.  The first value is the beginning IPv6 address
            (inclusive) and the second value is the ending IPv6 address
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            (inclusive). All addresses falling between the two specified
            addresses are considered to be within the list.

7.14 Other Payload Types

   Payload type values 15-127 are reserved to IANA for future assignment
   in IKEv2 (see section 10). Payload type values 128-255 are for
   private use among mutually consenting parties.

8 Diffie-Hellman Groups

   There are 5 groups different Diffie-Hellman groups defined for use in
   IKE. These groups were generated by Richard Schroeppel at the
   University of Arizona. Properties of these primes are described in
   [Orm96].

   The strength supplied by group one may not be sufficient for the
   mandatory-to-implement encryption algorithm and is here for historic
   reasons.

8.1 First Group

   IKE implementations MAY support a MODP group with the following prime
   and generator. This group is assigned id 1 (one).

   The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 }
   Its hexadecimal value is:

        FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
        8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
        302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
        A63A3620 FFFFFFFF FFFFFFFF

   The generator is: 2.

8.2 Second Group

   IKE implementations SHOULD support a MODP group with the following
   prime and generator. This group is assigned id 2 (two).
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   The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
   Its hexadecimal value is:

        FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
        8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
        302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
        A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
        49286651 ECE65381 FFFFFFFF FFFFFFFF

   The generator is 2 (decimal)

8.3 Third Group

   IKE implementations SHOULD support a EC2N group with the following
   characteristics. This group is assigned id 3 (three). The curve is
   based on the Galois Field GF[2^155]. The field size is 155. The
   irreducible polynomial for the field is:
      u^155 + u^62 + 1.
   The equation for the elliptic curve is:
      y^2 + xy = x^3 + ax^2 + b.

   Field Size:                         155
   Group Prime/Irreducible Polynomial:
                0x0800000000000000000000004000000000000001
   Group Generator One:                0x7b
   Group Curve A:                      0x0
   Group Curve B:                      0x07338f
   Group Order: 0x0800000000000000000057db5698537193aef944

   The data in the KE payload when using this group is the value x from
   the solution (x,y), the point on the curve chosen by taking the
   randomly chosen secret Ka and computing Ka*P, where * is the
   repetition of the group addition and double operations, P is the
   curve point with x coordinate equal to generator 1 and the y
   coordinate determined from the defining equation. The equation of
   curve is implicitly known by the Group Type and the A and B
   coefficients. There are two possible values for the y coordinate;
   either one can be used successfully (the two parties need not agree
   on the selection).

8.4 Fourth Group

   IKE implementations SHOULD support a EC2N group with the following
   characteristics. This group is assigned id 4 (four). The curve is
   based on the Galois Field GF[2^185]. The field size is 185. The
   irreducible polynomial for the field is:
      u^185 + u^69 + 1.
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   The  equation for the elliptic curve is:
      y^2 + xy = x^3 + ax^2 + b.

   Field Size:                         185
   Group Prime/Irreducible Polynomial:
                0x020000000000000000000000000000200000000000000001
   Group Generator One:                0x18
   Group Curve A:                      0x0
   Group Curve B:                      0x1ee9
   Group Order: 0x01ffffffffffffffffffffffdbf2f889b73e484175f94ebc

   The data in the KE payload when using this group will be identical to
   that as when using Oakley Group 3 (three).

8.5 Fifth Group

   IKE implementations MUST support a MODP group with the following
   prime and generator. This group is assigned id 5 (five).

   The prime is 2^1536 - 2^1472 - 1 + 2^64 * {[2^1406 pi] + 741804}.
   Its hexadecimal value is

        FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
        8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
        302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
        A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
        49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
        FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
        670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

   The generator is 2.

9 Security Considerations

   Repeated re-keying using Phase 2 without PFS can consume the entropy
   of the Diffie-Hellman shared secret. Implementers should take note of
   this fact and set a limit on Phase 2 Exchanges between
   exponentiations.  This memo does not prescribe such a limit.

   The strength of a key derived from a Diffie-Hellman exchange using
   any of the groups defined here depends on the inherent strength of
   the group, the size of the exponent used, and the entropy provided by
   the random number generator used. Due to these inputs it is difficult
   to determine the strength of a key for any of the defined groups. The
   default Diffie-Hellman group (number two) when used with a strong
   random number generator and an exponent no less than 160 bits is
   sufficient to use for 3DES.  Groups three through five provide
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   greater security. Group one is for historic purposes only and does
   not provide sufficient strength to the required cipher (although it
   is sufficient for use with DES, which is also for historic use only).
   Implementations should make note of these conservative estimates when
   establishing policy and negotiating security parameters.

   Note that these limitations are on the Diffie-Hellman groups
   themselves.  There is nothing in IKE which prohibits using stronger
   groups nor is there anything which will dilute the strength obtained
   from stronger groups. In fact, the extensible framework of IKE
   encourages the definition of more groups; use of elliptical curve
   groups will greatly increase strength using much smaller numbers.

   It is assumed that the Diffie-Hellman exponents in this exchange are
   erased from memory after use. In particular, these exponents MUST NOT
   be derived from long-lived secrets like the seed to a pseudo-random
   generator that is not erased after use.

   The security of this protocol is critically dependent on the
   randomness of the Diffie-Hellman exponents, which should be generated
   by a strong random or properly seeded pseudo-random source (see

RFC1715). While the protocol was designed to be secure even if the
   Nonces and other values specified as random are not strongly random,
   they should similarly be generated from a strong random source as
   part of a conservative design.

10 IANA Considerations

   This document contains many "magic numbers" to be maintained by the
   IANA.  This section explains the criteria to be used by the IANA to
   assign additional numbers in each of these lists.

10.1 Transform Types and Attribute Values

10.1.1 Attributes

   Transform attributes are uses to modify or complete the specification
   of a particular transform. Requests for new transform attributes MUST
   be accompanied by a standards-track or Informational RFC which
   defines the transform which it modifies or completes and the method
   in which it does so.

10.1.2 Encryption Algorithm Transform Type

   Values of the Encryption Algorithm define an encryption algorithm to
   use when called for in this document. Requests for assignment of new
   encryption algorithm values must be accompanied by a reference to a
   standards-track or informational RFC that describes how to use this

https://datatracker.ietf.org/doc/html/rfc1715
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   algorithm with ESP.

10.1.3 Pseudo-random function Transform Type

   Values for the pseudo-random function define which pseudo-random
   function is used in IKE for key generation and expansion. Requests
   for assignment of a new pseudo-random function MUST be accompanied by
   a reference to a standards-track or informational RFC describing this
   function.

10.1.4 Authentication Method Transform Type

   The only Authentication method defined in the memo is for digital
   signatures. Other methods of authentication are possible and MUST be
   accompanied by a standards-track or informational RFC which defines
   the following:

       - the cryptographic method of authentication.
       - content of the Authentication Data in the Authentication
       Payload.
       - new payloads, their construction and processing, if needed.
       - additions of payloads to any messages, if needed.

10.1.5 Diffie-Hellman Groups

   Values of the Diffie-Hellman Group Transform types define a group in
   which a Diffie-Hellman key exchange can be completed.  Requests for
   assignment of a new Diffie-Hellman group type MUST be accompanied by
   a reference to a standards-track or informational RFC which fully
   defines the group.

10.2 Exchange Types

   This memo defines three exchange types for use with IKEv2. Requests
   for assignment of new exchange types MUST be accompanied by a
   standards-track or informational RFC which defines the following:

          - the purpose of and need for the new exchange.
          - the payloads (mandatory and optional) that accompany
          messages in the exchange.
          - the phase of the exchange.
          - requirements the new exchange has on existing
          exchanges which have assigned numbers.

10.3 Payload Types

   Payloads are defined in this memo to convey information between
   peers. New payloads may be required when defining a new
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   authentication method or exchange. Requests for new payload types
   MUST be accompanied by a standards-track or informational RFC which
   defines the physical layout of the payload and the fields it
   contains. All payloads MUST use the same generic header defined in
   Figure 2.
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Appendix A

   Attribute Assigned Numbers

   Certain transforms negotiated in an SA payload can have associated
   attributes. Attribute types can be either Basic (B) or Variable-
   length (V). Encoding of these attributes is defined as Type/Value
   (Basic) and Type/Length/Value (Variable).  See section 7.3.3.

   Attributes described as basic MUST NOT be encoded as variable.
   Variable length attributes MUST NOT be encoded as basic even if their
   value can fit into two bytes. NOTE: This is a change from IKEv1,
   where increased flexibility may have simplified the composer of
   messages but certainly complicated the parser.

   Attribute Classes

          class                         value              type
      --------------------------------------------------------------
      RESERVED                           0-5
      Group Prime/Irreducible Polynomial  6                 V
      Group Generator One                 7                 V
      Group Generator Two                 8                 V
      Group Curve A                       9                 V
      Group Curve B                      10                 V
      RESERVED                          11-13
      Key Length                         14                 B
      Field Size                         15                 B
      Group Order                        16                 V
      Block Size                         17                 B

   values 0-5, 11-13, and 18-16383 are reserved to IANA. Values
   16384-32767 are for private use among mutually consenting parties.

   - Group Prime/Irreducible Polynomial

      The prime number of a MODP Diffie-Hellman group or the irreducible
      polynomial of an elliptic curve when specifying a private Diffie-
      Hellman group.

   - Generator One, Generator Two

      The X- and Y-coordinate of a point on an elliptic curve. When the
      Y-coordinate (generator two) is not given it can be computed with
      the X-coordinate and the definition of the curve.

   - Curve A, Curve B
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      Coefficients from the definition of an elliptic curve:

          y^2 + xy = x^3 + (curve A)x^2 + (curve B)

   - Key Length

      When using an Encryption Algorithm that has a variable length key,
      this attribute specifies the key length in bits. (MUST use network
      byte order). This attribute MUST NOT be used when the specified
      Encryption Algorithm uses a fixed length key.

   - Field Size

      The field size, in bits, of a Diffie-Hellman group.

   - Group Order

      The group order of an elliptical curve group. Note the length of
      this attribute depends on the field size.

   - Block Size

      The number of bits per block of a cipher with a variable block
      length.
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Appendix B: Cryptographic Protection of IKE Data

   With the exception of the IKE-SA-INIT-REQUEST, IKE-SA-INIT-RESPONSE,
   and Informational Exchange error notifications when no IKE-SA exists,
   all IKE messages are encrypted and integrity protected. The
   algorithms for encryption and integrity protection are negotiated
   during IKE-SA setup, and the keys are computed as specified in
   sections 3 and 4.2.

   The encryption and integrity protection algorithms are the same as
   those available to the ESP protocol, through their application is
   slightly different. Whereas in ESP the header that is integrity
   protected but not encrypted is a total of 8 bytes (SPI+Sequence #)
   plus the IV, in IKE it is the IKE Header which is 28 bytes plus the
   IV (see section 7.1).

   All other aspects of cryptographic processing (including IV
   insertion, padding, key derivation, trailer insertion) are as
   specified in [ESP] and its supporting algorithm documents. The Next
   Header byte in the encrypted ESP payload MUST be set to zero.

   NOTE: This is a change from IKEv1, which along with its companion
   specifications defined its own algorithms for padding, encryption,
   and integrity protection and its own codes for cryptographic
   algorithms. Since most IKE implementations will also include ESP
   implementations, this alternative was thought to simplify both the
   specification and the implementation, as well as limit the number of
   techniques in need of analysis for soundness.
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Expansion of SKEYSEED

   In some circumstances SKEYSEED_e may not be long enough to supply all
   the necessary keying material an algorithm requires. In this case the
   key is derived from feeding the results of the prf into itself,
   concatenating the results and taking the highest necessary bits.

   Consider a fictitious cipher AKULA which requires 320 bits of key and
   the prf used to generate SKEYSEED_e only generates 120 bits of
   material. The key for AKULA would be the first 320 bits of Ka where:

      Ka = K1 | K2 | K3

    and

      K1 = prf(SKEYSEED_e, 0)
      K2 = prf(SKEYSEED_e, K1)
      K3 = prf(SKEYSEED_e, K2)

   where 0 is represented by a single byte. Each result of the prf
   provides 120 bits of material for a total of 360 bits. AKULA would
   use the first 320 bits of that 360 bit string.
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