
INTERNET-DRAFT Charlie Kaufman, Editor
draft-ietf-ipsec-ikev2-13.txt
Obsoletes: 2407, 2408, 2409 March 22, 2004
Expires: September 2004

Internet Key Exchange (IKEv2) Protocol

Status of this Memo

 This document is an Internet-Draft and is subject to all provisions
 of Section 10 of RFC2026. Internet-Drafts are working documents of
 the Internet Engineering Task Force (IETF), its areas, and its
 working groups. Note that other groups may also distribute working
 documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This document is a submission by the IPSEC Working Group of the
 Internet Engineering Task Force (IETF). Comments should be submitted
 to the ipsec@lists.tislabs.com mailing list.

 Distribution of this memo is unlimited.

 This Internet-Draft expires in September 2004.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt
https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

 This document describes version 2 of the Internet Key Exchange (IKE)
 protocol. IKE is a component of IPsec used for performing mutual
 authentication and establishing and maintaining security
 associations.

 This version of the IKE specification combines the contents of what

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 were previously separate documents, including ISAKMP (RFC 2408), IKE
 (RFC 2409), the Internet DOI (RFC 2407), NAT Traversal, Legacy
 authentication, and remote address acquisition.

 Version 2 of IKE does not interoperate with version 1, but it has
 enough of the header format in common that both versions can
 unambiguously run over the same UDP port.

Table of Contents

1 Introduction...3
1.1 Usage Scenarios..5
1.2 The Initial Exchange.....................................7
1.3 The CREATE_CHILD_SA Exchange.............................9
1.4 The INFORMATIONAL Exchange..............................10
1.5 Informational Messages outside of an IKE_SA.............12
2 IKE Protocol Details and Variations.......................12
2.1 Use of Retransmission Timers............................12
2.2 Use of Sequence Numbers for Message ID..................13
2.3 Window Size for overlapping requests....................13
2.4 State Synchronization and Connection Timeouts...........14
2.5 Version Numbers and Forward Compatibility...............16
2.6 Cookies...17
2.7 Cryptographic Algorithm Negotiation.....................19
2.8 Rekeying..20
2.9 Traffic Selector Negotiation............................23
2.10 Nonces...25
2.11 Address and Port Agility...............................25
2.12 Reuse of Diffie-Hellman Exponentials...................25
2.13 Generating Keying Material.............................26
2.14 Generating Keying Material for the IKE_SA..............27
2.15 Authentication of the IKE_SA...........................28
2.16 Extended Authentication Protocol Methods...............29
2.17 Generating Keying Material for CHILD_SAs...............31
2.18 Rekeying IKE_SAs using a CREATE_CHILD_SA exchange......32
2.19 Requesting an internal address on a remote network.....32
2.20 Requesting a Peer's Version............................33
2.21 Error Handling...34
2.22 IPComp...35
2.23 NAT Traversal..36
2.24 ECN (Explicit Congestion Notification).................39
3 Header and Payload Formats................................39
3.1 The IKE Header..39
3.2 Generic Payload Header..................................42

https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2407

3.3 Security Association Payload............................43
3.4 Key Exchange Payload....................................53
3.5 Identification Payloads.................................54

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 2]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

3.6 Certificate Payload.....................................56
3.7 Certificate Request Payload.............................59
3.8 Authentication Payload..................................60
3.9 Nonce Payload...61
3.10 Notify Payload...62
3.11 Delete Payload...69
3.12 Vendor ID Payload......................................70
3.13 Traffic Selector Payload...............................71
3.14 Encrypted Payload......................................74
3.15 Configuration Payload..................................75
3.16 Extended Authentication Protocol (EAP) Payload.........80
4 Conformance Requirements..................................82
5 Security Considerations...................................84
6 IANA Considerations.......................................86
7 Acknowledgements..87
8 References..87
8.1 Normative References....................................87
8.2 Informative References..................................88
Appendix A: Summary of Changes from IKEv1...................92
Appendix B: Diffie-Hellman Groups...........................94

 Change History (To be removed from RFC).....................96
 Editor's Address...104
 Full Copyright Statement...................................104
 Intellectual Property Statement............................104

Requirements Terminology

 Keywords "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT" and
 "MAY" that appear in this document are to be interpreted as described
 in [Bra97].

 The term "Expert Review" is to be interpreted as defined in
 [RFC2434].

1 Introduction

 IP Security (IPsec) provides confidentiality, data integrity, access
 control, and data source authentication to IP datagrams. These
 services are provided by maintaining shared state between the source
 and the sink of an IP datagram. This state defines, among other
 things, the specific services provided to the datagram, which
 cryptographic algorithms will be used to provide the services, and
 the keys used as input to the cryptographic algorithms.

https://datatracker.ietf.org/doc/html/rfc2434

 Establishing this shared state in a manual fashion does not scale
 well. Therefore a protocol to establish this state dynamically is
 needed. This memo describes such a protocol-- the Internet Key
 Exchange (IKE). This is version 2 of IKE. Version 1 of IKE was

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 3]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 defined in RFCs 2407, 2408, and 2409. This single document is
 intended to replace all three of those RFCs.

 IKE performs mutual authentication between two parties and
 establishes an IKE security association that includes shared secret
 information that can be used to efficiently establish SAs for ESP
 [RFC2406] and/or AH [RFC2402] and a set of cryptographic algorithms
 to be used by the SAs to protect the traffic that they carry. In
 this document, the term "suite" or "cryptographic suite" refers to a
 complete set of algorithms used to protect an SA. An initiator
 proposes one or more suites by listing supported algorithms that can
 be combined into suites in a mix and match fashion. IKE can also
 negotiate use of IPComp [IPCOMP] in connection with an ESP and/or AH
 SA. We call the IKE SA an "IKE_SA". The SAs for ESP and/or AH that
 get set up through that IKE_SA we call "CHILD_SA"s.

 All IKE communications consist of pairs of messages: a request and a
 response. The pair is called an "exchange". We call the first
 messages establishing an IKE_SA IKE_SA_INIT and IKE_AUTH exchanges
 and subsequent IKE exchanges CREATE_CHILD_SA or INFORMATIONAL
 exchanges. In the common case, there is a single IKE_SA_INIT exchange
 and a single IKE_AUTH exchange (a total of four messages) to
 establish the IKE_SA and the first CHILD_SA. In exceptional cases,
 there may be more than one of each of these exchanges. In all cases,
 all IKE_SA_INIT exchanges MUST complete before any other exchange
 type, then all IKE_AUTH exchanges MUST complete, and following that
 any number of CREATE_CHILD_SA and INFORMATIONAL exchanges may occur
 in any order. In some scenarios, only a single CHILD_SA is needed
 between the IPsec endpoints and therefore there would be no
 additional exchanges. Subsequent exchanges MAY be used to establish
 additional CHILD_SAs between the same authenticated pair of endpoints
 and to perform housekeeping functions.

 IKE message flow always consists of a request followed by a response.
 It is the responsibility of the requester to ensure reliability. If
 the response is not received within a timeout interval, the requester
 needs to retransmit the request (or abandon the connection).

 The first request/response of an IKE session negotiates security
 parameters for the IKE_SA, sends nonces, and sends Diffie-Hellman
 values. We call the initial exchange IKE_SA_INIT (request and
 response).

https://datatracker.ietf.org/doc/html/rfc2406
https://datatracker.ietf.org/doc/html/rfc2402

 The second request/response, which we'll call IKE_AUTH transmits
 identities, proves knowledge of the secrets corresponding to the two
 identities, and sets up an SA for the first (and often only) AH
 and/or ESP CHILD_SA.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 4]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The types of subsequent exchanges are CREATE_CHILD_SA (which creates
 a CHILD_SA), and INFORMATIONAL (which deletes an SA, reports error
 conditions, or does other housekeeping). Every request requires a
 response. An INFORMATIONAL request with no payloads is commonly used
 as a check for liveness. These subsequent exchanges cannot be used
 until the initial exchanges have completed.

 In the description that follows, we assume that no errors occur.
 Modifications to the flow should errors occur are described in

section 2.21.

1.1 Usage Scenarios

 IKE is expected to be used to negotiate ESP and/or AH SAs in a number
 of different scenarios, each with its own special requirements.

1.1.1 Security Gateway to Security Gateway Tunnel

 +-+-+-+-+-+ +-+-+-+-+-+
 ! ! IPsec ! !
 Protected !Tunnel ! Tunnel !Tunnel ! Protected
 Subnet <-->!Endpoint !<---------->!Endpoint !<--> Subnet
 ! ! ! !
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 1: Security Gateway to Security Gateway Tunnel

 In this scenario, neither endpoint of the IP connection implements
 IPsec, but network nodes between them protect traffic for part of the
 way. Protection is transparent to the endpoints, and depends on
 ordinary routing to send packets through the tunnel endpoints for
 processing. Each endpoint would announce the set of addresses
 "behind" it, and packets would be sent in Tunnel Mode where the inner
 IP header would contain the IP addresses of the actual endpoints.

1.1.2 Endpoint to Endpoint Transport

 +-+-+-+-+-+ +-+-+-+-+-+
 ! ! IPsec ! !
 !Protected! Tunnel !Protected!

 !Endpoint !<-->!Endpoint !
 ! ! ! !
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 2: Endpoint to Endpoint

 In this scenario, both endpoints of the IP connection implement
 IPsec. These endpoints may implement application layer access

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 5]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 controls based on the authenticated identities of the participants.
 Transport mode will commonly be used with no inner IP header. If
 there is an inner IP header, the inner addresses will be the same as
 the outer addresses. A single pair of addresses will be negotiated
 for packets to be protected by this SA.

 It is possible in this scenario that one or both of the protected
 endpoints will be behind a network address translation (NAT) node, in
 which case the tunnelled packets will have to be UDP encapsulated so
 that port numbers in the UDP headers can be used to identify
 individual endpoints "behind" the NAT (see section 2.23).

1.1.3 Endpoint to Security Gateway Transport

 +-+-+-+-+-+ +-+-+-+-+-+
 ! ! IPsec ! ! Protected
 !Protected! Tunnel !Tunnel ! Subnet
 !Endpoint !<------------------------>!Endpoint !<--- and/or
 ! ! ! ! Internet
 +-+-+-+-+-+ +-+-+-+-+-+

 Figure 3: Endpoint to Security Gateway Tunnel

 In this scenario, a protected endpoint (typically a portable roaming
 computer) connects back to its corporate network through an IPsec
 protected tunnel. It might use this tunnel only to access information
 on the corporate network or it might tunnel all of its traffic back
 through the corporate network in order to take advantage of
 protection provided by a corporate firewall against Internet based
 attacks. In either case, the protected endpoint will want an IP
 address associated with the security gateway so that packets returned
 to it will go to the security gateway and be tunnelled back. This IP
 address may be static or may be dynamically allocated by the security
 gateway. In support of the latter case, IKEv2 includes a mechanism
 for the initiator to request an IP address owned by the security
 gateway for use for the duration of its SA.

 In this scenario, packets will use tunnel mode. On each packet from
 the protected endpoint, the outer IP header will contain the source
 IP address associated with its current location (i.e., the address
 that will get traffic routed to the endpoint directly) while the
 inner IP header will contain the source IP address assigned by the

 security gateway (i.e., the address that will get traffic routed to
 the security gateway for forwarding to the endpoint). The outer
 destination address will always be that of the security gateway,
 while the inner destination address will be the ultimate destination
 for the packet.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 6]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 In this scenario, it is possible that the protected endpoint will be
 behind a NAT. In that case, the IP address as seen by the security
 gateway will not be the same as the IP address sent by the protected
 endpoint, and packets will have to be UDP encapsulated in order to be
 routed properly.

1.1.4 Other Scenarios

 Other scenarios are possible, as are nested combinations of the
 above. One notable example combines aspects of 1.1.1 and 1.1.3. A
 subnet may make all external accesses through a remote security
 gateway using an IPsec tunnel, where the addresses on the subnet are
 routed to the security gateway by the rest of the Internet. An
 example would be someone's home network being virtually on the
 Internet with static IP addresses even though connectivity is
 provided by an ISP that assigns a single dynamically assigned IP
 address to the user's security gateway (where the static IP addresses
 and an IPsec relay is provided by a third party located elsewhere).

1.2 The Initial Exchanges

 Communication using IKE always begins with IKE_SA_INIT and IKE_AUTH
 exchanges (known in IKEv1 as Phase 1). These initial exchanges
 normally consist of four messages, though in some scenarios that
 number can grow. All communications using IKE consist of
 request/response pairs. We'll describe the base exchange first,
 followed by variations. The first pair of messages (IKE_SA_INIT)
 negotiate cryptographic algorithms, exchange nonces, and do a Diffie-
 Hellman exchange.

 The second pair of messages (IKE_AUTH) authenticate the previous
 messages, exchange identities and certificates, and establish the
 first CHILD_SA. Parts of these messages are encrypted and integrity
 protected with keys established through the IKE_SA_INIT exchange, so
 the identities are hidden from eavesdroppers and all fields in all
 the messages are authenticated.

 In the following description, the payloads contained in the message
 are indicated by names such as SA. The details of the contents of
 each payload are described later. Payloads which may optionally
 appear will be shown in brackets, such as [CERTREQ], would indicate
 that optionally a certificate request payload can be included.

 To simplify the descriptions that follow by allowing the use of
 gender specific personal pronouns, the initiator is assumed to be
 named "Alice" and the responder "Bob".

 The initial exchanges are as follows:

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 7]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

 HDR contains the SPIs, version numbers, and flags of various sorts.
 The SAi1 payload states the cryptographic algorithms the Initiator
 supports for the IKE_SA. The KE payload sends the Initiator's
 Diffie-Hellman value. Ni is the Initiator's nonce.

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

 The Responder chooses a cryptographic suite from the Initiator's
 offered choices and expresses that choice in the SAr1 payload,
 completes the Diffie-Hellman exchange with the KEr payload, and sends
 its nonce in the Nr payload.

 At this point in the negotiation each party can generate SKEYSEED,
 from which all keys are derived for that IKE_SA. All but the headers
 of all the messages that follow are encrypted and integrity
 protected. The keys used for the encryption and integrity protection
 are derived from SKEYSEED and are known as SK_e (encryption) and SK_a
 (authentication, a.k.a. integrity protection). A separate SK_e and
 SK_a is computed for each direction. In addition to the keys SK_e
 and SK_a derived from the DH value for protection of the IKE_SA,
 another quantity SK_d is derived and used for derivation of further
 keying material for CHILD_SAs. The notation SK { ... } indicates
 that these payloads are encrypted and integrity protected using that
 direction's SK_e and SK_a.

 HDR, SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

 The Initiator asserts her identity with the IDi payload, proves
 knowledge of the secret corresponding to IDi and integrity protects
 the contents of the first message using the AUTH payload (see section

2.15). She might also send her certificate(s) in CERT payload(s) and
 a list of her trust anchors in CERTREQ payload(s). If any CERT
 payloads are included, the first certificate provided MUST contain
 the public key used to verify the AUTH field. The optional payload
 IDr enables Alice to specify which of Bob's identities she wants to
 talk to. This is useful when Bob is hosting multiple identities at
 the same IP address. She begins negotiation of a CHILD_SA using the

 SAi2 payload. The final fields (starting with SAi2) are described in
 the description of the CREATE_CHILD_SA exchange.

 <-- HDR, SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 8]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The Responder asserts his identity with the IDr payload, optionally
 sends one or more certificates (again with the certificate containing
 the public key used to verify AUTH listed first), authenticates his
 identity and protects the integrity of the second message with the
 AUTH payload, and completes negotiation of a CHILD_SA with the
 additional fields described below in the CREATE_CHILD_SA exchange.

 The recipients of messages 3 and 4 MUST verify that all signatures
 and MACs are computed correctly and that the names in the ID payloads
 correspond to the keys used to generate the AUTH payload.

1.3 The CREATE_CHILD_SA Exchange

 This exchange consists of a single request/response pair, and was
 referred to as a phase 2 exchange in IKEv1. It MAY be initiated by
 either end of the IKE_SA after the initial exchanges are completed.

 All messages following the initial exchange are cryptographically
 protected using the cryptographic algorithms and keys negotiated in
 the first two messages of the IKE exchange. These subsequent
 messages use the syntax of the Encrypted Payload described in section

3.14.

 Either endpoint may initiate a CREATE_CHILD_SA exchange, so in this
 section the term initiator refers to the endpoint initiating this
 exchange. The term "Alice" will always refer to the initiator of the
 outer IKE_SA.

 A CHILD_SA is created by sending a CREATE_CHILD_SA request. The
 CREATE_CHILD_SA request MAY optionally contain a KE payload for an
 additional Diffie-Hellman exchange to enable stronger guarantees of
 forward secrecy for the CHILD_SA. The keying material for the
 CHILD_SA is a function of SK_d established during the establishment
 of the IKE_SA, the nonces exchanged during the CREATE_CHILD_SA
 exchange, and the Diffie-Hellman value (if KE payloads are included
 in the CREATE_CHILD_SA exchange).

 In the CHILD_SA created as part of the initial exchange, a second KE
 payload and nonce MUST NOT be sent. The nonces from the initial
 exchange are used in computing the keys for the CHILD_SA.

 The CREATE_CHILD_SA request contains:

 Initiator Responder
 ----------- -----------
 HDR, SK {[N], SA, Ni, [KEi],
 [TSi, TSr]} -->

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 9]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The initiator sends SA offer(s) in the SA payload, a nonce in the Ni
 payload, optionally a Diffie-Hellman value in the KEi payload, and
 the proposed traffic selectors in the TSi and TSr payloads. If this
 CREATE_CHILD_SA exchange is rekeying an existing SA other than the
 IKE_SA, the leading N payload of type REKEY_SA MUST identify the SA
 being rekeyed. If this CREATE_CHILD_SA exchange is not rekeying and
 existing SA, the N payload MUST be omitted. If the SA offers include
 different Diffie-Hellman groups, KEi MUST be an element of the group
 the initiator expects the responder to accept. If it guesses wrong,
 the CREATE_CHILD_SA exchange will fail and it will have to retry with
 a different KEi.

 The message following the header is encrypted and the message
 including the header is integrity protected using the cryptographic
 algorithms negotiated for the IKE_SA.

 The CREATE_CHILD_SA response contains:

 <-- HDR, SK {SA, Nr, [KEr],
 [TSi, TSr]}

 The responder replies (using the same Message ID to respond) with the
 accepted offer in an SA payload, and a Diffie-Hellman value in the
 KEr payload if KEi was included in the request and the selected
 cryptographic suite includes that group. If the responder chooses a
 cryptographic suite with a different group, it MUST reject the
 request. The initiator SHOULD repeat the request, but now with a KEi
 payload from the group the responder selected.

 The traffic selectors for traffic to be sent on that SA are specified
 in the TS payloads, which may be a subset of what the initiator of
 the CHILD_SA proposed. Traffic selectors are omitted if this
 CREATE_CHILD_SA request is being used to change the key of the
 IKE_SA.

1.4 The INFORMATIONAL Exchange

 At various points during the operation of an IKE_SA, peers may desire
 to convey control messages to each other regarding errors or
 notifications of certain events. To accomplish this IKE defines an
 INFORMATIONAL exchange. INFORMATIONAL exchanges MAY ONLY occur after

 the initial exchanges and are cryptographically protected with the
 negotiated keys.

 Control messages that pertain to an IKE_SA MUST be sent under that
 IKE_SA. Control messages that pertain to CHILD_SAs MUST be sent under
 the protection of the IKE_SA which generated them (or its successor
 if the IKE_SA was replaced for the purpose of rekeying).

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 10]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 Messages in an INFORMATIONAL Exchange contain zero or more
 Notification, Delete, and Configuration payloads. The Recipient of an
 INFORMATIONAL Exchange request MUST send some response (else the
 Sender will assume the message was lost in the network and will
 retransmit it). That response MAY be a message with no payloads. The
 request message in an INFORMATIONAL Exchange MAY also contain no
 payloads. This is the expected way an endpoint can ask the other
 endpoint to verify that it is alive.

 ESP and AH SAs always exist in pairs, with one SA in each direction.
 When an SA is closed, both members of the pair MUST be closed. When
 SAs are nested, as when data (and IP headers if in tunnel mode) are
 encapsulated first with IPComp, then with ESP, and finally with AH
 between the same pair of endpoints, all of the SAs MUST be deleted
 together. Each endpoint MUST close its incoming SAs and allow the
 other endpoint to close the other SA in each pair. To delete an SA,
 an INFORMATIONAL Exchange with one or more delete payloads is sent
 listing the SPIs (as they would be expected in the headers of inbound
 packets) of the SAs to be deleted. The recipient MUST close the
 designated SAs. Normally, the reply in the INFORMATIONAL Exchange
 will contain delete payloads for the paired SAs going in the other
 direction. There is one exception. If by chance both ends of a set
 of SAs independently decide to close them, each may send a delete
 payload and the two requests may cross in the network. If a node
 receives a delete request for SAs for which it has already issued a
 delete request, it MUST delete the outgoing SAs while processing the
 request and the incoming SAs while processing the response. In that
 case, the responses MUST NOT include delete payloads for the deleted
 SAs, since that would result in duplicate deletion and could in
 theory delete the wrong SA.

 A node SHOULD regard half closed connections as anomalous and audit
 their existence should they persist. Note that this specification
 nowhere specifies time periods, so it is up to individual endpoints
 to decide how long to wait. A node MAY refuse to accept incoming data
 on half closed connections but MUST NOT unilaterally close them and
 reuse the SPIs. If connection state becomes sufficiently messed up, a
 node MAY close the IKE_SA which will implicitly close all SAs
 negotiated under it. It can then rebuild the SAs it needs on a clean
 base under a new IKE_SA.

 The INFORMATIONAL Exchange is defined as:

 Initiator Responder

 ----------- -----------
 HDR, SK {[N,] [D,] [CP,] ...} -->
 <-- HDR, SK {[N,] [D,] [CP], ...}

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 11]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The processing of an INFORMATIONAL Exchange is determined by its
 component payloads.

1.5 Informational Messages outside of an IKE_SA

 If a packet arrives with an unrecognized SPI, it could be because the
 receiving node has recently crashed and lost state or because of some
 other system malfunction or attack. If the receiving node has an
 active IKE_SA to the IP address from whence the packet came, it MAY
 send a notification of the wayward packet over that IKE_SA. If it
 does not, it MAY send an Informational message without cryptographic
 protection to the source IP address and port to alert it to a
 possible problem.

2 IKE Protocol Details and Variations

 IKE normally listens and sends on UDP port 500, though IKE messages
 may also be received on UDP port 4500 with a slightly different
 format (see section 2.23). Since UDP is a datagram (unreliable)
 protocol, IKE includes in its definition recovery from transmission
 errors, including packet loss, packet replay, and packet forgery. IKE
 is designed to function so long as (1) at least one of a series of
 retransmitted packets reaches its destination before timing out; and
 (2) the channel is not so full of forged and replayed packets so as
 to exhaust the network or CPU capacities of either endpoint. Even in
 the absence of those minimum performance requirements, IKE is
 designed to fail cleanly (as though the network were broken).

2.1 Use of Retransmission Timers

 All messages in IKE exist in pairs: a request and a response. The
 setup of an IKE_SA normally consists of two request/response pairs.
 Once the IKE_SA is set up, either end of the security association may
 initiate requests at any time, and there can be many requests and
 responses "in flight" at any given moment. But each message is
 labelled as either a request or a response and for each
 request/response pair one end of the security association is the
 Initiator and the other is the Responder.

 For every pair of IKE messages, the Initiator is responsible for
 retransmission in the event of a timeout. The Responder MUST never

 retransmit a response unless it receives a retransmission of the
 request. In that event, the Responder MUST ignore the retransmitted
 request except insofar as it triggers a retransmission of the
 response. The Initiator MUST remember each request until it receives
 the corresponding response. The Responder MUST remember each response
 until it receives a request whose sequence number is larger than the
 sequence number in the response plus his window size (see section

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 12]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 2.3).

 IKE is a reliable protocol, in the sense that the Initiator MUST
 retransmit a request until either it receives a corresponding reply
 OR it deems the IKE security association to have failed and it
 discards all state associated with the IKE_SA and any CHILD_SAs
 negotiated using that IKE_SA.

2.2 Use of Sequence Numbers for Message ID

 Every IKE message contains a Message ID as part of its fixed header.
 This Message ID is used to match up requests and responses, and to
 identify retransmissions of messages.

 The Message ID is a 32 bit quantity, which is zero for the first IKE
 request in each direction. The IKE_SA initial setup messages will
 always be numbered 0 and 1. Each endpoint in the IKE Security
 Association maintains two "current" Message IDs: the next one to be
 used for a request it initiates and the next one it expects to see in
 a request from the other end. These counters increment as requests
 are generated and received. Responses always contain the same message
 ID as the corresponding request. That means that after the initial
 exchange, each integer n may appear as the message ID in four
 distinct messages: The nth request from the original IKE Initiator,
 the corresponding response, the nth request from the original IKE
 Responder, and the corresponding response. If the two ends make very
 different numbers of requests, the Message IDs in the two directions
 can be very different. There is no ambiguity in the messages,
 however, because the (I)nitiator and (R)esponse bits in the message
 header specify which of the four messages a particular one is.

 Note that Message IDs are cryptographically protected and provide
 protection against message replays. In the unlikely event that
 Message IDs grow too large to fit in 32 bits, the IKE_SA MUST be
 closed. Rekeying an IKE_SA resets the sequence numbers.

2.3 Window Size for overlapping requests

 In order to maximize IKE throughput, an IKE endpoint MAY issue
 multiple requests before getting a response to any of them if the
 other endpoint has indicated its ability to handle such requests. For

 simplicity, an IKE implementation MAY choose to process requests
 strictly in order and/or wait for a response to one request before
 issuing another. Certain rules must be followed to assure
 interoperability between implementations using different strategies.

 After an IKE_SA is set up, either end can initiate one or more
 requests. These requests may pass one another over the network. An

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 13]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 IKE endpoint MUST be prepared to accept and process a request while
 it has a request outstanding in order to avoid a deadlock in this
 situation. An IKE endpoint SHOULD be prepared to accept and process
 multiple requests while it has a request outstanding.

 An IKE endpoint MUST wait for a response to each of its messages
 before sending a subsequent message unless it has received a
 SET_WINDOW_SIZE Notify message from its peer informing it that the
 peer is prepared to maintain state for multiple outstanding messages
 in order to allow greater throughput.

 An IKE endpoint MUST NOT exceed the peer's stated window size for
 transmitted IKE requests. In other words, if Bob stated his window
 size is N, then when Alice needs to make a request X, she MUST wait
 until she has received responses to all requests up through request
 X-N. An IKE endpoint MUST keep a copy of (or be able to regenerate
 exactly) each request it has sent until it receives the corresponding
 response. An IKE endpoint MUST keep a copy of (or be able to
 regenerate exactly) the number of previous responses equal to its
 declared window size in case its response was lost and the Initiator
 requests its retransmission by retransmitting the request.

 An IKE endpoint supporting a window size greater than one SHOULD be
 capable of processing incoming requests out of order to maximize
 performance in the event of network failures or packet reordering.

2.4 State Synchronization and Connection Timeouts

 An IKE endpoint is allowed to forget all of its state associated with
 an IKE_SA and the collection of corresponding CHILD_SAs at any time.
 This is the anticipated behavior in the event of an endpoint crash
 and restart. It is important when an endpoint either fails or
 reinitializes its state that the other endpoint detect those
 conditions and not continue to waste network bandwidth by sending
 packets over discarded SAs and having them fall into a black hole.

 Since IKE is designed to operate in spite of Denial of Service (DoS)
 attacks from the network, an endpoint MUST NOT conclude that the
 other endpoint has failed based on any routing information (e.g.,
 ICMP messages) or IKE messages that arrive without cryptographic
 protection (e.g., Notify messages complaining about unknown SPIs). An
 endpoint MUST conclude that the other endpoint has failed only when

 repeated attempts to contact it have gone unanswered for a timeout
 period or when a cryptographically protected INITIAL_CONTACT
 notification is received on a different IKE_SA to the same
 authenticated identity. An endpoint SHOULD suspect that the other
 endpoint has failed based on routing information and initiate a
 request to see whether the other endpoint is alive. To check whether

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 14]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 the other side is alive, IKE specifies an empty INFORMATIONAL message
 that (like all IKE requests) requires an acknowledgment. If a
 cryptographically protected message has been received from the other
 side recently, unprotected notifications MAY be ignored.
 Implementations MUST limit the rate at which they take actions based
 on unprotected messages.

 Numbers of retries and lengths of timeouts are not covered in this
 specification because they do not affect interoperability. It is
 suggested that messages be retransmitted at least a dozen times over
 a period of at least several minutes before giving up on an SA, but
 different environments may require different rules. If there has only
 been outgoing traffic on all of the SAs associated with an IKE_SA, it
 is essential to confirm liveness of the other endpoint to avoid black
 holes. If no cryptographically protected messages have been received
 on an IKE_SA or any of its CHILD_SAs recently, the system needs to
 perform a liveness check in order to prevent sending messages to a
 dead peer. Receipt of a fresh cryptographically protected message on
 an IKE_SA or any of its CHILD_SAs assures liveness of the IKE_SA and
 all of its CHILD_SAs. Note that this places requirements on the
 failure modes of an IKE endpoint. An implementation MUST NOT continue
 sending on any SA if some failure prevents it from receiving on all
 of the associated SAs. If CHILD_SAs can fail independently from one
 another without the associated IKE_SA being able to send a delete
 message, then they MUST be negotiated by separate IKE_SAs.

 There is a Denial of Service attack on the Initiator of an IKE_SA
 that can be avoided if the Initiator takes the proper care. Since the
 first two messages of an SA setup are not cryptographically
 protected, an attacker could respond to the Initiator's message
 before the genuine Responder and poison the connection setup attempt.
 To prevent this, the Initiator MAY be willing to accept multiple
 responses to its first message, treat each as potentially legitimate,
 respond to it, and then discard all the invalid half open connections
 when she receives a valid cryptographically protected response to any
 one of her requests. Once a cryptographically valid response is
 received, all subsequent responses should be ignored whether or not
 they are cryptographically valid.

 Note that with these rules, there is no reason to negotiate and agree
 upon an SA lifetime. If IKE presumes the partner is dead, based on
 repeated lack of acknowledgment to an IKE message, then the IKE SA
 and all CHILD_SAs set up through that IKE_SA are deleted.

 An IKE endpoint may at any time delete inactive CHILD_SAs to recover
 resources used to hold their state. If an IKE endpoint chooses to do
 so, it MUST send Delete payloads to the other end notifying it of the
 deletion. It MAY similarly time out the IKE_SA. Closing the IKE_SA

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 15]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 implicitly closes all associated CHILD_SAs. In this case, an IKE
 endpoint SHOULD send a Delete payload indicating that it has closed
 the IKE_SA.

2.5 Version Numbers and Forward Compatibility

 This document describes version 2.0 of IKE, meaning the major version
 number is 2 and the minor version number is zero. It is likely that
 some implementations will want to support both version 1.0 and
 version 2.0, and in the future, other versions.

 The major version number should only be incremented if the packet
 formats or required actions have changed so dramatically that an
 older version node would not be able to interoperate with a newer
 version node if it simply ignored the fields it did not understand
 and took the actions specified in the older specification. The minor
 version number indicates new capabilities, and MUST be ignored by a
 node with a smaller minor version number, but used for informational
 purposes by the node with the larger minor version number. For
 example, it might indicate the ability to process a newly defined
 notification message. The node with the larger minor version number
 would simply note that its correspondent would not be able to
 understand that message and therefore would not send it.

 If an endpoint receives a message with a higher major version number,
 it MUST drop the message and SHOULD send an unauthenticated
 notification message containing the highest version number it
 supports. If an endpoint supports major version n, and major version
 m, it MUST support all versions between n and m. If it receives a
 message with a major version that it supports, it MUST respond with
 that version number. In order to prevent two nodes from being tricked
 into corresponding with a lower major version number than the maximum
 that they both support, IKE has a flag that indicates that the node
 is capable of speaking a higher major version number.

 Thus the major version number in the IKE header indicates the version
 number of the message, not the highest version number that the
 transmitter supports. If Alice is capable of speaking versions n,
 n+1, and n+2, and Bob is capable of speaking versions n and n+1, then
 they will negotiate speaking n+1, where Alice will set the flag
 indicating ability to speak a higher version. If they mistakenly
 (perhaps through an active attacker sending error messages) negotiate
 to version n, then both will notice that the other side can support a

 higher version number, and they MUST break the connection and
 reconnect using version n+1.

 Note that IKEv1 does not follow these rules, because there is no way
 in v1 of noting that you are capable of speaking a higher version

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 16]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 number. So an active attacker can trick two v2-capable nodes into
 speaking v1. When a v2-capable node negotiates down to v1, it SHOULD
 note that fact in its logs.

 Also for forward compatibility, all fields marked RESERVED MUST be
 set to zero by a version 2.0 implementation and their content MUST be
 ignored by a version 2.0 implementation ("Be conservative in what you
 send and liberal in what you receive"). In this way, future versions
 of the protocol can use those fields in a way that is guaranteed to
 be ignored by implementations that do not understand them.
 Similarly, payload types that are not defined are reserved for future
 use and implementations of version 2.0 MUST skip over those payloads
 and ignore their contents.

 IKEv2 adds a "critical" flag to each payload header for further
 flexibility for forward compatibility. If the critical flag is set
 and the payload type is unrecognized, the message MUST be rejected
 and the response to the IKE request containing that payload MUST
 include a Notify payload UNSUPPORTED_CRITICAL_PAYLOAD, indicating an
 unsupported critical payload was included. If the critical flag is
 not set and the payload type is unsupported, that payload MUST be
 ignored.

 While new payload types may be added in the future and may appear
 interleaved with the fields defined in this specification,
 implementations MUST send the payloads defined in this specification
 in the order shown in the figures in section 2 and implementations
 SHOULD reject as invalid a message with those payloads in any other
 order.

2.6 Cookies

 The term "cookies" originates with Karn and Simpson [RFC 2522] in
 Photuris, an early proposal for key management with IPsec, and it has
 persisted. The ISAKMP fixed message header includes two eight octet
 fields titled "cookies", and that syntax is used by both IKEv1 and
 IKEv2 though in IKEv2 they are referred to as the IKE SPI and there
 is a new separate field in a Notify payload holding the cookie. The
 initial two eight octet fields in the header are used as a connection
 identifier at the beginning of IKE packets. Each endpoint chooses one
 of the two SPIs and SHOULD choose them so as to be unique identifiers
 of an IKE_SA. An SPI value of zero is special and indicates that the
 remote SPI value is not yet known by the sender.

https://datatracker.ietf.org/doc/html/rfc2522

 Unlike ESP and AH where only the recipient's SPI appears in the
 header of a message, in IKE the sender's SPI is also sent in every
 message. Since the SPI chosen by the original initiator of the IKE_SA
 is always sent first, an endpoint with multiple IKE_SAs open that

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 17]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 wants to find the appropriate IKE_SA using the SPI it assigned must
 look at the I(nitiator) Flag bit in the header to determine whether
 it assigned the first or the second eight octets.

 In the first message of an initial IKE exchange, the initiator will
 not know the responder's SPI value and will therefore set that field
 to zero.

 An expected attack against IKE is state and CPU exhaustion, where the
 target is flooded with session initiation requests from forged IP
 addresses. This attack can be made less effective if an
 implementation of a responder uses minimal CPU and commits no state
 to an SA until it knows the initiator can receive packets at the
 address from which he claims to be sending them. To accomplish this,
 a responder SHOULD - when it detects a large number of half-open
 IKE_SAs - reject initial IKE messages unless they contain a Notify
 payload of type COOKIE. It SHOULD instead send an unprotected IKE
 message as a response and include COOKIE Notify payload with the
 cookie data to be returned. Initiators who receive such responses
 MUST retry the IKE_SA_INIT with a Notify payload of type COOKIE
 containing the responder supplied cookie data as the first payload
 and all other payloads unchanged. The initial exchange will then be
 as follows:

 Initiator Responder
 ----------- -----------
 HDR(A,0), SAi1, KEi, Ni -->

 <-- HDR(A,0), N(COOKIE)

 HDR(A,0), N(COOKIE), SAi1, KEi, Ni -->

 <-- HDR(A,B), SAr1, KEr, Nr, [CERTREQ]

 HDR(A,B), SK {IDi, [CERT,] [CERTREQ,] [IDr,]
 AUTH, SAi2, TSi, TSr} -->

 <-- HDR(A,B), SK {IDr, [CERT,] AUTH,
 SAr2, TSi, TSr}

 The first two messages do not affect any initiator or responder state
 except for communicating the cookie. In particular, the message
 sequence numbers in the first four messages will all be zero and the
 message sequence numbers in the last two messages will be one. 'A' is
 the SPI assigned by the initiator, while 'B' is the SPI assigned by
 the responder.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 18]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 An IKE implementation SHOULD implement its responder cookie
 generation in such a way as to not require any saved state to
 recognize its valid cookie when the second IKE_SA_INIT message
 arrives. The exact algorithms and syntax they use to generate
 cookies does not affect interoperability and hence is not specified
 here. The following is an example of how an endpoint could use
 cookies to implement limited DOS protection.

 A good way to do this is to set the responder cookie to be:

 Cookie = <VersionIDofSecret> | Hash(Ni | IPi | SPIi | <secret>)

 where <secret> is a randomly generated secret known only to the
 responder and periodically changed and | indicates concatenation.
 <VersionIDofSecret> should be changed whenever <secret> is
 regenerated. The cookie can be recomputed when the IKE_SA_INIT
 arrives the second time and compared to the cookie in the received
 message. If it matches, the responder knows that SPIr was generated
 since the last change to <secret> and that IPi must be the same as
 the source address it saw the first time. Incorporating SPIi into the
 calculation assures that if multiple IKE_SAs are being set up in
 parallel they will all get different cookies (assuming the initiator
 chooses unique SPIi's). Incorporating Ni into the hash assures that
 an attacker who sees only message 2 can't successfully forge a
 message 3.

 If a new value for <secret> is chosen while there are connections in
 the process of being initialized, an IKE_SA_INIT might be returned
 with other than the current <VersionIDofSecret>. The responder in
 that case MAY reject the message by sending another response with a
 new cookie or it MAY keep the old value of <secret> around for a
 short time and accept cookies computed from either one. The
 responder SHOULD NOT accept cookies indefinitely after <secret> is
 changed, since that would defeat part of the denial of service
 protection. The responder SHOULD change the value of <secret>
 frequently, especially if under attack.

2.7 Cryptographic Algorithm Negotiation

 The payload type known as "SA" indicates a proposal for a set of
 choices of IPsec protocols (IKE, ESP, and/or AH) for the SA as well
 as cryptographic algorithms associated with each protocol.

 An SA consists of one or more proposals. Each proposal includes one
 or more protocols (usually one). Each protocol contains one or more
 transforms - each specifying a cryptographic algorithm. Each
 transform contains zero or more attributes (attributes are only
 needed if the transform identifier does not completely specify the

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 19]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 cryptographic algorithm).

 This hierarchical structure was designed to efficiently encode
 proposals for cryptographic suites when the number of supported
 suites is large because multiple values are acceptable for multiple
 transforms. The responder MUST choose a single suite, which MAY be
 any subset of the SA proposal following the rules below:

 Each proposal contains one or more protocols. If a proposal is
 accepted, the SA response MUST contain the same protocols in the
 same order as the proposal. The responder MUST accept a single
 proposal or reject them all and return an error. (Example: if a
 single proposal contains ESP and AH and that proposal is accepted,
 both ESP and AH MUST be accepted. If ESP and AH are included in
 separate proposals, the responder MUST accept only one of them).

 Each IPsec protocol proposal contains one or more transforms. Each
 transform contains a transform type. The accepted cryptographic
 suite MUST contain exactly one transform of each type included in
 the proposal. For example: if an ESP proposal includes transforms
 ENCR_3DES, ENCR_AES w/keysize 128, ENCR_AES w/keysize 256,
 AUTH_HMAC_MD5, and AUTH_HMAC_SHA, the accepted suite MUST contain
 one of the ENCR_ transforms and one of the AUTH_ transforms. Thus
 six combinations are acceptable.

 Since Alice sends her Diffie-Hellman value in the IKE_SA_INIT, she
 must guess at the Diffie-Hellman group that Bob will select from her
 list of supported groups. If she guesses wrong, Bob will respond
 with a Notify payload of type INVALID_KE_PAYLOAD indicating the
 selected group. In this case, Alice MUST retry the IKE_SA_INIT with
 the corrected Diffie-Hellman group. Alice MUST again propose her full
 set of acceptable cryptographic suites because the rejection message
 was unauthenticated and otherwise an active attacker could trick
 Alice and Bob into negotiating a weaker suite than a stronger one
 that they both prefer.

2.8 Rekeying

 IKE, ESP, and AH security associations use secret keys which SHOULD
 only be used for a limited amount of time and to protect a limited
 amount of data. This limits the lifetime of the entire security

 association. When the lifetime of a security association expires the
 security association MUST NOT be used. If there is demand, new
 security associations MAY be established. Reestablishment of
 security associations to take the place of ones which expire is
 referred to as "rekeying".

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 20]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 To allow for minimal IPsec implementations, the ability to rekey SAs
 without restarting the entire IKE_SA is optional. An implementation
 MAY refuse all CREATE_CHILD_SA requests within an IKE_SA. If an SA
 has expired or is about to expire and rekeying attempts using the
 mechanisms described here fail, an implementation MUST close the
 IKE_SA and any associated CHILD_SAs and then MAY start new ones.
 Implementations SHOULD support in place rekeying of SAs, since doing
 so offers better performance and is likely to reduce the number of
 packets lost during the transition.

 To rekey a CHILD_SA within an existing IKE_SA, create a new,
 equivalent SA (see section 2.17 below), and when the new one is
 established, delete the old one. To rekey an IKE_SA, establish a new
 equivalent IKE_SA (see section 2.18 below) with the peer to whom the
 old IKE_SA is shared using a CREATE_CHILD_SA within the existing
 IKE_SA. An IKE_SA so created inherits all of the original IKE_SA's
 CHILD_SAs. Use the new IKE_SA for all control messages needed to
 maintain the CHILD_SAs created by the old IKE_SA, and delete the old
 IKE_SA. The Delete payload to delete itself MUST be the last request
 sent over an IKE_SA.

 SAs SHOULD be rekeyed proactively, i.e., the new SA should be
 established before the old one expires and becomes unusable. Enough
 time should elapse between the time the new SA is established and the
 old one becomes unusable so that traffic can be switched over to the
 new SA.

 A difference between IKEv1 and IKEv2 is that in IKEv1 SA lifetimes
 were negotiated. In IKEv2, each end of the SA is responsible for
 enforcing its own lifetime policy on the SA and rekeying the SA when
 necessary. If the two ends have different lifetime policies, the end
 with the shorter lifetime will end up always being the one to request
 the rekeying. If an SA bundle has been inactive for a long time and
 if an endpoint would not initiate the SA in the absence of traffic,
 the endpoint MAY choose to close the SA instead of rekeying it when
 its lifetime expires. It SHOULD do so if there has been no traffic
 since the last time the SA was rekeyed.

 If the two ends have the same lifetime policies, it is possible that
 both will initiate a rekeying at the same time (which will result in
 redundant SAs). To reduce the probability of this happening, the
 timing of rekeying requests SHOULD be jittered (delayed by a random
 amount of time after the need for rekeying is noticed).

 This form of rekeying may temporarily result in multiple similar SAs
 between the same pairs of nodes. When there are two SAs eligible to
 receive packets, a node MUST accept incoming packets through either
 SA. If redundant SAs are created though such a collision, the SA

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 21]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 created with the lowest of the four nonces used in the two exchanges
 SHOULD be closed by the endpoint that created it.

 Note that IKEv2 deliberately allows parallel SAs with the same
 traffic selectors between common endpoints. One of the purposes of
 this is to support traffic QoS differences among the SAs (see section

4.1 of [RFC 2983]). Hence unlike IKEv1, the combination of the
 endpoints and the traffic selectors may not uniquely identify an SA
 between those endpoints, so the IKEv1 rekeying heuristic of deleting
 SAs on the basis of duplicate traffic selectors SHOULD NOT be used.

 The node that initiated the surviving rekeyed SA SHOULD delete the
 replaced SA after the new one is established.

 There are timing windows - particularly in the presence of lost
 packets - where endpoints may not agree on the state of an SA. The
 responder to a CREATE_CHILD_SA MUST be prepared to accept messages on
 an SA before sending its response to the creation request, so there
 is no ambiguity for the initiator. The initiator MAY begin sending on
 an SA as soon as it processes the response. The initiator, however,
 cannot receive on a newly created SA until it receives and processes
 the response to its CREATE_CHILD_SA request. How, then, is the
 responder to know when it is OK to send on the newly created SA?

 From a technical correctness and interoperability perspective, the
 responder MAY begin sending on an SA as soon as it sends its response
 to the CREATE_CHILD_SA request. In some situations, however, this
 could result in packets unnecessarily being dropped, so an
 implementation MAY want to defer such sending.

 The responder can be assured that the initiator is prepared to
 receive messages on an SA if either (1) it has received a
 cryptographically valid message on the new SA, or (2) the new SA
 rekeys an existing SA and it receives an IKE request to close the
 replaced SA. When rekeying an SA, the responder SHOULD continue to
 send requests on the old SA until it one of those events occurs. When
 establishing a new SA, the responder MAY defer sending messages on a
 new SA until either it receives one or a timeout has occurred. If an
 initiator receives a message on an SA for which it has not received a
 response to its CREATE_CHILD_SA request, it SHOULD interpret that as
 a likely packet loss and retransmit the CREATE_CHILD_SA request. An
 initiator MAY send a dummy message on a newly created SA if it has no
 messages queued in order to assure the responder that the initiator

https://datatracker.ietf.org/doc/html/rfc2983#section-4.1
https://datatracker.ietf.org/doc/html/rfc2983#section-4.1

 is ready to receive messages.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 22]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

2.9 Traffic Selector Negotiation

 When an IP packet is received by an RFC2401 compliant IPsec subsystem
 and matches a "protect" selector in its SPD, the subsystem MUST
 protect that packet with IPsec. When no SA exists yet it is the task
 of IKE to create it. Maintenance of a system's SPD is outside the
 scope of IKE (see [PFKEY] for an example protocol), though some
 implementations might update their SPD in connection with the running
 of IKE (for an example scenario, see section 1.1.3).

 Traffic Selector (TS) payloads allow endpoints to communicate some of
 the information from their SPD to their peers. TS payloads specify
 the selection criteria for packets that will be forwarded over the
 newly set up SA. This can serve as a consistency check in some
 scenarios to assure that the SPDs are consistent. In others, it
 guides the dynamic update of the SPD.

 Two TS payloads appear in each of the messages in the exchange that
 creates a CHILD_SA pair. Each TS payload contains one or more Traffic
 Selectors. Each Traffic Selector consists of an address range (IPv4
 or IPv6), a port range, and an IP protocol ID. In support of the
 scenario described in section 1.1.3, an initiator may request that
 the responder assign an IP address and tell the initiator what it is.

 IKEv2 allows the responder to choose a subset of the traffic proposed
 by the initiator. This could happen when the configuration of the
 two endpoints are being updated but only one end has received the new
 information. Since the two endpoints may be configured by different
 people, the incompatibility may persist for an extended period even
 in the absence of errors. It also allows for intentionally different
 configurations, as when one end is configured to tunnel all addresses
 and depends on the other end to have the up to date list.

 The first of the two TS payloads is known as TSi (Traffic Selector-
 initiator). The second is known as TSr (Traffic Selector-responder).
 TSi specifies the source address of traffic forwarded from (or the
 destination address of traffic forwarded to) the initiator of the
 CHILD_SA pair. TSr specifies the destination address of the traffic
 forwarded from (or the source address of the traffic forwarded to)
 the responder of the CHILD_SA pair. For example, if Alice initiates
 the creation of the CHILD_SA pair from Alice to Bob, and wishes to
 tunnel all traffic from subnet 10.2.16.* on Alice's side to subnet
 10.16.*.* on Bob's side, Alice would include a single traffic

https://datatracker.ietf.org/doc/html/rfc2401

 selector in each TS payload. TSi would specify the address range
 (10.2.16.0 - 10.2.16.255) and TSr would specify the address range
 (10.16.0.0 - 10.16.255.255). Assuming that proposal was acceptable to
 Bob, he would send identical TS payloads back.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 23]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The Responder is allowed to narrow the choices by selecting a subset
 of the traffic, for instance by eliminating or narrowing the range of
 one or more members of the set of traffic selectors, provided the set
 does not become the NULL set.

 It is possible for the Responder's policy to contain multiple smaller
 ranges, all encompassed by the Initiator's traffic selector, and with
 the Responder's policy being that each of those ranges should be sent
 over a different SA. Continuing the example above, Bob might have a
 policy of being willing to tunnel those addresses to and from Alice,
 but might require that each address pair be on a separately
 negotiated CHILD_SA. If Alice generated her request in response to an
 incoming packet from 10.2.16.43 to 10.16.2.123, there would be no way
 for Bob to determine which pair of addresses should be included in
 this tunnel, and he would have to make his best guess or reject the
 request with a status of SINGLE_PAIR_REQUIRED.

 To enable Bob to choose the appropriate range in this case, if Alice
 has initiated the SA due to a data packet, Alice SHOULD include as
 the first traffic selector in each of TSi and TSr a very specific
 traffic selector including the addresses in the packet triggering the
 request. In the example, Alice would include in TSi two traffic
 selectors: the first containing the address range (10.2.16.43 -
 10.2.16.43) and the source port and IP protocol from the packet and
 the second containing (10.2.16.0 - 10.2.16.255) with all ports and IP
 protocols. She would similarly include two traffic selectors in TSr.

 If Bob's policy does not allow him to accept the entire set of
 traffic selectors in Alice's request, but does allow him to accept
 the first selector of TSi and TSr, then Bob MUST narrow the traffic
 selectors to a subset that includes Alice's first choices. In this
 example, Bob might respond with TSi being (10.2.16.43 - 10.2.16.43)
 with all ports and IP protocols.

 If Alice creates the CHILD_SA pair not in response to an arriving
 packet, but rather - say - upon startup, then there may be no
 specific addresses Alice prefers for the initial tunnel over any
 other. In that case, the first values in TSi and TSr MAY be ranges
 rather than specific values, and Bob chooses a subset of Alice's TSi
 and TSr that are acceptable to him. If more than one subset is
 acceptable but their union is not, Bob MUST accept some subset and
 MAY include a Notify payload of type ADDITIONAL_TS_POSSIBLE to
 indicate that Alice might want to try again. This case will only
 occur when Alice and Bob are configured differently from one another.

 If Alice and Bob agree on the granularity of tunnels, she will never
 request a tunnel wider than Bob will accept.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 24]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

2.10 Nonces

 The IKE_SA_INIT messages each contain a nonce. These nonces are used
 as inputs to cryptographic functions. The CREATE_CHILD_SA request
 and the CREATE_CHILD_SA response also contain nonces. These nonces
 are used to add freshness to the key derivation technique used to
 obtain keys for CHILD_SA, and to ensure creation of strong
 pseudorandom bits from the Diffie-Hellman key. Nonces used in IKEv2
 MUST be randomly chosen, MUST be at least 128 bits in size, and MUST
 be at least half the key size of the negotiated prf. ("prf" refers to
 "pseudo-random function", one of the cryptographic algorithms
 negotiated in the IKE exchange). If the same random number source is
 used for both keys and nonces, care must be taken to ensure that the
 latter use does not compromise the former.

2.11 Address and Port Agility

 IKE runs over UDP ports 500 and 4500, and implicitly sets up ESP and
 AH associations for the same IP addresses it runs over. The IP
 addresses and ports in the outer header are, however, not themselves
 cryptographically protected, and IKE is designed to work even through
 Network Address Translation (NAT) boxes. An implementation MUST
 accept incoming requests even if the source port is not 500 or 4500,
 and MUST respond to the address and port from which the request was
 received. It MUST specify the address and port at which the request
 was received as the source address and port in the response. IKE
 functions identically over IPv4 or IPv6.

2.12 Reuse of Diffie-Hellman Exponentials

 IKE generates keying material using an ephemeral Diffie-Hellman
 exchange in order to gain the property of "perfect forward secrecy".
 This means that once a connection is closed and its corresponding
 keys are forgotten, even someone who has recorded all of the data
 from the connection and gets access to all of the long-term keys of
 the two endpoints cannot reconstruct the keys used to protect the
 conversation without doing a brute force search of the session key
 space.

 Achieving perfect forward secrecy requires that when a connection is
 closed, each endpoint MUST forget not only the keys used by the
 connection but any information that could be used to recompute those

 keys. In particular, it MUST forget the secrets used in the Diffie-
 Hellman calculation and any state that may persist in the state of a
 pseudo-random number generator that could be used to recompute the
 Diffie-Hellman secrets.

 Since the computing of Diffie-Hellman exponentials is computationally

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 25]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 expensive, an endpoint may find it advantageous to reuse those
 exponentials for multiple connection setups. There are several
 reasonable strategies for doing this. An endpoint could choose a new
 exponential only periodically though this could result in less-than-
 perfect forward secrecy if some connection lasts for less than the
 lifetime of the exponential. Or it could keep track of which
 exponential was used for each connection and delete the information
 associated with the exponential only when some corresponding
 connection was closed. This would allow the exponential to be reused
 without losing perfect forward secrecy at the cost of maintaining
 more state.

 Decisions as to whether and when to reuse Diffie-Hellman exponentials
 is a private decision in the sense that it will not affect
 interoperability. An implementation that reuses exponentials MAY
 choose to remember the exponential used by the other endpoint on past
 exchanges and if one is reused to avoid the second half of the
 calculation.

2.13 Generating Keying Material

 In the context of the IKE_SA, four cryptographic algorithms are
 negotiated: an encryption algorithm, an integrity protection
 algorithm, a Diffie-Hellman group, and a pseudo-random function
 (prf). The pseudo-random function is used for the construction of
 keying material for all of the cryptographic algorithms used in both
 the IKE_SA and the CHILD_SAs.

 We assume that each encryption algorithm and integrity protection
 algorithm uses a fixed size key, and that any randomly chosen value
 of that fixed size can serve as an appropriate key. For algorithms
 that accept a variable length key, a fixed key size MUST be specified
 as part of the cryptographic transform negotiated. For algorithms
 for which not all values are valid keys (such as DES or 3DES with key
 parity), they algorithm by which keys are derived from arbitrary
 values MUST be specified by the cryptographic transform. For
 integrity protection functions based on HMAC, the fixed key size is
 the size of the output of the underlying hash function. When the prf
 function takes a variable length key, variable length data, and
 produces a fixed length output (e.g., when using HMAC), the formulas
 in this document apply. When the key for the prf function has fixed
 length, the data provided as a key is truncated or padded with zeros
 as necessary unless exceptional processing is explained following the
 formula.

 Keying material will always be derived as the output of the
 negotiated prf algorithm. Since the amount of keying material needed
 may be greater than the size of the output of the prf algorithm, we

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 26]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 will use the prf iteratively. We will use the terminology prf+ to
 describe the function that outputs a pseudo-random stream based on
 the inputs to a prf as follows: (where | indicates concatenation)

 prf+ (K,S) = T1 | T2 | T3 | T4 | ...

 where:
 T1 = prf (K, S | 0x01)
 T2 = prf (K, T1 | S | 0x02)
 T3 = prf (K, T2 | S | 0x03)
 T4 = prf (K, T3 | S | 0x04)

 continuing as needed to compute all required keys. The keys are taken
 from the output string without regard to boundaries (e.g., if the
 required keys are a 256 bit AES key and a 160 bit HMAC key, and the
 prf function generates 160 bits, the AES key will come from T1 and
 the beginning of T2, while the HMAC key will come from the rest of T2
 and the beginning of T3).

 The constant concatenated to the end of each string feeding the prf
 is a single octet. prf+ in this document is not defined beyond 255
 times the size of the prf output.

2.14 Generating Keying Material for the IKE_SA

 The shared keys are computed as follows. A quantity called SKEYSEED
 is calculated from the nonces exchanged during the IKE_SA_INIT
 exchange and the Diffie-Hellman shared secret established during that
 exchange. SKEYSEED is used to calculate seven other secrets: SK_d
 used for deriving new keys for the CHILD_SAs established with this
 IKE_SA; SK_ai and SK_ar used as a key to the integrity protection
 algorithm for authenticating the component messages of subsequent
 exchanges; SK_ei and SK_er used for encrypting (and of course
 decrypting) all subsequent exchanges; and SK_pi and SK_pr which are
 only used when authenticating with an EAP authentication mechanism
 that does not generate a shared key.

 SKEYSEED and its derivatives are computed as follows:

 SKEYSEED = prf(Ni | Nr, g^ir)

 {SK_d | SK_ai | SK_ar | SK_ei | SK_er | SK_pi | SK_pr }
 = prf+ (SKEYSEED, Ni | Nr | SPIi | SPIr)

 (indicating that the quantities SK_d, SK_ai, SK_ar, SK_ei, SK_er,
 SK_pi, and SK_pr are taken in order from the generated bits of the
 prf+). g^ir is the shared secret from the ephemeral Diffie-Hellman
 exchange. g^ir is represented as a string of octets in big endian

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 27]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 order padded with zeros if necessary to make it the length of the
 modulus. Ni and Nr are the nonces, stripped of any headers. If the
 negotiated prf takes a fixed length key and the lengths of Ni and Nr
 do not add up to that length, half the bits must come from Ni and
 half from Nr, taking the first bits of each.

 The two directions of traffic flow use different keys. The keys used
 to protect messages from the original initiator are SK_ai and SK_ei.
 The keys used to protect messages in the other direction are SK_ar
 and SK_er. Each algorithm takes a fixed number of bits of keying
 material, which is specified as part of the algorithm. For integrity
 algorithms based on a keyed hash, the key size is always equal to the
 length of the output of the underlying hash function.

2.15 Authentication of the IKE_SA

 When not using extended authentication (see section 2.16), the peers
 are authenticated by having each sign (or MAC using a shared secret
 as the key) a block of data. For the responder, the octets to be
 signed start with the first octet of the first SPI in the header of
 the second message and end with the last octet of the last payload in
 the second message. Appended to this (for purposes of computing the
 signature) are the initiator's nonce Ni (just the value, not the
 payload containing it), and the value prf(SK_ar,IDr') where IDr' is
 the responder's ID payload excluding the fixed header. Note that
 neither the nonce Ni nor the value prf(SK_ar,IDr') are transmitted.
 Similarly, the initiator signs the first message, starting with the
 first octet of the first SPI in the header and ending with the last
 octet of the last payload. Appended to this (for purposes of
 computing the signature) are the responder's nonce Nr, and the value
 prf(SK_ai,IDi'). In the above calculation, IDi' and IDr' are the
 entire ID payloads excluding the fixed header. It is critical to the
 security of the exchange that each side sign the other side's nonce.

 Note that all of the payloads are included under the signature,
 including any payload types not defined in this document. If the
 first message of the exchange is sent twice (the second time with a
 responder cookie and/or a different Diffie-Hellman group), it is the
 second version of the message that is signed.

 Optionally, messages 3 and 4 MAY include a certificate, or
 certificate chain providing evidence that the key used to compute a
 digital signature belongs to the name in the ID payload. The

 signature or MAC will be computed using algorithms dictated by the
 type of key used by the signer, and specified by the Auth Method
 field in the Authentication payload. There is no requirement that
 the Initiator and Responder sign with the same cryptographic
 algorithms. The choice of cryptographic algorithms depends on the

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 28]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 type of key each has. In particular, the initiator may be using a
 shared key while the responder may have a public signature key and
 certificate. It will commonly be the case (but it is not required)
 that if a shared secret is used for authentication that the same key
 is used in both directions. Note that it is a common but typically
 insecure practice to have a shared key derived solely from a user
 chosen password without incorporating another source of randomness.
 This is typically insecure because user chosen passwords are unlikely
 to have sufficient unpredictability to resist dictionary attacks and
 these attacks are not prevented in this authentication method.
 (Applications using password-based authentication for bootstrapping
 and IKE_SA should use the authentication method in section 2.16,
 which is designed to prevent off-line dictionary attacks). The pre-
 shared key SHOULD contain as much unpredictability as the strongest
 key being negotiated. In the case of a pre-shared key, the AUTH
 value is computed as:

 AUTH = prf(prf(Shared Secret,"Key Pad for IKEv2"), <message
 octets>)

 where the string "Key Pad for IKEv2" is 17 ASCII characters without
 null termination. The shared secret can be variable length. The pad
 string is added so that if the shared secret is derived from a
 password, the IKE implementation need not store the password in
 cleartext, but rather can store the value prf(Shared Secret,"Key Pad
 for IKEv2"), which could not be used as a password equivalent for
 protocols other than IKEv2. As noted above, deriving the shared
 secret from a password is not secure. This construction is used
 because it is anticipated that people will do it anyway. The
 management interface by which the Shared Secret is provided MUST
 accept ASCII strings of at least 64 octets and MUST NOT add a null
 terminator before using them as shared secrets. The management
 interface MAY accept other forms, like hex encoding. If the
 negotiated prf takes a fixed size key, the shared secret MUST be of
 that fixed size.

2.16 Extended Authentication Protocol Methods

 In addition to authentication using public key signatures and shared
 secrets, IKE supports authentication using methods defined in RFC

2284 [EAP]. Typically, these methods are asymmetric (designed for a
 user authenticating to a server), and they may not be mutual. For
 this reason, these protocols are typically used to authenticate the
 initiator to the responder and MUST be used in conjunction with a

https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2284

 public key signature based authentication of the responder to the
 initiator. These methods are often associated with mechanisms
 referred to as "Legacy Authentication" mechanisms.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 29]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 While this memo references [EAP] with the intent that new methods can
 be added in the future without updating this specification, the
 protocols expected to be used most commonly are documented here and
 in section 3.16. [EAP] defines an authentication protocol requiring
 a variable number of messages. Extended Authentication is implemented
 in IKE as additional IKE_AUTH exchanges that MUST be completed in
 order to initialize the IKE_SA.

 An initiator indicates a desire to use extended authentication by
 leaving out the AUTH payload from message 3. By including an IDi
 payload but not an AUTH payload, the initiator has declared an
 identity but has not proven it. If the responder is willing to use an
 extended authentication method, it will place an EAP payload in
 message 4 and defer sending SAr2, TSi, and TSr until initiator
 authentication is complete in a subsequent IKE_AUTH exchange. In the
 case of a minimal extended authentication, the initial SA
 establishment will appear as follows:

 Initiator Responder
 ----------- -----------
 HDR, SAi1, KEi, Ni -->

 <-- HDR, SAr1, KEr, Nr, [CERTREQ]

 HDR, SK {IDi, [CERTREQ,] [IDr,]
 SAi2, TSi, TSr} -->

 <-- HDR, SK {IDr, [CERT,] AUTH,
 EAP }

 HDR, SK {EAP} -->

 <-- HDR, SK {EAP (success)}

 HDR, SK {AUTH} -->

 <-- HDR, SK {AUTH, SAr2, TSi, TSr }

 For EAP methods that create a shared key as a side effect of

 authentication, that shared key MUST be used by both the Initiator
 and Responder to generate AUTH payloads in messages 5 and 6 using the
 syntax for shared secrets specified in section 2.15. The shared key
 from EAP is the field from the EAP specification named MSK. The
 shared key generated during an IKE exchange MUST NOT be used for any
 other purpose.

 EAP methods that do not establish a shared key SHOULD NOT be used, as
 they are subject to a number of man-in-the-middle attacks [EAPMITM]

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 30]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 if these EAP methods are used in other protocols that do not use a
 server-authenticated tunnel. Please see the Security Considerations
 section for more details. If EAP methods that do not generate a
 shared key are used, the AUTH payloads in messages 7 and 8 MUST be
 generated using SK_pi and SK_pr respectively.

 The Initiator of an IKE_SA using EAP SHOULD be capable of extending
 the initial protocol exchange to at least ten IKE_AUTH exchanges in
 the event the Responder sends notification messages and/or retries
 the authentication prompt. The protocol terminates when the Responder
 sends the Initiator an EAP payload containing either a success or
 failure type. In such an extended exchange, the EAP AUTH payloads
 MUST be included in the two messages following the one containing the
 EAP (success) message.

2.17 Generating Keying Material for CHILD_SAs

 CHILD_SAs are created either by being piggybacked on the IKE_AUTH
 exchange, or in a CREATE_CHILD_SA exchange. Keying material for them
 is generated as follows:

 KEYMAT = prf+(SK_d, Ni | Nr)

 Where Ni and Nr are the Nonces from the IKE_SA_INIT exchange if this
 request is the first CHILD_SA created or the fresh Ni and Nr from the
 CREATE_CHILD_SA exchange if this is a subsequent creation.

 For CREATE_CHILD_SA exchanges with PFS the keying material is defined
 as:

 KEYMAT = prf+(SK_d, g^ir (new) | Ni | Nr)

 where g^ir (new) is the shared secret from the ephemeral Diffie-
 Hellman exchange of this CREATE_CHILD_SA exchange (represented as an
 octet string in big endian order padded with zeros in the high order
 bits if necessary to make it the length of the modulus).

 A single CHILD_SA negotiation may result in multiple security
 associations. ESP and AH SAs exist in pairs (one in each direction),
 and four SAs could be created in a single CHILD_SA negotiation if a

 combination of ESP and AH is being negotiated.

 Keying material MUST be taken from the expanded KEYMAT in the
 following order:

 All keys for SAs carrying data from the initiator to the responder
 are taken before SAs going in the reverse direction.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 31]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 If multiple IPsec protocols are negotiated, keying material is
 taken in the order in which the protocol headers will appear in
 the encapsulated packet.

 If a single protocol has both encryption and authentication keys,
 the encryption key is taken from the first octets of KEYMAT and
 the authentication key is taken from the next octets.

 Each cryptographic algorithm takes a fixed number of bits of keying
 material specified as part of the algorithm.

2.18 Rekeying IKE_SAs using a CREATE_CHILD_SA exchange

 The CREATE_CHILD_SA exchange can be used to rekey an existing IKE_SA
 (see section 2.8). New Initiator and Responder SPIs are supplied in
 the SPI fields. The TS payloads are omitted when rekeying an IKE_SA.
 SKEYSEED for the new IKE_SA is computed using SK_d from the existing
 IKE_SA as follows:

 SKEYSEED = prf(SK_d (old), [g^ir (new)] | Ni | Nr)

 where g^ir (new) is the shared secret from the ephemeral Diffie-
 Hellman exchange of this CREATE_CHILD_SA exchange (represented as an
 octet string in big endian order padded with zeros if necessary to
 make it the length of the modulus) and Ni and Nr are the two nonces
 stripped of any headers.

 The new IKE_SA MUST reset its message counters to 0.

 SK_d, SK_ai, SK_ar, and SK_ei, and SK_er are computed from SKEYSEED
 as specified in section 2.14.

2.19 Requesting an internal address on a remote network

 Most commonly occurring in the endpoint to security gateway scenario,
 an endpoint may need an IP address in the network protected by the
 security gateway, and may need to have that address dynamically
 assigned. A request for such a temporary address can be included in
 any request to create a CHILD_SA (including the implicit request in

 message 3) by including a CP payload.

 This function provides address allocation to an IRAC (IPsec Remote
 Access Client) trying to tunnel into a network protected by an IRAS
 (IPsec Remote Access Server). Since the IKE_AUTH exchange creates an
 IKE_SA and a CHILD_SA, the IRAC MUST request the IRAS controlled
 address (and optionally other information concerning the protected
 network) in the IKE_AUTH exchange. The IRAS may procure an address
 for the IRAC from any number of sources such as a DHCP/BOOTP server

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 32]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 or its own address pool.

 Initiator Responder
 ----------------------------- ---------------------------
 HDR, SK {IDi, [CERT,] [CERTREQ,]
 [IDr,] AUTH, CP(CFG_REQUEST),
 SAi2, TSi, TSr} -->

 <-- HDR, SK {IDr, [CERT,] AUTH,
 CP(CFG_REPLY), SAr2,
 TSi, TSr}

 In all cases, the CP payload MUST be inserted before the SA payload.
 In variations of the protocol where there are multiple IKE_AUTH
 exchanges, the CP payloads MUST be inserted in the messages
 containing the SA payloads.

 CP(CFG_REQUEST) MUST contain at least an INTERNAL_ADDRESS attribute
 (either IPv4 or IPv6) but MAY contain any number of additional
 attributes the initiator wants returned in the response.

 For example, message from Initiator to Responder:
 CP(CFG_REQUEST)=
 INTERNAL_ADDRESS(0.0.0.0)
 INTERNAL_NETMASK(0.0.0.0)
 INTERNAL_DNS(0.0.0.0)
 TSi = (0, 0-65536,0.0.0.0-255.255.255.255)
 TSr = (0, 0-65536,0.0.0.0-255.255.255.255)

 NOTE: Traffic Selectors contain (protocol, port range, address range)

 Message from Responder to Initiator:

 CP(CFG_REPLY)=
 INTERNAL_ADDRESS(10.168.219.202)
 INTERNAL_NETMASK(255.255.255.0)
 INTERNAL_SUBNET(10.168.219.0/255.255.255.0)
 TSi = (0, 0-65536,10.168.219.202-10.168.219.202)
 TSr = (0, 0-65536,10.168.219.0-10.168.219.255)

 All returned values will be implementation dependent. As can be seen
 in the above example, the IRAS MAY also send other attributes that
 were not included in CP(CFG_REQUEST) and MAY ignore the non-
 mandatory attributes that it does not support.

 The responder MUST NOT send a CFG_REPLY without having first received
 a CP(CFG_REQUEST) from the initiator, because we do not want the IRAS
 to perform an unnecessary configuration lookup if the IRAC cannot

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 33]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 process the REPLY. In the case where the IRAS's configuration
 requires that CP be used for a given identity IDi, but IRAC has
 failed to send a CP(CFG_REQUEST), IRAS MUST fail the request, and
 terminate the IKE exchange with a FAILED_CP_REQUIRED error.

2.20 Requesting the Peer's Version

 An IKE peer wishing to inquire about the other peer's IKE software
 version information MAY use the method below. This is an example of
 a configuration request within an INFORMATIONAL Exchange, after the
 IKE_SA and first CHILD_SA have been created.

 An IKE implementation MAY decline to give out version information
 prior to authentication or even after authentication to prevent
 trolling in case some implementation is known to have some security
 weakness. In that case, it MUST either return an empty string or no
 CP payload if CP is not supported.

 Initiator Responder
 ----------------------------- --------------------------
 HDR, SK{CP(CFG_REQUEST)} -->
 <-- HDR, SK{CP(CFG_REPLY)}

 CP(CFG_REQUEST)=
 APPLICATION_VERSION("")

 CP(CFG_REPLY)
 APPLICATION_VERSION("foobar v1.3beta, (c) Foo Bar Inc.")

2.21 Error Handling

 There are many kinds of errors that can occur during IKE processing.
 If a request is received that is badly formatted or unacceptable for
 reasons of policy (e.g., no matching cryptographic algorithms), the
 response MUST contain a Notify payload indicating the error. If an
 error occurs outside the context of an IKE request (e.g., the node is
 getting ESP messages on a nonexistent SPI), the node SHOULD initiate
 an INFORMATIONAL Exchange with a Notify payload describing the
 problem.

 Errors that occur before a cryptographically protected IKE_SA is
 established must be handled very carefully. There is a trade-off
 between wanting to be helpful in diagnosing a problem and responding
 to it and wanting to avoid being a dupe in a denial of service attack
 based on forged messages.

 If a node receives a message on UDP port 500 outside the context of
 an IKE_SA known to it (and not a request to start one), it may be the

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 34]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 result of a recent crash of the node. If the message is marked as a
 response, the node MAY audit the suspicious event but MUST NOT
 respond. If the message is marked as a request, the node MAY audit
 the suspicious event and MAY send a response. If a response is sent,
 the response MUST be sent to the IP address and port from whence it
 came with the same IKE SPIs and the Message ID copied. The response
 MUST NOT be cryptographically protected and MUST contain a Notify
 payload indicating INVALID_IKE_SPI.

 A node receiving such an unprotected Notify payload MUST NOT respond
 and MUST NOT change the state of any existing SAs. The message might
 be a forgery or might be a response the genuine correspondent was
 tricked into sending. A node SHOULD treat such a message (and also a
 network message like ICMP destination unreachable) as a hint that
 there might be problems with SAs to that IP address and SHOULD
 initiate a liveness test for any such IKE_SA. An implementation
 SHOULD limit the frequency of such tests to avoid being tricked into
 participating in a denial of service attack.

 A node receiving a suspicious message from an IP address with which
 it has an IKE_SA MAY send an IKE Notify payload in an IKE
 INFORMATIONAL exchange over that SA. The recipient MUST NOT change
 the state of any SA's as a result but SHOULD audit the event to aid
 in diagnosing malfunctions. A node MUST limit the rate at which it
 will send messages in response to unprotected messages.

2.22 IPComp

 Use of IP compression [IPCOMP] can be negotiated as part of the setup
 of a CHILD_SA. While IP compression involves an extra header in each
 packet and a CPI (compression parameter index), the virtual
 "compression association" has no life outside the ESP or AH SA that
 contains it. Compression associations disappear when the
 corresponding ESP or AH SA goes away, and is not explicitly mentioned
 in any DELETE payload.

 Negotiation of IP compression is separate from the negotiation of
 cryptographic parameters associated with a CHILD_SA. A node
 requesting a CHILD_SA MAY advertise its support for one or more
 compression algorithms though one or more Notify payloads of type
 IPCOMP_SUPPORTED. The response MAY indicate acceptance of a single
 compression algorithm with a Notify payload of type IPCOMP_SUPPORTED.
 These payloads MUST NOT occur messages that do not contain SA

 payloads.

 While there has been discussion of allowing multiple compression
 algorithms to be accepted and to have different compression
 algorithms available for the two directions of a CHILD_SA,

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 35]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 implementations of this specification MUST NOT accept an IPComp
 algorithm that was not proposed, MUST NOT accept more than one, and
 MUST NOT compress using an algorithm other than one proposed and
 accepted in the setup of the CHILD_SA.

 A side effect of separating the negotiation of IPComp from
 cryptographic parameters is that it is not possible to propose
 multiple cryptographic suites and propose IP compression with some of
 them but not others.

2.23 NAT Traversal

 NAT (Network Address Translation) gateways are a controversial
 subject. This section briefly describes what they are and how they
 are likely to act on IKE traffic. Many people believe that NATs are
 evil and that we should not design our protocols so as to make them
 work better. IKEv2 does specify some unintuitive processing rules in
 order that NATs are more likely to work.

 NATs exist primarily because of the shortage of IPv4 addresses,
 though there are other rationales. IP nodes that are "behind" a NAT
 have IP addresses that are not globally unique, but rather are
 assigned from some space that is unique within the network behind the
 NAT but which are likely to be reused by nodes behind other NATs.
 Generally, nodes behind NATs can communicate with other nodes behind
 the same NAT and with nodes with globally unique addresses, but not
 with nodes behind other NATs. There are exceptions to that rule.
 When those nodes make connections to nodes on the real Internet, the
 NAT gateway "translates" the IP source address to an address that
 will be routed back to the gateway. Messages to the gateway from the
 Internet have their destination addresses "translated" to the
 internal address that will route the packet to the correct endnode.

 NATs are designed to be "transparent" to endnodes. Neither software
 on the node behind the NAT nor the node on the Internet require
 modification to communicate through the NAT. Achieving this
 transparency is more difficult with some protocols than with others.
 Protocols that include IP addresses of the endpoints within the
 payloads of the packet will fail unless the NAT gateway understands
 the protocol and modifies the internal references as well as those in
 the headers. Such knowledge is inherently unreliable, is a network
 layer violation, and often results in subtle problems.

 Opening an IPsec connection through a NAT introduces special
 problems. If the connection runs in transport mode, changing the IP
 addresses on packets will cause the checksums to fail and the NAT
 cannot correct the checksums because they are cryptographically
 protected. Even in tunnel mode, there are routing problems because

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 36]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 transparently translating the addresses of AH and ESP packets
 requires special logic in the NAT and that logic is heuristic and
 unreliable in nature. For that reason, IKEv2 can negotiate UDP
 encapsulation of IKE, ESP, and AH packets. This encoding is slightly
 less efficient but is easier for NATs to process. In addition,
 firewalls may be configured to pass IPsec traffic over UDP but not
 ESP/AH or vice versa.

 It is a common practice of NATs to translate TCP and UDP port numbers
 as well as addresses and use the port numbers of inbound packets to
 decide which internal node should get a given packet. For this
 reason, even though IKE packets MUST be sent from and to UDP port
 500, they MUST be accepted coming from any port and responses MUST be
 sent to the port from whence they came. This is because the ports may
 be modified as the packets pass through NATs. Similarly, IP addresses
 of the IKE endpoints are generally not included in the IKE payloads
 because the payloads are cryptographically protected and could not be
 transparently modified by NATs.

 Port 4500 is reserved for UDP encapsulated ESP, AH, and IKE. When
 working through a NAT, it is generally better to pass IKE packets
 over port 4500 because some older NATs modify IKE traffic on port 500
 in an attempt to transparently establish IPsec connections. Such NATs
 may interfere with the straightforward NAT traversal envisioned by
 this document, so an IPsec endpoint that discovers a NAT between it
 and its correspondent MUST send all subsequent traffic to and from
 port 4500, which NATs should not treat specially (as they might with
 port 500).

 The specific requirements for supporting NAT traversal are listed
 below. Support for NAT traversal is optional. In this section only,
 requirements listed as MUST only apply to implementations supporting
 NAT traversal.

 IKE MUST listen on port 4500 as well as port 500. IKE MUST respond
 to the IP address and port from which packets arrived.

 Both IKE initiator and responder MUST include in their IKE_SA_INIT
 packets Notify payloads of type NAT_DETECTION_SOURCE_IP and
 NAT_DETECTION_DESTINATION_IP. Those payloads can be used to detect
 if there is NAT between the hosts, and which end is behind the
 NAT. The location of the payloads in the IKE_SA_INIT packets are
 just after the Ni and Nr payloads (before the optional CERTREQ

 payload).

 If none of the NAT_DETECTION_SOURCE_IP payload(s) received matches
 the hash of the source IP and port found from the IP header of the
 packet containing the payload, it means that the the other end is

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 37]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 behind NAT (i.e someone along the route changed the source address
 of the original packet to match the address of the NAT box). In
 this case this end should allow dynamic update of the other ends
 IP address, as described later.

 If the NAT_DETECTION_DESTINATION_IP payload received does not
 match the hash of the destination IP and port found from the IP
 header of the packet containing the payload, it means that this
 end is behind NAT (i.e the original sender sent the packet to
 address of the NAT box, which then changed the destination address
 to this host). In this case the this end should start sending
 keepalive packets as explained in [Hutt04].

 The IKE initiator MUST check these payloads if present and if they
 do not match the addresses in the outer packet MUST tunnel all
 future IKE, ESP, and AH packets associated with this IKE_SA over
 UDP port 4500.

 To tunnel IKE packets over UDP port 4500, the IKE header has four
 octets of zero prepended and the result immediately follows the
 UDP header. To tunnel ESP packets over UDP port 4500, the ESP
 header immediately follows the UDP header. Since the first four
 bytes of the ESP header contain the SPI, and the SPI cannot
 validly be zero, it is always possible to distinguish ESP and IKE
 messages.

 The original source and destination IP address required for the
 transport mode TCP and UDP packet checksum fixup (see [Hutt04])
 are obtained from the Traffic Selectors associated with the
 exchange. In the case of NAT-T, the Traffic Selectors MUST contain
 exactly one IP address which is then used as the original IP
 address.

 There are cases where a NAT box decides to remove mappings that
 are still alive (for example, the keepalive interval is too long,
 or the NAT box is rebooted). To recover in these cases, hosts that
 are not behind a NAT SHOULD send all packets (including
 retranmission packets) to the IP address and port from the last
 valid authenticated packet from the other end (i.e dynamically
 update the address). A host behind a NAT SHOULD NOT do this
 because it opens a DoS attack possibility. Any authenticated IKE
 packet or any authenticated UDP encapsulated ESP packet can be
 used to detect that the IP address or the port has changed.

 Note that similar but probably not identical actions will likely
 be needed to make IKE work with Mobile IP, but such processing is
 not addressed by this document.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 38]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

2.24 ECN (Explicit Congestion Notification)

 When IPsec tunnels behave as originally specified in [RFC 2401], ECN
 usage is not appropriate for the outer IP headers because tunnel
 decapsulation processing discards ECN congestion indications to the
 detriment of the network. ECN support for IPsec tunnels for
 IKEv1-based IPsec requires multiple operating modes and negotiation
 (see RFC 3168]). IKEv2 simplifies this situation by requiring that
 ECN be usable in the outer IP headers of all tunnel-mode IPsec SAs
 created by IKEv2. Specifically, tunnel encapsulators and
 decapsulators for all tunnel-mode Security Associations (SAs) created
 by IKEv2 MUST support the ECN full-functionality option for tunnels
 specified in [RFC3168] and MUST implement the tunnel encapsulation
 and decapsulation processing specified in [RFC2401bis] to prevent
 discarding of ECN congestion indications.

3 Header and Payload Formats

3.1 The IKE Header

 IKE messages use UDP ports 500 and/or 4500, with one IKE message per
 UDP datagram. Information from the UDP header is largely ignored
 except that the IP addresses and UDP ports from the headers are
 reversed and used for return packets. When sent on UDP port 500, IKE
 messages begin immediately following the UDP header. When sent on UDP
 port 4500, IKE messages have prepended four octets of zero. These
 four octets of zero are not part of the IKE message and are not
 included in any of the length fields or checksums defined by IKE.
 Each IKE message begins with the IKE header, denoted HDR in this
 memo. Following the header are one or more IKE payloads each
 identified by a "Next Payload" field in the preceding payload.
 Payloads are processed in the order in which they appear in an IKE
 message by invoking the appropriate processing routine according to
 the "Next Payload" field in the IKE header and subsequently according
 to the "Next Payload" field in the IKE payload itself until a "Next
 Payload" field of zero indicates that no payloads follow. If a
 payload of type "Encrypted" is found, that payload is decrypted and
 its contents parsed as additional payloads. An Encrypted payload MUST
 be the last payload in a packet and an encrypted payload MUST NOT
 contain another encrypted payload.

 The Recipient SPI in the header identifies an instance of an IKE
 security association. It is therefore possible for a single instance

https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

 of IKE to multiplex distinct sessions with multiple peers.

 All multi-octet fields representing integers are laid out in big
 endian order (aka most significant byte first, or network byte
 order).

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 39]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The format of the IKE header is shown in Figure 4.
 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! IKE_SA Initiator's SPI !
 ! !
 +-+
 ! IKE_SA Responder's SPI !
 ! !
 +-+
 ! Next Payload ! MjVer ! MnVer ! Exchange Type ! Flags !
 +-+
 ! Message ID !
 +-+
 ! Length !
 +-+

 Figure 4: IKE Header Format

 o Initiator's SPI (8 octets) - A value chosen by the
 initiator to identify a unique IKE security association. This
 value MUST NOT be zero.

 o Responder's SPI (8 octets) - A value chosen by the
 responder to identify a unique IKE security association. This
 value MUST be zero in the first message of an IKE Initial
 Exchange (including repeats of that message including a
 cookie) and MUST NOT be zero in any other message.

 o Next Payload (1 octet) - Indicates the type of payload that
 immediately follows the header. The format and value of each
 payload is defined below.

 o Major Version (4 bits) - indicates the major version of the IKE
 protocol in use. Implementations based on this version of IKE
 MUST set the Major Version to 2. Implementations based on
 previous versions of IKE and ISAKMP MUST set the Major Version
 to 1. Implementations based on this version of IKE MUST reject
 or ignore messages containing a version number greater than
 2.

 o Minor Version (4 bits) - indicates the minor version of the

 IKE protocol in use. Implementations based on this version of
 IKE MUST set the Minor Version to 0. They MUST ignore the minor
 version number of received messages.

 o Exchange Type (1 octet) - indicates the type of exchange being
 used. This constrains the payloads sent in each message and

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 40]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 orderings of messages in an exchange.

 Exchange Type Value

 RESERVED 0-33
 IKE_SA_INIT 34
 IKE_AUTH 35
 CREATE_CHILD_SA 36
 INFORMATIONAL 37
 Reserved for IKEv2+ 38-239
 Reserved for private use 240-255

 o Flags (1 octet) - indicates specific options that are set
 for the message. Presence of options are indicated by the
 appropriate bit in the flags field being set. The bits are
 defined LSB first, so bit 0 would be the least significant
 bit of the Flags octet. In the description below, a bit
 being 'set' means its value is '1', while 'cleared' means
 its value is '0'.

 -- X(reserved) (bits 0-2) - These bits MUST be cleared
 when sending and MUST be ignored on receipt.

 -- I(nitiator) (bit 3 of Flags) - This bit MUST be set in
 messages sent by the original Initiator of the IKE_SA
 and MUST be cleared in messages sent by the original
 Responder. It is used by the recipient to determine
 which eight octets of the SPI was generated by the
 recipient.

 -- V(ersion) (bit 4 of Flags) - This bit indicates that
 the transmitter is capable of speaking a higher major
 version number of the protocol than the one indicated
 in the major version number field. Implementations of
 IKEv2 must clear this bit when sending and MUST ignore
 it in incoming messages.

 -- R(esponse) (bit 5 of Flags) - This bit indicates that
 this message is a response to a message containing
 the same message ID. This bit MUST be cleared in all
 request messages and MUST be set in all responses.

 An IKE endpoint MUST NOT generate a response to a
 message that is marked as being a response.

 -- X(reserved) (bits 6-7 of Flags) - These bits MUST be
 cleared when sending and MUST be ignored on receipt.

 o Message ID (4 octets) - Message identifier used to control

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 41]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 retransmission of lost packets and matching of requests and
 responses. It is essential to the security of the protocol
 because it is used to prevent message replay attacks.
 See sections 2.1 and 2.2.

 o Length (4 octets) - Length of total message (header + payloads)
 in octets.

3.2 Generic Payload Header

 Each IKE payload defined in sections 3.3 through 3.16 begins with a
 generic payload header, shown in Figure 5. Figures for each payload
 below will include the generic payload header but for brevity the
 description of each field will be omitted.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+

 Figure 5: Generic Payload Header

 The Generic Payload Header fields are defined as follows:

 o Next Payload (1 octet) - Identifier for the payload type of the
 next payload in the message. If the current payload is the last
 in the message, then this field will be 0. This field provides
 a "chaining" capability whereby additional payloads can be
 added to a message by appending it to the end of the message
 and setting the "Next Payload" field of the preceding payload
 to indicate the new payload's type. An Encrypted payload,
 which must always be the last payload of a message, is an
 exception. It contains data structures in the format of
 additional payloads. In the header of an Encrypted payload,
 the Next Payload field is set to the payload type of the first
 contained payload (instead of 0).

 Payload Type Values

 Next Payload Type Notation Value

 No Next Payload 0

 RESERVED 1-32
 Security Association SA 33
 Key Exchange KE 34
 Identification - Initiator IDi 35

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 42]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 Identification - Responder IDr 36
 Certificate CERT 37
 Certificate Request CERTREQ 38
 Authentication AUTH 39
 Nonce Ni, Nr 40
 Notify N 41
 Delete D 42
 Vendor ID V 43
 Traffic Selector - Initiator TSi 44
 Traffic Selector - Responder TSr 45
 Encrypted E 46
 Configuration CP 47
 Extended Authentication EAP 48
 RESERVED TO IANA 49-127
 PRIVATE USE 128-255

 Payload type values 1-32 should not be used so that there is no
 overlap with the code assignments for IKEv1. Payload type values
 49-127 are reserved to IANA for future assignment in IKEv2 (see

section 6). Payload type values 128-255 are for private use among
 mutually consenting parties.

 o Critical (1 bit) - MUST be set to zero if the sender wants
 the recipient to skip this payload if he does not
 understand the payload type code in the Next Payload field
 of the previous payload. MUST be set to one if the
 sender wants the recipient to reject this entire message
 if he does not understand the payload type. MUST be ignored
 by the recipient if the recipient understands the payload type
 code. MUST be set to zero for payload types defined in this
 document. Note that the critical bit applies to the current
 payload rather than the "next" payload whose type code
 appears in the first octet. The reasoning behind not setting
 the critical bit for payloads defined in this document is
 that all implementations MUST understand all payload types
 defined in this document and therefore must ignore the
 Critical bit's value. Skipped payloads are expected to
 have valid Next Payload and Payload Length fields.

 o RESERVED (7 bits) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Payload Length (2 octets) - Length in octets of the current
 payload, including the generic payload header.

3.3 Security Association Payload

 The Security Association Payload, denoted SA in this memo, is used to

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 43]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 negotiate attributes of a security association. Assembly of Security
 Association Payloads requires great peace of mind. An SA payload MAY
 contain multiple proposals. If there is more than one, they MUST be
 ordered from most preferred to least preferred. Each proposal may
 contain multiple IPsec protocols (where a protocol is IKE, ESP, or
 AH), each protocol MAY contain multiple transforms, and each
 transform MAY contain multiple attributes. When parsing an SA, an
 implementation MUST check that the total Payload Length is consistent
 with the payload's internal lengths and counts. Proposals,
 Transforms, and Attributes each have their own variable length
 encodings. They are nested such that the Payload Length of an SA
 includes the combined contents of the SA, Proposal, Transform, and
 Attribute information. The length of a Proposal includes the lengths
 of all Transforms and Attributes it contains. The length of a
 Transform includes the lengths of all Attributes it contains.

 The syntax of Security Associations, Proposals, Transforms, and
 Attributes is based on ISAKMP, however the semantics are somewhat
 different. The reason for the complexity and the hierarchy is to
 allow for multiple possible combinations of algorithms to be encoded
 in a single SA. Sometimes there is a choice of multiple algorithms,
 while other times there is a combination of algorithms. For example,
 an Initiator might want to propose using (AH w/MD5 and ESP w/3DES) OR
 (ESP w/MD5 and 3DES).

 One of the reasons the semantics of the SA payload has changed from
 ISAKMP and IKEv1 is to make the encodings more compact in common
 cases.

 The Proposal structure contains within it a Proposal # and an IPsec
 protocol ID. Each structure MUST have the same Proposal # as the
 previous one or be one (1) greater. The first Proposal MUST have a
 Proposal # of one (1). If two successive structures have the same
 Proposal number, it means that the proposal consists of the first
 structure AND the second. So a proposal of AH AND ESP would have two
 proposal structures, one for AH and one for ESP and both would have
 Proposal #1. A proposal of AH OR ESP would have two proposal
 structures, one for AH with proposal #1 and one for ESP with proposal
 #2.

 Each Proposal/Protocol structure is followed by one or more transform
 structures. The number of different transforms is generally
 determined by the Protocol. AH generally has a single transform: an
 integrity check algorithm. ESP generally has two: an encryption

 algorithm and an integrity check algorithm. IKE generally has four
 transforms: a Diffie-Hellman group, an integrity check algorithm, a
 prf algorithm, and an encryption algorithm. If an algorithm that
 combines encryption and integrity protection is proposed, it MUST be

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 44]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 proposed as an encryption algorithm and an integrity protection
 algorithm MUST NOT be proposed. For each Protocol, the set of
 permissible transforms are assigned transform ID numbers, which
 appear in the header of each transform.

 If there are multiple transforms with the same Transform Type, the
 proposal is an OR of those transforms. If there are multiple
 Transforms with different Transform Types, the proposal is an AND of
 the different groups. For example, to propose ESP with (3DES or IDEA)
 and (HMAC_MD5 or HMAC_SHA), the ESP proposal would contain two
 Transform Type 1 candidates (one for 3DES and one for IDEA) and two
 Transform Type 2 candidates (one for HMAC_MD5 and one for HMAC_SHA).
 This effectively proposes four combinations of algorithms. If the
 Initiator wanted to propose only a subset of those - say (3DES and
 HMAC_MD5) or (IDEA and HMAC_SHA), there is no way to encode that as
 multiple transforms within a single Proposal. Instead, the Initiator
 would have to construct two different Proposals, each with two
 transforms.

 A given transform MAY have one or more Attributes. Attributes are
 necessary when the transform can be used in more than one way, as
 when an encryption algorithm has a variable key size. The transform
 would specify the algorithm and the attribute would specify the key
 size. Most transforms do not have attributes. A transform MUST NOT
 have multiple attributes of the same type. To propose alternate
 values for an attribute (for example, multiple key sizes for the AES
 encryption algorithm), and implementation MUST include multiple
 Transorms with the same Transform Type each with a single Attribute.

 Note that the semantics of Transforms and Attributes are quite
 different than in IKEv1. In IKEv1, a single Transform carried
 multiple algorithms for a protocol with one carried in the Transform
 and the others carried in the Attributes.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ <Proposals> ~
 ! !
 +-+

 Figure 6: Security Association Payload

 o Proposals (variable) - one or more proposal substructures.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 45]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The payload type for the Security Association Payload is thirty
 three (33).

3.3.1 Proposal Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 2 ! RESERVED ! Proposal Length !
 +-+
 ! Proposal # ! Protocol ID ! SPI Size !# of Transforms!
 +-+
 ~ SPI (variable) ~
 +-+
 ! !
 ~ <Transforms> ~
 ! !
 +-+

 Figure 7: Proposal Substructure

 o 0 (last) or 2 (more) (1 octet) - Specifies whether this is the
 last Proposal Substructure in the SA. This syntax is inherited
 from ISAKMP, but is unnecessary because the last Proposal
 could be identified from the length of the SA. The value (2)
 corresponds to a Payload Type of Proposal in IKEv1, and the
 first four octets of the Proposal structure are designed to
 look somewhat like the header of a Payload.

 o RESERVED (1 octet) - MUST be sent as zero; MUST be ignored on
 receipt.

 o Proposal Length (2 octets) - Length of this proposal,
 including all transforms and attributes that follow.

 o Proposal # (1 octet) - When a proposal is made, the first
 proposal in an SA MUST be #1, and subsequent proposals
 MUST either be the same as the previous proposal (indicating
 an AND of the two proposals) or one more than the previous
 proposal (indicating an OR of the two proposals). When a
 proposal is accepted, all of the proposal numbers in the

 SA MUST be the same and MUST match the number on the
 proposal sent that was accepted.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 46]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o Protocol ID (1 octet) - Specifies the IPsec protocol
 identifier for the current negotiation. The defined values
 are:

 Protocol Protocol ID
 RESERVED 0
 IKE 1
 AH 2
 ESP 3
 RESERVED TO IANA 4-200
 PRIVATE USE 201-255

 o SPI Size (1 octet) - For an initial IKE_SA negotiation,
 this field MUST be zero; the SPI is obtained from the
 outer header. During subsequent negotiations,
 it is equal to the size, in octets, of the SPI of the
 corresponding protocol (8 for IKE, 4 for ESP and AH).

 o # of Transforms (1 octet) - Specifies the number of
 transforms in this proposal.

 o SPI (variable) - The sending entity's SPI. Even if the SPI
 Size is not a multiple of 4 octets, there is no padding
 applied to the payload. When the SPI Size field is zero,
 this field is not present in the Security Association
 payload.

 o Transforms (variable) - one or more transform substructures.

3.3.2 Transform Substructure

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! 0 (last) or 3 ! RESERVED ! Transform Length !
 +-+
 !Transform Type ! RESERVED ! Transform ID !
 +-+
 ! !

 ~ Transform Attributes ~
 ! !
 +-+

 Figure 8: Transform Substructure

 o 0 (last) or 3 (more) (1 octet) - Specifies whether this is the

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 47]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 last Transform Substructure in the Proposal. This syntax is
 inherited from ISAKMP, but is unnecessary because the last
 Proposal could be identified from the length of the SA. The
 value (3) corresponds to a Payload Type of Transform in IKEv1,
 and the first four octets of the Transform structure are
 designed to look somewhat like the header of a Payload.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Transform Length - The length (in octets) of the Transform
 Substructure including Header and Attributes.

 o Transform Type (1 octet) - The type of transform being specified
 in this transform. Different protocols support different
 transform types. For some protocols, some of the transforms
 may be optional. If a transform is optional and the initiator
 wishes to propose that the transform be omitted, no transform
 of the given type is included in the proposal. If the
 initiator wishes to make use of the transform optional to
 the responder, she includes a transform substructure with
 transform ID = 0 as one of the options.

 o Transform ID (2 octets) - The specific instance of the transform
 type being proposed.

 Transform Type Values

 Transform Used In
 Type
 Encryption Algorithm 1 (IKE and ESP)
 Pseudo-random Function 2 (IKE)
 Integrity Algorithm 3 (IKE, AH, and optional in ESP)
 Diffie-Hellman Group 4 (IKE and optional in AH and ESP)
 Extended Sequence Numbers 5 (Optional in AH and ESP)
 RESERVED TO IANA 6-240
 PRIVATE USE 241-255

 For Transform Type 1 (Encryption Algorithm), defined Transform IDs
 are:

 Name Number Defined In
 RESERVED 0
 ENCR_DES_IV64 1 (RFC1827)
 ENCR_DES 2 (RFC2405)
 ENCR_3DES 3 (RFC2451)
 ENCR_RC5 4 (RFC2451)
 ENCR_IDEA 5 (RFC2451)
 ENCR_CAST 6 (RFC2451)

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 48]

https://datatracker.ietf.org/doc/html/rfc1827
https://datatracker.ietf.org/doc/html/rfc2405
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 ENCR_BLOWFISH 7 (RFC2451)
 ENCR_3IDEA 8 (RFC2451)
 ENCR_DES_IV32 9
 ENCR_RC4 10
 ENCR_NULL 11 (RFC2410)
 ENCR_AES_CBC 12
 ENCR_AES_CTR 13

 values 14-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

 For Transform Type 2 (Pseudo-random Function), defined Transform IDs
 are:

 Name Number Defined In
 RESERVED 0
 PRF_HMAC_MD5 1 (RFC2104)
 PRF_HMAC_SHA1 2 (RFC2104)
 PRF_HMAC_TIGER 3 (RFC2104)
 PRF_AES_CBC 4

 values 5-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

 For Transform Type 3 (Integrity Algorithm), defined Transform IDs
 are:

 Name Number Defined In
 NONE 0
 AUTH_HMAC_MD5_96 1 (RFC2403)
 AUTH_HMAC_SHA1_96 2 (RFC2404)
 AUTH_DES_MAC 3
 AUTH_KPDK_MD5 4 (RFC1826)
 AUTH_AES_XCBC_96 5

 values 6-1023 are reserved to IANA. Values 1024-65535 are for
 private use among mutually consenting parties.

 For Transform Type 4 (Diffie-Hellman Group), defined Transform IDs

https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/rfc2410
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2403
https://datatracker.ietf.org/doc/html/rfc2404
https://datatracker.ietf.org/doc/html/rfc1826

 are:

 Name Number
 NONE 0
 Defined in Appendix B 1 - 4
 Defined in [ADDGROUP] 5, 14 - 18
 values 6-13 and 19-1023 are reserved to IANA for new MODP, ECP
 or EC2N groups. Values 1024-65535 are for private use among

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 49]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 mutually consenting parties.

 For Transform Type 5 (Extended Sequence Numbers), defined Transform
 IDs are:

 Name Number
 No Extended Sequence Numbers 0
 Extended Sequence Numbers 1
 RESERVED 2 - 65535

 If Transform Type 5 is not included in a proposal, use of
 Extended Sequence Numbers is assumed.

3.3.3 Valid Transform Types by Protocol

 The number and type of transforms that accompany an SA payload are
 dependent on the protocol in the SA itself. An SA payload proposing
 the establishment of an SA has the following mandatory and optional
 transform types. A compliant implementation MUST understand all
 mandatory and optional types for each protocol it supports (though it
 need not accept proposals with unacceptable suites). A proposal MAY
 omit the optional types if the only value for them it will accept is
 NONE.

 Protocol Mandatory Types Optional Types
 IKE ENCR, PRF, INTEG, D-H
 ESP ENCR INTEG, D-H, ESN
 AH INTEG D-H, ESN

3.3.4 Mandatory Transform IDs

 The specification of suites that MUST and SHOULD be supported for
 interoperability has been removed from this document because they are
 likely to change more rapidly than this document evolves.

 An important lesson learned from IKEv1 is that no system should only
 implement the mandatory algorithms and expect them to be the best
 choice for all customers. For example, at the time that this document
 was being written, many IKEv1 implementers are starting to migrate to

 AES in CBC mode for VPN applications. Many IPsec systems based on
 IKEv2 will implement AES, longer Diffie-Hellman keys, and additional
 hash algorithms, and some IPsec customers already require these
 algorithms in addition to the ones listed above.

 It is likely that IANA will add additional transforms in the future,
 and some users may want to use private suites, especially for IKE
 where implementations should be capable of supporting different

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 50]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 parameters, up to certain size limits. In support of this goal, all
 implementations of IKEv2 SHOULD include a management facility that
 allows specification (by a user or system administrator) of Diffie-
 Hellman parameters (the generator, modulus, and exponent lengths and
 values) for new DH groups. Implementations SHOULD provide a
 management interface via which these parameters and the associated
 transform IDs may be entered (by a user or system administrator), to
 enable negotiating such groups.

 All implementations of IKEv2 MUST include a management facility that
 enables a user or system administrator to specify the suites that are
 acceptable for use with IKE. Upon receipt of a payload with a set of
 transform IDs, the implementation MUST compare the transmitted
 transform IDs against those locally configured via the management
 controls, to verify that the proposed suite is acceptable based on
 local policy. The implementation MUST reject SA proposals that are
 not authorized by these IKE suite controls.

3.3.5 Transform Attributes

 Each transform in a Security Association payload may include
 attributes that modify or complete the specification of the
 transform. These attributes are type/value pairs and are defined
 below. For example, if an encryption algorithm has a variable length
 key, the key length to be used may be specified as an attribute.
 Attributes can have a value with a fixed two octet length or a
 variable length value. For the latter, the attribute is encoded as
 type/length/value.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !A! Attribute Type ! AF=0 Attribute Length !
 !F! ! AF=1 Attribute Value !
 +-+
 ! AF=0 Attribute Value !
 ! AF=1 Not Transmitted !
 +-+

 Figure 9: Data Attributes

 o Attribute Type (2 octets) - Unique identifier for each type of

 attribute (see below).

 The most significant bit of this field is the Attribute Format
 bit (AF). It indicates whether the data attributes follow the
 Type/Length/Value (TLV) format or a shortened Type/Value (TV)
 format. If the AF bit is zero (0), then the Data Attributes

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 51]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 are of the Type/Length/Value (TLV) form. If the AF bit is a
 one (1), then the Data Attributes are of the Type/Value form.

 o Attribute Length (2 octets) - Length in octets of the Attribute
 Value. When the AF bit is a one (1), the Attribute Value is
 only 2 octets and the Attribute Length field is not present.

 o Attribute Value (variable length) - Value of the Attribute
 associated with the Attribute Type. If the AF bit is a
 zero (0), this field has a variable length defined by the
 Attribute Length field. If the AF bit is a one (1), the
 Attribute Value has a length of 2 octets.

 Note that only a single attribute type (Key Length) is defined, and
 it is fixed length. The variable length encoding specification is
 included only for future extensions. The only algorithms defined in
 this document that accept attributes are the AES based encryption,
 integrity, and pseudo-random functions, which require a single
 attribute specifying key width.

 Attributes described as basic MUST NOT be encoded using the variable
 length encoding. Variable length attributes MUST NOT be encoded as
 basic even if their value can fit into two octets. NOTE: This is a
 change from IKEv1, where increased flexibility may have simplified
 the composer of messages but certainly complicated the parser.

 Attribute Type value Attribute Format
 --
 RESERVED 0-13
 Key Length (in bits) 14 TV
 RESERVED 15-17
 RESERVED TO IANA 18-16383
 PRIVATE USE 16384-32767

 Values 0-13 and 15-17 were used in a similar context in IKEv1, and
 should not be assigned except to matching values. Values 18-16383 are
 reserved to IANA. Values 16384-32767 are for private use among
 mutually consenting parties.

 - Key Length

 When using an Encryption Algorithm that has a variable length key,
 this attribute specifies the key length in bits. (MUST use network
 byte order). This attribute MUST NOT be used when the specified
 Encryption Algorithm uses a fixed length key.

3.3.6 Attribute Negotiation

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 52]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 During security association negotiation Initiators present offers to
 Responders. Responders MUST select a single complete set of
 parameters from the offers (or reject all offers if none are
 acceptable). If there are multiple proposals, the Responder MUST
 choose a single proposal number and return all of the Proposal
 substructures with that Proposal number. If there are multiple
 Transforms with the same type the Responder MUST choose a single one.
 Any attributes of a selected transform MUST be returned unmodified.
 The Initiator of an exchange MUST check that the accepted offer is
 consistent with one of its proposals, and if not that response MUST
 be rejected.

 Negotiating Diffie-Hellman groups presents some special challenges.
 SA offers include proposed attributes and a Diffie-Hellman public
 number (KE) in the same message. If in the initial exchange the
 Initiator offers to use one of several Diffie-Hellman groups, it
 SHOULD pick the one the Responder is most likely to accept and
 include a KE corresponding to that group. If the guess turns out to
 be wrong, the Responder will indicate the correct group in the
 response and the Initiator SHOULD pick an element of that group for
 its KE value when retrying the first message. It SHOULD, however,
 continue to propose its full supported set of groups in order to
 prevent a man in the middle downgrade attack.

 Implementation Note:

 Certain negotiable attributes can have ranges or could have
 multiple acceptable values. These include the key length of a
 variable key length symmetric cipher. To further interoperability
 and to support upgrading endpoints independently, implementers of
 this protocol SHOULD accept values which they deem to supply
 greater security. For instance if a peer is configured to accept a
 variable lengthed cipher with a key length of X bits and is
 offered that cipher with a larger key length, the implementation
 SHOULD accept the offer if it supports use of the longer key.

 Support of this capability allows an implementation to express a
 concept of "at least" a certain level of security-- "a key length of
 at least X bits for cipher Y".

3.4 Key Exchange Payload

 The Key Exchange Payload, denoted KE in this memo, is used to
 exchange Diffie-Hellman public numbers as part of a Diffie-Hellman
 key exchange. The Key Exchange Payload consists of the IKE generic
 payload header followed by the Diffie-Hellman public value itself.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 53]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! DH Group # ! RESERVED !
 +-+
 ! !
 ~ Key Exchange Data ~
 ! !
 +-+

 Figure 10: Key Exchange Payload Format

 A key exchange payload is constructed by copying one's Diffie-Hellman
 public value into the "Key Exchange Data" portion of the payload.
 The length of the Diffie-Hellman public value MUST be equal to the
 length of the prime modulus over which the exponentiation was
 performed, prepending zero bits to the value if necessary.

 The DH Group # identifies the Diffie-Hellman group in which the Key
 Exchange Data was computed (see section 3.3.2). If the selected
 proposal uses a different Diffie-Hellman group, the message MUST be
 rejected with a Notify payload of type INVALID_KE_PAYLOAD.

 The payload type for the Key Exchange payload is thirty four (34).

3.5 Identification Payloads

 The Identification Payloads, denoted IDi and IDr in this memo, allow
 peers to assert an identity to one another. This identity may be used
 for policy lookup, but does not necessarily have to match anything in
 the CERT payload; both fields may be used by an implementation to
 perform access control decisions.

 NOTE: In IKEv1, two ID payloads were used in each direction to hold
 Traffic Selector information for data passing over the SA. In IKEv2,
 this information is carried in Traffic Selector (TS) payloads (see

section 3.13).

 The Identification Payload consists of the IKE generic payload header
 followed by identification fields as follows:

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 54]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! ID Type ! RESERVED |
 +-+
 ! !
 ~ Identification Data ~
 ! !
 +-+

 Figure 11: Identification Payload Format

 o ID Type (1 octet) - Specifies the type of Identification being
 used.

 o RESERVED - MUST be sent as zero; MUST be ignored on receipt.

 o Identification Data (variable length) - Value, as indicated by
 the Identification Type. The length of the Identification Data
 is computed from the size in the ID payload header.

 The payload types for the Identification Payload are thirty five (35)
 for IDi and thirty six (36) for IDr.

 The following table lists the assigned values for the Identification
 Type field, followed by a description of the Identification Data
 which follows:

 ID Type Value
 ------- -----
 RESERVED 0

 ID_IPV4_ADDR 1

 A single four (4) octet IPv4 address.

 ID_FQDN 2

 A fully-qualified domain name string. An example of a
 ID_FQDN is, "example.com". The string MUST not contain any
 terminators (e.g., NULL, CR, etc.).

 ID_RFC822_ADDR 3

 A fully-qualified RFC822 email address string, An example of
 a ID_RFC822_ADDR is, "jsmith@example.com". The string MUST

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 55]

https://datatracker.ietf.org/doc/html/rfc822
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 not contain any terminators.

 ID_IPV6_ADDR 5

 A single sixteen (16) octet IPv6 address.

 ID_DER_ASN1_DN 9

 The binary DER encoding of an ASN.1 X.500 Distinguished Name
 [X.501].

 ID_DER_ASN1_GN 10

 The binary DER encoding of an ASN.1 X.500 GeneralName
 [X.509].

 ID_KEY_ID 11

 An opaque octet stream which may be used to pass an account
 name or to pass vendor-specific information necessary to do
 certain proprietary types of identification.

 Reserved to IANA 12-200

 Reserved for private use 201-255

 Two implementations will interoperate only if each can generate a
 type of ID acceptable to the other. To assure maximum
 interoperability, implementations MUST be configurable to send at
 least one of ID_IPV4_ADDR, ID_FQDN, ID_RFC822_ADDR, or ID_KEY_ID, and
 MUST be configurable to accept all of these types. Implementations
 SHOULD be capable of generating and accepting all of these types.

3.6 Certificate Payload

 The Certificate Payload, denoted CERT in this memo, provides a means
 to transport certificates or other authentication related information
 via IKE. Certificate payloads SHOULD be included in an exchange if
 certificates are available to the sender unless the peer has
 indicated an ability to retrieve this information from elsewhere
 using an HTTP_CERT_LOOKUP_SUPPORTED Notify payload. Note that the
 term "Certificate Payload" is somewhat misleading, because not all
 authentication mechanisms use certificates and data other than
 certificates may be passed in this payload.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 56]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The Certificate Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certificate Data ~
 ! !
 +-+

 Figure 12: Certificate Payload Format

 o Certificate Encoding (1 octet) - This field indicates the type
 of certificate or certificate-related information contained
 in the Certificate Data field.

 Certificate Encoding Value
 -------------------- -----
 RESERVED 0
 PKCS #7 wrapped X.509 certificate 1
 PGP Certificate 2
 DNS Signed Key 3
 X.509 Certificate - Signature 4
 Kerberos Token 6
 Certificate Revocation List (CRL) 7
 Authority Revocation List (ARL) 8
 SPKI Certificate 9
 X.509 Certificate - Attribute 10
 Raw RSA Key 11
 Hash and URL of X.509 certificate 12
 Hash and URL of X.509 bundle 13
 RESERVED to IANA 14 - 200
 PRIVATE USE 201 - 255

 o Certificate Data (variable length) - Actual encoding of
 certificate data. The type of certificate is indicated
 by the Certificate Encoding field.

 The payload type for the Certificate Payload is thirty seven (37).

 Specific syntax is for some of the certificate type codes above is
 not defined in this document. The types whose syntax is defined in
 this document are:

 X.509 Certificate - Signature (4) contains a BER encoded X.509

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 57]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 certificate whose public key is used to validate the sender's AUTH
 payload.

 Certificate Revocation List (7) contains a BER encoded X.509
 certificate revocation list.

 Raw RSA Key (11) contains a PKCS #1 encoded RSA key.

 Hash and URL encodings (12-13) allow IKE messages to remain short
 by replacing long data structures with a 20 octet SHA-1 hash of
 the replaced value followed by a variable length URL that resolves
 to the BER encoded data structure itself. This improves efficiency
 when the endpoints have certificate data cached and makes IKE less
 subject to denial of service attacks that become easier to mount
 when IKE messages are large enough to require IP fragmentation
 [KPS03].

 Use the following ASN.1 definition for an X.509 bundle:

 CertBundle
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-cert-bundle(TBD) }

 DEFINITIONS EXPLICIT TAGS ::=
 BEGIN

 IMPORTS
 Certificate, CertificateList
 FROM PKIX1Explicit88
 { iso(1) identified-organization(3) dod(6)
 internet(1) security(5) mechanisms(5) pkix(7)
 id-mod(0) id-pkix1-explicit(18) } ;

 CertificateOrCRL ::= CHOICE {
 cert [0] Certificate,
 crl [1] CertificateList }

 CertificateBundle ::= SEQUENCE OF CertificateOrCRL

 END

 Implementations MUST be capable of being configured to send and
 accept up to four X.509 certificates in support of authentication.
 Implementations SHOULD be capable of being configured to send and
 accept Raw RSA keys and the first two Hash and URL formats. If
 multiple certificates are sent, the first certificate MUST contain
 the public key used to sign the AUTH payload. The other certificates

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 58]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 may be sent in any order.

3.7 Certificate Request Payload

 The Certificate Request Payload, denoted CERTREQ in this memo,
 provides a means to request preferred certificates via IKE and can
 appear in the IKE_INIT_SA response and/or the IKE_AUTH request.
 Certificate Request payloads MAY be included in an exchange when the
 sender needs to get the certificate of the receiver. If multiple CAs
 are trusted and the cert encoding does not allow a list, then
 multiple Certificate Request payloads SHOULD be transmitted.

 The Certificate Request Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Cert Encoding ! !
 +-+-+-+-+-+-+-+-+ !
 ~ Certification Authority ~
 ! !
 +-+

 Figure 13: Certificate Request Payload Format

 o Certificate Encoding (1 octet) - Contains an encoding of the type
 or format of certificate requested. Values are listed in section

3.6.

 o Certification Authority (variable length) - Contains an encoding
 of an acceptable certification authority for the type of
 certificate requested.

 The payload type for the Certificate Request Payload is thirty eight
 (38).

 The Certificate Encoding field has the same values as those defined
 in section 3.6. The Certification Authority field contains an

 indicator of trusted authorities for this certificate type. The
 Certification Authority value is a concatenated list of SHA-1 hashes
 of the public keys of trusted CAs. Each is encoded as the SHA-1 hash
 of the Subject Public Key Info element (see section 4.1.2.7 of [RFC
 3280]) from each Trust Anchor certificate. The twenty-octet hashes
 are concatenated and included with no other formatting.

 Note that the term "Certificate Request" is somewhat misleading, in

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 59]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 that values other than certificates are defined in a "Certificate"
 payload and requests for those values can be present in a Certificate
 Request Payload. The syntax of the Certificate Request payload in
 such cases is not defined in this document.

 The Certificate Request Payload is processed by inspecting the "Cert
 Encoding" field to determine whether the processor has any
 certificates of this type. If so the "Certification Authority" field
 is inspected to determine if the processor has any certificates which
 can be validated up to one of the specified certification
 authorities. This can be a chain of certificates. If a certificate
 exists which satisfies the criteria specified in the Certificate
 Request Payload, the certificate MUST be sent back to the certificate
 requestor; if a certificate chain exists which goes back to the
 certification authority specified in the request the entire chain
 SHOULD be sent back to the certificate requestor. If multiple
 certificates or chains exist that satisfy the request, the sender
 MUST pick one. If no certificates exist then the Certificate Request
 Payload is ignored. This is not an error condition of the protocol.
 There may be cases where there is a preferred CA, but an alternate
 might be acceptable (perhaps after prompting a human operator).

3.8 Authentication Payload

 The Authentication Payload, denoted AUTH in this memo, contains data
 used for authentication purposes. The syntax of the Authentication
 data varies according to the Auth Method as specified below.

 The Authentication Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Auth Method ! RESERVED !
 +-+
 ! !
 ~ Authentication Data ~
 ! !
 +-+

 Figure 14: Authentication Payload Format

 o Auth Method (1 octet) - Specifies the method of authentication
 used. Values defined are:

 RSA Digital Signature (1) - Computed as specified in section

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 60]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 2.15 using an RSA private key over a PKCS#1 padded hash.

 Shared Key Message Integrity Code (2) - Computed as specified in
section 2.15 using the shared key associated with the identity

 in the ID payload and the negotiated prf function

 DSS Digital Signature (3) - Computed as specified in section
2.15 using a DSS private key over a SHA-1 hash.

 The values 0 and 4-200 are reserved to IANA. The values 201-255
 are available for private use.

 o Authentication Data (variable length) - see section 2.15.

 The payload type for the Authentication Payload is thirty nine (39).

3.9 Nonce Payload

 The Nonce Payload, denoted Ni and Nr in this memo for the Initiator's
 and Responder's nonce respectively, contains random data used to
 guarantee liveness during an exchange and protect against replay
 attacks.

 The Nonce Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Nonce Data ~
 ! !
 +-+

 Figure 15: Nonce Payload Format

 o Nonce Data (variable length) - Contains the random data generated

 by the transmitting entity.

 The payload type for the Nonce Payload is forty (40).

 The size of a Nonce MUST be between 16 and 256 octets inclusive.
 Nonce values MUST NOT be reused.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 61]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

3.10 Notify Payload

 The Notify Payload, denoted N in this document, is used to transmit
 informational data, such as error conditions and state transitions,
 to an IKE peer. A Notify Payload may appear in a response message
 (usually specifying why a request was rejected), in an INFORMATIONAL
 Exchange (to report an error not in an IKE request), or in any other
 message to indicate sender capabilities or to modify the meaning of
 the request.

 The Notify Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! Notify Message Type !
 +-+
 ! !
 ~ Security Parameter Index (SPI) ~
 ! !
 +-+
 ! !
 ~ Notification Data ~
 ! !
 +-+

 Figure 16: Notification Payload Format

 o Protocol ID (1 octet) - If this notification concerns
 an existing SA, this field indicates the type of that SA.
 For IKE_SA notifications, this field MUST be one (1). For
 notifications concerning IPsec SAs this field MUST contain
 either (2) to indicate AH or (3) to indicate ESP. For
 notifications which do not relate to an existing SA, this
 field MUST be sent as zero and MUST be ignored on receipt.
 All other values for this field are reserved to IANA for future
 assignment.

 o SPI Size (1 octet) - Length in octets of the SPI as defined by
 the IPsec protocol ID or zero if no SPI is applicable. For a

 notification concerning the IKE_SA, the SPI Size MUST be zero.

 o Notify Message Type (2 octets) - Specifies the type of
 notification message.

 o SPI (variable length) - Security Parameter Index.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 62]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o Notification Data (variable length) - Informational or error data
 transmitted in addition to the Notify Message Type. Values for
 this field are type specific (see below).

 The payload type for the Notification Payload is forty one (41).

3.10.1 Notify Message Types

 Notification information can be error messages specifying why an SA
 could not be established. It can also be status data that a process
 managing an SA database wishes to communicate with a peer process.
 The table below lists the Notification messages and their
 corresponding values. The number of different error statuses was
 greatly reduced from IKE V1 both for simplification and to avoid
 giving configuration information to probers.

 Types in the range 0 - 16383 are intended for reporting errors. An
 implementation receiving a Notify payload with one of these types
 that it does not recognize in a response MUST assume that the
 corresponding request has failed entirely. Unrecognized error types
 in a request and status types in a request or response MUST be
 ignored except that they SHOULD be logged.

 Notify payloads with status types MAY be added to any message and
 MUST be ignored if not recognized. They are intended to indicate
 capabilities, and as part of SA negotiation are used to negotiate
 non-cryptographic parameters.

 NOTIFY MESSAGES - ERROR TYPES Value
 ----------------------------- -----
 UNSUPPORTED_CRITICAL_PAYLOAD 1

 Sent if the payload has the "critical" bit set and the
 payload type is not recognized. Notification Data contains
 the one octet payload type.

 INVALID_IKE_SPI 4

 Indicates an IKE message was received with an unrecognized
 destination SPI. This usually indicates that the recipient

 has rebooted and forgotten the existence of an IKE_SA.

 INVALID_MAJOR_VERSION 5

 Indicates the recipient cannot handle the version of IKE
 specified in the header. The closest version number that the
 recipient can support will be in the reply header.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 63]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 INVALID_SYNTAX 7

 Indicates the IKE message was received was invalid because
 some type, length, or value was out of range or because the
 request was rejected for policy reasons. To avoid a denial
 of service attack using forged messages, this status may
 only be returned for and in an encrypted packet if the
 message ID and cryptographic checksum were valid. To avoid
 leaking information to someone probing a node, this status
 MUST be sent in response to any error not covered by one of
 the other status types. To aid debugging, more detailed
 error information SHOULD be written to a console or log.

 INVALID_MESSAGE_ID 9

 Sent when an IKE message ID outside the supported window is
 received. This Notify MUST NOT be sent in a response; the
 invalid request MUST NOT be acknowledged. Instead, inform
 the other side by initiating an INFORMATIONAL exchange with
 Notification data containing the four octet invalid message
 ID. Sending this notification is optional and notifications
 of this type MUST be rate limited.

 INVALID_SPI 11

 MAY be sent in an IKE INFORMATIONAL Exchange when a node
 receives an ESP or AH packet with an invalid SPI. The
 Notification Data contains the SPI of the invalid packet.
 This usually indicates a node has rebooted and forgotten an
 SA. If this Informational Message is sent outside the
 context of an IKE_SA, it should only be used by the
 recipient as a "hint" that something might be wrong (because
 it could easily be forged).

 NO_PROPOSAL_CHOSEN 14

 None of the proposed crypto suites was acceptable.

 INVALID_KE_PAYLOAD 17

 The D-H Group # field in the KE payload is not the group #
 selected by the responder for this exchange. There are two
 octets of data associated with this notification: the
 accepted D-H Group # in big endian order.

 AUTHENTICATION_FAILED 24

 Sent in the response to an IKE_AUTH message when for some

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 64]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 reason the authentication failed. There is no associated
 data.

 SINGLE_PAIR_REQUIRED 34

 This error indicates that a CREATE_CHILD_SA request is
 unacceptable because its sender is only willing to accept
 traffic selectors specifying a single pair of addresses.
 The requestor is expected to respond by requesting an SA for
 only the specific traffic he is trying to forward.

 NO_ADDITIONAL_SAS 35

 This error indicates that a CREATE_CHILD_SA request is
 unacceptable because the Responder is unwilling to accept
 any more CHILD_SAs on this IKE_SA. Some minimal
 implementations may only accept a single CHILD_SA setup in
 the context of an initial IKE exchange and reject any
 subsequent attempts to add more.

 INTERNAL_ADDRESS_FAILURE 36

 Indicates an error assigning an internal address (i.e.,
 INTERNAL_IP4_ADDRESS or INTERNAL_IP6_ADDRESS) during the
 processing of a Configuration Payload by a Responder. If
 this error is generated within an IKE_AUTH exchange no
 CHILD_SA will be created.

 FAILED_CP_REQUIRED 37

 Sent by responder in the case where CP(CFG_REQUEST) was
 expected but not received, and so is a conflict with locally
 configured policy. There is no associated data.

 TS_UNACCEPTABLE 38

 Indicates that none of the addresses/protocols/ports in the
 supplied traffic selectors is acceptable.

 INVALID_SELECTORS 39

 MAY be sent in an IKE INFORMATIONAL Exchange when a node
 receives an ESP or AH packet whose selectors do not match
 those of the SA on which it was delivered (and which caused
 the packet to be dropped). The Notification Data contains
 the start of the offending packet (as in ICMP messages) and
 the SPI field of the notification is set to match the SPI of
 the IPsec SA.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 65]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 RESERVED TO IANA - Error types 39 - 8191

 Private Use - Errors 8192 - 16383

 NOTIFY MESSAGES - STATUS TYPES Value
 ------------------------------ -----

 INITIAL_CONTACT 16384

 This notification asserts that this IKE_SA is the only
 IKE_SA currently active between the authenticated
 identities. It MAY be sent when an IKE_SA is established
 after a crash, and the recipient MAY use this information to
 delete any other IKE_SAs it has to the same authenticated
 identity without waiting for a timeout. This notification
 MUST NOT be sent by an entity that may be replicated (e.g.,
 a roaming user's credentials where the user is allowed to
 connect to the corporate firewall from two remote systems at
 the same time).

 SET_WINDOW_SIZE 16385

 This notification asserts that the sending endpoint is
 capable of keeping state for multiple outstanding exchanges,
 permitting the recipient to send multiple requests before
 getting a response to the first. The data associated with a
 SET_WINDOW_SIZE notification MUST be 4 octets long and
 contain the big endian representation of the number of
 messages the sender promises to keep. Window size is always
 one until the initial exchanges complete.

 ADDITIONAL_TS_POSSIBLE 16386

 This notification asserts that the sending endpoint narrowed
 the proposed traffic selectors but that other traffic
 selectors would also have been acceptable, though only in a
 separate SA (see section 2.9). There is no data associated
 with this Notify type. It may only be sent as an additional
 payload in a message including accepted TSs.

 IPCOMP_SUPPORTED 16387

 This notification may only be included in a message
 containing an SA payload negotiating a CHILD_SA and
 indicates a willingness by its sender to use IPComp on this
 SA. The data associated with this notification includes a

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 66]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 two octet IPComp CPI followed by a one octet transform ID
 optionally followed by attributes whose length and format is
 defined by that transform ID. A message proposing an SA may
 contain multiple IPCOMP_SUPPORTED notifications to indicate
 multiple supported algorithms. A message accepting an SA may
 contain at most one.

 The transform IDs currently defined are:

 NAME NUMBER DEFINED IN
 ----------- ------ -----------
 RESERVED 0
 IPCOMP_OUI 1
 IPCOMP_DEFLATE 2 RFC 2394
 IPCOMP_LZS 3 RFC 2395
 IPCOMP_LZJH 4 RFC 3051

 values 5-240 are reserved to IANA. Values 241-255 are
 for private use among mutually consenting parties.

 NAT_DETECTION_SOURCE_IP 16388

 This notification is used by its recipient to determine
 whether the source is behind a NAT box. The data associated
 with this notification is a SHA-1 digest of the SPIs (in the
 order they appear in the header), IP address and port on
 which this packet was sent. There MAY be multiple Notify
 payloads of this type in a message if the sender does not
 know which of several network attachments will be used to
 send the packet. The recipient of this notification MAY
 compare the supplied value to a SHA-1 hash of the SPIs,
 source IP address and port and if they don't match it SHOULD
 enable NAT traversal (see section 2.23). Alternately, it
 MAY reject the connection attempt if NAT traversal is not
 supported.

 NAT_DETECTION_DESTINATION_IP 16389

 This notification is used by its recipient to determine
 whether it is behind a NAT box. The data associated with
 this notification is a SHA-1 digest of the SPIs (in the

https://datatracker.ietf.org/doc/html/rfc2394
https://datatracker.ietf.org/doc/html/rfc2395
https://datatracker.ietf.org/doc/html/rfc3051

 order they appear in the header), IP address and port to
 which this packet was sent. The recipient of this
 notification MAY compare the supplied value to a hash of the
 SPIs, destination IP address and port and if they don't
 match it SHOULD invoke NAT traversal (see section 2.23). If
 they don't match, it means that this end is behind a NAT and
 this end SHOULD start start sending keepalive packets as

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 67]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 defined in [Hutt04]. Alternately, it MAY reject the
 connection attempt if NAT traversal is not supported.

 COOKIE 16390

 This notification MAY be included in an IKE_SA_INIT
 response. It indicates that the request should be retried
 with a copy of this notification as the first payload. This
 notification MUST be included in an IKE_SA_INIT request
 retry if a COOKIE notification was included in the initial
 response. The data associated with this notification MUST
 be between 1 and 64 octets in length (inclusive).

 USE_TRANSPORT_MODE 16391

 This notification MAY be included in a request message that
 also includes an SA requesting a CHILD_SA. It requests that
 the CHILD_SA use transport mode rather than tunnel mode for
 the SA created. If the request is accepted, the response
 MUST also include a notification of type USE_TRANSPORT_MODE.
 If the responder declines the request, the CHILD_SA will be
 established in tunnel mode. If this is unacceptable to the
 initiator, the initiator MUST delete the SA. Note: except
 when using this option to negotiate transport mode, all
 CHILD_SAs will use tunnel mode.

 Note: The ECN decapsulation modifications specified in
 [RFC2401bis] MUST be performed for every tunnel mode SA
 created by IKEv2.

 HTTP_CERT_LOOKUP_SUPPORTED 16392

 This notification MAY be included in any message that can
 include a CERTREQ payload and indicates that the sender is
 capable of looking up certificates based on an HTTP-based
 URL (and hence presumably would prefer to receive
 certificate specifications in that format).

 REKEY_SA 16393

 This notification MUST be included in a CREATE_CHILD_SA
 exchange if the purpose of the exchange is to replace an
 existing ESP or AH SA. The SPI field identifies the SA being
 rekeyed. There is no data.

 ESP_TFC_PADDING_NOT_SUPPORTED 16394

 This notification asserts that the sending endpoint will NOT

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 68]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 accept packets that contain Flow Confidentiality (TFC)
 padding.

 RESERVED TO IANA - STATUS TYPES 16395 - 40959

 Private Use - STATUS TYPES 40960 - 65535

3.11 Delete Payload

 The Delete Payload, denoted D in this memo, contains a protocol
 specific security association identifier that the sender has removed
 from its security association database and is, therefore, no longer
 valid. Figure 17 shows the format of the Delete Payload. It is
 possible to send multiple SPIs in a Delete payload, however, each SPI
 MUST be for the same protocol. Mixing of protocol identifiers MUST
 NOT be performed in a the Delete payload. It is permitted, however,
 to include multiple Delete payloads in a single INFORMATIONAL
 Exchange where each Delete payload lists SPIs for a different
 protocol.

 Deletion of the IKE_SA is indicated by a protocol ID of 1 (IKE) but
 no SPIs. Deletion of a CHILD_SA, such as ESP or AH, will contain the
 IPsec protocol ID of that protocol (2 for AH, 3 for ESP) and the SPI
 is the SPI the sending endpoint would expect in inbound ESP or AH
 packets.

 The Delete Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Protocol ID ! SPI Size ! # of SPIs !
 +-+
 ! !
 ~ Security Parameter Index(es) (SPI) ~
 ! !
 +-+

 Figure 17: Delete Payload Format

 o Protocol ID (1 octet) - Must be 1 for an IKE_SA, 2 for AH, or
 3 for ESP.

 o SPI Size (1 octet) - Length in octets of the SPI as defined by
 the protocol ID. It MUST be zero for IKE (SPI is in message
 header) or four for AH and ESP.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 69]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o # of SPIs (2 octets) - The number of SPIs contained in the Delete
 payload. The size of each SPI is defined by the SPI Size field.

 o Security Parameter Index(es) (variable length) - Identifies the
 specific security association(s) to delete. The length of this
 field is determined by the SPI Size and # of SPIs fields.

 The payload type for the Delete Payload is forty two (42).

3.12 Vendor ID Payload

 The Vendor ID Payload contains a vendor defined constant. The
 constant is used by vendors to identify and recognize remote
 instances of their implementations. This mechanism allows a vendor
 to experiment with new features while maintaining backwards
 compatibility.

 A Vendor ID payload MAY announce that the sender is capable to
 accepting certain extensions to the protocol, or it MAY simply
 identify the implementation as an aid in debugging. A Vendor ID
 payload MUST NOT change the interpretation of any information defined
 in this specification (i.e., it MUST be non-critical). Multiple
 Vendor ID payloads MAY be sent. An implementation is NOT REQUIRED to
 send any Vendor ID payload at all.

 A Vendor ID payload may be sent as part of any message. Reception of
 a familiar Vendor ID payload allows an implementation to make use of
 Private USE numbers described throughout this memo-- private
 payloads, private exchanges, private notifications, etc. Unfamiliar
 Vendor IDs MUST be ignored.

 Writers of Internet-Drafts who wish to extend this protocol MUST
 define a Vendor ID payload to announce the ability to implement the
 extension in the Internet-Draft. It is expected that Internet-Drafts
 which gain acceptance and are standardized will be given "magic
 numbers" out of the Future Use range by IANA and the requirement to
 use a Vendor ID will go away.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 70]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 The Vendor ID Payload fields are defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ Vendor ID (VID) ~
 ! !
 +-+

 Figure 18: Vendor ID Payload Format

 o Vendor ID (variable length) - It is the responsibility of
 the person choosing the Vendor ID to assure its uniqueness
 in spite of the absence of any central registry for IDs.
 Good practice is to include a company name, a person name
 or some such. If you want to show off, you might include
 the latitude and longitude and time where you were when
 you chose the ID and some random input. A message digest
 of a long unique string is preferable to the long unique
 string itself.

 The payload type for the Vendor ID Payload is forty three (43).

3.13 Traffic Selector Payload

 The Traffic Selector Payload, denoted TS in this memo, allows peers
 to identify packet flows for processing by IPsec security services.
 The Traffic Selector Payload consists of the IKE generic payload
 header followed by individual traffic selectors as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Number of TSs ! RESERVED !
 +-+

 ! !
 ~ <Traffic Selectors> ~
 ! !
 +-+

 Figure 19: Traffic Selectors Payload Format

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 71]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o Number of TSs (1 octet) - Number of traffic selectors
 being provided.

 o RESERVED - This field MUST be sent as zero and MUST be ignored
 on receipt.

 o Traffic Selectors (variable length) - one or more individual
 traffic selectors.

 The length of the Traffic Selector payload includes the TS header and
 all the traffic selectors.

 The payload type for the Traffic Selector payload is forty four (44)
 for addresses at the initiator's end of the SA and forty five (45)
 for addresses at the responder's end.

3.13.1 Traffic Selector

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! TS Type !IP Protocol ID*| Selector Length |
 +-+
 | Start Port* | End Port* |
 +-+
 ! !
 ~ Starting Address* ~
 ! !
 +-+
 ! !
 ~ Ending Address* ~
 ! !
 +-+

 Figure 20: Traffic Selector

 *Note: all fields other than TS Type and Selector Length depend on
 the TS Type. The fields shown are for TS Types 7 and 8, the only two
 values currently defined.

 o TS Type (one octet) - Specifies the type of traffic selector.

 o IP protocol ID (1 octet) - Value specifying an associated IP
 protocol ID (e.g., UDP/TCP/ICMP). A value of zero means that
 the protocol ID is not relevant to this traffic selector--
 the SA can carry all protocols.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 72]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o Selector Length - Specifies the length of this Traffic
 Selector Substructure including the header.

 o Start Port (2 octets) - Value specifying the smallest port
 number allowed by this Traffic Selector. For protocols for
 which port is undefined, or if all ports are allowed or
 port is OPAQUE, this field MUST be zero. For the
 ICMP protocol, the two one octet fields Type and Code are
 treated as a single 16 bit integer (with Type in the most
 significant eight bits and Code in the least significant
 eight bits) port number for the purposes of filtering based
 on this field.

 o End Port (2 octets) - Value specifying the largest port
 number allowed by this Traffic Selector. For protocols for
 which port is undefined, or if all ports are allowed or
 port is OPAQUE, this field MUST be 65535. For the
 ICMP protocol, the two one octet fields Type and Code are
 treated as a single 16 bit integer (with Type in the most
 significant eight bits and Code in the least significant
 eight bits) port number for the purposed of filtering based
 on this field.

 o Starting Address - The smallest address included in this
 Traffic Selector (length determined by TS type).

 o Ending Address - The largest address included in this
 Traffic Selector (length determined by TS type).

 The following table lists the assigned values for the Traffic
 Selector Type field and the corresponding Address Selector Data.

 TS Type Value
 ------- -----
 RESERVED 0-6

 TS_IPV4_ADDR_RANGE 7

 A range of IPv4 addresses, represented by two four (4) octet
 values. The first value is the beginning IPv4 address

 (inclusive) and the second value is the ending IPv4 address
 (inclusive). All addresses falling between the two specified
 addresses are considered to be within the list.

 TS_IPV6_ADDR_RANGE 8

 A range of IPv6 addresses, represented by two sixteen (16)
 octet values. The first value is the beginning IPv6 address

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 73]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 (inclusive) and the second value is the ending IPv6 address
 (inclusive). All addresses falling between the two specified
 addresses are considered to be within the list.

 RESERVED TO IANA 9-240
 PRIVATE USE 241-255

3.14 Encrypted Payload

 The Encrypted Payload, denoted SK{...} in this memo, contains other
 payloads in encrypted form. The Encrypted Payload, if present in a
 message, MUST be the last payload in the message. Often, it is the
 only payload in the message.

 The algorithms for encryption and integrity protection are negotiated
 during IKE_SA setup, and the keys are computed as specified in
 sections 2.14 and 2.18.

 The encryption and integrity protection algorithms are modelled after
 the ESP algorithms described in RFCs 2104, 2406, 2451. This document
 completely specifies the cryptographic processing of IKE data, but
 those documents should be consulted for design rationale. We assume a
 block cipher with a fixed block size and an integrity check algorithm
 that computes a fixed length checksum over a variable size message.

 The payload type for an Encrypted payload is forty six (46). The
 Encrypted Payload consists of the IKE generic payload header followed
 by individual fields as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! Initialization Vector !
 ! (length is block size for encryption algorithm) !
 +-+
 ! Encrypted IKE Payloads !
 + +-+
 ! ! Padding (0-255 octets) !
 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+

 ! ! Pad Length !
 +-+
 ~ Integrity Checksum Data ~
 +-+

 Figure 21: Encrypted Payload Format

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 74]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o Next Payload - The payload type of the first embedded payload.
 Note that this is an exception in the standard header format,
 since the Encrypted payload is the last payload in the
 message and therefore the Next Payload field would normally
 be zero. But because the content of this payload is embedded
 payloads and there was no natural place to put the type of
 the first one, that type is placed here.

 o Payload Length - Includes the lengths of the header, IV,
 Encrypted IKE Payloads, Padding, Pad Length and Integrity
 Checksum Data.

 o Initialization Vector - A randomly chosen value whose length
 is equal to the block length of the underlying encryption
 algorithm. Recipients MUST accept any value. Senders SHOULD
 either pick this value pseudo-randomly and independently for
 each message or use the final ciphertext block of the previous
 message sent. Senders MUST NOT use the same value for each
 message, use a sequence of values with low hamming distance
 (e.g., a sequence number), or use ciphertext from a received
 message.

 o IKE Payloads are as specified earlier in this section. This
 field is encrypted with the negotiated cipher.

 o Padding MAY contain any value chosen by the sender, and MUST
 have a length that makes the combination of the Payloads, the
 Padding, and the Pad Length to be a multiple of the encryption
 block size. This field is encrypted with the negotiated
 cipher.

 o Pad Length is the length of the Padding field. The sender
 SHOULD set the Pad Length to the minimum value that makes
 the combination of the Payloads, the Padding, and the Pad
 Length a multiple of the block size, but the recipient MUST
 accept any length that results in proper alignment. This
 field is encrypted with the negotiated cipher.

 o Integrity Checksum Data is the cryptographic checksum of
 the entire message starting with the Fixed IKE Header
 through the Pad Length. The checksum MUST be computed over
 the encrypted message. Its length is determined by the

 integrity algorithm negotiated.

3.15 Configuration Payload

 The Configuration payload, denoted CP in this document, is used to
 exchange configuration information between IKE peers. The exchange is

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 75]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 for an IRAC to request an internal IP address from an IRAS and to
 exchange other information of the sort that one would acquire with
 DHCP if the IRAC were directly connected to a LAN.

 Configuration payloads are of type CFG_REQUEST/CFG_REPLY or
 CFG_SET/CFG_ACK (see CFG Type in the payload description below).
 CFG_REQUEST and CFG_SET payloads may optionally be added to any IKE
 request. The IKE response MUST include either a corresponding
 CFG_REPLY or CFG_ACK or a Notify payload with an error type
 indicating why the request could not be honored. An exception is that
 a minimal implementation MAY ignore all CFG_REQUEST and CFG_SET
 payloads, so a response message without a corresponding CFG_REPLY or
 CFG_ACK MUST be accepted as an indication that the request was not
 supported.

 "CFG_REQUEST/CFG_REPLY" allows an IKE endpoint to request information
 from its peer. If an attribute in the CFG_REQUEST Configuration
 Payload is not zero length it is taken as a suggestion for that
 attribute. The CFG_REPLY Configuration Payload MAY return that
 value, or a new one. It MAY also add new attributes and not include
 some requested ones. Requestors MUST ignore returned attributes that
 they do not recognize.

 Some attributes MAY be multi-valued, in which case multiple attribute
 values of the same type are sent and/or returned. Generally, all
 values of an attribute are returned when the attribute is requested.
 For some attributes (in this version of the specification only
 internal addresses), multiple requests indicates a request that
 multiple values be assigned. For these attributes, the number of
 values returned SHOULD NOT exceed the number requested.

 If the data type requested in a CFG_REQUEST is not recognized or not
 supported, the responder MUST NOT return an error type but rather
 MUST either send a CFG_REPLY which MAY be empty or a reply not
 containing a CFG_REPLY payload at all. Error returns are reserved for
 cases where the request is recognized but cannot be performed as
 requested or the request is badly formatted.

 "CFG_SET/CFG_ACK" allows an IKE endpoint to push configuration data
 to its peer. In this case the CFG_SET Configuration Payload contains
 attributes the initiator wants its peer to alter. The responder MUST
 return a Configuration Payload if it accepted any of the
 configuration data and it MUST contain the attributes that the

 responder accepted with zero length data. Those attributes that it
 did not accept MUST NOT be in the CFG_ACK Configuration Payload. If
 no attributes were accepted, the responder MUST return either an
 empty CFG_ACK payload or a response message without a CFG_ACK
 payload. There are currently no defined uses for the CFG_SET/CFG_ACK

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 76]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 exchange, though they may be used in connection with extensions based
 on Vendor IDs. An minimal implementation of this specification MAY
 ignore CFG_SET payloads.

 Extensions via the CP payload SHOULD NOT be used for general purpose
 management. Its main intent is to provide a bootstrap mechanism to
 exchange information within IPsec from IRAS to IRAC. While it MAY be
 useful to use such a method to exchange information between some
 Security Gateways (SGW) or small networks, existing management
 protocols such as DHCP [DHCP], RADIUS [RADIUS], SNMP or LDAP [LDAP]
 should be preferred for enterprise management as well as subsequent
 information exchanges.

 The Configuration Payload is defined as follows:

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! CFG Type ! RESERVED !
 +-+
 ! !
 ~ Configuration Attributes ~
 ! !
 +-+

 Figure 22: Configuration Payload Format

 The payload type for the Configuration Payload is forty seven (47).

 o CFG Type (1 octet) - The type of exchange represented by the
 Configuration Attributes.

 CFG Type Value
 =========== =====
 RESERVED 0
 CFG_REQUEST 1
 CFG_REPLY 2
 CFG_SET 3
 CFG_ACK 4

 values 5-127 are reserved to IANA. Values 128-255 are for private
 use among mutually consenting parties.

 o RESERVED (3 octets) - MUST be sent as zero; MUST be ignored on
 receipt.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 77]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 o Configuration Attributes (variable length) - These are type
 length values specific to the Configuration Payload and are
 defined below. There may be zero or more Configuration
 Attributes in this payload.

3.15.1 Configuration Attributes

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 !R| Attribute Type ! Length |
 +-+
 | |
 ~ Value ~
 | |
 +-+

 Figure 23: Configuration Attribute Format

 o Reserved (1 bit) - This bit MUST be set to zero and MUST be
 ignored on receipt.

 o Attribute Type (7 bits) - A unique identifier for each of the
 Configuration Attribute Types.

 o Length (2 octets) - Length in octets of Value.

 o Value (0 or more octets) - The variable length value of this
 Configuration Attribute.

 The following attribute types have been defined:

 Multi-
 Attribute Type Value Valued Length
 ======================= ===== ====== ==================
 RESERVED 0
 INTERNAL_IP4_ADDRESS 1 YES* 0 or 4 octets
 INTERNAL_IP4_NETMASK 2 NO 0 or 4 octets
 INTERNAL_IP4_DNS 3 YES 0 or 4 octets
 INTERNAL_IP4_NBNS 4 YES 0 or 4 octets

 INTERNAL_ADDRESS_EXPIRY 5 NO 0 or 4 octets
 INTERNAL_IP4_DHCP 6 YES 0 or 4 octets
 APPLICATION_VERSION 7 NO 0 or more
 INTERNAL_IP6_ADDRESS 8 YES* 0 or 16 octets
 INTERNAL_IP6_NETMASK 9 NO 0 or 16 octets
 INTERNAL_IP6_DNS 10 YES 0 or 16 octets
 INTERNAL_IP6_NBNS 11 YES 0 or 16 octets
 INTERNAL_IP6_DHCP 12 YES 0 or 16 octets

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 78]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 INTERNAL_IP4_SUBNET 13 NO 0 or 8 octets
 SUPPORTED_ATTRIBUTES 14 NO Multiple of 2
 INTERNAL_IP6_SUBNET 15 NO 17 octets

 * These attributes may be multi-valued on return only if
 multiple values were requested.

 Types 16-16383 are reserved to IANA. Values 16384-32767 are for
 private use among mutually consenting parties.

 o INTERNAL_IP4_ADDRESS, INTERNAL_IP6_ADDRESS - An address on the
 internal network, sometimes called a red node address or
 private address and MAY be a private address on the Internet.
 Multiple internal addresses MAY be requested by requesting
 multiple internal address attributes. The responder MAY only
 send up to the number of addresses requested.

 The requested address is valid until the expiry time defined
 with the INTERNAL_ADDRESS EXPIRY attribute or there are no
 IKE_SAs between the peers.

 o INTERNAL_IP4_NETMASK, INTERNAL_IP6_NETMASK - The internal
 network's netmask. Only one netmask is allowed in the request
 and reply messages (e.g., 255.255.255.0) and it MUST be used
 only with an INTERNAL_ADDRESS attribute.

 o INTERNAL_IP4_DNS, INTERNAL_IP6_DNS - Specifies an address of a
 DNS server within the network. Multiple DNS servers MAY be
 requested. The responder MAY respond with zero or more DNS
 server attributes.

 o INTERNAL_IP4_NBNS, INTERNAL_IP6_NBNS - Specifies an address of
 a NetBios Name Server (WINS) within the network. Multiple NBNS
 servers MAY be requested. The responder MAY respond with zero
 or more NBNS server attributes.

 o INTERNAL_ADDRESS_EXPIRY - Specifies the number of seconds that
 the host can use the internal IP address. The host MUST renew
 the IP address before this expiry time. Only one of these
 attributes MAY be present in the reply.

 o INTERNAL_IP4_DHCP, INTERNAL_IP6_DHCP - Instructs the host to
 send any internal DHCP requests to the address contained within
 the attribute. Multiple DHCP servers MAY be requested. The
 responder MAY respond with zero or more DHCP server attributes.

 o APPLICATION_VERSION - The version or application information of
 the IPsec host. This is a string of printable ASCII characters

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 79]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 that is NOT null terminated.

 o INTERNAL_IP4_SUBNET - The protected sub-networks that this
 edge-device protects. This attribute is made up of two fields;
 the first being an IP address and the second being a netmask.
 Multiple sub-networks MAY be requested. The responder MAY
 respond with zero or more sub-network attributes.

 o SUPPORTED_ATTRIBUTES - When used within a Request, this
 attribute MUST be zero length and specifies a query to the
 responder to reply back with all of the attributes that it
 supports. The response contains an attribute that contains a
 set of attribute identifiers each in 2 octets. The length
 divided by 2 (octets) would state the number of supported
 attributes contained in the response.

 o INTERNAL_IP6_SUBNET - The protected sub-networks that this
 edge-device protects. This attribute is made up of two fields;
 the first being a 16 octet IPv6 address the second being a one
 octet prefix-length as defined in [ADDRIPV6]. Multiple
 sub-networks MAY be requested. The responder MAY respond with
 zero or more sub-network attributes.

 Note that no recommendations are made in this document how an
 implementation actually figures out what information to send in a
 reply. i.e., we do not recommend any specific method of an IRAS
 determining which DNS server should be returned to a requesting
 IRAC.

3.16 Extended Authentication Protocol (EAP) Payload

 The Extended Authentication Protocol Payload, denoted EAP in this
 memo, allows IKE_SAs to be authenticated using the protocol defined
 in RFC 2284 [EAP] and subsequent extensions to that protocol. The
 full set of acceptable values for the payload are defined elsewhere,
 but a short summary of RFC 2284 is included here to make this
 document stand alone in the common cases.

https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2284

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 80]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Next Payload !C! RESERVED ! Payload Length !
 +-+
 ! !
 ~ EAP Message ~
 ! !
 +-+

 Figure 24: EAP Payload Format

 The payload type for an EAP Payload is forty eight (48).

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 ! Code ! Identifier ! Length !
 +-+
 ! Type ! Type_Data...
 +-

 Figure 25: EAP Message Format

 o Code (one octet) indicates whether this message is a
 Request (1), Response (2), Success (3), or Failure (4).

 o Identifier (one octet) is used in PPP to distinguish replayed
 messages from repeated ones. Since in IKE, EAP runs over a
 reliable protocol, it serves no function here. In a response
 message this octet MUST be set to match the identifier in the
 corresponding request. In other messages, this field MAY
 be set to any value.

 o Length (two octets) is the length of the EAP message and MUST
 be four less than the Payload Length of the encapsulating
 payload.

 o Type (one octet) is present only if the Code field is Request
 (1) or Response (2). For other codes, the EAP message length

 MUST be four octets and the Type and Type_Data fields MUST NOT
 be present. In a Request (1) message, Type indicates the
 data being requested. In a Response (2) message, Type MUST
 either be NAC or match the type of the data requested. The
 following types are defined in RFC 2284:

 1 Identity
 2 Notification

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 81]

https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 3 NAK (Response Only)
 4 MD5-Challenge
 5 One-Time Password (OTP)
 6 Generic Token Card

 o Type_Data (Variable Length) contains data depending on the Code
 and Type. In Requests other than MD5-Challenge, this field
 contains a prompt to be displayed to a human user. For NAK, it
 contains one octet suggesting the type of authentication the
 Initiator would prefer to use. For most other responses, it
 contains the authentication code typed by the human user.

 Note that since IKE passes an indication of initiator identity in
 message 3 of the protocol, EAP based prompts for Identity SHOULD NOT
 be used.

4 Conformance Requirements

 In order to assure that all implementations of IKEv2 can
 interoperate, there are MUST support requirements in addition to
 those listed elsewhere. Of course, IKEv2 is a security protocol, and
 one of its major functions is to only allow authorized parties to
 successfully complete establishment of SAs. So a particular
 implementation may be configured with any of a number of restrictions
 concerning algorithms and trusted authorities that will prevent
 universal interoperability.

 IKEv2 is designed to permit minimal implementations that can
 interoperate with all compliant implementations. There are a series
 of optional features that can easily be ignored by a particular
 implementation if it does not support that feature. Those features
 include:

 Ability to negotiate SAs through a NAT and tunnel the resulting
 ESP SA over UDP.

 Ability to request (and respond to a request for) a temporary IP
 address on the remote end of a tunnel.

 Ability to support various types of legacy authentication.

 Ability to support window sizes greater than one.

 Ability to establish multiple ESP and/or AH SAs within a single
 IKE_SA.

 Ability to rekey SAs.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 82]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 To assure interoperability, all implementations MUST be capable of
 parsing all payload types (if only to skip over them) and to ignore
 payload types that it does not support unless the critical bit is set
 in the payload header. If the critical bit is set in an unsupported
 payload header, all implementations MUST reject the messages
 containing those payloads.

 Every implementation MUST be capable of doing four message
 IKE_SA_INIT and IKE_AUTH exchanges establishing two SAs (one for IKE,
 one for ESP and/or AH). Implementations MAY be initiate-only or
 respond-only if appropriate for their platform. Every implementation
 MUST be capable of responding to an INFORMATIONAL exchange, but a
 minimal implementation MAY respond to any INFORMATIONAL message with
 an empty INFORMATIONAL reply. A minimal implementation MAY support
 the CREATE_CHILD_SA exchange only in so far as to recognize requests
 and reject them with a Notify payload of type NO_ADDITIONAL_SAS. A
 minimal implementation need not be able to initiate CREATE_CHILD_SA
 or INFORMATIONAL exchanges. When an SA expires (based on locally
 configured values of either lifetime or octets passed), and
 implementation MAY either try to renew it with a CREATE_CHILD_SA
 exchange or it MAY delete (close) the old SA and create a new one. If
 the responder rejects the CREATE_CHILD_SA request with a
 NO_ADDITIONAL_SAS notification, the implementation MUST be capable of
 instead closing the old SA and creating a new one.

 Implementations are not required to support requesting temporary IP
 addresses or responding to such requests. If an implementation does
 support issuing such requests, it MUST include a CP payload in
 message 3 containing at least a field of type INTERNAL_IP4_ADDRESS or
 INTERNAL_IP6_ADDRESS. All other fields are optional. If an
 implementation supports responding to such requests, it MUST parse
 the CP payload of type CFG_REQUEST in message 3 and recognize a field
 of type INTERNAL_IP4_ADDRESS or INTERNAL_IP6_ADDRESS. If it supports
 leasing an address of the appropriate type, it MUST return a CP
 payload of type CFG_REPLY containing an address of the requested
 type. The responder SHOULD include all of the other related
 attributes if it has them.

 A minimal IPv4 responder implementation will ignore the contents of
 the CP payload except to determine that it includes an
 INTERNAL_IP4_ADDRESS attribute and will respond with the address and
 other related attributes regardless of whether the initiator
 requested them.

 A minimal IPv4 initiator will generate a CP payload containing only
 an INTERNAL_IP4_ADDRESS attribute and will parse the response
 ignoring attributes it does not know how to use. The only attribute
 it MUST be able to process is INTERNAL_ADDRESS_EXPIRY, which it must

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 83]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 use to bound the lifetime of the SA unless it successfully renews the
 lease before it expires. Minimal initiators need not be able to
 request lease renewals and minimal responders need not respond to
 them.

 For an implementation to be called conforming to this specification,
 it MUST be possible to configure it to accept the following:

 PKIX Certificates containing and signed by RSA keys of size 1024 or
 2048 bits, where the ID passed is any of ID_KEY_ID, ID_FQDN,
 ID_RFC822_ADDR, or ID_DER_ASN1_DN.

 Shared key authentication where the ID passes is any of ID_KEY_ID,
 ID_FQDN, or ID_RFC822_ADDR.

 Authentication where the responder is authenticated using PKIX
 Certificates and the initiator is authenticated using shared key
 authentication.

5 Security Considerations

 Repeated rekeying using CREATE_CHILD_SA without PFS leaves all SAs
 vulnerable to cryptanalysis of a single key or overrun of either
 endpoint. Implementers should take note of this fact and set a limit
 on CREATE_CHILD_SA exchanges between exponentiations. This memo does
 not prescribe such a limit.

 The strength of a key derived from a Diffie-Hellman exchange using
 any of the groups defined here depends on the inherent strength of
 the group, the size of the exponent used, and the entropy provided by
 the random number generator used. Due to these inputs it is difficult
 to determine the strength of a key for any of the defined groups.
 Diffie-Hellman group number two, when used with a strong random
 number generator and an exponent no less than 200 bits, is sufficient
 for use with 3DES. Groups three through five provide greater
 security. Group one is for historic purposes only and does not
 provide sufficient strength except for use with DES, which is also
 for historic use only. Implementations should make note of these
 conservative estimates when establishing policy and negotiating
 security parameters.

 Note that these limitations are on the Diffie-Hellman groups
 themselves. There is nothing in IKE which prohibits using stronger
 groups nor is there anything which will dilute the strength obtained
 from stronger groups (limited by the strength of the other algorithms
 negotiated including the prf function). In fact, the extensible
 framework of IKE encourages the definition of more groups; use of
 elliptical curve groups may greatly increase strength using much

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 84]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 smaller numbers.

 It is assumed that all Diffie-Hellman exponents are erased from
 memory after use. In particular, these exponents MUST NOT be derived
 from long-lived secrets like the seed to a pseudo-random generator
 that is not erased after use.

 The strength of all keys are limited by the size of the output of the
 negotiated prf function. For this reason, a prf function whose output
 is less than 128 bits (e.g., 3DES-CBC) MUST NOT be used with this
 protocol.

 The security of this protocol is critically dependent on the
 randomness of the randomly chosen parameters. These should be
 generated by a strong random or properly seeded pseudo-random source
 (see [RFC1750]). Implementers should take care to ensure that use of
 random numbers for both keys and nonces is engineered in a fashion
 that does not undermine the security of the keys.

 For information on the rationale of many of the cryptographic design
 choices in this protocol, see [SIGMA].

 When using pre-shared keys, a critical consideration is how to assure
 the randomness of these secrets. The strongest practice is to ensure
 that any pre-shared key contain as much randomness as the strongest
 key being negotiated. Deriving a shared secret from a password, name,
 or other low entropy source is not secure. These sources are subject
 to dictionary and social engineering attacks, among others.

 The NAT_DETECTION_*_IP notifications contain a hash of the addresses
 and ports in an attempt to hide internal IP addresses behind a NAT.
 Since the IPv4 address space is only 32 bits, and it is usually very
 sparse, it would be possible for an attacker to find out the internal
 address used behind the NAT box by trying all possible IP-addresses
 and trying to find the matching hash. The port numbers are normally
 fixed to 500, and the SPIs can be extracted from the packet. This
 reduces the number of hash calculations to 2^32. With an educated
 guess of the use of private address space, the number of hash
 calculations is much smaller. Designers should therefore not assume
 that use of IKE will not leak internal address information.

https://datatracker.ietf.org/doc/html/rfc1750

 When using an EAP authentication method that does not generate a
 shared key for protecting a subsequent AUTH payload, certain man-in-
 the-middle and server impersonation attacks are possible [EAPMITM].
 These vulnerabilities occur when EAP is also used in protocols which
 are not protected with a secure tunnel. Since EAP is a general-
 purpose authentication protocol, which is often used to provide
 single-signon facilities, a deployed IPsec solution which relies on

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 85]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 an EAP authentication method that does not generate a shared key
 (also known as a non-key-generating EAP method) can become
 compromised due to the deployment of an entirely unrelated
 application that also happens to use the same non-key-generating EAP
 method, but in an unprotected fashion. Note that this vulnerability
 is not limited to just EAP, but can occur in other scenarios where an
 authentication infrastructure is reused. For example, if the EAP
 mechanism used by IKEv2 utilizes a token authenticator, a man-in-the-
 middle attacker could impersonate the web server, intercept the token
 authentication exchange, and use it to initiate an IKEv2 connection.
 For this reason, use of non-key-generating EAP methods SHOULD be
 avoided where possible. Where they are used, it is extremely
 important that all usages of these EAP methods SHOULD utilize a
 protected tunnel, where the initiator validates the responder's
 certificate before initiating the EAP exchange. Implementors SHOULD
 describe the vulnerabilities of using non-key-generating EAP methods
 in the documentation of their implementations so that the
 administrators deploying IPsec solutions are aware of these dangers.

 An implementation using EAP MUST also use a public key based
 authentication of the server to the client before the EAP exchange
 begins, even if the EAP method offers mutual authentication. This
 avoids having additional IKEv2 protocol variations and protects the
 EAP data from active attackers.

6 IANA Considerations

 This document defines a number of new field types and values where
 future assignments will be managed by the IANA.

 The following registries should be created:

 IKEv2 Exchange Types
 IKEv2 Payload Types
 IKEv2 Transform Types
 IKEv2 Transform Attribute Types
 IKEv2 Encryption Transform IDs
 IKEv2 Pseudo-ramdom Function Transform IDs
 IKEv2 Integrity Algorithm Transform IDs
 IKEv2 Diffie-Hellman, ECP and EC2N Transform IDs
 IKEv2 Identification Payload ID Types
 IKEv2 Certification Encodings
 IKEv2 Authentication Method

 IKEv2 Notification Payload Types
 IKEv2 Notification IPCOMP Transform IDs
 IKEv2 Security Protocol Identfiers
 IKEv2 Traffic Selector Types
 IKEv2 Configuration Payload CFG Types

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 86]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 IKEv2 Configuration Payload Attribute Types

 Note: when creating a new Transform Type, a new registry for it must
 be created.

 New allocations to any of those registries may be allocated by expert
 review.

7 Acknowledgements

 This document is a collaborative effort of the entire IPsec WG. If
 there were no limit to the number of authors that could appear on an
 RFC, the following, in alphabetical order, would have been listed:
 Bill Aiello, Stephane Beaulieu, Steve Bellovin, Sara Bitan, Matt
 Blaze, Ran Canetti, Darren Dukes, Dan Harkins, Paul Hoffman, J.
 Ioannidis, Steve Kent, Angelos Keromytis, Tero Kivinen, Hugo
 Krawczyk, Andrew Krywaniuk, Radia Perlman, O. Reingold, Michael
 Richardson. Many other people contributed to the design. It is an
 evolution of IKEv1, ISAKMP, and the IPsec DOI, each of which has its
 own list of authors. Hugh Daniel suggested the feature of having the
 initiator, in message 3, specify a name for the responder, and gave
 the feature the cute name "You Tarzan, Me Jane". David Faucher and
 Valery Smyzlov helped refine the design of the traffic selector
 negotiation.

8 References

8.1 Normative References

 [ADDGROUP] Kivinen, T., and Kojo, M., "More Modular Exponential
 (MODP) Diffie-Hellman groups for Internet Key
 Exchange (IKE)", RFC 3526, May 2003.

 [ADDRIPV6] Hinden, R., and Deering, S.,
 "Internet Protocol Version 6 (IPv6) Addressing
 Architecture", RFC 3513, April 2003.

 [Bra97] Bradner, S., "Key Words for use in RFCs to indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3513
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

 [EAP] Blunk, L. and Vollbrecht, J., "PPP Extensible
 Authentication Protocol (EAP), RFC 2284, March 1998.

 [ESPCBC] Pereira, R., Adams, R., "The ESP CBC-Mode Cipher
 Algorithms", RFC 2451, November 1998.

 [Hutt04] Huttunen, A. et. al., "UDP Encapsulation of IPsec
 Packets", draft-ietf-ipsec-udp-encaps-08.txt, February

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 87]

https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2451
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-udp-encaps-08.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 2004, work in progress.

 [RFC2401bis] Kent, S. and Atkinson, R., "Security Architecture
 for the Internet Protocol", un-issued Internet
 Draft, work in progress.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing
 an IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC3168] Ramakrishnan, K., Floyd, S., and Black, D.,
 "The Addition of Explicit Congestion Notification (ECN)
 to IP", RFC 3168, September 2001.

 [RFC3280] Housley, R., Polk, W., Ford, W., Solo, D., "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [RFC3667] Bradner, S., "IETF Rights in Submissions", BCP 78,
RFC 3667, February 2004.

 [RFC3668] Bradner, S., "Intellectual Property Rights in IETF
 Technology", BCP 79, RFC 3668, February 2004.

8.2 Informative References

 [DES] ANSI X3.106, "American National Standard for Information
 Systems-Data Link Encryption", American National Standards
 Institute, 1983.

 [DH] Diffie, W., and Hellman M., "New Directions in
 Cryptography", IEEE Transactions on Information Theory, V.
 IT-22, n. 6, June 1977.

 [DHCP] R. Droms, "Dynamic Host Configuration Protocol",
RFC2131

https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/rfc3667
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/doc/html/rfc3668
https://datatracker.ietf.org/doc/html/rfc2131

 [DSS] NIST, "Digital Signature Standard", FIPS 186, National
 Institute of Standards and Technology, U.S. Department of
 Commerce, May, 1994.

 [EAPMITM] Asokan, N., Nierni, V., and Nyberg, K., "Man-in-the-Middle
 in Tunneled Authentication Protocols",

http://eprint.iacr.org/2002/163, November 2002.

 [HC98] Harkins, D., Carrel, D., "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 88]

http://eprint.iacr.org/2002/163
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 [IDEA] Lai, X., "On the Design and Security of Block Ciphers,"
 ETH Series in Information Processing, v. 1, Konstanz:
 Hartung-Gorre Verlag, 1992

 [IKEv2IANA]Richardson, M., "Initial IANA registry contents",
draft-ietf-ipsec-ikev2-iana-00.txt, work in progress.

 [IPCOMP] Shacham, A., Monsour, R., Pereira, R., and Thomas, M., "IP
 Payload Compression Protocol (IPComp)", RFC 3173,
 September 2001.

 [KPS03] Kaufman, C., Perlman, R., and Sommerfeld, B., "DoS
 protection for UDP-based protocols", ACM Conference on
 Computer and Communications Security, October 2003.

 [Ker01] Keromytis, A., Sommerfeld, B., "The 'Suggested ID'
 Extension for IKE", draft-keromytis-ike-id-00.txt, 2001

 [KBC96] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104, February
 1997.

 [LDAP] M. Wahl, T. Howes, S. Kille., "Lightweight Directory
 Access Protocol (v3)", RFC2251

 [MD5] Rivest, R., "The MD5 Message Digest Algorithm", RFC 1321,
 April 1992.

 [MSST98] Maughhan, D., Schertler, M., Schneider, M., and Turner, J.
 "Internet Security Association and Key Management Protocol
 (ISAKMP)", RFC 2408, November 1998.

 [Orm96] Orman, H., "The Oakley Key Determination Protocol", RFC
2412, November 1998.

 [PFKEY] McDonald, D., Metz, C., and Phan, B., "PFKEY Key
 Management API, Version 2", RFC2367, July 1998.

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-iana-00.txt
https://datatracker.ietf.org/doc/html/rfc3173
https://datatracker.ietf.org/doc/html/draft-keromytis-ike-id-00.txt
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2251
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2367

 [PKCS1] Kaliski, B., and J. Staddon, "PKCS #1: RSA Cryptography
 Specifications Version 2", September 1998.

 [PK01] Perlman, R., and Kaufman, C., "Analysis of the IPsec key
 exchange Standard", WET-ICE Security Conference, MIT,2001,

http://sec.femto.org/wetice-2001/papers/radia-paper.pdf.

 [Pip98] Piper, D., "The Internet IP Security Domain Of
 Interpretation for ISAKMP", RFC 2407, November 1998.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 89]

http://sec.femto.org/wetice-2001/papers/radia-paper.pdf
https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 [RADIUS] C. Rigney, A. Rubens, W. Simpson, S. Willens, "Remote
 Authentication Dial In User Service (RADIUS)", RFC2138

 [RFC1750] Eastlake, D., Crocker, S., and Schiller, J., "Randomness
 Recommendations for Security", RFC 1750, December 1994.

 [RFC2401] Kent, S., and Atkinson, R., "Security Architecture for
 the Internet Protocol", RFC 2401, November 1998.

 [RFC2474] Nichols, K., Blake, S., Baker, F. and Black, D.,
 "Definition of the Differentiated Services Field (DS
 Field) in the IPv4 and IPv6 Headers", RFC 2474,
 December 1998.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z.
 and Weiss, W., "An Architecture for Differentiated
 Services", RFC 2475, December 1998.

 [RFC2522] Karn, P., and Simpson, W., "Photuris: Session-Key
 Management Protocol", RFC 2522, March 1999.

 [RFC2983] Black, D., "Differentiated Services and Tunnels",
RFC 2983, October 2000.

 [RFC3715] Aboba, B and Dixon, W., "IPsec-Network Address
 Translation (NAT) Compatibility Requirements",

RFC 3715, March 2004.

 [RSA] Rivest, R., Shamir, A., and Adleman, L., "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems", Communications of the ACM, v. 21, n. 2,
 February 1978.

 [SHA] NIST, "Secure Hash Standard", FIPS 180-1, National
 Institute of Standards and Technology, U.S. Department
 of Commerce, May 1994.

 [SIGMA] Krawczyk, H., "SIGMA: the `SIGn-and-MAc' Approach to
 Authenticated Diffie-Hellman and its Use in the IKE

https://datatracker.ietf.org/doc/html/rfc2138
https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2474
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc3715

 Protocols", in Advances in Cryptography - CRYPTO 2003
 Proceedings, LNCS 2729, Springer, 2003. Available at:

http://www.ee.technion.ac.il/~hugo/sigma.html

 [SKEME] Krawczyk, H., "SKEME: A Versatile Secure Key Exchange
 Mechanism for Internet", from IEEE Proceedings of the
 1996 Symposium on Network and Distributed Systems
 Security.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 90]

http://www.ee.technion.ac.il/~hugo/sigma.html
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 [X.501] ITU-T Recommendation X.501: Information Technology -
 Open Systems Interconnection - The Directory: Models,
 1993.

 [X.509] ITU-T Recommendation X.509 (1997 E): Information
 Technology - Open Systems Interconnection - The
 Directory: Authentication Framework, June 1997.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 91]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

Appendix A: Summary of changes from IKEv1

 The goals of this revision to IKE are:

 1) To define the entire IKE protocol in a single document, replacing
 RFCs 2407, 2408, and 2409 and incorporating subsequent changes to
 support NAT Traversal, Extended Authentication, and Remote Address
 acquisition.

 2) To simplify IKE by replacing the eight different initial exchanges
 with a single four message exchange (with changes in authentication
 mechanisms affecting only a single AUTH payload rather than
 restructuring the entire exchange);

 3) To remove the Domain of Interpretation (DOI), Situation (SIT), and
 Labeled Domain Identifier fields, and the Commit and Authentication
 only bits;

 4) To decrease IKE's latency in the common case by making the initial
 exchange be 2 round trips (4 messages), and allowing the ability to
 piggyback setup of a CHILD_SA on that exchange;

 5) To replace the cryptographic syntax for protecting the IKE
 messages themselves with one based closely on ESP to simplify
 implementation and security analysis;

 6) To reduce the number of possible error states by making the
 protocol reliable (all messages are acknowledged) and sequenced. This
 allows shortening CREATE_CHILD_SA exchanges from 3 messages to 2;

 7) To increase robustness by allowing the responder to not do
 significant processing until it receives a message proving that the
 initiator can receive messages at its claimed IP address, and not
 commit any state to an exchange until the initiator can be
 cryptographically authenticated;

 8) To fix bugs such as the hash problem documented in [draft-ietf-
ipsec-ike-hash-revised-02.txt];

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-hash-revised-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-hash-revised-02.txt

 9) To specify Traffic Selectors in their own payloads type rather
 than overloading ID payloads, and making more flexible the Traffic
 Selectors that may be specified;

 10) To specify required behavior under certain error conditions or
 when data that is not understood is received in order to make it
 easier to make future revisions in a way that does not break
 backwards compatibility;

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 92]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 11) To incorporate ideas from draft-ietf-ipsec-nat-reqts-04.txt to
 allow IKE to negotiate through NAT gateways;

 12) To simplify and clarify how shared state is maintained in the
 presence of network failures and Denial of Service attacks; and

 13) To maintain existing syntax and magic numbers to the extent
 possible to make it likely that implementations of IKEv1 can be
 enhanced to support IKEv2 with minimum effort.

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-nat-reqts-04.txt

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 93]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

Appendix B: Diffie-Hellman Groups

 There are 5 different Diffie-Hellman groups defined for use in IKE.
 These groups were generated by Richard Schroeppel at the University
 of Arizona. Properties of these primes are described in [Orm96].

 The strength supplied by group one may not be sufficient for the
 mandatory-to-implement encryption algorithm and is here for historic
 reasons.

 Additional Diffie-Hellman groups have been defined in [ADDGROUP].

B.1 Group 1 - 768 Bit MODP

 This group is assigned id 1 (one).

 The prime is: 2^768 - 2 ^704 - 1 + 2^64 * { [2^638 pi] + 149686 }
 Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
 A63A3620 FFFFFFFF FFFFFFFF

 The generator is 2.

B.2 Group 2 - 1024 Bit MODP

 This group is assigned id 2 (two).

 The prime is 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }.
 Its hexadecimal value is:

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6

 49286651 ECE65381 FFFFFFFF FFFFFFFF

 The generator is 2.

B.3 Group 3 - 155 Bit EC2N

 This group is assigned id 3 (three). The curve is based on the Galois
 Field GF[2^155]. The field size is 155. The irreducible polynomial
 for the field is:
 u^155 + u^62 + 1.
 The equation for the elliptic curve is:

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 94]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 y^2 + xy = x^3 + ax^2 + b.

 Field Size: 155
 Group Prime/Irreducible Polynomial:
 0x0800000000000000000000004000000000000001
 Group Generator One: 0x7b
 Group Curve A: 0x0
 Group Curve B: 0x07338f
 Group Order: 0x0800000000000000000057db5698537193aef944

 The data in the KE payload when using this group is the value x from
 the solution (x,y), the point on the curve chosen by taking the
 randomly chosen secret Ka and computing Ka*P, where * is the
 repetition of the group addition and double operations, P is the
 curve point with x coordinate equal to generator 1 and the y
 coordinate determined from the defining equation. The equation of
 curve is implicitly known by the Group Type and the A and B
 coefficients. There are two possible values for the y coordinate;
 either one can be used successfully (the two parties need not agree
 on the selection).

B.4 Group 4 - 185 Bit EC2N

 This group is assigned id 4 (four). The curve is based on the Galois
 Field GF[2^185]. The field size is 185. The irreducible polynomial
 for the field is:
 u^185 + u^69 + 1.

 The equation for the elliptic curve is:
 y^2 + xy = x^3 + ax^2 + b.

 Field Size: 185
 Group Prime/Irreducible Polynomial:
 0x020000000000000000000000000000200000000000000001
 Group Generator One: 0x18
 Group Curve A: 0x0
 Group Curve B: 0x1ee9
 Group Order: 0x01ffffffffffffffffffffffdbf2f889b73e484175f94ebc

 The data in the KE payload when using this group will be identical to
 that as when using Oakley Group 3 (three).

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 95]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

Change History (To be removed from RFC)

H.1 Changes from IKEv2-00 to IKEv2-01 February 2002

 1) Changed Appendix B to specify the encryption and authentication
 processing for IKE rather than referencing ESP. Simplified the format
 by removing idiosyncrasies not needed for IKE.

 2) Added option for authentication via a shared secret key.

 3) Specified different keys in the two directions of IKE messages.
 Removed requirement of different cookies in the two directions since
 now no longer required.

 4) Change the quantities signed by the two ends in AUTH fields to
 assure the two parties sign different quantities.

 5) Changed reference to AES to AES_128.

 6) Removed requirement that Diffie-Hellman be repeated when rekeying
 IKE_SA.

 7) Fixed typos.

 8) Clarified requirements around use of port 500 at the remote end in
 support of NAT.

 9) Clarified required ordering for payloads.

 10) Suggested mechanisms for avoiding DoS attacks.

 11) Removed claims in some places that the first phase 2 piggybacked
 on phase 1 was optional.

H.2 Changes from IKEv2-01 to IKEv2-02 April 2002

 1) Moved the Initiator CERTREQ payload from message 1 to message 3.

 2) Added a second optional ID payload in message 3 for the Initiator
 to name a desired Responder to support the case where multiple named
 identities are served by a single IP address.

 3) Deleted the optimization whereby the Diffie-Hellman group did not
 need to be specified in phase 2 if it was the same as in phase 1 (it
 complicated the design with no meaningful benefit).

 4) Added a section on the implications of reusing Diffie-Hellman
 expontentials

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 96]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 5) Changed the specification of sequence numbers to being at 0 in
 both directions.

 6) Many editorial changes and corrections, the most significant being
 a global replace of "byte" with "octet".

H.3 Changes from IKEv2-02 to IKEv2-03 October 2002

 1) Reorganized the document moving introductory material to the
 front.

 2) Simplified the specification of Traffic Selectors to allow only
 IPv4 and IPv6 address ranges, as was done in the JFK spec.

 3) Fixed the problem brought up by David Faucher with the fix
 suggested by Valery Smyslov. If Bob needs to narrow the selector
 range, but has more than one matching narrower range, then if Alice's
 first selector is a single address pair, Bob chooses the range that
 encompasses that.

 4) To harmonize with the JFK spec, changed the exchange so that the
 initial exchange can be completed in four messages even if the
 responder must invoke an anti-clogging defense and the initiator
 incorrectly anticipates the responder's choice of Diffie-Hellman
 group.

 5) Replaced the hierarchical SA payload with a simplified version
 that only negotiates suites of cryptographic algorithms.

H.4 Changes from IKEv2-03 to IKEv2-04 January 2003

 1) Integrated NAT traversal changes (including Appendix A).

 2) Moved the anti-clogging token (cookie) from the SPI to a NOTIFY
 payload; changed negotiation back to 6 messages when a cookie is
 needed.

 3) Made capitalization of IKE_SA and CHILD_SA consistent.

 4) Changed how IPComp was negotiated.

 5) Added usage scenarios.

 6) Added configuration payload for acquiring internal addresses on
 remote networks.

 7) Added negotiation of tunnel vs transport mode.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 97]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

H.5 Changes from IKEv2-04 to IKEv2-05 February 2003

 1) Shortened Abstract

 2) Moved NAT Traversal from Appendix to section 2. Moved changes from
 IKEv2 to Appendix A. Renumbered sections.

 3) Made language more consistent. Removed most references to Phase 1
 and Phase 2.

 4) Made explicit the requirements for support of NAT Traversal.

 5) Added support for Extended Authentication Protocol methods.

 6) Added Response bit to message header.

 7) Made more explicit the encoding of Diffie-Hellman numbers in key
 expansion algorithms.

 8) Added ID payloads to AUTH payload computation.

 9) Expanded set of defined cryptographic suites.

 10) Added text for MUST/SHOULD support for ID payloads.

 11) Added new certificate formats and added MUST/SHOULD text.

 12) Clarified use of CERTREQ.

 13) Deleted "MUST SUPPORT" column in CP payload specification (it was
 inconsistent with surrounding text).

 14) Extended and clarified Conformance Requirements section,
 including specification of a minimal implementation.

 15) Added text to specify ECN handling.

H.6 Changes from IKEv2-05 to IKEv2-06 March 2003

 1) Changed the suite based crypto negotiation back to ala carte.

 2) Eliminated some awkward page breaks, typographical errors, and
 other formatting issues.

 3) Tightened language describing cryptographic strength.

 4) Added references.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 98]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 5) Added more specific error codes.

 6) Added rationale for unintuitive key generation hash with shared
 secret based authentication.

 7) Changed the computation of the authenticating AUTH payload as
 proposed by Hugo Krawczyk.

 8) Changed the dashes (-) to underscores (_) in the names of fields
 and constants.

H.7 Changes from IKEv2-06 to IKEv2-07 April 2003

 1) Added a list of payload types to section 3.2.

 2) Clarified use of SET_WINDOW_SIZE Notify payload.

 3) Removed references to COOKIE_REQUIRED Notify payload.

 4) Specified how to use a prf with a fixed key size.

 5) Removed g^ir from data processed by prf+.

 6) Strengthened cautions against using passwords as shared keys.

 7) Renamed Protocol_id field SECURITY_PROTOCOL_ID when it is not the
 Protocol ID from IP, and changed its values for consistency with
 IKEv1.

 8) Clarified use of ID payload in access control decisions.

 9) Gave IDr and TSr their own payload type numbers.

 10) Added Intellectual Property rights section.

 11) Clarified some issues in NAT Traversal.

H.8 Changes from IKEv2-07 to IKEv2-08 May 2003

 1) Numerous editorial corrections and clarifications.

 2) Renamed Gateway to Security Gateway.

 3) Made explicit that the ability to rekey SAs without restarting IKE
 was optional.

 4) Removed last references to MUST and SHOULD ciphersuites.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 99]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 5) Changed examples to "example.com".

 6) Changed references to status codes to status types.

 7) Simplified IANA Considerations section

8) Updated References

H.9 Changes from IKEv2-08 to IKEv2-09 August 2003

 1) Numerous editorial corrections and clarifications.

 2) Added REKEY_SA notify payload to the first message of a
 CREATE_CHILD_SA exchange if the new exchange was rekeying an existing
 SA.

 3) Renamed AES_ENCR128 to AES_ENCR and made it take a single
 parameter that is the key size (which may be 128, 192, or 256 bits).

 4) Clarified when a newly created SA is useable.

 5) Added additional text to section 2.23 specifying how to negotiate
 NAT Traversal.

 6) Replaced specification of ECN handling with a reference to
 [RFC2401bis].

 7) Renumbered payloads so that numbers would not collide with IKEv1
 payload numbers in hopes of making code implementing both protocols
 simpler.

 8) Expanded the Transform ID field (also referred to as Diffie-
 Hellman group number) from one byte to two bytes.

 9) Removed ability to negotiate Diffie-Hellman groups by explicitly
 passing parameters. They must now be negotiated using Transform IDs.

 10) Renumbered status codes to be contiguous.

 11) Specified the meaning of the "Port" fields in Traffic Selectors
 when the ICMP protocol is being used.

 12) Removed the specification of D-H Group #5 since it is already
 specified in [ADDGROUP.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 100]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

H.10 Changes from IKEv2-09 to IKEv2-10 August 2003

 1) Numerous boilerplate and formatting corrections to comply with RFC
 Editorial Guidelines and procedures.

 2) Fixed five typographical errors.

 3) Added a sentence to the end of "Security considerations"
 discouraging the use of non-key-generating EAP mechanisms.

H.11 Changes from IKEv2-10 to IKEv2-11 October 2003

 1) Added SHOULD NOT language concerning use of non-key-generating EAP
 authentication methods and added reference [EAPMITM].

 2) Clarified use of parallel SAs with identical traffic selectors for
 purposes of QoS handling.

 3) Fixed description of ECN handling to make normative references to
 [RFC 2401bis] and [RFC 3168].

 4) Fixed two typos in the description of NAT traversal.

 5) Added specific ASN.1 encoding of certificate bundles in section
3.6.

H.12 Changes from IKEv2-11 to IKEv2-12 January 2004

 1) Made the values of the one byte IPsec Protocol ID consistent
 between payloads and made the naming more nearly consistent.

 2) Changed the specification to require that AUTH payloads be
 provided in EAP exchanges even when a non-key generating EAP method
 is used. This protects against certain obscure cryptographic
 threats.

https://datatracker.ietf.org/doc/html/rfc3168

 3) Changed all example IP addresses to be within subnet 10.

 4) Specified that issues surrounding weak keys and DES key parity
 must be addressed in algorithm documents.

 5) Removed the unsupported (and probably untrue) claim that Photuris
 cookies were given that name because the IETF always supports
 proposals involving cookies.

 6) Fixed some text that specified that Transform ID was 1 octet while
 everywhere else said it was 2 octets.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 101]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 7) Corrected the ASN.1 specification of the encoding of X.509
 certificate bundles.

 8) Added an INVALID_SELECTORS error type.

 9) Replaced IANA considerations section with a reference to draft-
ietf-ipsec-ikev2-iana-00.txt.

 10) Removed 2 obsolete informative references and added one to a
 paper on UDP fragmentation problems.

 11) 41 Editorial Corrections and Clarifications.

 12) 6 Grammatical and Spelling errors fixed.

 13) 4 Corrected capitalizations of MAY/MUST/etc.

 14) 4 Attempts to make capitalization and use of underscores more
 consistent.

H.12 Changes from IKEv2-12 to IKEv2-13 March 2004

 1) Updated copyright and intellectual property right sections per RFC
3667. Added normative references to RFC 3667 and RFC 3668.

 2) Updated IANA Considerations section and adjusted some assignment
 tables to be consistent with the IANA registries document. Added
 Michael Richardson to the acknowledgements.

 3) Changed the cryptographic formula for computing the AUTH payload
 in the case where EAP authentication is used and the EAP algorithm
 does not produce a shared key. Clarified the case where it does
 produce a shared key.

 4) Extended the EAP authentication protocol by two messages so that
 the AUTH message is always sent after the success status is received.

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-iana-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-iana-00.txt
https://datatracker.ietf.org/doc/html/rfc3667
https://datatracker.ietf.org/doc/html/rfc3667
https://datatracker.ietf.org/doc/html/rfc3667
https://datatracker.ietf.org/doc/html/rfc3668

 5) Updated reference to ESP encapsulation in UDP and made it
 normative.

 6) Added notification type ESP_TFC_PADDING_NOT_SUPPORTED.

 7) Clarified encoding of port number fields in transport selectors in
 the cases of ICMP and OPAQUE.

 8) Clarified that the length of the integrity checksum is fixed
 length and determined by the negotiated integrity algorithm.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 102]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

 9) Added an informative reference to RFC3715 (NAT Compatibility
 Requirements).

 10) Fixed 2 typos.

https://datatracker.ietf.org/doc/html/rfc3715

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 103]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

Editor's Address

 Charlie Kaufman
 Microsoft Corporation
 1 Microsoft Way
 Redmond, WA 98052
 1-425-707-3335

 charliek@microsoft.com

Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at ietf-
 ipr@ietf.org.

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 104]

http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

Internet-Draft March 22, 2004

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Expiration

 This Internet-Draft (draft-ietf-ipsec-ikev2-13.txt) expires in
 September 2004.

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

IKEv2 draft-ietf-ipsec-ikev2-13.txt [Page 105]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-13.txt

