
IPSEC Working Group INTERNET-DRAFT
Radia Perlman

draft-ietf-ipsec-ikev2-tutorial-01.txt
February 2003

Understanding IKEv2: Tutorial, and rationale for decisions
<draft-ietf-ipsec-ikev2-tutorial-01.txt>

 Status of this Memo

 This document is an Internet Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [Bra96]. Internet Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and working groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet Drafts as reference
 material or to cite them other than as "work in progress."

 To learn the current status of any Internet Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Australia), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 The main job of a protocol specification is to document how the
 protocol works. It is sometimes difficult to learn how a protocol
 works from such a document, because there are so many details, and
 the necessary formalism for accuracy makes a specification long and
 difficult to read. What also is usually lost in the process of
 creating an RFC for a protocol is documentation of the tradeoffs that
 were considered when making controversial choices. Sometimes it is
 possible to find this information on the email archives, but that is
 a daunting task. This document is intended to work both as a
 tutorial to understanding IKEv2, and a summary of the controversial
 issues, with the reasoning on all sides of each issue. If any
 differences in details exist between this document and the IKEv2
 specification, the IKEv2 specification is authoritative.

Perlman [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-tutorial-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-tutorial-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10

INTERNET DRAFT February 2002

1. Introduction

 IKE (Internet Key Exchange) is the protocol which performs mutual
 authentication and establishes security associations (SAs) for IPsec.
 The base protocol of the first version of IKE was documented in RFCs
 2407, 2408, 2409. Also, IKEv1 implementations incorporated additional
 functionality including features for NAT traversal, legacy
 authentication, and remote address acquisition, which were not
 documented in the base documents. The goal of the IKEv2 specification
 is to specify all that functionality in a single document, as well as
 simplify and improve the protocol, and fix various problems in IKEv1
 that had been found through deployment or analysis. It was also a
 goal of IKEv2 to understand IKEv1 and not to make gratuitous changes.
 The intention was to make it as easy as possible for IKEv1
 implementations to be modified for IKEv2, and to benefit from the
 experience gained from deployment of IKEv1.

 IKEv2 preserves most of the features of the original IKE, including
 identity hiding, perfect forward secrecy, two phases, and
 cryptographic negotiation, while greatly redesigning the protocol for
 efficiency, security, robustness, and flexibility. This document is
 intended to be a readable description of all the concepts, rather
 than being a complete specification of all the details. It also
 explains reasoning on all sides of controversial issues.

 For simplicity of description, we refer to the two parties in an IKE
 exchange as "Alice" and "Bob", where Alice is the initiator of the
 exchange. These names allow us to use the pronouns "she" and "he".

2.0 Overview of IKEv2

 IKEv2 has an initial handshake in which Alice and Bob negotiate
 cryptographic algorithms, mutually authenticate, and establish a
 session key, creating an IKE-SA. Additionally, a first IPsec SA is
 established during the initial IKE-SA creation.

 All IKEv2 messages are request/response pairs. It is the
 responsibility of the side sending the request to retransmit if it
 does not receive a timely response.

 The initial exchange usually consists of two request/response pairs.
 (Additional request/response pairs might be needed for DOS
 protection, if Alice attempts to use a Diffie-Hellman group Bob does
 not support, or if Bob will authenticate Alice through some legacy
 mechanism such as a token card, OTP, or name/password.

 The first pair negotiates cryptographic algorithms and does a
 Diffie-Hellman exchange. The second pair is encrypted and integrity

Perlman [Page 2]

INTERNET DRAFT February 2002

 protected with keys based on the Diffie-Hellman exchange. In this
 exchange Alice and Bob divulge their identities and prove it using an
 integrity check generated based on the secret associated with their
 identity (private key or shared secret key) and the contents of the
 first pair of messages in the exchange. Also, the first IPsec SA is
 created.

 After the initial handshake, additional requests can be initiated by
 either Alice or Bob, and consist of either informational messages or
 requests to establish another child-SA. Informational messages
 include such things as null messages for detecting peer aliveness,
 and deletion of SAs.

 The exchange to establish a child-SA consists of an optional Diffie-
 Hellman exchange (if perfect forward secrecy for that child-SA is
 desired), nonces (so that a unique key for that child-SA will be
 established), and negotiation of traffic selector values which
 indicate what addresses, ports, and protocol types are to be
 transmitted over that child-SA.

3.0 Two Phases

 In IKEv2 terminology, the first phase consists of the (usually 4)
 messages that create the IKE-SA and the first associated IPsec SA
 (known as a "child-SA"). Once the IKE-SA is created, it can be used
 for sending authenticated notification messages, reliable dead-peer
 detection, and inexpensive creation of additional child-SAs.

 It was argued in [PK01] and [JFK] that having two phases was
 unnecessary and added complexity, and additional SAs between the same
 pair of nodes could be accomplished by creating additional IKE-SAs.
 However, child-SA creation is less expensive, and experience with
 IKEv1 showed the two phases to be useful, since there were scenarios
 in IPsec deployments in which a sufficient number of child-SAs
 between the same pair of nodes was desirable that the extra spec
 complexity was worth it for the efficiency of child-SA creation.

 Why do people find it useful to create multiple IPsec SAs between the
 same pair of hosts?

 * avoiding multiplexing multiple conversations over the same SA.
 Several years ago Bellovin pointed out that if encryption is done
 without integrity protection, there is a splicing attack whereby a
 process involved in one flow can, through an active attack, cause
 traffic for a different flow to be decrypted and delivered to the
 process in the first flow. Of course, nobody should be doing
 encryption without integrity protection. It is likely there is no
 similar flaw if integrity is used. But in a case where a router is

Perlman [Page 3]

INTERNET DRAFT February 2002

 delivering traffic on behalf of multiple customers, and the data is
 going to another router in order to access other machines of those
 customers, the customers feel safer knowing that their traffic is
 being delivered with a different SA (and different key) than traffic
 between nodes belonging to other customers.

 * different security properties of different flows. According to
 policy, some traffic might be only integrity-protected. Other traffic
 might be encrypted with a short key. Other traffic might be encrypted
 with a long key. Other traffic might use a vanity crypto algorithm
 designed by one of your customers, and it will make them happy if you
 use their algorithm for their traffic. In [PK01] it was argued that
 all traffic might as well be protected according to the needs of the
 traffic that requires the strongest protection. The counter-argument
 is that there might be performance reasons or legal reasons (or
 vanity reasons) why this is undesirable.

 * different SAs for different classes of service. There might be
 different classes of service, such as priority classes, that might
 cause traffic for one class to travel much more slowly to the SA
 destination than other types of traffic to that SA destination. To
 avoid replay attacks, the recipient keeps track of which sequence
 numbers have been received. Typically, it only keeps track of the
 highest n sequence numbers, up to the highest sequence number it has
 seen on this SA, and data with sequence numbers lower than that are
 discarded. If different classes of service have widely different
 delivery times, the recipient would have to keep track of a larger,
 and possibly unbounded, set of sequence numbers.

 In JFK it was envisioned that IKE would be used solely for setting up
 an SA, and there would be no IKE messages other than the initial
 handshake. In IKEv1, the second phase was used either for setting up
 an additional SA or for sending informational messages. Once the WG
 consensus was to keep the two phase structure, both uses of the
 second phase; creation of new child-SAs, and the ability to send
 reliable and authenticated informational messages were deemed
 important. The ability to send informational messages increases
 IKEv2's robustness by detecting error conditions, allowing rekeying,
 and detecting a dead peer, as well as being a potentially valuable
 feature for future functionality.

 Note that the ability to create additional child-SA's is optional in
 IKEv2, so it is legal for an implementation to have the behavior
 envisioned in the JFK spec.

4.0 Perfect Forward Secrecy/Computation Tradeoff

 The IKEv2 handshake includes nonces in addition to Diffie-Hellman

Perlman [Page 4]

INTERNET DRAFT February 2002

 values. If each side chose a unique private Diffie-Hellman number for
 each exchange, there would be no need for nonces. It is reasonable
 for an implementation to choose less than perfect forward secrecy by
 reusing the Diffie-Hellman number (avoiding expensive
 exponentiations), since the nonces, which must be unique for each
 exchange, will ensure unique keys for each IKE-SA. Likewise, child-
 SAs established through an IKE-SA can choose perfect forward secrecy
 and generate and send Diffie-Hellman values, or simply use nonces to
 establish unique keys.

 Note that even if Bob (or Alice) reuses his Diffie-Hellman value
 (call it "B"), there will still be perfect forward secrecy so long as
 Bob forgets B as soon as any SA based on B is closed. If Bob
 remembers B for, say, an hour longer than that, then perfect forward
 secrecy is only slightly affected, and really not affected in any
 practical sense.

5.0 Colocated Services

 In some cases Bob might host many different services (e.g., distinct
 web sites with different identities). All these identities would have
 the same IP address, but would have different keys and certificates.
 Having Alice initiate a connection to Bob's IP address does not
 inform Bob who she wants to communicate with. Therefore, IKEv2 allows
 Alice to specify an identity for Bob. This feature was given the
 affectionate name "You Tarzan. Me Jane." by Hugh Daniel. The name is
 quite appropriate because in the same message in which Alice reveals
 her identity she requests a specific identity for Bob.

6.0 DOS protection

 Photuris specified a mechanism known as a "stateless cookie", in
 order to avoid a certain type of DoS attack. The attack involves
 sending nuisance SA-creation-request packets to a server (Bob) from
 an unauthorized node with the purpose of exhausting the server's
 computation or memory resources. Such attacks typically are sent from
 forged source addresses, both to avoid prosecution and to make it
 difficult for these packets to be easily filtered. Photuris's cookie
 design was a way of assuring Bob that the SA-requester could receive
 at the IP address it claimed to be coming from before Bob devoted
 significant resources to authenticating the request and creating the
 SA.

 A method of implementing stateless cookies is for Bob to have a
 secret S, that he shares with nobody and changes periodically. When
 he gets a request from IP address x with no cookie, he sends
 cookie=h(S,x) to x, but otherwise does nothing with the request. When
 he gets a request from IP address x with cookie=c, Bob verifies if

Perlman [Page 5]

INTERNET DRAFT February 2002

 c=h(S,x) and if so, continues processing. (If Bob has recently
 changed S's, he might want to see if the cookie verifies with the old
 S if it fails with the new S).

 OAKLEY had the stateless cookie be optional. If there was no attack,
 the protocol would avoid the extra round trip for the cookie
 exchange. If Bob was getting low on resources, perhaps because of an
 attack, Bob could refuse requests that didn't contain a cookie.
 IKEv2 uses the OAKLEY idea of having the cookie exchange be optional.

 This aspect of IKEv2 was the subject of some debate in the WG. There
 were two alternatives for providing this feature. The chosen
 alternative was the OAKLEY-style optional extra round trip. It was
 possible, (as specified in JFK, suggested in [PK01], and specified in
 the next version of IKEv2 after the JFK and IKEv2 author teams
 decided to work together on a single document), to provide this
 feature without adding an additional round trip. The arguments for
 avoiding the extra round trip were:

 * it saves a round trip

 * it avoids forcing Bob to make a decision about whether he is under
 attack

 The WG decided in favor of the additional round trip for this case
 because:

 * it made the protocol much simpler, since after the initial pre-
 exchange, Bob is not stateless. As a result of the protocol being
 simpler, it was likely that future changes would not break the
 handshake, and that future functionality could be incorporated
 without a redesign.

 * it makes message 3 shorter, since the mechanism by which Bob can be
 stateless is to have Alice repeat everything Bob would have needed to
 remember in message 3.

 * This design makes it easy to defend against a "fragmentation
 attack", a DOS attack on an IKE exchange that was pointed out by
 Charlie Kaufman that could enable an attacker to prevent IKE
 exchanges from completing. Since message 3 in an IKE exchange tends
 to be long (it includes certificates), and IKE runs over UDP, it is
 likely that it will need to be fragmented. With the variant in which
 Bob is stateless until verifying message 3, (and it is message 3 in
 which Alice sends the cookie), an attacker could send fragments,
 exhausting Bob's reassembly resources, so that Bob's IKE would never
 get to see and verify the cookie. With the extra two messages for
 cookie exchange, all messages are sufficiently short so that

Perlman [Page 6]

INTERNET DRAFT February 2002

 reassembly would not be required, and a fragmentation attack cannot
 prevent Bob from verifying Alice's cookie.

 Once Bob has verified Alice's cookie, it is a fairly easy
 implementation trick to ensure the rest of the IKE exchange
 completes, even in the face of a fragmentation attack, by providing a
 side-channel from IKE to the reassembly code, whereby Bob can inform
 the reassembly code of preferred IP addresses (those that have
 returned a valid cookie).

7.0 Cryptographic Negotiation

 In IKEv1, cryptographic negotiation was "a la carte", meaning that
 each algorithm (encryption, integrity protection/prf
 (prf=pseudorandom function), Diffie-Hellman group), was independently
 negotiated. Aside from being complex to understand, it also created
 an exponential expansion, since if there were k of one type of
 algorithm that could interwork with j of another, there had to be k*j
 seperate proposals. In the original IKEv2 design, the a la carte
 concept was kept, but the SA payload was simplified somewhat. Also,
 the exponential explosion of proposals was avoided by allowing sets
 of algorithms that could interwork together to be presented as a
 single proposal, and Bob could narrow the choices down to any one
 from the set. JFK, in contrast, had no negotiation of cryptographic
 algorithms, which was even simpler, but made it difficult to migrate
 to different algorithms in the future.

 The IKEv2 and JFK authors together agreed that a compromise would be
 suites, as was done in SSL. With a suite, all parameters are encoded
 into a single suite number, and negotiation consists of offering one
 or more suites and having the other side choose. It was assumed this
 would be a noncontroversial decision, but unfortunately it turned out
 to be controversial. The arguments in favor of suites are:

 * it is simpler and more compact to encode

 The arguments in favor of a la carte are:

 * it is more flexible

 * there is the fear that there will be an exponential number of
 suites defined

 * it is a gratuitous change from IKEv1 that made a lot of unnecessary
 work for implementations. Suites might have been OK if starting from
 scratch, but a la carte was easier for migrating from an IKEv1 code
 base.

Perlman [Page 7]

INTERNET DRAFT February 2002

 Although there was sympathy with the a la carte supporters, a
 decision had to be made, and based on a straw poll at a WG meeting,
 the decision was to use suites.

8.0 Acquiring an IP address

 When an endnode dials into a firewall, it is often the case that the
 endnode needs to be given an IP address. Even if the endnode has an
 IP address for where it is currently residing in the Internet, it may
 need an address specific for the network inside the firewall, since
 with its IPsec tunnel, the endnode will now be logically inside the
 firewall. There were two proposed methods of doing this:

 * MODECFG, which involves a field in the IKE exchange in which Bob
 tells Alice an IP address, and

 * DHCP-relay, which involves running DHCP over IKE or over an ESP
 connection set up specifically for this purpose.

 The appeal of MODECFG is that it is very simple, and minimizes the
 number of messages and crypto operations in getting an IPsec session
 set up. The appeal of DHCP-relay is that it provides all of the
 flexibility and power of DHCP (including extensions that might be
 defined in the future) and does so in a way that appears to make it
 independent of the IKE specification. One thing that can be done with
 DHCP-relay is end-to-end authentication between the client and the
 DHCP server, for instance.

 The use of MODECFG does not preclude the use of tunnelled DHCP for
 uses other than acquiring leases on IP addresses, and if there is
 functionality that can only be done using DHCP-relay, this may be
 done. The worry was that both MODECFG and DHCP-relay might be needed,
 and that even though DHCP-relay was more complex than MODECFG, if
 doing MODECFG meant implementations had to support both, doing DHCP-
 relay instead of MODECFG would mean less implementation effort.
 However, the decision was that for now, since MODECFG was simpler,
 higher performance, fully specified, and gave all currently-needed
 functionality, IKEv2 would assign addresses using MODECFG.

9.0 NAT Traversal

 People love to hate NAT (Network Address Translation) gateways, but
 they are a fact of life in the Internet. NAT-Traversal [KSH01]
 designed a mechanism that was deployed in IKEv1, and IKEv2 copied the
 design. The NAT-Traversal design accommodated existing NATs as much
 as possible (without sacrificing security or significantly impacting
 performance).

Perlman [Page 8]

INTERNET DRAFT February 2002

 NATs were originally invented primarily because of the shortage of
 IPv4 addresses, though there are other rationales. IP nodes that are
 "behind" a NAT have IP addresses that are not globally unique, but
 rather are assigned from some space that is unique within the network
 behind the NAT but which are likely to be reused by nodes behind
 other NATs. Some people consider the fact that the nodes in their
 network cannot be directly addressed from outside a security feature.
 And it even allows a network using some addressing scheme different
 from IPv4 to connect to the Internet.

9.1 The games NATs play

 Generally, nodes behind NATs can communicate with other nodes behind
 the same NAT and with nodes with globally unique addresses, but not
 with nodes behind other NATs. When a node behind a NAT makes a
 connection to a node on the real Internet, the NAT gateway assigns
 the inner node a global IP address (which the Internet will route to
 the NAT box), keeps the mapping for the duration of the conversation
 (where "duration" has to be heuristically determined by the NAT box),
 and modifies the IP addresses in the header appropriately. For
 outgoing packets, the NAT box modifies the source address. For
 incoming packets, the NAT box modifies the destination address to be
 the address of the node on the internal network.

 If the NAT box does not have a sufficiently large pool of global IP
 addresses to hand out a unique one to each node inside its net that
 is communicating outside, then NAT boxes translate based on UDP or
 TCP ports. This is known as a NAPT box.

 NAPT boxes are foiled by ESP, because ESP encrypts the layer 4
 header. Some NAPT boxes attempted to make ESP work by doing the
 following (assume the NAPT box has only one globally unique address,
 "C"):

 * when it sees an ESP packet from inner node IP address A to outer
 node IP address B, the only extra information is the SPI=x. So the
 NAPT box rewrites the source address A to C, and keeps track of the
 fact that an ESP packet came from A recently, and there is no current
 mapping for an incoming SPI corresponding to x.

 * when the NAPT sees an ESP packet from B to C, with an SPI=y that
 the NAPT has no mapping for, it assumes B is really trying to respond
 to A, and makes a mapping that (C,y)=A.

 An additional problem with NATs and IKEv1 is that IKEv1 specified
 that IKE messages must be sent to port 500, and sent from port 500.
 If IKEv1 had specified that you initiate by sending to 500, but
 respond to whatever port you received an IKE packet from, things

Perlman [Page 9]

INTERNET DRAFT February 2002

 would have been simpler. But NAPTs, understanding IKE will want both
 source and destination UDP ports to remain as 500 make a special case
 for packets on UDP port 500. If the ports are 500, the NAPT does not
 modify the UDP ports. Instead, the NAPT makes mappings based on the
 what used to be called the "cookie fields" in the IKEv1 payload (and
 in IKEv2 are called the SPIs).

 The way it works is that when the NAPT box sees a packet on port 500,
 it looks at the SPI pair (ci,cr). If it does not yet have a mapping
 for that pair, the packet will have to be coming from inside the net,
 from IP address A, to IP address B. The NAPT box makes a mapping that
 IKE connection (ci,cr) is for node A. The box does not modify the UDP
 ports or the IKE SPIs. It merely records the SPI pair for its IP
 address mapping. Outgoing packets from A to that IKE connection will
 always get translated as having source address C. But incoming
 packets to C from that SPI pair will get translated to destination
 address A.

 In the beginning of the IKE connection, Bob has not yet chosen a SPI,
 so the SPI pair will be (ci,0). If two nodes from inside the net
 initiate IKE connections to Bob simultaneously, and both choose
 SPI=ci, the NAPT would not be able to differentiate. But since SPIs
 are 8-bytes long, and recommended to be chosen at random, this is
 unlikely to happen.

9.2 NAT detection

 NAT-Traversal was designed for enabling IKEv1 to work through NATs
 without requiring modifications of the NATs, and IKEv2 has pretty
 much copied the design. The first step is for Alice and Bob to notice
 that one of them is behind a NAT. In IKEv2 this is done by including
 two notify payloads in messages 1 and 2, called NAT-DETECTION-
 SOURCE-IP and NAT-DETECTION-DESTINATION-IP. These notify payloads
 consist of a one-way hash of the IP address and port. The reason it
 is a hash rather than the actual address is because some people have
 argued that the actual address of a node behind a NAT might be
 secret. Given there are only 32-bits in an IP address and the port is
 known to be equal to 500, it is possible to do a brute force search
 and discover the actual IP address, but having the payload convey the
 hash rather than the actual address is at least a nuisance to someone
 that would want to find the address.

 Mysteriously, the NAT-DETECTION payloads are ignored by Bob. However,
 if Alice notices a discrepancy between the IP addresses in the header
 of the received message 2, and the hashes in the payloads, she
 reverts to NAT behavior.

Perlman [Page 10]

INTERNET DRAFT February 2002

9.3 So, you're behind a NAT. What do you do?

 In NAT-mode, packets on a child-SA (e.g., ESP packets) are sent with
 UDP encapsulation. This means that instead of indicating the ESP
 header with an IP header protocol type (and having the ESP header
 immediately following the IP header), the IP header will indicate
 "UDP", and the presence of the ESP header will be indicated by using
 port 4500 in the UDP header.

 NAPTs do not do any special-case processing with port 4500 (as they
 do with port 500). So, if there is a packet from internal node A to
 B, with UDP header, and ports 4500, and no mapping on the NAPT box
 yet for A, the NAPT box will make a mapping from A to (IP address C,
 port x), and overwrite the IP source address to C and the UDP source
 port to x. When Bob receives a packet to port 4500 (indicating IPsec
 UDP encapsulation), Bob responds to the port from which it was
 received, so will respond to IP address C, port x. When the NAPT box
 receives this packet from Bob to (C,x), it will translate the IP
 address from C to A, and the port from x to 4500.

 In addition to sending the child-SA packets on 4500, IKE (once the
 NAT is detected) sends the remaining messages of the IKE handshake
 over port 4500 instead of 500 (and does not insist on receiving them
 from source port 4500). Using port 4500 for IKE wasn't strictly
 necessary but had some advantages:

 * It enables the NAPT box not to do special case processing for IKE,
 and instead modify the UDP ports (as it would with anything else)
 instead of relying on the IKE SPIs, which was a somewhat fragile and
 very complex mechanism,

 * It winds up creating fewer mapping entries in the NAPT box, since
 the same port mapping for UDP-encapsulated child-SA packets will work
 for the IKE exchange. (i.e., there is no need to keep mappings for
 IKE cookie pairs).

 * Since NAT boxes are only using heuristics for how long to keep a
 mapping, if there were a different mapping for IKE than for the
 child-SA, it could be that the NAT would forget the UDP port mapping
 for the child-SA, but remember the IKE-SA cookie mapping. This would
 be bad because dead peer detection is done by sending IKE
 informational messages, which would indicate the SA was alive, but
 child-SAs would go into a black hole because the NAT box would no
 longer know how to map packets from B to A.

9.3 Encoding both IKE and ESP with port 4500

 The mechanism for this encoding was copied from [HSSVC]. If a NAT is

Perlman [Page 11]

INTERNET DRAFT February 2002

 detected, ESP packets will be sent with UDP encapsulation, using port
 4500. Also, IKE packets will be sent to port 4500. How can the
 receiving end distinguish between an ESP packet and an IKE packet?

 In either case the packet will start with an IP header, with protocol
 type=UDP (17). Then there is a UDP header, with destination
 port=4500. After the UDP header is either an ESP packet or an IKE
 packet. The first 4 bytes of an ESP packet is the SPI, which is not
 allowed to be zero. So, to distinguish an IKE packet from an ESP
 packet, if it is an IKE packet, the first 4 bytes after the UDP
 header are 0, and then the IKE packet.

 With this encoding, the overhead for UDP encapsulation of ESP packets
 is minimized, and the extra 4 bytes of overhead is only on IKE
 packets, and there are not many of those (compared to data packets).

10.0 Identity Hiding

 Some people argue that identity hiding is an exotic feature that
 cryptographers put into IKEv1 just because they could. In many cases,
 such as those where nodes are at a fixed IP address, the identity is
 not hidden.

 And, there are different flavors of identity hiding. IKEv2 does
 identity hiding of both parties from passive attackers.

 In theory (and in IKEv1) one could hide the identities from active
 attackers. With public encryption keys, if at least one side already
 knows the identity and public key of the other, then it is possible
 to protect both sides from any active attacker (assuming the
 encryption key is not escrowed or otherwise compromised). With pre-
 shared secret keys, assuming both parties already know who they
 expect to be speaking with (within a small set, perhaps), it is also
 possible to protect both identities from active attack. (But in fact,
 in IKEv1, this was too strong an assumption, and identities with the
 in-theory identity-hiding secret key protocol required, in practice,
 that the identities be the IP addresses.) Additionally, having n
 different protocols for slightly different security properties in
 IKEv1 was deemed to be too complex for any benefit it gained, so
 IKEv2 only supports public signature keys and pre-shared keys.

 However, with public signature keys, one side or the other has to
 reveal its identity first (before the other side has proven its
 identity). Whichever side reveals its identity first, if it is
 talking to an active attacker, it will have revealed its identity to
 that attacker. In [PK01] it was argued that it was more important to
 protect the identity of the initiator, since in the client-server

Perlman [Page 12]

INTERNET DRAFT February 2002

 model, the server would be at a fixed IP address and would not have a
 hideable identity. However, Charlie Kaufman later argued that a much
 easier attack is a polling attack, in which the attacker merely opens
 an IPsec connection to a node. If the responder reveals its identity
 first, then this simple attack, which is easier to mount than a
 passive attack, will reveal the identity at that address. If the
 model were changed to a strict client-server model in which clients
 never respond to connections, and server identities are not important
 to protect, then it is reasonable to have the responder reveal its
 identity first. The WG's decision was that they did not want to limit
 IPsec's use to a strict client-server mode.

 To avoid a polling attack, (in which an active attacker simply
 initiates a connection to an IP address to find the identity
 associated with that IP address) IKEv2 has the initiator reveal its
 identity first. The active attack that IKEv2 has chosen not to deal
 with involves having someone impersonate Bob's IP address and
 discover the identities of parties that attempt to communicate with
 that IP address. This attack is difficult to mount and it is not
 obvious what benefit it would gain the active attacker. Alice has
 only initiated a connection to an IP address. If she is not speaking
 to the real Bob, she will discover this and break the connection. So
 the active attacker cannot prove she intended to speak to Bob; merely
 that she initiated an IPsec connection to a particular IP address.

11.0 Legacy Authentication

 Alice might be a human, without a public key pair or a shared
 cryptographic key. She might be using a token card (such as
 SecureID), or a password.

 There were several proposed extensions to IKEv1 for providing legacy
 authentication [XAUTH], [CRACK], [EAP]. Given they were all
 technically acceptable, one had to be chosen. The EAP protocol
 [EAP], designed within the pppext WG, was adopted for IKEv2.

 To use EAP with IKEv2, Alice, in message 3, reveals her identity, but
 does not put in a certificate or an authentication payload. Bob, in
 message 4, reveals and proves his identity, and specifies what type
 of legacy authentication he wants, along with a text string to be
 displayed at the client end (such as "this is your challenge for your
 challenge/response token"). Alice can respond as Bob requests, or can
 NAK and suggest a different type of EAP authentication. The IKEv2
 spec really just references the EAP specification, so the design and
 the types are defined within EAP. In IKEv2, mostly for illustrative
 purposes, 3 of the EAP types are mentioned; MD5-Challenge, OTP, and
 generic token card. In MD5-Challenge, the client must compute the

Perlman [Page 13]

INTERNET DRAFT February 2002

 response, and not just mirror the text string. For OTP, depending on
 whether the implementation is based on human-with-paper or client-
 computed hash, the client either just sends the string the user types
 or treats it as a password and hashes it n times. In the third type,
 the client displays the text string to the human, which responds by
 typing something (perhaps the display from the token card), and the
 client sends that string back to the server. If the server is
 satisfied, it responds with what would have been the 4th message in
 the IKE handshake, choosing the selectors and cryptographic
 algorithms for the child-SA. Additional exchanges are allowed, for
 instance, if the user mistypes the value and the server gives the
 user an extra chance.

12.0 References

 [CRACK] Harkins, D., Korver, B., Piper, D., "IKE
 Challenge/Response
 for Authenticated Cryptographic Keys",

draft-ietf-ipsec-ike-crack-00.txt, October, 1999.

 [EAP] Blunk, L. and Volibrecht, J., "PPP Extensible
 Authentication
 Protocol (EAP), RFC 2284, March 1998.

 [HC98] Harkins, D., Carrel, D., "The Internet Key Exchange
 (IKE)",

RFC 2409, November 1998.

 [HKP99] Harkins, D., Korver, B., Piper, D., "IKE
 Challenge/Response for
 Authenticated Cryptographic Keys", draft-ietf-ipsec-ike-

crack-00.txt

 [HSSVC] Huttunen, A., Swander, B., Stenbert, M., Volpe, V., and
 DiBurro, L.,
 "UDP Encapsulation of IPsec Packets", draft-ietf-ipsec-

udp-encaps-06.txt,
 January 2003.

 [JFK] Aiello, W., Bellovin, S., Blaze, M., Canetti, R.,
 Ioannidis, J.,
 Keromytis, A., Reingold, O., draft-ietf-ipsec-jfk-03,
 April 2002.

 [KSH01] Kivinen, T., Stenberg, M., Huttunen, A., Dixon, W.,
 Swander, B.,
 Volpe, V., and DiBurro, L., "Negotiation of NAT-Traversal

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-crack-00.txt
https://datatracker.ietf.org/doc/html/rfc2284
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-crack-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ike-crack-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-udp-encaps-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-udp-encaps-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-jfk-03

Perlman [Page 14]

INTERNET DRAFT February 2002

 in
 the IKE", draft-ietf-ipsec-nat-t-ike-01.txt, October
 2001.

 [MSST98] Maughhan, D., Schertler, M., Schneider, M., and Turner,
 J.
 "Internet Security Association and Key Management
 Protocol
 (ISAKMP)", RFC 2408, November 1998.

 [Orm96] Orman, H., "The Oakley Key Determination Protocol", RFC
2412, November 1998.

 [PK01] Perlman, R., and Kaufman, C., "Analysis of the IPsec key
 exchange Standard", WET-ICE Security Conference, MIT,
 2001,

http://sec.femto.org/wetice-2001/papers/radia-paper.pdf.

 [Pip98] Piper, D., "The Internet IP Security Domain Of
 Interpretation for ISAKMP", RFC 2407, November 1998.

 [XAUTH] Beaulieu, S., and Pereira, R., "Extended Authentication
 within IKE (XAUTH)", draft-beaulieu-ike-xauth-02.txt,
 October 2001.

Authors' Addresses

Radia Perlman
radia.perlman@sun.com
Sun Microsystems

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-nat-t-ike-01.txt
https://datatracker.ietf.org/doc/html/rfc2408
https://datatracker.ietf.org/doc/html/rfc2412
https://datatracker.ietf.org/doc/html/rfc2412
http://sec.femto.org/wetice-2001/papers/radia-paper.pdf
https://datatracker.ietf.org/doc/html/rfc2407
https://datatracker.ietf.org/doc/html/draft-beaulieu-ike-xauth-02.txt

Perlman [Page 15]

