
Network Working Group                                         W. Aiello
Internet Draft                                            S.M. Bellovin
draft-ietf-ipsec-jfk-04.txt                                    M. Blaze
Expires in 6 months                                          R. Canetti
                                                           J. Ioannidis
                                                         A.D. Keromytis
                                                            O. Reingold

                          Just Fast Keying (JFK)

Status of this Memo

   This document is an Internet-Draft and is in full conformance with
   all provisions of Section 10 of RFC2026.

   Internet-Drafts are draft documents valid for a maximum of six
   months and may be updated, replaced, or obsoleted by other
   documents at any time.  It is inappropriate to use Internet- Drafts
   as reference material or to cite them other than as "work in
   progress."

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

   This draft discusses JFK, a key management protocol.

1.  Introduction

   Many public-key-based key setup and key agreement protocols already
   exist and have been implemented for a variety of applications and
   environments.  Several have been proposed for the IPsec protocol,
   and one, IKE [RFC2409], is the current standard.  IKE has a number
   of deficiencies, the three most important being that the number of
   rounds is high, that it is vulnerable to denial-of-service attacks,
   and the complexity of its specification.  (This complexity has led
   to interoperability problems, so much so that, several years after
   its initial adoption by the IETF, there are still completely
   non-interoperating implementations.)

   While it may be possible to ``patch'' the protocol to fix some of
   these problems, we would prefer to replace IKE with something
   better.  With that in mind, we set out to engineer a new key
   exchange protocol specifically for Internet security applications.

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-jfk-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2409


   With a view toward its possible role as a successor to IKE, we call
   our new protocol ``JFK,'' which stands for ``Just Fast Keying.''

1.1  Design Goals

   We seek a protocol with the following characteristics (in no
   particular order):

   o Security: The resulting key should be cryptographically secure,
     according to standard measures of cryptographic security for
     key-exchange.

   o Simplicity: It must be as simple as possible.

   o Memory-DoS: It must resist memory exhaustion attacks on the
     responder.

   o Computation-DoS: It must resist CPU exhaustion attacks on the
     responder.

   o Privacy: It must provide protection for the privacy of the parties.
     (Different variants are considered within.)

   o Efficiency: It must be efficient with respect to computation,
     bandwidth, and number of rounds.

   o Non-Negotiated: It must avoid complex negotiations over
     capabilities.

   o PFS: It must approach perfect forward secrecy.

   The Security property is obvious enough; the rest, however, require
   some discussion.

   The Simplicity property is motivated by several factors.
   Efficiency is one; increased likelihood of correctness is another.
   But our motivation is especially colored by our experience with
   IKE.  Even if the protocol is defined correctly, it must be
   implemented correctly; if a protocol definition is too complex,
   implementors will get it wrong.  This hinders both security and
   interoperability.

   Let us highlight two ways in which the simplicity requirement is
   met by the proposed protocol. First, we avoid the complex two-phase
   structure of IKE. This buys us a great deal in terms of simplicity,
   with little to no cost in terms of functionality. (See more details
   within.) Second, we restrict the protocol to a small and fixed number
   of rounds: two rounds trips, always, with no optional additional
   rounds. This results in greater simplicity in implementation,
   debugging, customization, and operation.



   The Memory-DoS and Computation-DoS properties have become more
   important in the context of recent Internet denial-of-service
   attacks.  Photuris [RFC2522] was the first published key management
   protocol for which DoS-resistance was a design consideration; we
   suggest that these properties are at least as important today.
   Photuris first introduced the concept of cookies to counter
   ``blind'' denial of service attacks.  Although the concept of the
   cookie was adopted by IKE, its use in that protocol did not follow
   the guidelines established by Photuris and left it open to DoS
   attacks.

   The Privacy property means that the protocol does not reveal the
   identities of the parties to an attacker. There are several variants
   here: First, the protection can cover the initiator, or the responder
   or both. Second, the protection can be valid either against active
   attackers or alternatively only against passive eavesdroppers. We
   present two protocol variants: One variant provides identity protection
   for the initiator against active attacks, and no protection for the
   responder. This variant seems more suitable for a client-server scenario
   where the initiator (the client) needs full identity protection while
   the responder (the server) needs no identity protection. The other
   variant protects the identity of the responder from active attackers,
   and in addition protects the identity of the initiator from
   eavesdroppers. This variant seems more suitable for peer-to-peer
   scenarios where both parties need identity protection but the
   responder is more vulnerable to active attacks. We leave it to the
   working group to choose the variant that best suites the needs of
   IPSEC. (Potentially, one could design a protocol where the parties
   negotiate whose identity needs to be protected against active
   attackers. However we believe this would result in an unnecessarily
   complex protocol.)

   The Efficiency property is worth discussing.  In many protocols,
   key setup is must be performed frequently enough that it can become
   a bottleneck to communication.  The key exchange protocol must
   minimize both computation as well total bandwidth and round trips.
   Round trips can be an especially important factor over unreliable
   media.

   The Non-Negotiation property is necessary for several reasons.  The
   first, of course, is as a corollary to Simplicity and Efficiency.
   Negotiations create complexity and round trips, and hence should be
   avoided.  Denial of service resistance is also relevant here; a
   partially-negotiated security association is consuming resources.

   The PFS property is perhaps the most controversial.  Rather than
   assert that ``we must have perfect forward secrecy at all costs'',
   we treat the amount of forward secrecy as an engineering parameter
   that can be traded off against other necessary functions, such as
   resistance to denial-of-service attacks.  In fact, this corresponds
   quite nicely to the reality of today's Internet systems, where a

https://datatracker.ietf.org/doc/html/rfc2522


   compromise during the existence of a security association will
   reveal the plaintext of any ongoing transmissions.  JFK has the
   concept of a ``forward secrecy interval''; associations are
   protected against compromises that occur outside of that interval.

   Protocol design is, to some extent, an engineering activity, and we
   need to provide for trade-offs between different types of security.
   There are trade-offs that we made during the protocol design, and
   others, such as the trade-off between forward secrecy and
   computational effort, that are left to the implementation and to
   the user, e.g., selected as parameters during configuration and
   session negotiation.

   We present two protocols (or, rather, two variants of the protocol).
   The variants, denoted JFKi and JFKr, are very similar in many respects,
   with two main differences: JFKi provides active identity protection for
   the initiator and no identity protection for the responder, whereas
   JFKr provides active identity protection for the responder and passive
   identity protection for the initiator. In addition, JFKi contains
   an additional (amortizable) signature. We note that the cryptographic
   core of JFKr follows that of SIGMA [K01] and IKEv2 [IKEv2].

2.  The JFK Protocol

2.1  Notation

   E{K}(M): encryption of M with symmetric key K.

   HMAC{K}(M): keyed hash of M using key K in an HMAC scheme [RFC2104].

   SIG{x}(M): digital signature of M using the private key belonging
              to principal x (Initiator or Responder).  It is not
              assumed to be a message-recovering signature (but it can
              be).

   The message components used in JFK are as follows:

   g^x: Diffie-Hellman exponentials, also identifying the group-ID.
        The Diffie-Hellman groups identified in [RFC2409] are used.

   g^i, g^r: Initiator and Responder exponentials.

   Ni: Initiator nonce, a random bit-string.  The Initiator MUST pick
       a fresh nonce at each invocation of the JFK protocol.  The
       first few bytes (2 or 4, for IPv4 or IPv6 respectively) of this
       nonce may contain a cookie used by the Responder to help the
       Initiator avoid fragmentation-based DoS attacks (see Appendix

B).

   IPi: The Initiator's network identifier (IPv4 or IPv6 address). It
       is used by the Responder to counter a "cookie-jar" attack, when

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2409


       verifying the authenticator upon receipt of Message 3.

   Nr: Responder nonce, a random bit-string.  The Responder MUST pick
       a fresh nonce at each invocation of the JFK protocol.  The
       nonces are used in the session key computation, to provide key
       independence when one or both parties reuse the same
       Diffie-Hellman exponential; the session key will be different
       different between independent runs of the protocol, as long as
       one of the nonces or exponentials changes.  The first few bytes
       (2 or 4, for IPv4 or IPv6 respectively) of this nonce may
       contain a cookie used by the Initiator to help the Responder
       avoid fragmentation-based DoS attacks (see Appendix B).

   sa: Defines the cryptographic and other properties of the Security
       Association (SA) the Initiator wants to establish.  It contains
       a Domain-of-Interpretation, which JFK understands, and an
       application-specific bit-string.

   sa': Any information that the Responder needs to provide to the
        Initiator with respect to the application SA (e.g., the
        Responder's SPI, in IPsec).

   HKr: A transient hash key private to the Responder; this is a
        global parameter for the Responder (i.e., it is not different
        for every different protocol run), which changes periodically:
        the Responder must pick a new g^r every time HKr changes.  The
        use of HKr and the implications of changing it periodically
        will be explained later in this section.

   Kir: A shared key derived from g^ir, Ni, and Nr, used as part of
        the application SA (e.g., IPsec SA).

   Ke: A shared key derived from g^ir, Ni, and Nr, used to protect the
       secrecy of messages 3 and 4 of the protocol.  Although the
       input parameters are the same with Kir, a different key
       derivation mechanism is used to ensure key independence.

   Ka: A shared key derived from g^ir, Ni, and Nr, used to
       integrity-protect messages 3 and 4 of the protocol.  Although
       the input parameters are the same with Kir and Ke, a different
       key derivation mechanism is used to ensure key independence.

   Ks: A shared key derived from g^ir, Ni, and Nr, used to
       authenticate subsequent runs of the protocol.  Although the
       input parameters are the same with Kir, Ke, and Ka, a different
       key derivation mechanism is used to ensure key independence.

   IDi, IDr: Initiator and Responder certificates, or public-key
             identifying information, or previous-state identifying
             information.  Multiple such payloads may appear in a
             message, to indicate multiple certificates, CRLs, etc.



             For simplicity and clarity, the notation in this draft
             shows only one such payload per message.

   IDr': an indication by the Initiator to the Responder as to what
       identity (and corresponding key material) the latter should use
       to authenticate to the former.  The Responder may ignore this
       hint.  This field may contain the certificate of a CA trusted
       by the Initiator (which means that the Initiator is requesting
       that the Responder authenticate with a certificate chain
       "rooted" at that CA), or the certificate of the Responder
       (effectively identifying the public, and corresponding private,
       key of the Responder).

   GRPINFOr: A list of all Diffie-Hellman groups supported by the
             Responder,  the symmetric algorithm used to protect
             messages 3 and 4, and the hash function used for key
             generation.

2.2  Protocol JFKr

   This variant of the JFK protocol provides the same DoS protection
   and identity protection against passive attackers for both the
   Initiator and the Responder, but no protection against active
   identity discovery attacks for the Initiator (the Responder is
   protected against active identity discovery).

   Using the same notation as in section 2, the JFKr protocol is:

   Message 1, I->R:  Ni, g^i

   Message 2, R->I:  Ni, Nr, g^r, GRPINFOr,
                     HMAC{HKr}(g^r, Nr, Ni, IPi)

   Message 3, I->R:  Ni, Nr, g^i, g^r, HMAC{HKr}(g^r, Nr, Ni, IPi),
               E{Ke}(IDi, IDr' sa, SIG{i}(Ni, Nr, g^i, g^r, GRPINFOr)),
    HMAC{Ka}('I', E{Ke}(IDi, IDr', sa, SIG{i}(Ni, Nr, g^i, g^r, GRPINFOr)))

   Message 4, R->I:  Ni, Nr, E{Ke}(IDr, sa', SIG{r}(g^r, Nr, g^i, Ni)),
          HMAC{Ka}('R', E{Ke}(IDr, sa', SIG{r}(g^r, Nr, g^i, Ni)))

   The keys used to protect Messages (3) and (4), Ke and Ka, are
   computed as HMAC{g^ir}(Ni, Nr, 1) and HMAC{g^ir}(Ni, Nr, 2)
   respectively.  The session key used by IPsec (or any other
   application), Kir, is HMAC{g^ir}(Ni, Nr, 0).  Key Ks, used for
   lightweight mode authentication (see Section 3), is computed as
   HMAC{g^ir}{Ni, Nr, 3}.

   If more key material is needed, the same mechanism for "key
   stretching" as specified in [IKEv2] may be used.

   Message (1) is straightforward; note that it assumes that the



   Initiator already knows a group and generator that is acceptable to
   the Responder.  The Initiator can reuse a g^i value in multiple
   instances of the protocol with the Responder or other responders
   that accept the same group, for as long as she wishes her forward
   secrecy interval to be.  We discuss how the Initiator can discover
   what groups to use later.

   In Message (2), the Responder replies with his own exponential (in
   the same group), information on what secret key algorithms are
   acceptable for the next message, a random nonce, and an
   authenticator calculated from a secret, HKr, known to the
   Responder; the authenticator is computed over the Responder
   exponential, the two nonces, and the Initiator's network address.
   The Responder's exponential may also be reused; again, it is
   regenerated according to the Responder's forward secrecy interval.
   Finally, note that the Responder does not need to generate any
   state at this point, and the only ``expensive'' operation is a MAC
   calculation.

   Message (3) echoes back the data sent by the Responder, including
   the authenticator.  The authenticator is used by the Responder to
   verify the authenticity of the returned data.  The authenticator
   also confirms that the sender of Message (3) uses the same address
   as in Message (1) --- this can be used to detect and counter a
   ``cookie jar'' DDoS attack.  The message also includes the
   Initiator's identity and service request, and a signature computed
   over the nonces, the Responder's identity, and the two
   exponentials.  This latter information is all encrypted under a key
   derived from the Diffie-Hellman computation and the nonces Ni and
   Nr.  The encryption and authentication use algorithms specified in
   GRPINFOr.  The Responder keeps a copy of recently-received Message
   (3)'s, and their corresponding Message (4).  Receiving a duplicate
   (or replayed) Message (3) causes the Responder to simply retransmit
   the corresponding Message (4), without creating new state or
   invoking IPsec (or other application using JFKr as the key
   establishment protocol).  This cache of messages can be reset as
   soon as HKr is changed.  The Responder's exponential (g^r)
   is re-sent by the Initiator because the Responder may be generating
   a new g^r for every new JFK protocol run (e.g., if the arrival rate
   of requests is below some threshold).  Note: It is important that
   the responder deals with repeated Message (3)'s as described above.
   Responders that create new state for a repeated Message (3) open
   the door to attacks against the protocol.  The message is also
   protected by an MAC (such as HMAC), using a key derived from the
   Diffie-Hellman computation and the nonces Ni and Nr.  Notice that
   this key is different form the one used for encrypting the message.

   Message (4) contains application-specific information (such as the
   Responder's IPsec SPI), and a signature on both nonces and both
   exponentials. Everything is encrypted by Ke, which is derived from
   Ni, Nr, and g^ir (the result of the Diffie-Hellman



   computation). As in Message (3), this message is also protected by
   a MAC using key Ka.

   We remark that the core cryptographic design of JFKr follows that
   of SIGMA [K01] and IKEv2 [IKEv2].

2.3  Discussion

   The design follows from our requirements.  With respect to
   communication efficiency, observe that the protocol requires only
   two round trips.  The protocol is optimized to protect the
   Responder against denial of service attacks on state or
   computation.  The Initiator must establish round-trip communication
   with the Responder before the latter is required to perform
   expensive operations.  At the same time, the protocol is designed
   to protect both parties from revealing their identities in the
   clear.  An active attacker can determine the Initiator's identity
   by performing a man-in-the-middle attack, since the Initiator must
   authenticate to the Responde first (this is a consequence of the
   4-message exchange combined with the "liveness" requirement for
   DDoS prevention).

   The Initiator's initial message, Message (1), is a straight-forward
   Diffie-Hellman exponential.  Note that this is assumed to be
   encoded in a self-identifying manner, i.e., it contains a tag
   indicating which modulus and base was used. The nonce Ni serves two
   purposes: first, to allow the Initiator to reuse the same
   exponential across different sessions (with the same or different
   Responders, within the Initiator's forward secrecy interval) while
   ensuring that the resulting session key will be
   different. Secondly, it can be used to differentiate between
   different parallel sessions.

   Message (2) must require only minimal work for the Responder, since
   at that point he has no idea whether the Initiator is a legitimate
   correspondent or, e.g., a forged message from an denial of service
   attack; no round trip has yet occurred with the Initiator.
   Therefore, it is important that the Responder not be required at
   this point to perform expensive calculations or create state.
   Here, the Responder's cost will be a single authentication
   operation, the cost of which (for HMAC) is dominated by two
   invocations of a cryptographic hash function, plus generation of a
   random nonce Nr.   Notice that, if the Responder is reusing the
   same g^r across multiple Initiators, the beginning of the HMAC
   computation can be cached along with g^r.

   The Responder may compute a new exponential g^r for each
   interaction.  This is an expensive option, however, and at times of
   high load (or attack) it would be inadvisable.  The nonce prevents
   two successive session keys from being the same, even if both the



   Initiator and the Responder are reusing exponentials.

   A simple way of dealing with DDoS is to periodically (e.g., once
   every 30 seconds) generate an (r, g^r, HMAC(HKr){g^r}) tuple and
   place it in a FIFO queue.  As requests arrive (in particular, as
   valid Message (3)'s are processed), the first entry from the FIFO
   is removed.  If the rate of requests exceeds the generating rate, a
   JFKr implementation should reuse the last tuple in the FIFO.
   Notice that in this scheme, the same g^r may be reused in different
   sessions, if those sessions are interleaved.  This does not violate
   the PFS or other security properties of the protocol.

   If the Responder is willing to accept the group identified in the
   Initiator's message, his exponential must be in the same group.
   Otherwise, he may respond with an exponential from any group of his
   own choosing. The field GRPINFOr lists what groups the Responder
   finds acceptable, if the Initiator should wish to restart the
   protocol.  This provides a simple mechanism for the Initiator to
   discover the groups currently allowed by the Responder.  That field
   also lists what encryption algorithm is acceptable for the next
   message.  This is not negotiated; the Responder has the right to
   decide what strength encryption is necessary to use his services.

   Note that the Responder creates no state when sending this message.
   If it is bogus --- that is, if the Initiator is non-existent or
   intent on perpetrating a denial-of-service attack --- the Responder
   will not have committed any storage resources.

   In Message (3), the Initiator echoes content from the Responder's
   message, including the authenticator.  The authenticator allows the
   Responder to verify that he is in round-trip communication with a
   legitimate potential correspondent.  She also uses the key derived
   from the two exponentials and the two nonces to encrypt her
   identity and service request.  (The Initiator's nonce is used to
   ensure that this session key is unique, even if both the Initiator
   and the Responder are reusing their exponentials and the Responder
   has ``forgotten'' to change nonces.) The key used to protect
   Messages (3) and (4), Ke, is computed as HMAC{g^ir}{Ni, Nr, 1}. The
   session key used by IPsec (or any other application), Kir, is
   HMAC{g^ir}(Ni, Nr, 0). The message authentication key, Ka, is
   computed as HMAC{g^ir}{Ni, Nr, 2}.  For this computation, the
   values '0', '1', and '2' correspond to a single-byte decimal value
   (so the HMAC computation is over the two nonces and one extra byte,
   with the corresponding value).

   In JFKr, the parties obtain a shared encryption key, Ke, before any
   of the parties send their identities.  Therefore, both parties send
   their identities encrypted with Ke, thus providing both parties
   with identity protection against passive eavesdroppers.  In
   addition, the party that first reveals its identity is the
   initiator. This way, the responder is required to reveal its



   identity only after it verifies the identity of the initiator.
   This guarantees active identity protection to the responder.

   The service request (sa payload) is encrypted too, since its
   disclosure might identify the requester. The Responder may wish to
   require a certain strength of cryptographic algorithm for certain
   services.

   We remark that it is essentially impossible, using current
   technology, to provide a two-round-trip protocol that provides DOS
   protection for the responder, passive identity protection for both
   parties, and active identity protection for the initiator. An
   informal argument proceeds as follows: If DoS protection is in
   place, then the responder must be able to send his first message
   before he computes any shared key. (This is so since computing a
   shared key is a relatively costly operation in current technology.)
   This means that the responder cannot send its identity in the
   second message, without compromising its identity protection
   against passive eavesdroppers. This means that the responder's
   identity must be sent in the fourth (and last) message of the
   protocol. Consequently, the initiator's identity must be sent
   before the responder's identity is sent.

   Upon successful receipt and verification of message (3), the
   Responder has a shared key with a party known to be the Initiator.
   The Responder further knows what service the Initiator is
   requesting.  At this point, he may accept or reject the request.

   The Responder's processing on receipt of Message (3) requires
   verifying an authenticator and --- if that is successful ---
   performing several public key operations to verify the Initiator's
   signature and certificate chain.  The authenticator (again
   requiring two hash operations) is sufficient defense against
   forgery; replays, however, could cause considerable computation.
   The defense against this is to cache the corresponding Message (4);
   if a duplicate Message (3) is seen, the cached response is
   retransmitted; the Responder does not create any new state or
   notify the application (e.g., IPsec).  The key for looking up
   Message 3's in the cache is the authenticator; this prevents
   DoS attacks where the attacker randomly modifies the encrypted
   blocks of a valid message, causing a cache miss and thus more
   processing to be done at the Responder.  Further, if the
   authenticator verifies but there is some problem with the message
   (e.g., the certificates do not verify), the responder can cache the
   authenticator along with an indication as to the failure (or the
   actual rejection message), to avoid unnecessary processing (which
   may be part of a DoS attack).  This cache of Message(3)'s and
   authenticators can be purged as soon as HKr is changed (since the
   authenticator will no longer pass verification).

   Caching Message (3) and refraining from creating new state for



   replayed instances of Message (3) serves also another security
   purpose.  If the Responder were to create a new state and send a
   new Message (4), and a new sa' for a replayed Message (3), then an
   attacker that compromised the Initiator could replay a recent
   session with the Responder.  That is, by replaying Message (3) from
   a recent exchange between the Initiator and the Responder, the
   attacker could establish a session with the Responder where the
   session-key is identical to the key of the previous session (which
   took place when the Initiator was not yet compromised).  This could
   compromise the Forward Security of the Initiator.

   There is a risk, however, to keeping this message cached for too
   long: if the Responder's machine is compromised during this period,
   perfect forward secrecy is compromised.  We can tune this by
   changing the MAC key HKr more frequently.  The cache can be reset
   when a new HKr is chosen.

   In Message (4), the Responder sends to the Initiator any
   Responder-specific application data (e.g., the Responder's IPsec
   SPI), along with a signature on both nonces, both exponentials, and
   the Initiator's identity. All the information is encrypted using a
   key derived the two nonces, Ni and Nr, and the Diffie-Hellman
   result. The Initiator can verify that the Responder is present and
   participating in the session, by decrypting the message and
   verifying the enclosed signature.

2.4  Rejection Messages

   Instead of sending Messages (2) or (4), the Responder can send a
   'rejection' instead.  For Message (2), this rejection can only be
   on the grounds that he does not accept the group that the Initiator
   has used for her exponential.  Accordingly, the reply should
   indicate what groups are acceptable.  Since Message (2) already
   contains the field GRPINFOr (which indicates what groups are
   acceptable), no explicit rejection message is needed.  (For
   efficiency sake, the group information could also be in the
   Responder's long-lived certificate, which the Initiator may already
   have.)

   Message (4) can be a rejection for several reasons, including lack
   of authorization for the service requested.  But it could also be
   caused by the Initiator requesting cryptographic algorithms that
   the Responder regards as inappropriate, given the requester
   (Initiator), the service requested, and possibly other information
   available to the Responder, such as the time of day or the
   Initiator's location as indicated by the network.  In these cases,
   the Responder's reply should list acceptable cryptographic
   algorithms, if any.  The Initiator would then send a new Message
   (3), which the Responder would accept de novo; again, the Responder
   does not create any state until after a successful Message (3)



   receipt.

2.5  What JFK Avoids

   By intent, JFK does not do certain things.  It is worth enumerating
   them, if only to forestall later attempts to add them in.  The
   ``missing'' items were omitted by design, in the interests of
   simplicity.

   In our view, any form of authentication other than certificate
   chain trusted by the other party is best accomplished by outboard
   protocols.  Initiators that wish to rely on any form of legacy
   authentication can use the protocols being defined by the IPSRA or
   SACRED working groups.  While these mechanisms do add extra round
   trips, the expense can be amortized across many JFK negotiations.
   Similarly, certificate chain discovery (beyond the minimal
   capabilities implicit in IDi and IDr) should be accomplished by
   protocols defined for that purpose.  By excluding these protocols
   for JFK, we can exclude them from our security analysis; the only
   interface between the two is a certificate chain, which by
   definition is a stand-alone secure object. However, it is possible
   to use the lightweight JFK mode, as described in Section 3, to
   perform shared-secret based authentication.

   We also eliminate negotiation, in favor of ukases issued by the
   Responder.  The Responder is providing a service; it is entitled to
   set its own requirements for that service.  Any cryptographic
   primitive mentioned by the Responder is acceptable; the Initiator
   can choose any it wishes.  We thus eliminate complex rules for
   selecting the ``best'' choice from two different sets.  We also
   eliminate state to be kept by the Responder; the Initiator can
   either accept the Responder's desires or restart the protocol.

   Finally, we reject the notion of two different phases.  The
   practical benefits of quick mode are limited.  Furthermore, we do
   not agree that frequent rekeying is necessary.  If the underlying
   block cipher is sufficiently limited as to bar long-term use of any
   one key, the proper solution is to replace that cipher.  For
   example, 3DES is inadequate for protection of very high speed
   transmissions, because the probability of collision in CBC mode
   becomes too high after less than encryption of $2^{32}$ plaintext
   blocks.  Using AES instead of 3DES solves that problem without
   complication the key exchange.  Should low-cost rekeying be
   necessary, the JFK protocol itself can be run in ``lightweight''
   mode, as we describe in Section 3.

2.6  Phase II and the Lack Thereof

   Phase II of IKE is used for several things.  We do not regard any



   of them as necessary.

   One is generating the actual keying material used for security
   associations.  It is expected that this will be done several
   times, to amortize the expense of the Phase I negotiation.
   A second reason for this is to permit very frequent rekeying.
   Finally, it permits several separate security associations to
   be set up, with different parameters.

   We do not think these apply.  First, with modern ciphers, such as
   AES, there is no need for frequent key changes.  AES keys are long
   enough that brute force attacks are infeasible.  Its longer block
   size protects against CBC limitations when encrypting many blocks
   [BDJR97].

   We also feel that JFK is efficient enough that avoiding the
   overhead of a full key exchange is not required.  Rather than add
   new SAs to an existing Phase I SA, we suggest that a full JFK
   exchange be initiated instead.  We note that the initiator can also
   choose to reuse its exponential, it if wishes to trade perfect
   forward secrecy for computation time.  If state already exists
   between the initiator and the responder, they can simply check that
   the Diffie-Hellman exponentials are the same; if so, the result of
   the previous exponentiation can be reused.  As long as one of the
   two parties uses a fresh nonce in the new protocol exchange, the
   resulting cryptographic keys will be fresh and not subject to a
   related key (or other, similar) attack.  As we discuss in Section

3, a similar performance optimization can be used on the
   certificate chain validation.

   A second major reason for Phase II is dead peer detection.  IPsec
   gateways often need to know if the other end of a security
   association is dead, both to free up resources and to avoid "black
   holes".  In JFK, this is done by noting the time of the last packet
   received.  A peer that wishes to elicit a packet may send a "ping".
   Such hosts MAY decline any proposed security associations that do
   not permit such "ping" packets.

   A third reason for Phase II is general security association
   control, and in particular SA deletion.  While such a desire is not
   wrong, we prefer not to burden the basic key exchange mechanism
   with extra complexity.  There are a number of possible approaches.
   Our requires that JFK endpoints implement the following rule: a new
   negotiation that specifies an SPD identical to the SPD of an
   existing SA overwrites it.  To some extent, this removes any need
   to delete an SA if black hole avoidance is the concern; you simply
   negotiate a new one.  If you wish to delete an SA without replacing
   it, negotiate a new SA with the ESP_BYPASS, AH_BYPASS or
   IPCOMP_BYPASS ciphersuite.



3.  Rekeying

   When a negotiated SA expires (or shortly before it does), the JFK
   protocol is run again.  It is up to the application to select the
   appropriate SA to use among many valid ones.  In the case of IPsec,
   implementations should switch to using the new SA for outgoing
   traffic, but would still accept traffic on the old SA (as long as
   that SA has not expired).

   To address performance considerations, we should point out that,
   properly implemented, rekeying only requires one signature and one
   verification operation in each direction, if both parties use the
   same Diffie-Hellman exponentials (in which case the cached result
   can be reused) and certificates: the receiver of an ID payload
   compares its hash with those of any cached ID payloads received
   from the same peer.  While this is an implementation detail, a
   natural location to cache past ID payloads is along with already
   established SAs (a convenient fact, as rekeying will likely occur
   before existing SAs are allowed to expire --- so the ID information
   will be readily available).  If a match is found and the result has
   not "expired" yet, then we do not need to re-validate the
   certificate chain.  A previously verified certificate chain is
   considered valid for the shortest of its CRL re-validate time,
   certificate expiration time, OCSP result validity time, etc.  For
   each certificate chain, there is one such value associated (the
   time when one of its components becomes invalid or needs to be
   checked again).

   Notice that an implementation does need to cache the actual ID
   payloads; all that is needed is the hash and the expiration time.

   That said, if for some reason fast rekeying is needed for some
   application domain, it can be done by re-using the JFKr protocol
   itself, using an ID payload identifying a previous exchange (and
   thus a corresponding secret key generated during that exchange) and
   an HMAC instead of a public-key signature for authentication.

   Message 1, I->R:  Ni, g^i

   Message 2, R->I:  Ni, Nr, g^r, GRPINFOr,
                     HMAC{HKr}(g^r, Nr, Ni, IPi)

   Message 3, I->R:  Ni, Nr, g^i, g^r, HMAC{HKr}(g^r, Nr, Ni, IPi),
               E{Ke}(IDi, IDr' sa, HMAC{Ks}(Ni, Nr, g^i, g^r, GRPINFOr)),
    HMAC{Ka}('I', E{Ke}(IDi, IDr', sa, HMAC{Ks}(Ni, Nr, g^i, g^r, GRPINFOr)))

   Message 4, R->I:  Ni, Nr, E{Ke}(IDr, sa', HMAC{Ks}(g^r, Nr, g^i, Ni)),
          HMAC{Ka}('R', E{Ke}(IDr, sa', HMAC{Ks}(g^r, Nr, g^i, Ni)))

   The only difference from the basic JFKr protocol is the use of an
   HMAC in messages 3 and 4 for peer authentication.  The HMAC is



   computed over the same fields as the public key signature in the
   basic protocol.  The shared key, Ks, is either statically
   configured (when JFKr is used for shared-secret based
   authentication) or is derived from a previous exchange.

   Payloads IDi and IDr identify the secret key in use.  For
   shared-secret authentication, these are free-form strings that are
   configured by the administrator (or otherwise provided through
   means outside the JFK protocol's scope).

   When Ks is derived from a previous JFKr exchange, the IDi and IDr
   payloads contain unique identifiers provider by the Responder and
   the Initiator respectively in the previous protocol exchange, and
   are used to identify the shared-secret.  These identifiers should
   be treated as opaque bitstrings by the receiver.  Effectively, at
   each protocol run, each party provides their peer with a cookie.
   This cookie can be used by the peer in subsequent rounds to
   identify the shared secret to use for authentication.

   When run in lightweight mode, and if both parties reuse the
   exponentials g^i and g^r, new application (e.g., IPsec) SAs can be
   established without any public-key operations.  If PFS is desired,
   then both parties have to perform one modular exponentiation
   operation (for the Diffie-Hellman computation).  No signature or
   certificate verification is require for this mode.

4.  Wire Format

   This section describes a proposal for the specific protocol
   elements for the protocol described in this document.  The authors
   of the document are not strongly attached to these proposed
   elements.  More detail on the protocol elements will be added in
   later drafts.

   The protocol will be run over UDP on a port to be assigned later by
   IANA.  UDP is chosen to avoid well-known TCP attacks, although
   running JFK over UDP may cause some problems with packet
   fragmentation and reordering.  For pre-standards testing purposes,
   UDP port 1024 which is reserved by IANA and will *not* be the
   eventual port for JFK.

   Implementors of IKE have long complained that the specification
   required or strongly suggested too many algorithms that had
   essentially the same properties.  Because of this, JFK only lists
   one option for each type of algorithm below.  In the future,
   additional options might be added (which is why there are algorithm
   identifiers in the protocol), but they should only be added if
   there is a strong security requirement for them.  Two such
   requirements would be the compromise of one of the listed
   algorithms or the adoption of a much stronger or much more capable



   algorithm.  Additional algorithms can only be added by a
   standards-track RFC.

4.1  Structure

   Each message is a string of tag-length-value elements concatenated
   together.  Tags are one octet.  Lengths are two octets, and specify
   the number of octets of the value.  Values are always integral
   numbers of octets.  All octets are in big-endian order.

   The values for the tags are:

   Tag                 Value (in decimal)
   Ni                  1
   Nr                  2
   g^i                 3
   g^r                 4
   GRPINFOr            5
   IDi                 6
   IDr, IDr'           7
   Signature           8
   HashedInfo          9
   encrypt_i           10
   encrypt_r           11
   sa, sa'             12
   rejectinfo_to_msg3  13

4.2  Description of the values for each tag

   Nonces Ni and Nr MUST be 8 octets or longer.

   g^i and g^r are expressed as a single octet specifying the group
   number, followed by value of Diffie-Hellman exponential.  The group
   number is the same as the group numbers used in [RFC2409].

   GRPINFOr is expressed as a string of at least four octets. The
   first octet is the encryption algorithm ID, the second octet is the
   signature algorithm ID, and the third octet is the hash function
   used for session key derivation.  Each remaining octet specifies an
   acceptable group number.

   IDi, IDr, and IDr' are expressed as a single octet specifying the
   type of ID used, followed by the ID material. The following ID
   types are specified.

   ID tag  Meaning
   1       PKIX certificate
   2       CRL
   3       OCSP response

https://datatracker.ietf.org/doc/html/rfc2409


   Signatures are expressed as one octet specifying the signature
   algorithm followed by the octets of the signature.

   HashedInfo is expressed as one octet specifying the keyed hash
   algorithm followed y the octets of the hash.

   encrypt_i and encrypt_r are expressed as one octet specifying the
   encryption algorithm followed by the encrypted content.  When using
   a block cipher with chaining, requiring an Initialization Vector
   (IV), the IV is prepended to the ciphertext and constitutes the
   first block of the payload.

   sa and sa' are expressed by one octet specifying the SA type
   followed by the SA itself. The following SA types are specified.

   SA tag  Meaning
   1       IPsec SA, as described below.
   2       Opaque identifier for lightweight mode
           authentication.  Contents should be treated as a bit-string
           and passed as is to the peer on subsequent rounds of
           the protocols, to identify the correct key Ks to use for
           the HMAC computation.

   Both types (1 and 2) of sa payload may appear in messages 3 and 4.

   rejectinfo_to_msg3 has the same structure as grpInfo.

   Encryption algorithm IDs (for use in JFK only)
   3DES     1

   Signature algorithm IDs (for use in JFK only)
   RSA      1

   Hash algorithm IDs (for use in JFK only)
   SHA-1    1

5. Security Associations and the Security Policy Database

   Security Association in JFK follows the two primary principles
   of JFK:  simplicity and lack of negotiation.  The latter
   is straightforward:  an initiator proposes an SA; the
   responder may either accept it or reject it with a reason.

   The myriad combinations of cipher and authentication suites
   available in IKE contributed in no small measure to
   interoperability problems.  We follow the suggestion put forth by
   an early IKEv2 draft: the acceptable combinations are denoted by
   16-bit, unstructured integers.  The integers may happen to be
   assigned according to some structuring principle, but
   implementations MUST NOT treat them as other than opaque values.



   The initial set of algorithms that MUST be supported is:

        ESP-AES-CBC with HMAC-SHA1
        ESP-3DES-CBC with HMAC-MD5
        ESP-3DES-CBC with HMAC-SHA1
        ESP-NULL with HMAC-MD5
        ESP-NULL with HMAC-SHA1
        ESP_BYPASS
        AH with HMAC-MD5
        AH with HMAC-SHA1
        AH_BYPASS
        IPCOMP_DEFLATE
        IPCOMP_BYPASS

    The 3DES choices are for backwards compatibility.  We do not
    specify a DES variant -- DES was demonstrated to be insecure
    several years ago, and implementors have had time to upgrade.
    We do support MD5, but recommend that it not be used.

    The *_BYPASS entries are used to indicate that existing SAs of
    that type that have previously been negotiated between the two
    peers should be deleted.

    Following the algorithm choice is a 4-byte value containing the
    sender's SPI, in network byte order (big endian format).

    Following the SPI are two lists of zero or more SPD elements, the
    list of source addresses followed by the list of destination
    addresses.

    JFK supports two different address types: a list of IPv4 address
    ranges, and a list of IPv6 address ranges.  A single address is a
    range where the starting and ending elements are the same.
    Subnets are converted to range format.  The notion of "all
    addresses" is expressed as the pair (0, 0xFFFFFFFF) for IPv4; v6
    is handled similarly.

    Port numbers are also expressed as pairs; again, the concept
    of "all ports" is represented as (0, 0xFFFF).  The same is
    done for protocols.

    An SPD element has the following format:

        Address family version v4/v6 (2 bytes)
        Transport protocol range (TCP, UDP, etc.) (2 bytes)
        Number of address ranges (2 bytes)
                address ranges...
        Number of port number ranges (2 bytes)
                port number ranges...

    An SPD source or destination specification consists of a two-byte
    counter for the number of SPD elements, followed by each element.



    The simplest entry -- all protocols, all ports, all addresses, for
    IPv4 -- would look like this:

        Bytes
         1 2
        ----
        0001    Number of SPD elements (1 element)
        0004    Address family (IPv4 addresses)
        00FF    Protocol range (all transport protocols)
        0001    One address range
        0000,0000  (4 bytes, 0.0.0.0)
        FFFF,FFFF  (4 bytes, 255.255.255.255)
        0001    Number of port ranges (1 port range)
        0000    Beginning of transport protocol port range (port 0)
        FFFF    End of port range (port 65535)

    Two specifications are contained in the sa and sa' payloads, one
    for the source range followed by one for the destination range.

    When transmitted on the wire, all values are sent in big endian
    format.

6.  Security Considerations

   This section very briefly overviews our security analysis of the
   JFK protocol. Full details are deferred to the full analysis paper.

   In general, there are currently two main approaches to analyzing
   security of protocols. One is the formal-methods approach, where
   the cryptographic components of a protocol are modeled by "ideal
   boxes" and automatic theorem-verification tools are used to verify
   the validity of the high-level design (assuming ideal
   cryptography).  The other is the cryptographic approach, which
   accounts for the facts that cryptographic components are imperfect
   and may potentially interact badly with each other. Here security
   of protocols is proven based on some underlying computational
   intractability assumptions (such as the hardness of factoring large
   numbers, or computing discrete logarithms modulo a large prime, or
   inverting a cryptographic hash function). The formal-methods
   approach, being automated, has the advantage that it is less
   susceptible to human errors and oversights in analysis. On the
   other hand, the cryptographic approach provides better soundness
   since it considers the overall security of the protocol, and in
   particular accounts for the imperfections of the cryptographic
   components.

   Our analysis follows the cryptographic approach. We welcome any
   additional analysis. In particular, analysis based on formal
   methods would be a useful complement to the analysis described
   here.



   We separate the analysis of the "core security" of the protocol
   (which is rather tricky) from the analysis of added security
   features such as DoS protection and identity protection (which is
   much more straightforward). The rest of this section concentrates
   on the "core security" of the protocol. DoS and Identity protection
   were discussed in previous sections.

6.1  Core security

   We use the modeling and treatment of [CK01], which in turn is based
   on [BR93]. See there for more references and comparisons with other
   analytical work. Very roughly, the "core security" of a key exchange
   protocol boils down to two requirements:

      * If party A generates a key Ka associated with a
      session-identifier S and peer identity B, and party B generates
      a key Kb associated with the same session identifier S and peer
      A, then Ka=Kb.

      * No attacker can distinguish between the key exchanged in a session
      between two unbroken parties and a truly random secret. This holds
      even if the attacker has total control over the communication, can
      invoke multiple sessions, and is told the keys generated in all
      other sessions.

   We stress that this is only a rough sketch of the requirement.
   For full details see [CK01,CK02]. We show that both JFKi and
   JFKr satisfy the above requirement.  When these protocols are
   run with perfect forward secrecy, the security is based on a
   standard intractability assumption of the DH problem.  When a
   party reuses its DH value, the security is based on a stronger
   assumption intractability assumption involving both DH and the
   HMAC pseudo random function.

   We first analyze the protocols in the restricted case where the
   parties do not re-use the private DH exponents for multiple sessions.
   (This is the bulk of the work.) Here the techniques for demonstrating
   the security of the two protocols are quite different. Specifically:

   (I) JFKi: The basic cryptographic core of this protocol is the same as
   the ISO 9798-3 protocol, which was analyzed and proven secure
   in [CK01]. This protocol can be briefly summarized as follows:

   A->B: A,N_a,g^a
   B->A: B,N_b,g^b,SIG_b(N_a,N_b,g^a,g^b,A)
   A->B: SIG_a(N_a,N_b,g^a,g^b,B)

   A salient point about this protocol is that each party signs, in
   addition to the nonces and the two public DH exponents, also the
   identity of the peer. (If the peer's identity is not signed then



   the protocol is completely broken.) JFKi inherits the same basic core
   security. In addition, JFKi adds a preliminary cookie mechanism
   for DoS protection (which results in adding one flow to the protocol
   and having the *responder* in JFKi play the role of A), and encrypts
   the last two messages in order to provide identity protection to
   the initiator.

   (II) JFKr: The basic cryptographic core of this protocols is the
   same as that of the signature mode of IKE and SIGMA [K01],
   which was analyzed and proven secure in [CK02]. This basic protocol
   can be briefly summarized as follows:

   A->B: N_a,g^a
   B->A: B,N_b,g^b,SIG_b(N_a,N_b,g^a,g^b),MAC_{Ka}(Na,Nb,B)
   A->B: A,SIG_a(N_a,N_b,g^a,g^b),MAC_{Ka}(Na,Nb,A)

   Here neither party signs the identity of its peer. Instead, each
   party includes a MAC, keyed with a key derived from g^ab, and
   applied to its own identity (concatenated with Na and Nb).
   JFKr inherits the same basic core security as this protocol.
   In addition, JFKr adds a preliminary cookie mechanism
   for DoS protection (which results in adding one flow to the
   protocol and having the *responder* in JFKr play the role of A),
   and encrypts the last two messages in order to provide identity
   protection. (Here the identity protection covers both parties,
   since the identities are sent only in the last two messages.)

   The next step in the analysis is to generalize to the case
   where the private DH exponents are re-used across sessions. This
   is done by making stronger (but still reasonable) computational
   intractability assumptions involving both DH problem and the HMAC
   pseudo random function. We defer details to the full analysis paper.

7.  IANA Considerations

   IANA is asked to assign a UDP port for JFK at the time that this
   draft becomes an RFC.  Also, the algorithm identifiers will need to
   be kept in an IANA registry.  These two requests will be described
   in more detail in a future version of this draft.

8. Acknowledgments

   We would like to thank Paul Hoffman for suppling us with the draft
   text in Section 4 (Wire Format), and his constant prodding us in
   getting this document done.  Ran Atkinson, Matt Crawford, and Eric
   Rescorla provided useful comments, and discussions with Hugo
   Krawczyk proved very useful.  Dan Harkins suggested the inclusion
   of IPi in the authenticator.



Appendix A.  Protocol JFKi

   In the following, "I->R" means a message from the Initiator to the
   Responder and "R->I" means the opposite direction.

   Message 1, I->R:  Ni, g^i, IDr'

   Message 2, R->I:  Ni, Nr, g^r, GRPINFOr, IDr,
                     SIG{r}(g^r, GRPINFOr),
                     HMAC{HKr}(g^r, Nr, Ni, IPi)

   Message 3, I->R:  Ni, Nr, g^i, g^r, HMAC{HKr}(g^r, Nr, Ni, IPi),
                     E{Ke}(IDi, sa, SIG{i}(Ni, Nr, g^i, g^r, IDr, sa))

   Message 4, R->I:  Ni, Nr,
                     E{Ke}(SIG{r}(Ni, Nr, g^i, g^r, IDi, sa, sa'), sa')

   The key used to protect Messages (3) and (4), Ke, is computed as
   HMAC{g^ir}(Ni, Nr, 1).  The session key used by IPsec (or any other
   application), Kir, is HMAC{g^ir}(Ni, Nr, 0).

   If more key material is needed, the same mechanism for "key
   stretching" as specified in [IKEv2] may be used.

   Message (1) is straightforward; note that it assumes that the
   Initiator already knows a group and generator that is acceptable to
   the Responder.  The Initiator can reuse a g^i value in multiple
   instances of the protocol with the Responder or other responders
   that accept the same group, for as long as she wishes her forward
   secrecy interval to be.  We discuss how the Initiator can discover
   what groups to use later.  This message also contains an indication
   as to which ID the Initiator would like the Responder to use to
   authenticate.  In contrast to JFKr, IDr' is sent in the clear;
   however, notice that the responder's ID in Message (2) is also sent
   in the clear, so there is no loss of privacy in this respect.

   Message (2) is more complex.  Assuming that the Responder accepts
   the Diffie-Hellman group in the Initiator's message (rejections are
   discussed elsewhere in this document), he replies with a signed
   copy of his own exponential (in the same group), information on
   what secret key algorithms are acceptable for the next message, a
   random nonce, his identity (certificates or a bit-string
   identifying his public key), and an authenticator calculated from a
   secret, HKr, known to the Responder; the authenticator is computed
   over the two exponentials and nonces, and the Initiator's network
   address.  The authenticator key is changed at least as often as
   g^r, thus preventing replays of stale data.  The Responder's
   exponential may also be reused; again, it is regenerated according
   to the Responder's forward secrecy interval.  The signature on the
   exponential needs to be calculated at the same rate as the
   Responder's forward secrecy interval (when the exponential itself



   changes).  Finally, note that the Responder does not need to
   generate any state at this point, and the only ``expensive''
   operation is a MAC calculation.

   Message (3) echoes back the data sent by the Responder, including
   the authenticator.  The authenticator is used by the Responder to
   verify the authenticity of the returned data.  The authenticator
   also confirms that the sender of Message (3) uses the same address
   as in Message (1) --- this can be used to detect and counter a
   ``cookie jar'' DDoS attack.  The message also includes the
   Initiator's identity and service request, and a signature computed
   over the nonces, the Responder's identity, and the two
   exponentials.  This latter information is all encrypted under a key
   derived from the Diffie-Hellman computation and the nonces Ni and
   Nr.  The encryption and authentication use algorithms specified in
   GRPINFOr.  The Responder keeps a copy of recently-received Message
   (3)'s, and their corresponding Message (4).  Receiving a duplicate
   (or replayed) Message (3) causes the Responder to simply retransmit
   the corresponding Message (4), without creating new state or
   invoking IPsec.  This cache of messages can be reset as soon as g^r
   or HKr are changed.  The Responder's exponential (g^r) is re-sent
   by the Initiator because the Responder may be generating a new g^r
   for every new JFK protocol run (e.g., if the arrival rate of
   requests is below some threshold).  Note: It is important that the
   responder deals with repeated Message (3)'s as described above.
   Responders that create new state for a repeated Message (3) open
   the door to attacks against the protocol.

   Note that the signature is protected by the encryption.  This is
   necessary, since everything signed is public except the sa, and
   that is often guessable.  An attacker could verify guesses at
   identities, were it not encrypted.

   Message (4) contains application-specific information (such as the
   Responder's IPsec SPI), and a signature on both nonces, both
   exponentials, and the Initiator's identity. Everything is encrypted
   by Ke, which is derived from Ni, Nr, and g^ir (the result of the
   Diffie-Hellman computation).

Appendix B.  Avoiding Fragmentation-based DoS Attacks

   Since Message (3) contains certificates, it may be larger than the
   MTU and thus require fragmentation (with most common certificate
   formats, this will be the case only if there are more than 2
   certificates included in the payload).  Thus, it is possible for an
   attacker to send partial fragments of a Message (3) packet in an
   attempt to saturate the Responder's reassembly queue and thus deny
   service to legitimate Initiators.  Similar considerations hold for
   Message (4).



   To avoid this, we propose that the following mechanism be used by
   the underlying operating system:

   - The operating system periodically selects a secret value (16 bits
     for IPv4, 32 bits for IPv6).  This value is also provided to the
     JFK implementation.

   - The operating system also maintains two reassembly queues: one
     for fragments that contain the correct cookie in the ip_id field
     (for IPv4 packets) or the ip6f_ident field (for IPv6 packets, in
     the fragmentation header).  Both queues are of fixed size.  While
     the privileged queue may be larger (to accomodate higher traffic
     volumes), this is not strictly necessary.

   - The cookie is encoded in the first 16 (or 32) bits of the Nonce
     of the appropriate party (Ni or Nr).  These should be copied
     verbatim (i.e., without any byte-swapping etc.) to the
     appropriate field in the IPv4 header or the IPv6 fragmentation
     header.

   - The cookie is computed by applying a hash function on the peer's
     IP address and the host secret, then taking the first 16 or 32
     bits.  Both the operating system and the JFK implementation can
     perform this computation.  The actual algorithm used to compute
     the cookie is left up to the implementation; a fast keyed hash or
     equivalent algorithm should be used.

   Notice that if multiple retransmissions of the same packet are
   performed, all fragments of all instances of the same packet will
   have the same identification number (whereas they are supposed to
   have different values).  Since, however, no field of Message (3) or
   (4) changes between retransmissions, this poses no problem even if
   the sender's network stack fragments the packets in different
   ways.

   Finally, notice that no changes are required on the protocol, and
   the Initiator's and Responder's operating systems may or may not
   implement this functionality independently, without affecting
   interoperability.

References:

   [BDJR97]   Bellare, Desai, Jokippi, Rogaway, "A Concrete Treatment of
              Symmetric Encryption: Analysis of the DES Modes of Operation",
              1997, http://www-cse.ucsd.edu/users/mihir/.

   [BR93]     Bellare and Rogaway, "Entity authentication and key
              distribution", Crypto '93.  Available at

http://www-cse.ucsd.edu/users/mihir.

http://www-cse.ucsd.edu/users/mihir/
http://www-cse.ucsd.edu/users/mihir


   [CK01]     Canetti and Krawczyk, "Analysis of Key-Exchange Protocols
              and Their Use for Building Secure Channels", Eurocrypt 01.
              Available at http://eprint.iacr.org/2001/040.

   [CK02]     Canetti and Krawczyk, "Security Analysis of IKE's Signature-
              based Key-Exchange Protocol", manuscript, 2002.

   [IKEv2]    Harkins, Kaufman, Kent, Kivinen, Perlman, "Proposal for
              the IKEv2 Protocol", draft-ietf-ipsec-ikev2-01.txt.
              February 2002. Work in Progress.

   [K01]      Krawczyk, "The IKE-SIGMA Protocol". Available at
http://tiger.technion.ac.il/~hugo/
draft-krawczyk-ipsec-ike-sigma-00.txt.  Nov 2001. Work

              in progress.

   [RFC2104]  Krawczyk, Bellare, Canetti, "HMAC: Keyed-Hashing for
              Message Authentication. RFC 2104. February 1997.

   [RFC2401]  Kent, S. and R. Atkinson, "Security Architecture for the
              Internet Protocol", RFC 2401,  November 1998.

   [RFC2409]  Harkins, D. and D. Carrel, "The Internet Key Exchange
              (IKE)", RFC 2409, November 1998.

   [RFC2522]  Karn, Simpson, "Photuris: Session-Key Management Protocol",
RFC 2522, March 1999.

Authors' addresses:

   The authors as a group can be reached by email at jfk@crypto.com

   William Aiello
   AT&T Labs - Research
   180 Park Avenue
   Florham Park, New Jersey 07932-0971

   Email: aiello@research.att.com

   Steven M. Bellovin
   AT&T Labs - Research
   180 Park Avenue
   Florham Park, New Jersey 07932-0971

   Email: smb@research.att.com

   Matt Blaze
   AT&T Labs - Research
   180 Park Avenue
   Florham Park, New Jersey 07932-0971

http://eprint.iacr.org/2001/040
https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-ikev2-01.txt
http://tiger.technion.ac.il/~hugo/draft-krawczyk-ipsec-ike-sigma-00.txt
http://tiger.technion.ac.il/~hugo/draft-krawczyk-ipsec-ike-sigma-00.txt
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc2522


   Email: mab@research.att.com

   Ran Canetti
   IBM T.J. Watson Research Center
   30 Saw Mill Rover Road
   Hawthorne, New York 10532
   Email: canetti@watson.ibm.com

   John Ioannidis
   AT&T Labs - Research
   180 Park Avenue
   Florham Park, New Jersey 07932-0971

   Email: ji@research.att.com

   Angelos D. Keromytis
   Columbia University, CS Department
   515 CS Building
   1214 Amsterdam Avenue, Mailstop 0401
   New York, New York 10027-7003

   Phone: +1 212 939 7095
   Email: angelos@cs.columbia.edu

   Omer Reingold
   AT&T Labs - Research
   180 Park Avenue
   Florham Park, New Jersey 07932-0971

   Email: omer@research.att.com

Expiration and File Name

   This draft expires in September 2002

   Its file name is draft-ietf-ipsec-jfk-04.txt

https://datatracker.ietf.org/doc/html/draft-ietf-ipsec-jfk-04.txt

