
IPSecME Working Group Y. Nir
Internet-Draft Check Point
Intended status: Standards Track V. Smyslov
Expires: January 6, 2016 ELVIS-PLUS
 July 5, 2015

Protecting Internet Key Exchange (IKE) Implementations from Distributed
 Denial of Service Attacks

draft-ietf-ipsecme-ddos-protection-02

Abstract

 This document recommends implementation and configuration best
 practices for Internet-connected IPsec Responders, to allow them to
 resist Denial of Service and Distributed Denial of Service attacks.
 Additionally, the document introduces a new mechanism called "Client
 Puzzles" that help accomplish this task.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Nir & Smyslov Expires January 6, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ddos-protection-02
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DDoS Protection for IKE July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Conventions Used in This Document 3

2. The Vulnerability . 3
3. Puzzles . 6
3.1. The Keyed-Cookie Notification 8
3.2. The Puzzle-Required Notification 8

4. Retention Periods for Half-Open SAs 8
5. Rate Limiting . 8
6. Plan for Defending a Responder 9
6.1. Session Resumption 11

7. Operational Considerations 12
8. Using Puzzles in the Protocol 12
8.1. Puzzles in IKE_SA_INIT Exchange 12
8.1.1. Presenting Puzzle 13
8.1.2. Solving Puzzle and Returning the Solution 15
8.1.3. Analyzing Repeated Request 16
8.1.4. Making Decision whether to Serve the Request 17

8.2. Puzzles in IKE_AUTH Exchange 18
8.2.1. Presenting Puzzle 19
8.2.2. Solving Puzzle and Returning the Solution 20
8.2.3. Receiving Puzzle Solution 20

9. DoS Protection after IKE SA is created 21
10. Payload Formats . 22
10.1. PUZZLE Notification 22
10.2. Puzzle Solution Payload 23

11. Security Considerations 24
12. IANA Considerations . 24
13. References . 24
13.1. Normative References 24
13.2. Informative References 24

1. Introduction

 The IKE_SA_INIT Exchange described in section 1.2 of [RFC7296]
 involves the Initiator sending a single message. The Responder
 replies with a single message and also allocates memory for a
 structure called a half-open IKE SA (Security Association). This
 half-open SA is later authenticated in the IKE_AUTH Exchange, but if
 that IKE_AUTH request never comes, the half-open SA is kept for an
 unspecified amount of time. Depending on the algorithms used and
 implementation, such a half-open SA will use from around 100 bytes to
 several thousands bytes of memory.

https://datatracker.ietf.org/doc/html/rfc7296#section-1.2

Nir & Smyslov Expires January 6, 2016 [Page 2]

Internet-Draft DDoS Protection for IKE July 2015

 This creates an easy attack vector against an Internet Key Exchange
 (IKE) Responder. Generating the Initial request is cheap, and
 sending multiple such requests can either cause the Responder to
 allocate too much resources and fail, or else if resource allocation
 is somehow throttled, legitimate Initiators would also be prevented
 from setting up IKE SAs.

 An obvious defense, which is described in Section 5, is limiting the
 number of half-open SAs opened by a single peer. However, since all
 that is required is a single packet, an attacker can use multiple
 spoofed source IP addresses.

Section 2.6 of RFC 7296 offers a mechanism to mitigate this DoS
 attack: the stateless cookie. When the server is under load, the
 Responder responds to the Initial request with a calculated
 "stateless cookie" - a value that can be re-calculated based on
 values in the Initial request without storing Responder-side state.
 The Initiator is expected to repeat the Initial request, this time
 including the stateless cookie.

 Attackers that have multiple source IP addresses with return
 routability, such as bot-nets can fill up a half-open SA table
 anyway. The cookie mechanism limits the amount of allocated state to
 the size of the bot-net, multiplied by the number of half-open SAs
 allowed for one peer address, multiplied by the amount of state
 allocated for each half-open SA. With typical values this can easily
 reach hundreds of megabytes.

 The mechanism described in Section 3 adds a proof of work for the
 Initiator, by calculating a pre-image for a partial hash value. This
 sets an upper bound, determined by the attacker's CPU to the number
 of negotiations it can initiate in a unit of time.

1.1. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The Vulnerability

 If we break down what a responder has to do during an initial
 exchange, there are three stages:

 1. When the Initial request arrives, the responder:

 * Generates or re-uses a D-H private part.

https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc2119

Nir & Smyslov Expires January 6, 2016 [Page 3]

Internet-Draft DDoS Protection for IKE July 2015

 * Generates a responder SPI.

 * Stores the private part and peer public part in a half-open SA
 database.

 2. When the Authentication request arrives, the responder:

 * Derives the keys from the half-open SA.

 * Decrypts the request.

 3. If the Authentication request decrypts properly:

 * Validates the certificate chain (if present) in the auth
 request.

 Yes, there's a stage 4 where the responder actually creates Child
 SAs, but when talking about (D)DoS, we never get to this stage.

 Stage #1 is pretty light on CPU power, but requires some storage, and
 it's very light for the initiator as well. Stage #2 includes
 private-key operations, so it's much heavier CPU-wise, but it
 releases the storage allocated in stage #1. Stage #3 includes a
 public key operation, and possibly many of them.

 To attack such a server, an attacker can attempt to either exhaust
 memory or to exhaust CPU. Without any protection, the most efficient
 attack is to send multiple Initial requests and exhaust memory. This
 should be easy because those Initial requests are cheap.

 There are obvious ways for the responder to protect itself even
 without changes to the protocol. It can reduce the time that an
 entry remains in the half-open SA database, and it can limit the
 amount of concurrent half-open SAs from a particular address or
 prefix. The attacker can overcome this by using spoofed source
 addresses.

 The stateless cookie mechanism from section 2.6 of RFC 7296 prevents
 an attack with spoofed source addresses. This doesn't solve the
 issue, but it makes the limiting of half-open SAs by address or
 prefix work. Puzzles do the same thing only more of it. They make
 it harder for an attacker to reach the goal of getting a half-open
 SA. They don't have to be so hard that an attacker can't afford to
 solve them - it's enough that they increase the cost of a half-open
 SAs for the attacker.

 Reducing the amount of time an abandoned half-open SA is kept attacks
 the issue from the other side. It reduces the value the attacker

https://datatracker.ietf.org/doc/html/rfc7296#section-2.6

Nir & Smyslov Expires January 6, 2016 [Page 4]

Internet-Draft DDoS Protection for IKE July 2015

 gets from managing to create a half-open SA. So if a half-open SA
 takes 1 KB and it's kept for 1 minute and the capacity is 60,000
 half-open SAs, an attacker would need to create 1,000 half-open SAs
 per second. Reduce the retention time to 3 seconds, and the attacker
 needs to create 20,000 half-open SAs per second. Make each of those
 more expensive by introducing a puzzle, and you're likely to thwart
 an exhaustion attack against responder memory.

 At this point, filling up the half-open SA database in no longer the
 most efficient DoS attack. The attacker has two ways to do better:

 1. Go back to spoofed addresses and try to overwhelm the CPU that
 deals with generating cookies, or

 2. Take the attack to the next level by also sending an
 Authentication request.

 It seems that the first thing cannot be dealt with at the IKE level.
 It's probably better left to Intrusion Prevention System (IPS)
 technology.

 On the other hand sending an Authentication request is surprisingly
 cheap. It requires a proper IKE header with the correct IKE SPIs,
 and it requires a single encrypted payload. The content of the
 payload might as well be junk. The responder has to perform the
 relatively expensive key derivation, only to find that the
 Authentication request does not decrypt. Depending on the responder
 implementation, this can be repeated with the same half-open SA (if
 the responder does not delete the half-open SA following an
 unsuccessful decryption - see discussion in Section 4).

 Here too, the number of half-open SAs that the attacker can achieve
 is crucial, because each one of them allows the attacker to waste
 some CPU time. So making it hard to make many half-open SAs is
 important.

 A strategy against DDoS has to rely on at least 4 components:

 1. Hardening the half-open SA database by reducing retention time.

 2. Hardening the half-open SA database by rate-limiting single IPs/
 prefixes.

 3. Guidance on what to do when an Authentication request fails to
 decrypt.

 4. Increasing cost of half-open SA up to what is tolerable for
 legitimate clients.

Nir & Smyslov Expires January 6, 2016 [Page 5]

Internet-Draft DDoS Protection for IKE July 2015

 Puzzles have their place as part of #4.

3. Puzzles

 The puzzle introduced here extends the cookie mechanism from RFC
7296. It is loosely based on the proof-of-work technique used in

 BitCoins ([bitcoins]).

 A puzzle is sent to the Initiator in two cases:

 o The Responder is so overloaded, than no half-open SAs are allowed
 to be created without the puzzle, or

 o The Responder is not too loaded, but the rate-limiting in
Section 5 prevents half-open SAs from being created with this

 particular peer address or prefix without first solving a puzzle.

 When the Responder decides to send the challenge notification in
 response to a IKE_SA_INIT request, the notification includes three
 fields:

 1. Cookie - this is calculated the same as in RFC 7296. As in RFC
7296, the process of generating the cookie is not specified.

 2. Algorithm, this is the identifier of a PRF algorithm, one of
 those proposed by the Initiator in the SA payload.

 3. Zero Bit Count. This is a number between 8 and 255 (or a special
 value - 0, see Section 8.1.1.1) that represents the length of the
 zero-bit run at the end of the output of the PRF function
 calculated over the Keyed-Cookie payload that the Initiator is to
 send. Since the mechanism is supposed to be stateless for the
 Responder, either the same value is sent to all Initiators who
 are receiving this challenge or the value is somehow encoded in
 the cookie. The values 1-8 are explicitly excluded, because they
 create a puzzle that is too easy to solve for it to make any
 difference in mitigating DDoS attacks.

 Upon receiving this challenge payload, the Initiator attempts to
 calculate the PRF using different keys. When a key is found such
 that the resulting PRF output has a sufficient number of trailing
 zero bits, that result is sent to the Responder in a Keyed-Cookie
 notification, as described in Section 3.1.

 When receiving a request with a Keyed-Cookie, the Responder verifies
 two things:

 o That the cookie part is indeed valid.

https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7296

Nir & Smyslov Expires January 6, 2016 [Page 6]

Internet-Draft DDoS Protection for IKE July 2015

 o That the PRF of the transmitted cookie calculated with the
 transmitted key has a sufficient number of trailing zero bits.

 Example 1: Suppose the calculated cookie is
 fdbcfa5a430d7201282358a2a034de0013cfe2ae (20 octets), the algorithm
 is HMAC-SHA256, and the required number of zero bits is 18. After
 successively trying a bunch of keys, the Initiator finds that the key
 that is all-zero except for the last three bytes which are 02fc95
 yields HMAC_SHA256(k, cookie) =
 843ab73f35c5b431b1d8f80bedcd1cb9ef46832f799c1d4250a49f683c580000,
 which has 19 trailing zero bits, so it is an acceptable solution.

 Example 2: Same cookie, but this time the required number of zero
 bits is 22. The first key to satisfy that requirement ends in
 960cbb, which yields a hash with 23 trailing zero bits. Finding this
 requires 9,833,659 invocations of the PRF.

 +----------+--------------------------+----------+------------------+
 | key | Last 24 Hex PRF Digits | # 0-bits | Time To |
 | | | | Calculate |
 +----------+--------------------------+----------+------------------+
00	0cbbbd1e105f5a177f9697d4	2	0.000
08	34cdedf89560f600aab93c68	3	0.000
0b	6153a5131b879a904cd7fbe0	5	0.000
2b	0098af3e9422aa40a6f7b140	6	0.000
0147	c8bf4a65fc8b974046b97c00	10	0.001
06e2	541487a10cbdf3b21c382800	11	0.005
0828	48719bd62393fcf9bc172000	13	0.006
0204a7	3dce3414477c2364d5198000	15	0.186
185297	c19385bb7b9566e5fdf00000	20	2.146
69dc34	1b61ecb347cb2e0cba200000	21	9.416
960cbb	e48274bfac2b7e1930800000	23	13.300
01597972	39a0141d0fe4b87aea000000	25	30.749
0b13cd9a	00b97bb323d6d33350000000	28	247.914
37dc96e4	1e24babc92234aa3a0000000	29	1237.170
7a1a56d8	c98f0061e380a49e00000000	33	2726.150
 +----------+--------------------------+----------+------------------+

 Table 1: COOKIE=fdbcfa5a430d7201282358a2a034de0013cfe2ae

 The figures above were obtained on a 2.4 GHz single core i5. Run
 times can be halved or quartered with multi-core code, but would be
 longer on mobile phone processors, even if those are multi-core as
 well. With these figures 20 bits is believed to be a reasonable
 choice for puzzle level difficulty for all Initiators, with 24 bits
 acceptable for specific hosts/prefixes.

Nir & Smyslov Expires January 6, 2016 [Page 7]

Internet-Draft DDoS Protection for IKE July 2015

3.1. The Keyed-Cookie Notification

 To be added

3.2. The Puzzle-Required Notification

 To be added

4. Retention Periods for Half-Open SAs

 As a UDP-based protocol, IKEv2 has to deal with packet loss through
 retransmissions. Section 2.4 of RFC 7296 recommends "that messages
 be retransmitted at least a dozen times over a period of at least
 several minutes before giving up". Retransmission policies in
 practice wait at least one or two seconds before retransmitting for
 the first time.

 Because of this, setting the timeout on a half-open SA too low will
 cause it to expire whenever even one IKE_AUTH request packet is lost.
 When not under attack, the half-open SA timeout SHOULD be set high
 enough that the Initiator will have enough time to send multiple
 retransmissions, minimizing the chance of transient network
 congestion causing IKE failure.

 When the system is under attack, as measured by the amount of half-
 open SAs, it makes sense to reduce this lifetime. The Responder
 should still allow enough time for the round-trip, enough time for
 the Initiator to derive the Diffie-Hellman shared value, and enough
 time to derive the IKE SA keys and the create the IKE_AUTH request.
 Two seconds is probably as low a value as can realistically be used.

 It could make sense to assign a shorter value to half-open SAs
 originating from IP addresses or prefixes from which are considered
 suspect because of multiple concurrent half-open SAs.

5. Rate Limiting

 Even with DDoS, the attacker has only a limited amount of nodes
 participating in the attack. By limiting the amount of half-open SAs
 that are allowed to exist concurrently with each such node, the total
 amount of half-open SAs is capped, as is the total amount of key
 derivations that the Responder is forced to complete.

 In IPv4 it makes sense to limit the number of half-open SAs based on
 IP address. Most IPv4 nodes are either directly attached to the
 Internet using a routable address or are hidden behind a NAT device
 with a single IPv4 external address. IPv6 networks are currently a
 rarity, so we can only speculate on what their wide deployment will

https://datatracker.ietf.org/doc/html/rfc7296#section-2.4

Nir & Smyslov Expires January 6, 2016 [Page 8]

Internet-Draft DDoS Protection for IKE July 2015

 be like, but the current thinking is that ISP customers will be
 assigned whole subnets, so we don't expect the kind of NAT deployment
 that is common in IPv4. For this reason it makes sense to use a
 64-bit prefix as the basis for rate limiting in IPv6.

 The number of half-open SAs is easy to measure, but it is also
 worthwhile to measure the number of failed IKE_AUTH exchanges. If
 possible, both factors should be taken into account when deciding
 which IP address or prefix is considered suspicious.

 There are two ways to rate-limit a peer address or prefix:

 1. Hard Limit - where the number of half-open SAs is capped, and any
 further IKE_SA_INIT requests are rejected.

 2. Soft Limit - where if a set number of half-open SAs exist for a
 particular address or prefix, any IKE_SA_INIT request will
 require solving a puzzle.

 The advantage of the hard limit method is that it provides a hard cap
 on the amount of half-open SAs that the attacker is able to create.
 The downside is that it allows the attacker to block IKE initiation
 from small parts of the Internet. For example, if a certain purveyor
 of beverages resembling coffee provides Internet connectivity to its
 customers through an IPv4 NAT device, a single malicious customer can
 create enough half-open SAs to fill the quota for the NAT device
 external IP address. Legitimate Initiators on the same network will
 not be able to initiate IKE.

 The advantage of a soft limit is that legitimate clients can always
 connect. The disadvantage is that a sufficiently resourceful (in the
 sense that they have a lot of resources) adversary can still
 effectively DoS the Responder.

 Regardless of the type of rate-limiting used, there is a huge
 advantage in blocking the DoS attack using rate-limiting in that
 legitimate clients who are away from the attacking nodes should not
 be adversely affected by either the attack or by the measures used to
 counteract it.

6. Plan for Defending a Responder

 This section outlines a plan for defending a Responder from a DDoS
 attack based on the techniques described earlier. The numbers given
 here are not normative, and their purpose is to illustrate the
 configurable parameters needed for defeating the DDoS attack.

Nir & Smyslov Expires January 6, 2016 [Page 9]

Internet-Draft DDoS Protection for IKE July 2015

 Implementations may be deployed in different environments, so it is
 RECOMMENDED that the parameters be settable. As an example, most
 commercial products are required to undergo benchmarking where the
 IKE SA establishment rate is measured. Benchmarking is
 indistinguishable from a DoS attack and the defenses described in
 this document may defeat the benchmark by causing exchanges to fail
 or take a long time to complete. Parameters should be tunable to
 allow for benchmarking (if only by turning DDoS protection off).

 Since all countermeasures may cause delays and work on the
 initiators, they SHOULD NOT be deployed unless an attack is likely to
 be in progress. To minimize the burden imposed on Initiators, the
 Responder should monitor incoming IKE requests, searching for two
 things:

 1. A general DDoS attack. Such an attack is indicated by a high
 number of concurrent half-open SAs, a high rate of failed
 IKE_AUTH exchanges, or a combination of both. For example,
 consider a Responder that has 10,000 distinct peers of which at
 peak 7,500 concurrently have VPN tunnels. At the start of peak
 time, 600 peers might establish tunnels at any given minute, and
 tunnel establishment (both IKE_SA_INIT and IKE_AUTH) takes
 anywhere from 0.5 to 2 seconds. For this Responder, we expect
 there to be less than 20 concurrent half-open SAs, so having 100
 concurrent half-open SAs can be interpreted as an indication of
 an attack. Similarly, IKE_AUTH request decryption failures
 should never happen. Supposing the the tunnels are established
 using EAP (see section 2.16 or RFC 7296), users enter the wrong
 password about 20% of the time. So we'd expect 125 wrong
 password failures a minute. If we get IKE_AUTH decryption
 failures from multiple sources more than once per second, or EAP
 failure more than 300 times per minute, that can also be an
 indication of a DDoS attack.

 2. An attack from a particular IP address or prefix. Such an attack
 is indicated by an inordinate amount of half-open SAs from that
 IP address or prefix, or an inordinate amount of IKE_AUTH
 failures. A DDoS attack may be viewed as multiple such attacks.
 If they are mitigated well enough, there will not be a need enact
 countermeasures on all Initiators. Typical figures might be 5
 concurrent half-open SAs, 1 decrypt failure, or 10 EAP failures
 within a minute.

 Note that using counter-measures against an attack from a particular
 IP address may be enough to avoid the load on the half-open SA
 database and the amount of failed IKE_AUTH exchanges to never exceed
 the threshold of attack detection. This is a good thing as it

https://datatracker.ietf.org/doc/html/rfc7296

Nir & Smyslov Expires January 6, 2016 [Page 10]

Internet-Draft DDoS Protection for IKE July 2015

 prevent Initiators that are not close to the attackers from being
 affected.

 When there is no general DDoS attack, it is suggested that no Cookie
 or puzzles be used. At this point the only defensive measure is the
 monitoring, and setting a soft limit per peer IP or prefix. The soft
 limit can be set to 3-5, and the puzzle difficulty should be set to
 such a level (number of zero-bits) that all legitimate clients can
 handle it without degraded user experience.

 As soon as any kind of attack is detected, either a lot of
 initiations from multiple sources or a lot of initiations from a few
 sources, it is best to begin by requiring stateless cookies from all
 Initiators. This will force the attacker to use real source
 addresses, and help avoid the need to impose a greater burden in the
 form of cookies on the general population of initiators. This makes
 the per-node or per-prefix soft limit more effective.

 When Cookies are activated for all requests and the attacker is still
 managing to consume too many resources, the Responder MAY increase
 the difficulty of puzzles imposed on IKE_SA_INIT requests coming from
 suspicious nodes/prefixes. It should still be doable by all
 legitimate peers, but it can degrade experience, for example by
 taking up to 10 seconds to solve the puzzle.

 If the load on the Responder is still too great, and there are many
 nodes causing multiple half-open SAs or IKE_AUTH failures, the
 Responder MAY impose hard limits on those nodes.

 If it turns out that the attack is very widespread and the hard caps
 are not solving the issue, a puzzle MAY be imposed on all Initiators.
 Note that this is the last step, and the Responder should avoid this
 if possible.

6.1. Session Resumption

 When the Responder is under attack, it MAY choose to prefer
 previously authenticated peers who present a session resumption
 [RFC5723] ticket. The Responder MAY require such Initiators to pass
 a return routability check by including the COOKIE notification in
 the IKE_SESSION_RESUME response message, as allowed by RFC 5723, Sec.
 4.3.2. Note that the Responder SHOULD cache tickets for a short time
 to reject reused tickets (Sec. 4.3.1), and therefore there should be
 no issue of half-open SAs resulting from replayed IKE_SESSION_RESUME
 messages

https://datatracker.ietf.org/doc/html/rfc5723
https://datatracker.ietf.org/doc/html/rfc5723

Nir & Smyslov Expires January 6, 2016 [Page 11]

Internet-Draft DDoS Protection for IKE July 2015

7. Operational Considerations

 [This section needs a lot of expanding]

 The difficulty level should be set by balancing the requirement to
 minimize the latency for legitimate initiators and making things
 difficult for attackers. A good rule of thumb is for taking about 1
 second to solve the puzzle. A typical initiator or bot-net member in
 2014 can perform slightly less than a million hashes per second per
 core, so setting the difficulty level to n=20 is a good compromise.
 It should be noted that mobile initiators, especially phones are
 considerably weaker than that. Implementations should allow
 administrators to set the difficulty level, and/or be able to set the
 difficulty level dynamically in response to load.

 Initiators should set a maximum difficulty level beyond which they
 won't try to solve the puzzle and log or display a failure message to
 the administrator or user.

8. Using Puzzles in the Protocol

8.1. Puzzles in IKE_SA_INIT Exchange

 IKE initiator indicates the desire to create a new IKE SA by sending
 IKE_SA_INIT request message. The message may optionally contain
 COOKIE notification if this is a repeated request performed after the
 responder's demand to return a cookie.

 HDR, [N(COOKIE),] SA, KE, Ni, [V+][N+] -->

 According to the plan, described in Section 6, IKE responder should
 monitor incoming requests to detect whether it is under attack. If
 the responder learns that (D)DoS attack is likely to be in progress,
 then it either requests the initiator to return a cookie or, if the
 volume is so high, that puzzles need to be used for defense, it
 requests the initiator to solve a puzzle.

 The responder MAY choose to process some fraction of IKE_SA_INIT
 requests without presenting a puzzle even being under attack to allow
 legacy clients, that don't support puzzles, to have chances to be
 served. The decision whether to process any particular request must
 be probabilistic, with the probability depending on the responder's
 load (i.e. on the volume of attack). Only those requests, that
 contain COOKIE notification, must participate in this lottery. In
 other words, the responder MUST first perform return routability
 check before allowing any legacy client to be served if it is under
 attack. See Section 8.1.3 for details.

Nir & Smyslov Expires January 6, 2016 [Page 12]

Internet-Draft DDoS Protection for IKE July 2015

8.1.1. Presenting Puzzle

 If the responder takes a decision to use puzzles, then it includes
 two notifications in its response message - the COOKIE notification
 and the PUZZLE notification. The format of the PUZZLE notification
 is described in Section 10.1.

 <-- HDR, N(COOKIE), N(PUZZLE), [V+][N+]

 The presence of these notifications in an IKE_SA_INIT response
 message indicates to the initiator that it should solve the puzzle to
 get better chances to be served.

8.1.1.1. Selecting Puzzle Difficulty Level

 The PUZZLE notification contains the difficulty level of the puzzle -
 the minimum number of trailing zero bits that the result of PRF must
 contain. In diverse environments it is next to impossible for the
 responder to set any specific difficulty level that will result in
 roughly the same amount of work for all initiators, because
 computation power of different initiators may vary by the order of
 magnitude, or even more. The responder may set difficulty level to
 0, meaning that the initiator is requested to spend as much power to
 solve puzzle, as it can afford. In this case no specific number of
 trailing zero bits is required from the initiator, however the more
 bits initiator is able to get, the higher chances it will have to be
 served by the responder. In diverse environments it is RECOMMENDED
 that the initiator sets difficulty level to 0, unless the attack
 volume is very high.

 If the responder sets non-zero difficulty level, then the level
 should be determined by analyzing the volume of the attack. The
 responder MAY set different difficulty levels to different requestd
 depending on the IP address the request has come from.

8.1.1.2. Selecting Puzzle Algorithm

 The PUZZLE notification also contains identificator of the algorithm,
 that must be used by initiator to compute puzzle.

 Cryptographic algorithm agility is considered an important feature
 for modern protocols ([ALG-AGILITY]). This feature ensures that
 protocol doesn't rely on a single build-in set of cryptographic
 algorithms, but has a means to replace one set with another and
 negotiate new set with the peer. IKEv2 fully supports cryptographic
 algorithm agility for its core operations.

Nir & Smyslov Expires January 6, 2016 [Page 13]

Internet-Draft DDoS Protection for IKE July 2015

 To support this feature in case of puzzles the algorithm, that is
 used to compute puzzle, needs to be negotiated during IKE_SA_INIT
 exchange. The negotiation is done as follows. The initial request
 message sent by initiator contains SA payload with the list of
 transforms the initiator supports and is willing to use in the IKE SA
 being established. The responder parses received SA payload and
 finds mutually supported set of transforms of type PRF. It selects
 most preferred transform from this set and includes it into the
 PUZZLE notification. There is no requirement that the PRF selected
 for puzzles be the same, as the PRF that is negotiated later for the
 use in core IKE SA crypto operations. If there are no mutually
 supported PRFs, then negotiation will fail anyway and there is no
 reason to return a puzzle. In this case the responder returns
 NO_PROPOSAL_CHOSEN notification. Note that PRF is a mandatory
 transform type for IKE SA (see Sections 3.3.2 and 3.3.3 of [RFC7296])
 and at least one transform of this type must always be present in SA
 payload in IKE_SA_INIT exchange.

8.1.1.3. Generating Cookie

 If responder supports puzzles then cookie should be computed in such
 a manner, that the responder is able to learn some important
 information from the sole cookie, when it is later returned back by
 initiator. In particular - the responder should be able to learn the
 following information:

 o Whether the puzzle was given to the initiator or only the cookie
 was requested.

 o The difficulty level of the puzzle given to the initiator.

 o The number of consecutive puzzles given to the initiator.

 o The amount of time the initiator spent to solve the puzzles. This
 can be calculated if the cookie is timestamped.

 This information helps the responder to make a decision whether to
 serve this request or demand more work from the initiator.

 One possible approach to get this information is to encode it in the
 cookie. The format of such encoding is a local matter of responder,
 as the cookie would remain an opaque blob to the initiator. If this
 information is encoded in the cookie, then the responder MUST make it
 integrity protected, so that any intended or accidental alteration of
 this information in returned cookie is detectable. So, the cookie
 would be generated as:

https://datatracker.ietf.org/doc/html/rfc7296

Nir & Smyslov Expires January 6, 2016 [Page 14]

Internet-Draft DDoS Protection for IKE July 2015

 Cookie = <VersionIDofSecret> | <AdditionalInfo> |
 Hash(Ni | IPi | SPIi | <AdditionalInfo> | <secret>)

 Alternatively the responder may continue to generate cookie as
 suggested in Section 2.6 of [RFC7296], but associate the additional
 information, that would be stored locally, with the particular
 version of the secret. In this case the responder should have
 different secret for every combination of difficulty level and number
 of consecutive puzzles, and should change the secrets periodically,
 keeping a few previous versions, to be able to calculate how long ago
 the cookie was generated.

 The responder may also combine these approaches. This document
 doesn't mandate how the responder learns this information from the
 cookie.

8.1.2. Solving Puzzle and Returning the Solution

 If initiator receives puzzle but it doesn't support puzzles, then it
 will ignore PUZZLE notification as unrecognized status notification
 (in accordance to Section 3.10.1 of [RFC7296]). The initiator also
 MAY ignore puzzle if it is not willing to spend resources to solve
 puzzle of requested difficulty, even if it supports puzzles. In both
 cases the initiator acts as described in Section 2.6 of [RFC7296] -
 it restarts the request and includes the received COOKIE notification
 into it. The responder should be able to distinguish the situation
 when it just requested a cookie from the situation when the puzzle
 was given to the initiator, but the initiator for some reason ignored
 it.

 If the received message contains PUZZLE notification, but doesn't
 contain cookie, then this message is malformed, because it requests
 to solve the puzzle, but doesn't provide enough information to do it.
 In this case the initiator SHOULD resend IKE_SA_INIT request. If
 this situation repeats several times, then it means that something is
 wrong and IKE SA cannot be established.

 If initiator supports puzzles and is ready to deal with them, then it
 tries to solve the given puzzle. After the puzzle is solved the
 initiator restarts the request and returns the puzzle solution in a
 new payload called Puzzle Solution payload (denoted as PS, see

Section 10.2) along with the received COOKIE notification back to the
 responder.

 HDR, N(COOKIE), [PS,] SA, KE, Ni, [V+][N+] -->

https://datatracker.ietf.org/doc/html/rfc7296#section-2.6
https://datatracker.ietf.org/doc/html/rfc7296#section-3.10.1
https://datatracker.ietf.org/doc/html/rfc7296#section-2.6

Nir & Smyslov Expires January 6, 2016 [Page 15]

Internet-Draft DDoS Protection for IKE July 2015

8.1.2.1. Computing Puzzle

 General principals of constructing puzzles in IKEv2 are described in
Section 3. They can be summarized as follows: given unpredictable

 string S and pseudo-random function PRF find the key K for that PRF
 so that the result of PRF(K,S) has the specified number of trailing
 zero bits.

 In the IKE_SA_INIT exchange it is the cookie that plays the role of
 unpredictable string S. In other words, in IKE_SA_INIT the task for
 IKE initiator is to find the key K for the agreed upon PRF such that
 the result of PRF(K,cookie) has sufficient number of trailing zero
 bits. Only the content of the COOKIE notification is used in puzzle
 calculation, i.e. the header of the Notification payload is not
 included.

8.1.3. Analyzing Repeated Request

 The received request must at least contain COOKIE notification.
 Otherwise it is an initial request and it must be processed according
 to Section 8.1. First, the cookie MUST be checked for validity. If
 the cookie is invalid then the request is treated as initial and is
 processed according to Section 8.1. If the cookie is valid then some
 important information is learned from it or from local state based on
 identifier of the cookie's secret (see Section 8.1.1.3 for details).
 This information would allow the responder to sort out incoming
 requests, giving more priority to those of them, which were created
 spending more initiator's resources.

 First, the responder determines if it requested only a cookie, or
 presented a puzzle to the initiator. If no puzzle was given, then it
 means that at the time the responder requested a cookie it didn't
 detect the (D)DoS attack or the attack volume was low. In this case
 the received request message must not contain the PS payload, and
 this payload MUST be ignored if for any reason the message contains
 it. Since no puzzle was given, the responder marks the request with
 the lowest priority since the initiator spent a little resources
 creating it.

 If the responder learns from the cookie that puzzle was given to the
 initiator, then it looks for the PS payload to determine whether its
 request to solve the puzzle was honored or not. If the incoming
 message doesn't contain PS payload, then it means that the initiator
 either doesn't support puzzles or doesn't want to deal with them. In
 either case the request is marked with the lowest priority since the
 initiator spent a little resources creating it.

Nir & Smyslov Expires January 6, 2016 [Page 16]

Internet-Draft DDoS Protection for IKE July 2015

 If PS payload is found in the message then the responder MUST verify
 the puzzle solution that it contains. The result must contain at
 least the requested number of trailing zero bits (that is also
 learned from the cookie, as well as the PRF algorithm used in puzzle
 solution). If the result of the solution contais fewer bits, than
 were requested, it means that initiator spent less resources, than
 expected by the responder. This request is marked with the lowest
 priority.

 If the initiator provided the solution to the puzzle satisfying the
 requested difficulty level, or if the responder didn't indicate any
 particular difficulty level (by requesting zero level) and the
 initiator was free to select any difficulty level it can afford, then
 the priority of the request is calculated based on the following
 considerations.

 o The higher zero bits the initiator got, the higher priority its
 request should achieve.

 o The more consecutive puzzles the initiator solved (it must be
 learned from the cookie), the higher priority its request should
 achieve.

 o The more time the initiator spent solving the puzzles (it must be
 learned from the cookie), the higher priority its request should
 achieve.

 After the priority of the request is determined the final decision
 whether to serve it or not is made.

8.1.4. Making Decision whether to Serve the Request

 The responder decides what to do with the request based on its
 priority and responder's current load. There are three possible
 actions:

 o Accept request.

 o Reject request.

 o Demand more work from initiator by giving it a new puzzle.

 The responder SHOULD accept incoming request if its priority is high
 - it means that the initiator spent quite a lot of resources. The
 responder MAY also accept some of low-priority requests where the
 initiators don't support puzzles. The percentage of accepted legacy
 requests depends on the responder's current load.

Nir & Smyslov Expires January 6, 2016 [Page 17]

Internet-Draft DDoS Protection for IKE July 2015

 If initiator solved the puzzle, but didn't spend much resources for
 it (the selected puzzle difficulty level appeared to be low and the
 initiator solved it quickly), then the responder SHOULD give it
 another puzzle. The more puzzles the initiator solves the higher
 would be its chances ro be served.

 The details of how the responder takes decision on any particular
 request are implementation dependant. The responder can collect all
 the incoming requests for some short period of time, sort them out
 based on their priority, calculate the number of alailable memory
 slots for half-open IKE SAs and then serve that number of the
 requests from the head of the sorted list. The rest of requests can
 be either discarded or responded to with new puzzles.

 Alternatively the responder may decide whether to accept every
 incoming request with some kind of lottery, taking into account its
 priority and the available resources.

8.2. Puzzles in IKE_AUTH Exchange

 Once the IKE_SA_INIT exchange is completed, the responder has created
 a state and is awaiting for the first message of the IKE_AUTH
 exchange from initiator. At this point the initiator has already
 passed return routability check and has proved that it has performed
 some work to complete IKE_SA_INIT exchange. However, the initiator
 is not yet authenticated and this fact allows malicious initiator to
 perform an attack, described in Section 2. Unlike DoS attack in
 IKE_SA_INIT exchange, which is targeted on the responder's memory
 resources, the goal of this attack is to exhaust responder's CPU
 power. The attack is performed by sending the first IKE_AUTH message
 containing garbage. This costs nothing to the initiator, but the
 responder has to do relatively costly operations of computing the
 Diffie-Hellman shared secret and deriving SK_* keys to be able to
 verify authenticity of the message. If the responder doesn't keep
 the computed keys after unsuccessful verification of IKE_AUTH
 message, then the attack can be repeated several times on the same
 IKE SA.

 The responder can use puzzles to make this attack more costly for the
 initiator. The idea is that the responder includes puzzle in the
 IKE_SA_INIT response message and the initiator includes puzzle
 solution in the first IKE_AUTH request message outside the Encrypted
 payload, so that the responder is able to verify puzzle solution
 before computing Diffie-Hellman shared secret. The difficulty level
 of the puzzle should be selected so, that the initiator would spend
 substantially more time to solve the puzzle, than the responder to
 compute the shared secret.

Nir & Smyslov Expires January 6, 2016 [Page 18]

Internet-Draft DDoS Protection for IKE July 2015

 The responder should constantly monitor the amount of the half-open
 IKE SA states, that receive IKE_AUTH messages, but cannot decrypt
 them due to the integrity check failures. If the percentage of such
 states is high and it takes an essential fraction of responder's
 computing power to calculate keys for them, then the responder can
 assume that it is under attack and can use puzzles to make it harder
 for attackers.

8.2.1. Presenting Puzzle

 The responder requests the initiator to solve a puzzle by including
 the PUZZLE notification in the IKE_SA_INIT response message. The
 responder MUST NOT use puzzles in the IKE_AUTH exchange unless the
 puzzle has been previously presented and solved in the preceeding
 IKE_SA_INIT exchange.

 <-- HDR, SA, KE, Nr, N(PUZZLE), [V+][N+]

8.2.1.1. Selecting Puzzle Difficulty Level

 The difficulty level of the puzzle in IKE_AUTH should be chosen so,
 that the initiator would spend more time to solve the puzzle, than
 the responder to compute Diffie-Hellman shared secret and the keys,
 needed to decrypt and verify the IKE_AUTH request message. On the
 other hand, the difficulty level should not be too high, otherwise
 the legitimate clients would experience additional delay while
 establishing IKE SA.

 Note, that since puzzles in the IKE_AUTH exchange are only allowed to
 be used if they were used in the preceeding IKE_SA_INIT exchange, the
 responder would be able to estimate the computing power of the
 initiator and to select the difficulty level accordingly. Unlike
 puzzles in IKE_SA_INIT, the requested difficulty level for IKE_AUTH
 puzzles MUST NOT be zero. In other words, the responder must always
 set specific difficulty level and must not let the initiator to
 choose it on its own.

8.2.1.2. Selecting Puzzle Algorithm

 The algorithm for the puzzle is selected as described in
Section 8.1.1.2. There is no requirement, that the algorithm for the

 puzzle in the IKE_SA INIT exchange be the same, as the algorithm for
 the puzzle in IKE_AUTH exchange, however it is expected that in most
 cases they will be the same.

Nir & Smyslov Expires January 6, 2016 [Page 19]

Internet-Draft DDoS Protection for IKE July 2015

8.2.2. Solving Puzzle and Returning the Solution

 If the IKE_SA_INIT response message contains the PUZZLE notification
 and the initiator supports puzzles, it MUST solve the puzzle. Puzzle
 construction on the IKE_AUTH exchange differs from the puzzle in the
 IKE_SA_INIT exchange and is described in Section 8.2.2.1. Once the
 puzzle is solved the initiator sends the IKE_AUTH request message,
 containing the Puzzle Solution payload.

 HDR, PS, SK {IDi, [CERT,] [CERTREQ,]
 [IDr,] AUTH, SA, TSi, TSr} -->

 The Puzzle Solution payload is placed outside the Encrypted payload,
 so that the responder would be able to verify the puzzle before
 calculating the Diffie-Hellman shared secret and the SK_* keys.

 If IKE Fragmentation [RFC7383] is used in IKE_AUTH exchange, then the
 PS payload MUST be present only in the first IKE Fragment message, in
 accordance with the Section 2.5.3 of RFC7383. Note, that calculation
 of the puzzle in the IKE_AUTH exchange doesn't depend on the content
 of the IKE_AUTH message (see Section 8.2.2.1). Thus the responder
 has to solve the puzzle only once and the solution is valid for both
 unfragmented and fragmented IKE messages.

8.2.2.1. Computing Puzzle

 The puzzle in the IKE_AUTH exchange is computed differently, than in
 the IKE_SA_INIT exchange (see Section 8.1.2.1). The general
 principle is the same, the difference is in constructing of the
 string S. Unlike the IKE_SA_INIT exchange, where S is the cookie, in
 the IKE_AUTH exchange S is a concatenation of Nr and SPIr. In other
 words, the task for IKE initiator is to find the key K for the agreed
 upon PRF such that the result of PRF(K,Nr | SPIr) has sufficient
 number of trailing zero bits. Nr is a nonce used by the responder in
 IKE_SA_INIT exchange, stripped of any headers. SPIr is IKE responder
 SPI in the SA being established.

8.2.3. Receiving Puzzle Solution

 If the responder requested the initiator to solve puzzle in the
 IKE_AUTH exchange, then it SHOULD silently discard all the IKE_AUTH
 request messages without the Puzzle Solution payload.

 Once the message containing solution for the puzzle is received the
 responder SHOULD verify the solution before performing computationly
 intensive operations - computing the Diffie-Hellman shared secret and
 the SK_* keys. The responder MUST silently discard the received
 message if the puzzle solution is not correct (has insufficient

https://datatracker.ietf.org/doc/html/rfc7383
https://datatracker.ietf.org/doc/html/rfc7383#section-2.5.3

Nir & Smyslov Expires January 6, 2016 [Page 20]

Internet-Draft DDoS Protection for IKE July 2015

 number of trailing zero bits). If the puzzle is successfully
 verified and the SK_* key are calculated, but the message
 authenticity check fails, the responder SHOULD save the calculated
 keys in the IKE SA state while waiting for the retransmissions from
 the initiator. In this case the responder may skip verification of
 the puzzle solution and ignore the Puzzle Solution payload in the
 retransmitted messages.

 If the initiator uses IKE Fragmentation, then it is possible, that
 due to packets loss and/or reordering the responder would receive
 non-first IKE Fragment messages before receiving the first one,
 containing the PS payload. In this case the responder MAY choose to
 keep the received fragments until the first fragment containing the
 solution to the puzzle is received. However in this case the
 responder SHOULD NOT try to verify authenticity of the kept fragments
 untill the first fragment with the PS payload is received and the
 solution to the puzzle is verified. After successful verification of
 the puzzle the responder would calculate the SK_* key and verify
 authenticity of the collected fragments.

9. DoS Protection after IKE SA is created

 Once IKE SA is created there is usually no much traffic over it. In
 most cases this traffic consists of exchanges aimed to create
 additional Child SAs, rekey or delete them and check the liveness of
 the peer. With a typical setup and typical Child SA lifetimes there
 must be no more than a few such exchanges in a minute, often less.
 Some of these exchanges require relatively little resources (like
 liveness check), while others may be resource consuming (like
 creating or rekeying Child SA with Diffie-Hellman exchange).

 Since any endpoint can initiate new exchange, there is a possibility
 that a peer would initiate too many exchanges, that could exhaust
 host resources. For example the peer can perform endless continuous
 Child SA rekeying or create overwhelming number of Child SAs with the
 same Traffic Selectors etc. Such behaviour may be caused by buggy
 implementation, misconfiguration or be intentional. The latter
 becomes more real threat if the peer uses NULL Authentication,
 described in [NULL-AUTH]. In this case the peer remains anonymous,
 that allow it to escape any resposibility for its actions.

 The following recommendations for defense against possible DoS
 attacks after IKE SA is established are mostly intended for
 implementations that allow unauthenticated IKE sessions. However
 they may also be useful in other cases.

 o If the IKEv2 window size is greater than one, then the peer could
 initiate multiple simultaneous exchanges, that would potentially

Nir & Smyslov Expires January 6, 2016 [Page 21]

Internet-Draft DDoS Protection for IKE July 2015

 increase host resourse consumption. Since currently there is no
 way in IKEv2 to decrease window size once it was increased (see

Section 2.3 of [RFC7296]), the window size cannot be dynamically
 adjusted depending on the load. For that reason if is NOT
 RECOMMENDED to ever increase IKEv2 window size above its default
 value of one if the peer uses NULL Authentication.

 o If the peer initiates requests to rekey IKE SA or Child SA too
 often, implementations can respond to some of these requests with
 the TEMPORARY_FAILURE notification, indicating that the request
 should be retried after some period of time.

 o If the peer creates too many Child SA with the same or overlapping
 Traffic Selectors, implementations can respond with the
 NO_ADDITIONAL_SAS notification.

 o If the peer initiates too many exchanges of any kind,
 implementations can introduce artificial delay before responding
 to request messages. This delay would decrease the rate the
 implementation need to process requests from any particular peer,
 making possible to process requests from the others. The delay
 should not be too long not to cause IKE SA to be deleted on the
 other end due to timeout. It is believed that a few seconds is
 enough. Note, that if the responder receives retransmissions of
 the request message during the delay period, the retransmitted
 messages should be silently discarded.

 o If these counter-measures are inefficient, implementations can
 delete IKE SA with an offending peer by sending Delete Payload.

10. Payload Formats

10.1. PUZZLE Notification

 The PUZZLE notification is used by IKE responder to inform the
 initiator about the necessity to solve the puzzle. It contains the
 difficulty level of the puzzle and the PRF the initiator should use.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 |Protocol ID(=0)| SPI Size (=0) | Notify Message Type |
 +-+
 | PRF | Difficulty |
 +-+

https://datatracker.ietf.org/doc/html/rfc7296#section-2.3

Nir & Smyslov Expires January 6, 2016 [Page 22]

Internet-Draft DDoS Protection for IKE July 2015

 o Protocol ID (1 octet) - MUST be 0.

 o SPI Size (1 octet) - MUST be 0, meaning no Security Parameter
 Index (SPI) is present.

 o Notify Message Type (2 octets) - MUST be <TBA by IANA>, the value
 assigned for the PUZZLE notification.

 o PRF (2 octets) - Transform ID of the PRF algorithm that must be
 used to solve the puzzle. Readers should refer to the section
 "Transform Type 2 - Pseudo-random Function Transform IDs" in
 [IKEV2-IANA] for the list of possible values.

 o Difficulty (1 octet) - Difficulty Level of the puzzle. Specifies
 minimum number of trailing zero bit, that the result of PRF must
 contain. Value 0 means that the responder doesn't request any
 specific difficulty level and the initiator is free to select
 appropriate difficulty level of its own (see Section 8.1.1.1 for
 details).

 This notification contains no data.

10.2. Puzzle Solution Payload

 The solution to the puzzle is returned back to the responder in a
 dedicated payload, called Puzzle Solution payload and denoted as PS
 in this document.

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Next Payload |C| RESERVED | Payload Length |
 +-+
 | |
 ~ Puzzle Solution Data ~
 | |
 +-+

 o Puzzle Solution Data (variable length) - Contains the solution to
 the puzzle - i.e. the key for the PRF. This field MUST NOT be
 empty. If the selected PRF has a fixed-size key, then the size of
 the Puzzle Solution Data MUST be equal to the size of the key. If
 the PRF agreed upon accepts keys of any size, then then the size
 of the Puzzle Solution Data MUST be between 1 octet and the
 preferred key length of the PRF (inclusive).

 The payload type for the Puzzle Solution payload is <TBA by IANA>.

Nir & Smyslov Expires January 6, 2016 [Page 23]

Internet-Draft DDoS Protection for IKE July 2015

11. Security Considerations

 To be added.

12. IANA Considerations

 This document defines a new payload in the "IKEv2 Payload Types"
 registry:

 <TBA> Puzzle Solution PS

 This document also defines a new Notify Message Type in the "IKEv2
 Notify Message Types - Status Types" registry:

 <TBA> PUZZLE

13. References

13.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC7296] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.
 Kivinen, "Internet Key Exchange Protocol Version 2
 (IKEv2)", STD 79, RFC 7296, October 2014.

 [RFC7383] Smyslov, V., "Internet Key Exchange Protocol Version 2
 (IKEv2) Message Fragmentation", RFC 7383, November 2014.

 [IKEV2-IANA]
 "Internet Key Exchange Version 2 (IKEv2) Parameters",
 <http://www.iana.org/assignments/ikev2-parameters>.

13.2. Informative References

 [RFC5723] Sheffer, Y. and H. Tschofenig, "Internet Key Exchange
 Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,
 January 2010.

 [bitcoins]
 Nakamoto, S., "Bitcoin: A Peer-to-Peer Electronic Cash
 System", October 2008, <https://bitcoin.org/bitcoin.pdf>.

 [ALG-AGILITY]
 Housley, R., "Guidelines for Cryptographic Algorithm
 Agility", draft-iab-crypto-alg-agility-05 (work in
 progress), December 2014.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7296
https://datatracker.ietf.org/doc/html/rfc7383
http://www.iana.org/assignments/ikev2-parameters
https://datatracker.ietf.org/doc/html/rfc5723
https://bitcoin.org/bitcoin.pdf
https://datatracker.ietf.org/doc/html/draft-iab-crypto-alg-agility-05

Nir & Smyslov Expires January 6, 2016 [Page 24]

Internet-Draft DDoS Protection for IKE July 2015

 [NULL-AUTH]
 Smyslov, V. and P. Wouters, "The NULL Authentication
 Method in IKEv2 Protocol", draft-ietf-ipsecme-ikev2-null-

auth-07 (work in progress), January 2015.

Authors' Addresses

 Yoav Nir
 Check Point Software Technologies Ltd.
 5 Hasolelim st.
 Tel Aviv 6789735
 Israel

 EMail: ynir.ietf@gmail.com

 Valery Smyslov
 ELVIS-PLUS
 PO Box 81
 Moscow (Zelenograd) 124460
 Russian Federation

 Phone: +7 495 276 0211
 EMail: svan@elvis.ru

https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-null-auth-07
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ikev2-null-auth-07

Nir & Smyslov Expires January 6, 2016 [Page 25]

