
Workgroup:

Internet Engineering Task Force (IETF)

Internet-Draft:

draft-ietf-ipsecme-ikev2-multiple-ke-12

Updates: 7296 (if approved)

Published: 1 December 2022

Intended Status: Standards Track

Expires: 4 June 2023

Authors: C. Tjhai

Post-Quantum

M. Tomlinson

Post-Quantum

G. Bartlett

Quantum Secret

S. Fluhrer

Cisco Systems

D. Van Geest

ISARA Corporation

O. Garcia-Morchon

Philips

V. Smyslov

ELVIS-PLUS

Multiple Key Exchanges in IKEv2

Abstract

This document describes how to extend the Internet Key Exchange

Protocol Version 2 (IKEv2) to allow multiple key exchanges to take

place while computing a shared secret during a Security Association

(SA) setup.

The primary application of this feature in IKEv2 is the ability to

perform one or more post-quantum key exchanges in conjunction with

the classical (Elliptic Curve) Diffie-Hellman (EC)DH key exchange,

so that the resulting shared key is resistant against quantum

computer attacks. Since there is currently no post-quantum key

exchange that is as well-studied as (EC)DH, performing multiple key

exchanges with different post-quantum algorithms along with the

well-established classical key exchange algorithms addresses this

concern, since the overall security is at least as strong as each

individual primitive.

Another possible application for this extension is the ability to

combine several key exchanges in situations when no single key

exchange algorithm is trusted by both initiator and responder.

This document utilizes the IKE_INTERMEDIATE exchange, by means of

which multiple key exchanges are performed when an IKE SA is being

established. It also introduces a new IKEv2 exchange

IKE_FOLLOWUP_KE, which is used for the same purpose when the IKE SA

is up (during rekeys or creating additional Child SAs).

This document updates RFC7296 by renaming a transform type 4 from

"Diffie-Hellman Group (D-H)" to "Key Exchange Method (KE)" and

renaming a field in the Key Exchange Payload from "Diffie-Hellman

Group Num" to "Key Exchange Method". It also renames an IANA

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc7296

registry for this transform type from "Transform Type 4 - Diffie-

Hellman Group Transform IDs" to "Transform Type 4 - Key Exchange

Method Transform IDs". These changes generalize key exchange

algorithms that can be used in IKEv2.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 4 June 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Problem Description

1.2. Proposed Extension

1.3. Changes

1.4. Document Organization

2. Multiple Key Exchanges

2.1. Design Overview

2.2. Protocol Details

2.2.1. IKE_SA_INIT Round: Negotiation

2.2.2. IKE_INTERMEDIATE Round: Additional Key Exchanges

2.2.3. IKE_AUTH Exchange

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

2.2.4. CREATE_CHILD_SA Exchange

2.2.5. Interaction with IKEv2 Extensions

3. IANA Considerations

3.1. Additional Considerations and Changes

4. Security Considerations

5. Acknowledgements

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Sample Multiple Key Exchanges

A.1. IKE_INTERMEDIATE Exchanges Carrying Additional Key Exchange

Payloads

A.2. No Additional Key Exchange Used

A.3. Additional Key Exchange in the CREATE_CHILD_SA Exchange only

A.4. No Matching Proposal for Additional Key Exchanges

Appendix B. Design Criteria

Appendix C. Alternative Design

Authors' Addresses

1. Introduction

1.1. Problem Description

Internet Key Exchange Protocol (IKEv2) as specified in [RFC7296]

uses the Diffie-Hellman (DH) or Elliptic Curve Diffie-Hellman (ECDH)

algorithm, which shall be referred to as (EC)DH collectively, to

establish a shared secret between an initiator and a responder. The

security of the (EC)DH algorithms relies on the difficulty to solve

a discrete logarithm problem in multiplicative (and respectively

elliptic curve) groups when the order of the group parameter is

large enough. While solving such a problem remains infeasible with

current computing power, it is believed that general purpose quantum

computers will be able to solve this problem, implying that the

security of IKEv2 is compromised. There are, however, a number of

cryptosystems that are conjectured to be resistant against quantum

computer attack. This family of cryptosystems is known as post-

quantum cryptography (PQC). It is sometimes also referred to as

quantum-safe cryptography (QSC) or quantum-resistant cryptography

(QRC).

1.2. Proposed Extension

This document describes a method to perform multiple successive key

exchanges in IKEv2. It allows integration of PQC in IKEv2, while

maintaining backwards compatibility, to derive a set of IKE keys

that is resistant to quantum computer attacks. This extension allows

the negotiation of one or more PQC algorithm to exchange data, in

addition to the existing (EC)DH key exchange data. It is believed

that the feature of using more than one post-quantum algorithms is

¶

(a)

(b)

(c)

important as many of these algorithms are relatively new and there

may be a need to hedge the security risk with multiple key exchange

data from several distinct PQC algorithms.

IKE peers perform multiple successive key exchanges to establish an

IKE Security Association (SA). Each exchange produces a piece of

secret and these secrets are combined in a way such that:

the final shared secret is computed from all of the component

key exchange secret;

the shared secret as specified in [RFC7296] is obtained unless

both peers support and agree to use the additional key

exchanges introduced in this specification; and

if any of the component key exchange method is a post-quantum

algorithm, the final shared secret is post-quantum secure.

Some post-quantum key exchange payloads may have sizes larger than

the standard maximum transmission unit (MTU) size, and therefore

there could be issues with fragmentation at the IP layer. In order

to allow using those larger payload sizes, this mechanism relies on

the IKE_INTERMEDIATE exchange as specified in [RFC9242]. With this

mechanism, the key exchange is initiated using a smaller, possibly

classical primitive, such as (EC)DH. Then, before the IKE_AUTH

exchange, one or more IKE_INTERMEDIATE exchanges are carried out,

each of which contains an additional key exchange. As the

IKE_INTERMEDIATE exchange is encrypted, the IKE fragmentation

protocol [RFC7383] can be used. The IKE SK_* values are updated

after each exchange as described in Section 2.2.2, and so the final

IKE SA keys depend on all the key exchanges, hence they are secure

if any of the key exchanges are secure.

While this extension is primarily aimed for IKE SAs due to the

potential fragmentation issue discussed above, it also applies to

CREATE_CHILD_SA exchanges as illustrated in Section 2.2.4 for

creating/rekeying of Child SAs and rekeying of IKE SAs.

Note that readers should consider the approach defined in this

document as providing a long term solution in upgrading the IKEv2

protocol to support post-quantum algorithms. A short term solution

to make IKEv2 key exchange quantum secure is to use post-quantum

pre-shared keys as specified in [RFC8784].

Note also that the proposed approach of performing multiple

successive key exchanges in such a way that resulting session keys

depend on all of them is not limited to only addressing the threat

of quantum computer. It can also be used when all of the performed

key exchanges are classical (EC)DH primitives, where for some

¶

¶

¶

¶

¶

¶

¶

¶

reasons (e.g. policy requirements) it is essential to perform

multiple of them.

This specification does not attempt to address key exchanges with KE

payloads longer than 64 Kbytes; the current IKE payload format does

not allow such as possibility. At the time of writing, it appears

likely that there are a number of key exchanges available that would

not have such a requirement. However, if such a requirement is

needed, [I-D.tjhai-ikev2-beyond-64k-limit] discusses approaches that

could be taken to exchange huge payloads.

1.3. Changes

RFC EDITOR PLEASE DELETE THIS SECTION.

Changes in this draft in each version iterations.

draft-ietf-ipsecme-ikev2-multiple-ke-07

Editorial changes.

draft-ietf-ipsecme-ikev2-multiple-ke-06

Updated draft with the allocated IANA values.

Editorial changes following AD review.

draft-ietf-ipsecme-ikev2-multiple-ke-05

Updated the reference to RFC9242.

Editorial changes.

draft-ietf-ipsecme-ikev2-multiple-ke-04

Introduction and initial sections are reorganized.

More clarifications for error handling added.

ASCII arts displaying SA payload are added.

Clarification for handling multiple round trips key exchange

methods added.

DoS concerns added into Security Considerations section.

Explicitly allow scenario when additional key exchanges are

performed only after peers are authenticated.

¶

¶

¶

¶

¶

* ¶

¶

* ¶

* ¶

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

draft-ietf-ipsecme-ikev2-multiple-ke-03

More clarifications added.

Figure illustrating initial exchange added.

Minor editorial changes.

draft-ietf-ipsecme-ikev2-multiple-ke-02

Added a reference on the handling of KE payloads larger than

64KB.

draft-ietf-ipsecme-ikev2-multiple-ke-01

References are updated.

draft-ietf-ipsecme-ikev2-multiple-ke-00

Draft name changed as result of WG adoption and generalization of

the approach.

New exchange IKE_FOLLOWUP_KE is defined for additional key

exchanges performed after CREATE_CHILD_SA.

Nonces are removed from all additional key exchanges.

Clarification that IKE_INTERMEDIATE must be negotiated is added.

draft-tjhai-ipsecme-hybrid-qske-ikev2-04

Clarification about key derivation in case of multiple key

exchanges in CREATE_CHILD_SA is added.

Resolving rekey collisions in case of multiple key exchanges is

clarified.

draft-tjhai-ipsecme-hybrid-qske-ikev2-03

Using multiple key exchanges CREATE_CHILD_SA is defined.

draft-tjhai-ipsecme-hybrid-qske-ikev2-02

Use new transform types to negotiate additional key exchanges,

rather than using the KE payloads of IKE SA.

draft-tjhai-ipsecme-hybrid-qske-ikev2-01

Use IKE_INTERMEDIATE to perform multiple key exchanges in

succession.

¶

* ¶

* ¶

* ¶

¶

*

¶

¶

* ¶

¶

*

¶

*

¶

* ¶

* ¶

¶

*

¶

*

¶

¶

* ¶

¶

*

¶

¶

*

¶

Handle fragmentation by keeping the first key exchange (a

standard IKE_SA_INIT with a few extra notifies) small, and

encrypting the rest of the key exchanges.

Simplify the negotiation of the 'extra' key exchanges.

draft-tjhai-ipsecme-hybrid-qske-ikev2-00

Added a feature to allow more than one post-quantum key exchange

algorithms to be negotiated and used to exchange a post- quantum

shared secret.

Instead of relying on TCP encapsulation to deal with IP level

fragmentation, a new key exchange payload that can be sent as

multiple fragments within IKE_SA_INIT message was introduced.

1.4. Document Organization

The remainder of this document is organized as follows. Section 2

describes how multiple key exchanges are performed between two IKE

peers and how keying materials are derived for both SAs and Child

SAs. Section 3 discusses IANA considerations for the namespaces

introduced in this document, and Section 4 discusses security

considerations. In the Appendices sections, some examples of

multiple key exchanges are illustrated in Appendix A, Appendix B

summarizes design criteria and a summary of alternative approaches

that have been considered, but later discarded, are described in

Appendix C.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Multiple Key Exchanges

2.1. Design Overview

Most post-quantum key agreement algorithms are relatively new, and

thus are not fully trusted. There are also many proposed algorithms,

with different trade-offs and relying on different hard problems.

The concern is that some of these hard problems may turn out to be

easier to solve than anticipated and thus the key agreement

algorithm may not be as secure as expected. A hybrid solution, when

multiple key exchanges are performed and the calculated shared key

depends on all of them, allows us to deal with this uncertainty by

combining a classical key exchange with a post-quantum one, as well

as leaving open the possibility of multiple post-quantum key

exchanges.

*

¶

* ¶

¶

*

¶

*

¶

¶

¶

¶

In order to be able to use IKE fragmentation [RFC7383] for those key

exchanges that may have long public keys, this specification

utilizes the IKE_INTERMEDIATE exchange defined in [RFC9242]. The

initial IKE_SA_INIT messages do not have any inherent fragmentation

support within IKE; however, IKE_SA_INIT messages can include a

relatively short KE payload. The additional key exchanges are

performed using IKE_INTERMEDIATE messages that follow the

IKE_SA_INIT exchange. This is to allow the standard IKE

fragmentation mechanisms (which cannot be used in IKE_SA_INIT) to be

available for the potentially large Key Exchange payloads with post-

quantum algorithm data.

Note that this document assumes, that each key exchange method

requires one round trip and consumes exactly one IKE_INTERMEDIATE

exchange. This assumption is valid for all classic key exchange

methods defined so far and for all post-quantum methods currently

known. For hypothetical future key exchange methods requiring

multiple round trips to complete, a separate document should define

how such methods are split into several IKE_INTERMEDIATE exchanges.

In order to minimize communication overhead, only the key shares

that are agreed to be used are actually exchanged. To negotiate

additional key exchanges seven new Transform Types are defined.

These transforms and Transform Type 4 share the same Transform IDs.

It is assumed that new Transform Type 4 identifiers will be assigned

later for various post-quantum key exchanges [IKEV2TYPE4ID]. This

specification does not make a distinction between classical (EC)DH

and post-quantum key exchanges, nor post-quantum algorithms which

are true key exchanges versus post-quantum algorithms that act as

key transport mechanisms; all are treated equivalently by the

protocol. This document renames a field in the Key Exchange Payload

from "Diffie-Hellman Group Num" to "Key Exchange Method". It also

renames Transform Type 4 from "Diffie-Hellman Group (D-H)" to "Key

Exchange Method (KE)"; the corresponding renaming to the IANA

registry is described in Section 3.

The fact that newly defined transforms share the same registry for

possible Transform IDs with Transform Type 4, allows additional key

exchanges to be of any type - either post-quantum or classical

(EC)DH one. This approach allows any combination of the defined key

exchange methods to take place. This also allows IKE peers to

perform a single post-quantum key exchange in the IKE_SA_INIT

without additional key exchanges, provided that the IP fragmentation

is not an issue and that hybrid key exchange is not needed.

The SA payload in the IKE_SA_INIT message includes one or more newly

defined transforms which represent the extra key exchange policy

required by the initiator. The responder follows the usual IKEv2

¶

¶

¶

¶

¶

negotiation rules: it selects a single transform of each type, and

returns all of them in the IKE_SA_INIT response message.

Then, provided that additional key exchanges are negotiated, the

initiator and the responder perform one or more IKE_INTERMEDIATE

exchanges. Following that, the IKE_AUTH exchange authenticates peers

and completes IKE SA establishment.

2.2. Protocol Details

In the simplest case, the initiator starts a single key exchange

(and has no interest in supporting multiple), and it is not

concerned with possible fragmentation of the IKE_SA_INIT messages

(either because the key exchange it selects is small enough not to

fragment, or the initiator is confident that fragmentation will be

handled either by IP fragmentation, or transport via TCP).

In this case, the initiator performs the IKE_SA_INIT for a single

key exchange using a Transform Type 4 (possibly with a post quantum

algorithm), and including the initator KE payload. If the responder

accepts the policy, it responds with an IKE_SA_INIT response, and

IKE continues as usual.

If the initiator desires to negotiate multiple key exchanges, then

the initiator uses the protocol behavior listed below.

2.2.1. IKE_SA_INIT Round: Negotiation

Multiple key exchanges are negotiated using the standard IKEv2

mechanism, via SA payload. For this purpose seven new transform

types, namely Additional Key Exchange 1 (with IANA assigned value

6), Additional Key Exchange 2 (7), Additional Key Exchange 3 (8),

Additional Key Exchange 4 (9), Additional Key Exchange 5 (10),

Additional Key Exchange 6 (11) and Additional Key Exchange 7 (12)

are defined. They are collectively called Additional Key Exchange

transforms in this document and have slightly different semantics

than the existing IKEv2 transform types. They are interpreted as an

indication of additional key exchange methods that peers agree to

¶

¶

Initiator Responder

<-- IKE_SA_INIT (additional key exchanges negotiation) -->

<-- {IKE_INTERMEDIATE (additional key exchange)} -->

 ...

<-- {IKE_INTERMEDIATE (additional key exchange)} -->

<-- {IKE_AUTH} -->

¶

¶

¶

¶

perform in a series of IKE_INTERMEDIATE exchanges following the

IKE_SA_INIT exchange. The allowed transform IDs for these transform

types are the same as the IDs for Transform Type 4, so they all

share a single IANA registry for transform IDs.

Key exchange method negotiated via Transform Type 4 always takes

place in the IKE_SA_INIT exchange, as defined in [RFC7296].

Additional key exchanges negotiated via newly defined transforms

MUST take place in a series of IKE_INTERMEDIATE exchanges following

the IKE_SA_INIT exchange, performed in an order of the values of

their transform types, so that key exchange negotiated using

Additional Key Exchange i always precedes that of Additional Key

Exchange i + 1. Each additional key exchange method MUST be fully

completed before the next one is started.

Note that with these semantics, Additional Key Exchange transforms

are not associated with any particular type of key exchange and do

not have any specific per transform type transform IDs IANA

registry. Instead they all share a single registry for transform

IDs, namely "Key Exchange Method Transform IDs", which are also

shared by Transform Type 4. All key exchange algorithms (both

classical or post-quantum) should be added to this registry. This

approach gives peers flexibility in defining the ways they want to

combine different key exchange methods.

When forming a proposal the initiator adds transforms for the

IKE_SA_INIT exchange using Transform Type 4. In most cases they will

contain classical (EC)DH key exchange methods, however it is not a

requirement. Additional key exchange methods are proposed using

Additional Key Exchange transform types. All of these transform

types are optional, the initiator is free to select any of them for

proposing additional key exchange methods. Consequently, if none of

the Additional Key Exchange transforms is included in the proposal,

then this proposal indicates performing standard IKEv2, as defined

in [RFC7296]. On the other hand, if the initiator includes any

Additional Key Exchange transform in the proposal, the responder

MUST select one of the algorithms proposed using this type. Note

that this is not a new requirement, but that this behavior is

already specified in Section 2.7 of [RFC7296]. A transform ID NONE

MAY be added to those transform types which contain key exchange

methods that the initiator believes is optional according to its

local policy.

The responder performs the negotiation using the standard IKEv2

procedure described in Section 3.3 of [RFC7296]. However, for the

Additional Key Exchange types, the responder's choice MUST NOT

contain duplicated algorithms (those with identical Transform ID and

attributes), except for the transform ID of NONE. An algorithm is

represented as a transform, in some cases the transform could

¶

¶

¶

¶

include a set of associated attributes that define details of the

algorithm. In this case, two transforms can be the same, but the

attributes must be different. Additionally, the order of the

attributes does not affect the equality of the algorithm, so two

transforms (ID=alg1,ATTR1=attr1,ATTR2=attr2) and

(ID=alg1,ATTR2=attr2,ATTR1=attr1) define the same algorithm. If the

responder is unable to select non-duplicated algorithm for each

proposed key exchange (either because the proposal contains too few

choices or due to the local policy restrictions on using the

proposed algorithms), then the responder MUST reject the message

with an error notification of type NO_PROPOSAL_CHOSEN. If the

responder's message contains one or more duplicated choices, the

initiator should log the error and MUST treat the exchange as

failed. The initiator MUST NOT initiate any IKE_INTERMEDIATE (or

IKE_FOLLOWUP_KE) exchanges, so that no new SA is created. If this

happens in the CREATE_CHILD_SA exchange, then the initiator MAY

delete the IKE SA, over which the invalid message was received, by

sending a Delete payload.

If the responder selects NONE for some Additional Key Exchange types

(provided they are proposed by the initiator), then the

corresponding Additional Key Exchange(s) in the IKE_INTERMEDIATE

exchange(s) MUST NOT take place. Therefore if the initiator includes

NONE in all of the Additional Key Exchange transforms and the

responder selects this value for all of them, then no

IKE_INTERMEDIATE messages performing additional key exchanges will

take place between the peers. Note that the IKE_INTERMEDIATE

exchanges may still take place for other purposes.

The initiator MAY propose non-consecutive Additional Key Exchange

transforms, for example proposing Additional Key Exchange 2 and

Additional Key Exchange 5 transforms only. The responder MUST treat

all of the omitted Additional Key Exchange transforms as if they are

proposed with Transform ID NONE.

Below is an example of the SA payload in the initiator's IKE_SA_INIT

request message. Here the abbreviation AKEi is used to denote the i-

th Additional Key Exchange transform defined in this document, and

an abbreviation KE for the Key Exchange transform, that this

document renames from the Diffie-Hellman Group transform.

Additionally, the notations PQ_KEM_1, PQ_KEM_2 and PQ_KEM_3 are used

to represent some not-yet defined Transform IDs of some popular

post-quantum key exchange methods.

¶

¶

¶

¶

In this example, the initiator proposes to perform initial key

exchange using 4096-bit MODP group followed by two mandatory

additional key exchanges (i.e. Transforms AKE2 and AKE3) using

PQ_KEM_1 and PQ_KEM_2 methods in any order, then followed by

additional key exchange (i.e. Transform AKE5) using PQ_KEM_3 method

that may be omitted.

The responder might return the following SA payload, indicating that

it agrees to perform two additional key exchanges PQ_KEM_2 followed

by PQ_KEM_1 and does not want to perform PQ_KEM_3 additionally.

SA Payload

 |

 +--- Proposal #1 (Proto ID = IKE(1), SPI size = 8,

 | 9 transforms, SPI = 0x35a1d6f22564f89d)

 |

 +-- Transform ENCR (ID = ENCR_AES_GCM_16)

 | +-- Attribute (Key Length = 256)

 |

 +-- Transform KE (ID = 4096-bit MODP Group)

 |

 +-- Transform PRF (ID = PRF_HMAC_SHA2_256)

 |

 +-- Transform AKE2 (ID = PQ_KEM_1)

 |

 +-- Transform AKE2 (ID = PQ_KEM_2)

 |

 +-- Transform AKE3 (ID = PQ_KEM_1)

 |

 +-- Transform AKE3 (ID = PQ_KEM_2)

 |

 +-- Transform AKE5 (ID = PQ_KEM_3)

 |

 +-- Transform AKE5 (ID = NONE)

¶

¶

¶

If the initiator includes any Additional Key Exchange transform

types into the SA payload in the IKE_SA_INIT exchange request

message, then it MUST also negotiate the use of the IKE_INTERMEDIATE

exchange as described in [RFC9242], by including

INTERMEDIATE_EXCHANGE_SUPPORTED notification in the same message. If

the responder agrees to use additional key exchanges while

establishing initial IKE SA, it MUST also return this notification

in the IKE_SA_INIT response message, thus confirming that

IKE_INTERMEDIATE exchange is supported and will be used for

transferring additional key exchange data. If the IKE_INTERMEDIATE

exchange is not negotiated, then the peers MUST treat any Additional

Key Exchange transforms in the IKE_SA_INIT exchange messages as

unknown transform types and skip the proposals they appear in. If no

other proposals are present in the SA payload, the peers will

proceed as if no proposal is chosen (i.e. the responder will send

NO_PROPOSAL_CHOSEN notification).

It is possible that an attacker manages to send a response to the

initiator's IKE_SA_INIT request before the legitimate responder

does. If the initiator continues to create the IKE SA using this

response, the attempt will fail. Implementers may wish to consider a

possible defense technique described in Section 2.4 of [RFC7296].

SA Payload

 |

 +--- Proposal #1 (Proto ID = IKE(1), SPI size = 8,

 | 6 transforms, SPI = 0x8df52b331a196e7b)

 |

 +-- Transform ENCR (ID = ENCR_AES_GCM_16)

 | +-- Attribute (Key Length = 256)

 |

 +-- Transform KE (ID = 4096-bit MODP Group)

 |

 +-- Transform PRF (ID = PRF_HMAC_SHA2_256)

 |

 +-- Transform AKE2 (ID = PQ_KEM_2)

 |

 +-- Transform AKE3 (ID = PQ_KEM_1)

 |

 +-- Transform AKE5 (ID = NONE)

¶

¶

Initiator Responder

HDR, SAi1(.. AKE*...), KEi, Ni,

N(INTERMEDIATE_EXCHANGE_SUPPORTED) --->

 HDR, SAr1(.. AKE*...), KEr, Nr,

 [CERTREQ],

 <--- N(INTERMEDIATE_EXCHANGE_SUPPORTED)

¶

¶

2.2.2. IKE_INTERMEDIATE Round: Additional Key Exchanges

For each additional key exchange agreed to in the IKE_SA_INIT

exchange, the initiator and the responder perform IKE_INTERMEDIATE

exchange, as described in [RFC9242].

The initiator sends key exchange data in the KEi(n) payload. This

message is protected with the current SK_ei/SK_ai keys. The notation

KEi(n) denotes the n-th IKE_INTERMEDIATE KE payload from the

initiator and the integer n is sequential starting from 1.

On receiving this, the responder sends back key exchange payload

KEr(n), which denotes the n-th IKE_INTERMEDIATE KE payload from the

responder. As before, this message is protected with the current

SK_er/SK_ar keys.

The former "Diffie-Hellman Group Num" (now called "Key Exchange

Method") field in the KEi(n) and KEr(n) payloads MUST match the n-th

negotiated additional key exchange.

Once this exchange is done, both sides compute an updated keying

material:

where SK(n) is the resulting shared secret of this key exchange, Ni

and Nr are nonces from the IKE_SA_INIT exchange and SK_d(n-1) is the

last generated SK_d, (derived from IKE_SA_INIT for the first use of

IKE_INTERMEDIATE, otherwise from the previous IKE_INTERMEDIATE

exchange). The other keying materials SK_d, SK_ai, SK_ar, SK_ei,

SK_er, SK_pi, SK_pr are generated from the SKEYSEED(n) as follows:

Both the initiator and the responder use these updated key values in

the next exchange (IKE_INTERMEDIATE or IKE_AUTH).

2.2.3. IKE_AUTH Exchange

After all IKE_INTERMEDIATE exchanges have completed, the initiator

and the responder perform an IKE_AUTH exchange. This exchange is the

standard IKE exchange as described in [RFC7296] with the

modification of AUTH payload calculation described in [RFC9242].

¶

Initiator Responder

HDR, SK {KEi(n)} -->

 <-- HDR, SK {KEr(n)}

¶

¶

¶

¶

¶

SKEYSEED(n) = prf(SK_d(n-1), SK(n) | Ni | Nr)¶

¶

{SK_d(n) | SK_ai(n) | SK_ar(n) | SK_ei(n) | SK_er(n) | SK_pi(n) |

 SK_pr(n)} = prf+ (SKEYSEED(n), Ni | Nr | SPIi | SPIr)

¶

¶

¶

2.2.4. CREATE_CHILD_SA Exchange

The CREATE_CHILD_SA exchange is used in IKEv2 for the purposes of

creating additional Child SAs, rekeying these and rekeying IKE SA

itself. When creating or rekeying Child SAs, the peers may

optionally perform a key exchange to add a fresh entropy into the

session keys. In case of IKE SA rekey, the key exchange is

mandatory. Peers supporting this specification may want to use

multiple key exchanges in these situations.

Using multiple key exchanges with CREATE_CHILD_SA exchange is

negotiated similarly as in the initial IKE exchange, see

Section 2.2.1. If the initiator includes any Additional Key Exchange

transform in the SA payload (along with Transform Type 4) and the

responder agrees to perform additional key exchanges, then the

additional key exchanges are performed in a series of new

IKE_FOLLOWUP_KE exchanges that follows the CREATE_CHILD_SA exchange.

The IKE_FOLLOWUP_KE exchange is introduced as a dedicated exchange

for transferring data of additional key exchanges following the key

exchange performed in the CREATE_CHILD_SA. Its Exchange Type value

is 44.

Key exchange negotiated via Transform Type 4 always takes place in

the CREATE_CHILD_SA exchange, as per IKEv2 specification. Additional

key exchanges are performed in an order of the values of their

transform types, so that key exchange negotiated using Transform

Type n always precedes key exchange negotiated using Transform Type

n + 1. Each additional key exchange method MUST be fully completed

before the next one is started. Note, that this document assumes,

that each key exchange method consumes exactly one IKE_FOLLOWUP_KE

exchange. For the methods requiring multiple round trips, a separate

document should define how such methods are split into several

IKE_FOLLOWUP_KE exchanges.

After an IKE SA is created the window size may be greater than one

and multiple concurrent exchanges may be in progress, it is

essential to link the IKE_FOLLOWUP_KE exchanges together with the

corresponding CREATE_CHILD_SA exchange. Due to the fact that once an

IKE SA is created, all IKE exchanges are independent and do not have

built-in means to link one with another, a new status type

notification ADDITIONAL_KEY_EXCHANGE is introduced for this purpose.

Its Notify Message Type value is 16441, and Protocol ID and SPI Size

are both set to 0. The data associated with this notification is a

blob meaningful only to the responder, so that the responder can

correctly link successive exchanges. For the initiator the content

of this notification is an opaque blob.

The responder MUST include this notification in a CREATE_CHILD_SA or

IKE_FOLLOWUP_KE response message in case the next IKE_FOLLOWUP_KE

¶

¶

¶

¶

exchange is expected, filling it with some data that would allow

linking the current exchange to the next one. The initiator MUST

send back this notification intact in the request message of the

next IKE_FOLLOWUP_KE exchange.

Below is an example of CREATE_CHILD_SA exchange followed by three

additional key exchanges.

The former "Diffie-Hellman Group Num" (now called "Key Exchange

Method") field in the KEi(n) and KEr(n) payloads MUST match the n-th

negotiated additional key exchange.

It is possible that due to some unexpected events (e.g. reboot) the

initiator may lose its state and forget that it is in the process of

performing additional key exchanges and thus never start the

remaining IKE_FOLLOWUP_KE exchanges. The responder MUST handle this

situation gracefully and delete the associated state if it does not

receive the next expected IKE_FOLLOWUP_KE request after some

reasonable period of time. Note that due to various factors such as

computational resource and key exchange algorithm used, it is not

possible to give a normative guidance on how long this timeout

period should be. In general, 5-20 seconds of waiting time should be

appropriate in most cases.

It is also possible that the initiator may take too long to prepare

and send the next IKE_FOLLOWUP_KE request or due to the network

conditions, the request is retransmitted. In this case, the message

may reach the responder when it has already deleted the associated

state following the advice above. If the responder receives an

IKE_FOLLOWUP_KE message for which it does not have a key exchange

¶

¶

Initiator Responder

HDR(CREATE_CHILD_SA), SK {SA, Ni, KEi} -->

 <-- HDR(CREATE_CHILD_SA), SK {SA, Nr, KEr,

 N(ADDITIONAL_KEY_EXCHANGE)(link1)}

HDR(IKE_FOLLOWUP_KE), SK {KEi(1),

 N(ADDITIONAL_KEY_EXCHANGE)(link1)} -->

 <-- HDR(IKE_FOLLOWUP_KE), SK {KEr(1),

 N(ADDITIONAL_KEY_EXCHANGE)(link2)}

HDR(IKE_FOLLOWUP_KE), SK {KEi(2),

 N(ADDITIONAL_KEY_EXCHANGE)(link2)} -->

 <-- HDR(IKE_FOLLOWUP_KE), SK {KEr(2),

 N(ADDITIONAL_KEY_EXCHANGE)(link3)}

HDR(IKE_FOLLOWUP_KE), SK {KEi(3),

 N(ADDITIONAL_KEY_EXCHANGE)(link3)} -->

 <-- HDR(IKE_FOLLOWUP_KE), SK {KEr(3)}

¶

¶

¶

state, it MUST send back a new error type notification

STATE_NOT_FOUND. This is a non-fatal error notification, its Notify

Message Type is 47, Protocol ID and SPI Size are both set to 0 and

the data is empty. If the initiator receives this notification in

response to IKE_FOLLOWUP_KE exchange performing additional key

exchange, it MUST cancel this exchange and MUST treat the whole

series of exchanges started from the CREATE_CHILD_SA exchange as

failed. In most cases, the receipt of this notification is caused by

premature deletion of the corresponding state on the responder (the

time period between IKE_FOLLOWUP_KE exchanges appeared too long from

the responder's point of view, e.g. due to a temporary network

failure). After receiving this notification the initiator MAY start

a new CREATE_CHILD_SA exchange which may eventually be followed by

the IKE_FOLLOWUP_KE exchanges, to retry the failed attempt. If the

initiator continues to receive STATE_NOT_FOUND notifications after

several retries, it MUST treat this situation as a fatal error and

delete IKE SA by sending a DELETE payload.

When rekeying the IKE SA or the Child SA, it is possible that the

peers start doing this at the same time, which is called

simultaneous rekeying. Sections 2.8.1 and 2.8.2 of [RFC7296]

describe how IKEv2 handles this situation. In a nutshell IKEv2

follows the rule that if in case of simultaneous rekeying, two

identical new IKE SAs (or two pairs of Child SAs) are created, then

one of them should be deleted. Which one is to be deleted is

determined by comparing the values of four nonces that are used in

the colliding CREATE_CHILD_SA exchanges. The IKE SA (or pair of

Child SAs) that is created by the exchange in which the smallest

nonce is used should be deleted by the initiator of this exchange.

With multiple key exchanges, the SAs are not yet created when the

CREATE_CHILD_SA is completed, they would be created only after the

series of IKE_FOLLOWUP_KE exchanges is finished. For this reason, if

additional key exchanges are negotiated in the CREATE_CHILD_SA

exchange in which the smallest nonce is used, then because there is

nothing to delete yet, the initiator of this exchange just stops the

rekeying process and it MUST NOT initiate the IKE_FOLLOWUP_KE

exchange.

In most cases, rekey collisions are resolved in the CREATE_CHILD_SA

exchange. However, a situation may occur when due to packet loss,

one of the peers receives the CREATE_CHILD_SA message requesting

rekey of SA that is already being rekeyed by this peer (i.e. the

CREATE_CHILD_SA exchange initiated by this peer has been already

completed and the series of IKE_FOLLOWUP_KE exchanges is in

progress). In this case, a TEMPORARY_FAILURE notification MUST be

sent in response to such a request.

¶

¶

¶

¶

If multiple key exchanges are negotiated in the CREATE_CHILD_SA

exchange, then the resulting keys are computed as follows.

In case of IKE SA rekey:

In case of Child SA creation or rekey:

In both cases, SK_d is from the existing IKE SA; SK(0), Ni, Nr are

the shared key and nonces from the CREATE_CHILD_SA respectively;

SK(1)...SK(n) are the shared keys from additional key exchanges.

2.2.5. Interaction with IKEv2 Extensions

It is believed that this specification requires no modification to

the IKEv2 extensions defined so far. In particular, IKE SA

resumption mechanism defined in [RFC5723] can be used to resume IKE

SAs created using this specification.

2.2.5.1. Interaction with Childless IKE SA

It is possible to establish IKE SAs with post-quantum algorithms

only using additional key exchanges, but without using

IKE_INTERMEDIATE exchanges. In this case, the IKE SA created from

IKE_SA_INIT exchange can be immediately rekeyed with CREATE_CHILD_SA

using additional key exchanges where IKE_FOLLOWUP_KE messages are

used to carry the key exchange payload. If classical key exchange

method is used in the IKE_SA_INIT message, the very first Child SA

created in IKE_AUTH will offer no resistance against the quantum

threats. Consequently, if the peers' local policy requires that all

Child SAs to be post-quantum secure, then the peers can avoid

creating the very first Child SA by adopting [RFC6023]. In this

case, the initiator sends two types of proposal in the IKE_SA_INIT

request, one with and another one without Additional Key Exchange

transform(s). The responder chooses the latter proposal type and

includes CHILDLESS_IKEV2_SUPPORTED notification in the IKE_SA_INIT

response. Assuming that the initiator supports childless IKE SA

extension, then both peers performs the modified IKE_AUTH exchange

described in [RFC6023] and no Child SA is created in this exchange.

The peers should then immediately rekey the IKE SA and subsequently

create the Child SAs, all with additional key exchanges using

CREATE_CHILD_SA exchange.

It is also possible for the initiator to send proposals without

Additional Key Exchange transform(s) in the IKE_SA_INIT message and

in this instance, the responder will have no information whether or

not the initiator supports the extension in this specification. This

¶

¶

SKEYSEED = prf(SK_d, SK(0) | Ni | Nr | SK(1) | ... SK(n))¶

¶

KEYMAT = prf+ (SK_d, SK(0) | Ni | Nr | SK(1) | ... SK(n))¶

¶

¶

¶

may not be efficient as the responder will have to wait for the

subsequent CREATE_CHILD_SA request to determine whether or not the

initiator's request is appropriate for its local policy.

The support for childless IKE SA is not negotiated, but it is the

responder that indicates the support for this mode. As such, the

responder cannot enforce the initiator to use this mode and

therefore, it is entirely possible that the initiator does not

support this extension and sends IKE_AUTH request as per [RFC7296]

instead of [RFC6023]. In this case, the responder may respond with

non-fatal error such as NO_PROPOSAL_CHOSEN notify message type.

Note that if the initial IKE SA is used to transfer sensitive

information, then this information will not be protected using the

additional key exchanges, which may use post-quantum algorithms. In

this arrangement, the peers will have to use post-quantum algorithm

in Transform Type 4 in order to mitigate the risk of quantum attack.

3. IANA Considerations

This document adds new exchange type into the "IKEv2 Exchange Types"

registry:

This document renames Transform Type 4 defined in "Transform Type

Values" registry from "Diffie-Hellman Group (D-H)" to "Key Exchange

Method (KE)".

This document renames IKEv2 registry "Transform Type 4 - Diffie-

Hellman Group Transform IDs" to "Transform Type 4 - Key Exchange

Method Transform IDs".

This document adds the following Transform Types to the "Transform

Type Values" registry:

This document defines a new Notify Message Type in the "Notify

Message Types - Status Types" registry:

¶

¶

¶

¶

44 IKE_FOLLOWUP_KE¶

¶

¶

¶

Type Description Used In

6 Additional Key Exchange 1 (optional in IKE, AH, ESP)

7 Additional Key Exchange 2 (optional in IKE, AH, ESP)

8 Additional Key Exchange 3 (optional in IKE, AH, ESP)

9 Additional Key Exchange 4 (optional in IKE, AH, ESP)

10 Additional Key Exchange 5 (optional in IKE, AH, ESP)

11 Additional Key Exchange 6 (optional in IKE, AH, ESP)

12 Additional Key Exchange 7 (optional in IKE, AH, ESP)

¶

¶

16441 ADDITIONAL_KEY_EXCHANGE¶

and a new Notify Message Type in the "Notify Message Types - Error

Types" registry:

3.1. Additional Considerations and Changes

The IANA is requested to add the following instructions for

designated experts for Transform Type 4 sub-registry.

While adding new KE methods, the following considerations must be

applied. A KE method must take exactly one round-trip (one IKE

exchange) and at the end of this exchange, both peers must be able

to derive the shared secret. In addition, any public value peers

exchanged during a KE method must fit into a single IKE message. If

these restrictions are not met for a KE method, then there must be

documentation on how this KE method is used in IKEv2.

The following changes to IANA are also requested. It is assumed that

RFCXXXX refers to this specification.

Add a reference to RFCXXXX in the "Transform Type 4 - Diffie-

Hellman Group Transform IDs" registry.

Replace the note on "Transform Type 4 - Diffie-Hellman Group

Transform IDs" registry with: This registry was originally named

"Transform Type 4 - Diffie-Hellman Group Transform IDs" and was

renamed to its current name by [RFCXXXX]. It has been referenced

in its original name in a number of RFCs prior to [RFCXXXX]. To

find out requirement levels for Key Exchange Methods for IKEv2,

see [RFC8247].

Add this note to "Transform Type Values" registry: Transform Type

"Transform Type 4 - Key Exchange Method Transform IDs" was

originally named "Transform Type 4 - Diffie-Hellman Group

Transform IDs" and was renamed to its current name by [RFCXXXX].

It has been referenced in its original name in a number of RFCs

prior to [RFCXXXX]. All "Additional Key Exchange" entries use the

same "Transform Type 4 - Key Exchange Method Transform IDs" as

the "Key Exchange Method (KE)".

Append RFCXXXX to the Reference column of Transform Type 4 in the

Transform Type Values registry.

Append this note to "Transform Type 4 - Diffie-Hellman Group

Transform IDs" registry: All "Additional Key Exchange" entries

use these values as the "Key Exchange Method (KE)".

¶

47 STATE_NOT_FOUND¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

4. Security Considerations

The extension in this document is intended to mitigate two possible

threats in IKEv2, namely the compromise of (EC)DH key exchange using

Shor's algorithm while remaining backward compatible; and the

potential compromise of existing or future PQC key exchange

algorithms. To address the former threat, this extension allows the

establishment of a shared secret by using multiple key exchanges,

typically one classical (EC)DH and the other one post-quantum

algorithm. In order to address the latter threat, multiple key

exchanges using a post-quantum algorithm can be composed to form the

shared key.

Unlike key exchange methods (Transform Type 4), the Encryption

Algorithm (Transform Type 1), the Pseudorandom Function (Transform

Type 2) and the Integrity Algorithm (Transform Type 3) are not

susceptible to Shor's algorithm. However, they are susceptible to

Grover's attack [GROVER], which allows a quantum computer to perform

a brute force key search using quadratically fewer steps than the

classical counterpart. Simply increasing the key length can mitigate

this attack. It was previously believed that one needed to double

the key length of these algorithms. However, there are a number of

factors that suggest that it is quite unlikely to achieve the

quadratic speed up using Grover's algorithm. According to NIST

[NISTPQCFAQ], current applications can continue using AES algorithm

with the minimum key length of 128 bit. Nevertheless, if the data

needs to remain secure for many years to come, one may want to

consider using a longer key size for the algorithms in Transform

Types 1-3.

SKEYSEED is calculated from shared SK(x) using an algorithm defined

in Transform Type 2. While a quantum attacker may learn the value of

SK(x), if this value is obtained by means of a classical key

exchange, other SK(x) values generated by means of a post-quantum

algorithm ensure that the final SKEYSEED is not compromised. This

assumes that the algorithm defined in the Transform Type 2 is

quantum resistant.

The ordering of the additional key exchanges should not matter in

general, as only the final shared secret is of interest.

Nonetheless, because the strength of the running shared secret

increases with every additional key exchange, an implementer may

want to first perform the most secure method (in some metrics) and

followed by less secure one(s).

The main focus of this document is to prevent a passive attacker

performing a "harvest and decrypt" attack. In other words, an

attacker that records messages exchanged today and proceeds to

decrypt them once he owns a quantum computer. This attack is

¶

¶

¶

¶

prevented due to the hybrid nature of the key exchange. Other

attacks involving an active attacker using a quantum-computer are

not completely solved by this document. This is for two reasons.

The first reason is because the authentication step remains

classical. In particular, the authenticity of the SAs established

under IKEv2 is protected using a pre-shared key or digital signature

algorithms. Whilst the pre-shared key option, provided the key is

long enough, is post-quantum secure, the other algorithms are not.

Moreover, in implementations where scalability is a requirement, the

pre-shared key method may not be suitable. Post-quantum authenticity

may be provided by using a post-quantum digital signature.

Secondly, it should be noted that the purpose of post-quantum

algorithms is to provide resistance to attacks mounted in the

future. The current threat is that encrypted sessions are subject to

eavesdropping and archived with decryption by quantum computers

taking place at some point in the future. Until quantum computers

become available there is no point in attacking the authenticity of

a connection because there are no possibilities for exploitation.

These only occur at the time of the connection, for example by

mounting an on-path attack. Consequently there is less urgency for

post-quantum authenticity compared to post-quantum confidentiality.

Performing multiple key exchanges while establishing IKE SA

increases the responder's susceptibility to DoS attacks, because of

an increased amount of resources needed before the initiator is

authenticated. This is especially true for post-quantum key exchange

methods, where many of them are more memory and/or CPU intensive

than the classical counterparts.

Responders may consider recommendations from [RFC8019] to deal with

increased DoS attack susceptibility. It is also possible that the

responder only agrees to create initial IKE SA without performing

additional key exchanges, provided the initiator includes such an

option in its proposals. Then peers immediately rekey the initial

IKE SA with the CREATE_CHILD_SA exchange and additional key

exchanges performed via the IKE_FOLLOWUP_KE exchanges. In this case,

at the point when resource-intensive operations are required, the

peers have already authenticated each other. However, in the context

of hybrid post-quantum key exchange this scenario would leave the

initial IKE SA (and initial Child SA if it is created) unprotected

against quantum computers. Nevertheless the rekeyed IKE SA (and

Child SAs that will be created over it) will have a full protection.

This is similar to the scenario described in [RFC8784]. Depending on

the arrangement and peers' policy, this scenario may or may not be

appropriate. For example, in the G-IKEv2 protocol

[I-D.ietf-ipsecme-g-ikev2] the cryptographic materials are sent from

¶

¶

¶

¶

[RFC2119]

[RFC7296]

[RFC8174]

[RFC9242]

[GROVER]

[I-D.ietf-ipsecme-g-ikev2]

[I-D.tjhai-ikev2-beyond-64k-limit]

the group controller to the group members when the initial IKE SA is

created.

5. Acknowledgements

The authors would like to thank Frederic Detienne and Olivier

Pelerin for their comments and suggestions, including the idea to

negotiate the post-quantum algorithms using the existing KE payload.

The authors are also grateful to Tobias Heider and Tobias Guggemos

for valuable comments. Thanks to Paul Wouters for reviewing the

document.

6. References

6.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Smyslov, V., "Intermediate Exchange in the Internet Key

Exchange Protocol Version 2 (IKEv2)", RFC 9242, DOI

10.17487/RFC9242, May 2022, <https://www.rfc-editor.org/

info/rfc9242>.

6.2. Informative References

Grover, L., "A Fast Quantum Mechanical Algorithm for

Database Search", Proc. of the Twenty-Eighth Annual ACM

Symposium on the Theory of Computing (STOC 1996), 1996.

Smyslov, V. and B. Weis, "Group Key

Management using IKEv2", Work in Progress, Internet-

Draft, draft-ietf-ipsecme-g-ikev2-07, 6 October 2022,

<https://www.ietf.org/archive/id/draft-ietf-ipsecme-g-

ikev2-07.txt>.

Tjhai, C., Heider, T., and V.

Smyslov, "Beyond 64KB Limit of IKEv2 Payloads", Work in

Progress, Internet-Draft, draft-tjhai-ikev2-beyond-64k-

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc9242
https://www.rfc-editor.org/info/rfc9242
https://www.ietf.org/archive/id/draft-ietf-ipsecme-g-ikev2-07.txt
https://www.ietf.org/archive/id/draft-ietf-ipsecme-g-ikev2-07.txt

[IKEV2TYPE4ID]

[NISTPQCFAQ]

[RFC5723]

[RFC6023]

[RFC7383]

[RFC8019]

[RFC8784]

limit-03, 28 July 2022, <https://www.ietf.org/archive/id/

draft-tjhai-ikev2-beyond-64k-limit-03.txt>.

IANA, "Internet Key Exchange Version 2 (IKEv2)

Parameters: Transform Type 4 - Diffie-Hellman Group

Transform IDs", <https://www.iana.org/assignments/ikev2-

parameters/ikev2-parameters.xhtml#ikev2-parameters-8>.

NIST, "Post-Quantum Cryptography Standardization:

FAQs", <https://csrc.nist.gov/Projects/post-quantum-

cryptography/faqs>.

Sheffer, Y. and H. Tschofenig, "Internet Key Exchange

Protocol Version 2 (IKEv2) Session Resumption", RFC 5723,

DOI 10.17487/RFC5723, January 2010, <https://www.rfc-

editor.org/info/rfc5723>.

Nir, Y., Tschofenig, H., Deng, H., and R. Singh, "A

Childless Initiation of the Internet Key Exchange Version

2 (IKEv2) Security Association (SA)", RFC 6023, DOI

10.17487/RFC6023, October 2010, <https://www.rfc-

editor.org/info/rfc6023>.

Smyslov, V., "Internet Key Exchange Protocol Version 2

(IKEv2) Message Fragmentation", RFC 7383, DOI 10.17487/

RFC7383, November 2014, <https://www.rfc-editor.org/info/

rfc7383>.

Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange

Protocol Version 2 (IKEv2) Implementations from

Distributed Denial-of-Service Attacks", RFC 8019, DOI

10.17487/RFC8019, November 2016, <https://www.rfc-

editor.org/info/rfc8019>.

Fluhrer, S., Kampanakis, P., McGrew, D., and V. Smyslov,

"Mixing Preshared Keys in the Internet Key Exchange

Protocol Version 2 (IKEv2) for Post-quantum Security",

RFC 8784, DOI 10.17487/RFC8784, June 2020, <https://

www.rfc-editor.org/info/rfc8784>.

Appendix A. Sample Multiple Key Exchanges

This appendix shows some examples of multiple key exchanges. These

examples are non-normative and they describe some message flow

scenarios that may occur in establishing an IKE or CHILD SA. Note

that some payloads that are not relevant to multiple key exchanges

may be omitted for brevity.¶

https://www.ietf.org/archive/id/draft-tjhai-ikev2-beyond-64k-limit-03.txt
https://www.ietf.org/archive/id/draft-tjhai-ikev2-beyond-64k-limit-03.txt
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-8
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-8
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://csrc.nist.gov/Projects/post-quantum-cryptography/faqs
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc5723
https://www.rfc-editor.org/info/rfc6023
https://www.rfc-editor.org/info/rfc6023
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc7383
https://www.rfc-editor.org/info/rfc8019
https://www.rfc-editor.org/info/rfc8019
https://www.rfc-editor.org/info/rfc8784
https://www.rfc-editor.org/info/rfc8784

A.1. IKE_INTERMEDIATE Exchanges Carrying Additional Key Exchange

Payloads

The exchanges below show that the initiator proposes the use of

additional key exchanges to establish an IKE SA. The initiator

proposes three sets of additional key exchanges and all of which are

optional. So the responder can choose NONE for some or all of the

additional exchanges if the proposed key exchange methods are not

supported or for whatever reasons the responder decides not to

perform the additional key exchange.¶

In this particular example, the responder chooses to perform two

additional key exchanges. It selects PQ_KEM_2, NONE and PQ_KEM_5 for

the first, second and third additional key exchanges respectively.

As per [RFC7296] specification, a set of keying materials are

derived, in particular SK_d, SK_a[i/r], SK_e[i/r]. Both peers then

perform an IKE_INTERMEDIATE exchange carrying PQ_KEM_2 payload which

is protected with SK_e[i/r] and SK_a[i/r] keys. After the completion

of this IKE_INTERMEDIATE exchange, the SKEYSEED is updated using

SK(1), which is the PQ_KEM_2 shared secret, as follows.

Initiator Responder

HDR(IKE_SA_INIT), SAi1(.. AKE*...), --->

KEi(Curve25519), Ni, N(IKEV2_FRAG_SUPPORTED),

N(INTERMEDIATE_EXCHANGE_SUPPORTED)

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = PQ_KEM_1)

 Transform AKE1 (ID = PQ_KEM_2)

 Transform AKE1 (ID = NONE)

 Transform AKE2 (ID = PQ_KEM_3)

 Transform AKE2 (ID = PQ_KEM_4)

 Transform AKE2 (ID = NONE)

 Transform AKE3 (ID = PQ_KEM_5)

 Transform AKE3 (ID = PQ_KEM_6)

 Transform AKE3 (ID = NONE)

 <--- HDR(IKE_SA_INIT), SAr1(.. AKE*...),

 KEr(Curve25519), Nr, N(IKEV2_FRAG_SUPPORTED),

 N(INTERMEDIATE_EXCHANGE_SUPPORTED)

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = PQ_KEM_2)

 Transform AKE2 (ID = NONE)

 Transform AKE3 (ID = PQ_KEM_5)

HDR(IKE_INTERMEDIATE), SK {KEi(1)(PQ_KEM_2)} -->

 <--- HDR(IKE_INTERMEDIATE), SK {KEr(1)(PQ_KEM_2)}

HDR(IKE_INTERMEDIATE), SK {KEi(2)(PQ_KEM_5)} -->

 <--- HDR(IKE_INTERMEDIATE), SK {KEr(2)(PQ_KEM_5)}

HDR(IKE_AUTH), SK{ IDi, AUTH, SAi2, TSi, TSr } --->

 <--- HDR(IKE_AUTH), SK{ IDr, AUTH, SAr2,

 TSi, TSr }

¶

¶

The updated SKEYSEED value is then used to derive the following

keying materials

As per [RFC9242] specification, both peers compute IntAuth_i1 and

IntAuth_r1 using the SK_pi(1) and SK_pr(1) keys respectively. These

values are required in the IKE_AUTH phase of the exchange.

In the next IKE_INTERMEDIATE exchange, the peers use SK_e[i/r](1)

and SK_a[i/r](1) keys to protect the PQ_KEM_5 payload. After

completing this exchange, keying materials are updated as below

where SK(2) is the shared secret from the third additional key

exchange, i.e. PQ_KEM_5. Both peers then compute the values of

IntAuth_[i/r]2 using the SK_p[i/r](2) keys.

After the completion of the second IKE_INTERMEDIATE exchange, both

peers continue to the IKE_AUTH exchange phase. As defined in

[RFC9242], the values IntAuth_[i/r]2 are used to compute IntAuth

which in turn is used to calculate the payload to be signed or

MACed, i.e. InitiatorSignedOctets and ResponderSignedOctets.

A.2. No Additional Key Exchange Used

The initiator proposes two sets of optional additional key

exchanges, but the responder does not support any of them. The

responder chooses NONE for each set and consequently,

IKE_INTERMEDIATE exchange does not takes place and the exchange

proceeds to IKE_AUTH phase. The resulting keying materials are the

same as those derived with [RFC7296].

SKEYSEED(1) = prf(SK_d, SK(1) | Ni | Nr)¶

¶

{SK_d(1) | SK_ai(1) | SK_ar(1) | SK_ei(1) | SK_er(1) | SK_pi(1) |

 SK_pr(1)} = prf+ (SKEYSEED(1), Ni | Nr | SPIi | SPIr)

¶

¶

¶

SKEYSEED(2) = prf(SK_d(1), SK(2) | Ni | Nr)

{SK_d(2) | SK_ai(2) | SK_ar(2) | SK_ei(2) | SK_er(2) | SK_pi(2) |

 SK_pr(2)} = prf+ (SKEYSEED(2), Ni | Nr | SPIi | SPIr)

¶

¶

¶

¶

A.3. Additional Key Exchange in the CREATE_CHILD_SA Exchange only

The exchanges below show that the initiator does not propose the use

of additional key exchanges to establish an IKE SA, but they are

required in order to establish a Child SA. In order to establish a

fully quantum-resistant IPsec SA, the responder includes a

CHILDLESS_IKEV2_SUPPORTED notification in their IKE_SA_INIT response

message. The initiator understands and supports this notification,

then exchanges a modified IKE_AUTH message with the responder and

rekeys the IKE SA immediately with additional key exchanges. Any

Child SA will have to be created via subsequent CREATED_CHILD_SA

exchange.

Initiator Responder

HDR(IKE_SA_INIT), SAi1(.. AKE*...), --->

KEi(Curve25519), Ni, N(IKEV2_FRAG_SUPPORTED),

N(INTERMEDIATE_EXCHANGE_SUPPORTED)

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = PQ_KEM_1)

 Transform AKE1 (ID = PQ_KEM_2)

 Transform AKE1 (ID = NONE)

 Transform AKE2 (ID = PQ_KEM_3)

 Transform AKE2 (ID = PQ_KEM_4)

 Transform AKE2 (ID = NONE)

 <--- HDR(IKE_SA_INIT), SAr1(.. AKE*...),

 KEr(Curve25519), Nr, N(IKEV2_FRAG_SUPPORTED),

 N(INTERMEDIATE_EXCHANGE_SUPPORTED)

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = NONE)

 Transform AKE2 (ID = NONE)

HDR(IKE_AUTH), SK{ IDi, AUTH, SAi2, TSi, TSr } --->

 <--- HDR(IKE_AUTH), SK{ IDr, AUTH, SAr2,

 TSi, TSr }

¶

¶

A.4. No Matching Proposal for Additional Key Exchanges

The initiator proposes the combination of PQ_KEM_1, PQ_KEM_2,

PQ_KEM_3, and PQ_KEM_4 as the additional key exchanges. The

initiator indicates that either PQ_KEM_1 or PQ_KEM_2 must be used to

establish an IKE SA, but Additional Key Exchange 2 is optional so

the responder can either select PQ_KEM_3 or PQ_KEM_4 or omit this

Initiator Responder

HDR(IKE_SA_INIT), SAi1, --->

KEi(Curve25519), Ni, N(IKEV2_FRAG_SUPPORTED)

 <--- HDR(IKE_SA_INIT), SAr1,

 KEr(Curve25519), Nr, N(IKEV2_FRAG_SUPPORTED),

 N(CHILDLESS_IKEV2_SUPPORTED)

HDR(IKE_AUTH), SK{ IDi, AUTH } --->

 <--- HDR(IKE_AUTH), SK{ IDr, AUTH }

HDR(CREATE_CHILD_SA), SK{ SAi(.. AKE*...), Ni, KEi(Curve25519) } --->

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = PQ_KEM_1)

 Transform AKE1 (ID = PQ_KEM_2)

 Transform AKE2 (ID = PQ_KEM_5)

 Transform AKE2 (ID = PQ_KEM_6)

 Transform AKE2 (ID = NONE)

 <--- HDR(CREATE_CHILD_SA), SK{ SAr(.. AKE*...),

 Nr, KEr(Curve25519),

 N(ADDITIONAL_KEY_EXCHANGE)(link1) }

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = PQ_KEM_2)

 Transform AKE2 (ID = PQ_KEM_5)

HDR(IKE_FOLLOWUP_KE), SK{ KEi(1)(PQ_KEM_2), --->

N(ADDITIONAL_KEY_EXCHANGE)(link1) }

 <--- HDR(IKE_FOLLOWUP_KE), SK{ KEr(1)(PQ_KEM_2),

 N(ADDITIONAL_KEY_EXCHANGE)(link2) }

HDR(IKE_FOLLOWUP_KE), SK{ KEi(2)(PQ_KEM_5), --->

N(ADDITIONAL_KEY_EXCHANGE)(link2) }

 <--- HDR(IKE_FOLLOWUP_KE), SK{ KEr(2)(PQ_KEM_5) }

¶

1)

2)

3)

key exchange by selecting NONE. The responder, although supports the

optional PQ_KEM_3 and PQ_KEM_4 methods, does not support either

PQ_KEM_1 or PQ_KEM_2 mandatory method and therefore responds with

NO_PROPOSAL_CHOSEN notification.

Appendix B. Design Criteria

The design of the extension is driven by the following criteria:

Need for PQC in IPsec. Quantum computers, which might become

feasible in the near future, pose a threat to our classical

public key cryptography. PQC, a family of public key cryptography

that is believed to be resistant against these computers, needs

to be integrated into the IPsec protocol suite to restore

confidentiality and authenticity.

Hybrid. There is currently no post-quantum key exchange that is

trusted at the level that (EC)DH is trusted for against

conventional (non-quantum) adversaries. A hybrid post-quantum

algorithm to be introduced along with the well-established

primitives addresses this concern, since the overall security is

at least as strong as each individual primitive.

Focus on post-quantum confidentiality. A passive attacker can

store all monitored encrypted IPsec communication today and

decrypt it once a quantum computer is available in the future.

This attack can have serious consequences that will not be

visible for years to come. On the other hand, an attacker can

only perform active attacks such as impersonation of the

communicating peers once a quantum computer is available,

sometime in the future. Thus, this specification focuses on

confidentiality due to the urgency of this problem and presents a

¶

Initiator Responder

HDR(IKE_SA_INIT), SAi1(.. AKE*...), --->

KEi(Curve25519), Ni, N(IKEV2_FRAG_SUPPORTED),

N(INTERMEDIATE_EXCHANGE_SUPPORTED)

 Proposal #1

 Transform ECR (ID = ENCR_AES_GCM_16,

 256-bit key)

 Transform PRF (ID = PRF_HMAC_SHA2_512)

 Transform KE (ID = Curve25519)

 Transform AKE1 (ID = PQ_KEM_1)

 Transform AKE1 (ID = PQ_KEM_2)

 Transform AKE2 (ID = PQ_KEM_3)

 Transform AKE2 (ID = PQ_KEM_4)

 Transform AKE2 (ID = NONE)

 <--- HDR(IKE_SA_INIT), N(NO_PROPOSAL_CHOSEN)

¶

¶

¶

¶

4)

5)

6)

7)

8)

9)

10)

11)

defense against the serious attack described above, but it does

not address authentication since it is less urgent at this stage.

Limit amount of exchanged data. The protocol design should be

such that the amount of exchanged data, such as public-keys, is

kept as small as possible even if initiator and responder need to

agree on a hybrid group or multiple public-keys need to be

exchanged.

Not post-quantum specific. Any cryptographic algorithm could be

potentially broken in the future by currently unknown or

impractical attacks: quantum computers are merely the most

concrete example of this. The design does not categorize

algorithms as "post-quantum" or "non post-quantum" nor does it

create assumptions about the properties of the algorithms,

meaning that if algorithms with different properties become

necessary in the future, this extension can be used unchanged to

facilitate migration to those algorithms.

Limited amount of changes. A key goal is to limit the number of

changes required when enabling a post-quantum handshake. This

ensures easier and quicker adoption in existing implementations.

Localized changes. Another key requirement is that changes to

the protocol are limited in scope, in particular, limiting

changes in the exchanged messages and in the state machine, so

that they can be easily implemented.

Deterministic operation. This requirement means that the hybrid

post-quantum exchange, and thus, the computed keys, will be based

on algorithms that both client and server wish to support.

Fragmentation support. Some PQC algorithms could be relatively

bulky and they might require fragmentation. Thus, a design goal

is the adaptation and adoption of an existing fragmentation

method or the design of a new method that allows for the

fragmentation of the key shares.

Backwards compatibility and interoperability. This is a

fundamental requirement to ensure that hybrid post-quantum IKEv2

and standard IKEv2 implementations as per [RFC7296] specification

are interoperable.

USA Federal Information Processing Standards (FIPS) compliance.

IPsec is widely used in Federal Information Systems and FIPS

certification is an important requirement. However, at the time

of writing, none of the algorithms that is believed to be post-

quantum is FIPS compliant yet. Nonetheless, it is possible to

combine this post-quantum algorithm with a FIPS compliant key

¶

¶

¶

¶

¶

¶

¶

¶

12)

establishment method so that the overall design remains FIPS

compliant [NISTPQCFAQ].

Ability to use this method with multiple classical (EC)DH key

exchanges. In some situations peers have no single mutually

trusted key exchange algorithm (e.g., due to local policy

restrictions). The ability to combine two (or more) key exchange

methods in such a way that the resulting shared key depends on

all of them allows peers to communicate in this situation.

Appendix C. Alternative Design

This section gives an overview on a number of alternative approaches

that have been considered, but later discarded. These approaches

are:

Sending the classical and post-quantum key exchanges as a single

transform

A method to combine the various key exchanges into a single large

KE payload was considered; this effort is documented in a

previous version of this draft (draft-tjhai-ipsecme-hybrid-qske-

ikev2-01). This does allow us to cleanly apply hybrid key

exchanges during the Child SA; however it does add considerable

complexity, and requires an independent fragmentation solution.

Sending post-quantum proposals and policies in KE payload only

With the objective of not introducing unnecessary notify

payloads, a method to communicate the hybrid post-quantum

proposal in the KE payload during the first pass of the protocol

exchange was considered. Unfortunately, this design is

susceptible to the following downgrade attack. Consider the

scenario where there is an on-path attacker sitting between an

initiator and a responder. The initiator proposes, through SAi

payload, to use a hybrid post-quantum group and as a fallback a

Diffie-Hellman group, and through KEi payload, the initiator

proposes a list of hybrid post-quantum proposals and policies.

The on-path attacker intercepts this traffic and replies with

N(INVALID_KE_PAYLOAD) suggesting to downgrade to the fallback

Diffie-Hellman group instead. The initiator then resends the same

SAi payload and the KEi payload containing the public value of

the fallback Diffie-Hellman group. Note that the attacker may

forward the second IKE_SA_INIT message only to the responder, and

therefore at this point in time, the responder will not have the

information that the initiator prefers the hybrid group. Of

course, it is possible for the responder to have a policy to

reject an IKE_SA_INIT message that (a) offers a hybrid group but

not offering the corresponding public value in the KEi payload;

¶

¶

¶

*

¶

¶

* ¶

and (b) the responder has not specifically acknowledged that it

does not supported the requested hybrid group. However, the

checking of this policy introduces unnecessary protocol

complexity. Therefore, in order to fully prevent any downgrade

attacks, using KE payload alone is not sufficient and that the

initiator MUST always indicate its preferred post-quantum

proposals and policies in a notify payload in the subsequent

IKE_SA_INIT messages following a N(INVALID_KE_PAYLOAD) response.

New payload types to negotiate hybrid proposal and to carry post-

quantum public values

Semantically, it makes sense to use a new payload type, which

mimics the SA payload, to carry a hybrid proposal. Likewise,

another new payload type that mimics the KE payload, could be

used to transport hybrid public value. Although, in theory a new

payload type could be made backwards compatible by not setting

its critical flag as per Section 2.5 of [RFC7296], it is believed

that it may not be that simple in practice. Since the original

release of IKEv2 in RFC4306, no new payload type has ever been

proposed and therefore, this creates a potential risk of having a

backward compatibility issue from non-conformant IKEv2

implementations. Since there appears to be no other compelling

advantages apart from a semantic one, the existing transform type

and notify payloads are used instead.

Hybrid public value payload

One way to transport the negotiated hybrid public payload, which

contains one classical Diffie-Hellman public value and one or

more post-quantum public values, is to bundle these into a single

KE payload. Alternatively, these could also be transported in a

single new hybrid public value payload, but following the same

reasoning as above, this may not be a good idea from a backward

compatibility perspective. Using a single KE payload would

require an encoding or formatting to be defined so that both

peers are able to compose and extract the individual public

values. However, it is believed that it is cleaner to send the

hybrid public values in multiple KE payloads--one for each group

or algorithm. Furthermore, at this point in the protocol

exchange, both peers should have indicated support of handling

multiple KE payloads.

Fragmentation

Handling of large IKE_SA_INIT messages has been one of the most

challenging tasks. A number of approaches have been considered

and the two prominent ones that have been discarded are outlined

as follows.

¶

*

¶

¶

* ¶

¶

* ¶

¶

The first approach is to treat the entire IKE_SA_INIT message as

a stream of bytes, which is then split it into a number of

fragments, each of which is wrapped onto a payload that will fit

into the size of the network MTU. The payload that wraps each

fragment has a new payload type and it is envisaged that this new

payload type will not cause a backward compatibility issue

because at this stage of the protocol, both peers should have

indicated support of fragmentation in the first pass of the

IKE_SA_INIT exchange. The negotiation of fragmentation is

performed using a notify payload, which also defines supporting

parameters such as the size of fragment in octets and the

fragment identifier. The new payload that wraps each fragment of

the messages in this exchange is assigned the same fragment

identifier. Furthermore, it also has other parameters such as a

fragment index and total number of fragments. This approach has

been discarded due to its blanket approach to fragmentation. In

cases where only a few payloads need to be fragmented, this

approach appears to be overly complicated.

Another idea that has been discarded was fragmenting an

individual payload without introducing a new payload type. The

idea is to use the 9-th bit (the bit after the critical flag in

the RESERVED field) in the generic payload header as a flag to

mark that this payload is fragmented. As an example, if a KE

payload is to be fragmented, it may look as follows.

When the flag F is set, this means the current KE payload is a

fragment of a larger KE payload. The Payload Length field denotes

the size of this payload fragment in octets--including the size

of the generic payload header. The two-octet RESERVED field

following Diffie-Hellman Group Number was to be used as a

fragment identifier to help assembly and disassembly of

fragments. The Fragment Index and Total Fragments fields are

¶

¶

 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Next Payload |C|F| RESERVED | Payload Length |

+-+

| Diffie-Hellman Group Number | Fragment Identifier |

+-+

| Fragment Index | Total Fragments |

+-+

| Total KE Payload Data Length |

+-+

| |

~ Fragmented KE Payload ~

| |

+-+

¶

self-explanatory. The Total KE Payload Data Length indicates the

size of the assembled KE payload data in octets. Finally, the

actual fragment is carried in Fragment KE Payload field.

This approach has been discarded because it is believed that the

working group may not want to use the RESERVED field to change

the format of a packet and that implementers may not like the

added complexity from checking the fragmentation flag in each

received payload. More importantly, fragmenting the messages in

this way may leave the system to be more prone to denial of

service (DoS) attacks. By using IKE_INTERMEDIATE to transport the

large post-quantum key exchange payloads, and using the generic

IKEv2 fragmentation protocol [RFC7383] solve the issue.

Group sub-identifier

As discussed before, each group identifier is used to distinguish

a post-quantum algorithm. Further classification could be made on

a particular post-quantum algorithm by assigning additional value

alongside the group identifier. This sub- identifier value may be

used to assign different security parameter sets to a given post-

quantum algorithm. However, this level of details does not fit

the principles of the document where it should deal with generic

hybrid key exchange protocol, not a specific ciphersuite.

Furthermore, there are enough Diffie- Hellman group identifiers

should this be required in the future.

Authors' Addresses

C. Tjhai

Post-Quantum

Email: cjt@post-quantum.com

M. Tomlinson

Post-Quantum

Email: mt@post-quantum.com

G. Bartlett

Quantum Secret

Email: graham.ietf@gmail.com

S. Fluhrer

Cisco Systems

Email: sfluhrer@cisco.com

D. Van Geest

¶

¶

* ¶

¶

mailto:cjt@post-quantum.com
mailto:mt@post-quantum.com
mailto:graham.ietf@gmail.com
mailto:sfluhrer@cisco.com

ISARA Corporation

Email: daniel.vangeest@isara.com

O. Garcia-Morchon

Philips

Email: oscar.garcia-morchon@philips.com

Valery Smyslov

ELVIS-PLUS

Email: svan@elvis.ru

mailto:daniel.vangeest@isara.com
mailto:oscar.garcia-morchon@philips.com
mailto:svan@elvis.ru

	Multiple Key Exchanges in IKEv2
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Problem Description
	1.2. Proposed Extension
	1.3. Changes
	1.4. Document Organization

	2. Multiple Key Exchanges
	2.1. Design Overview
	2.2. Protocol Details
	2.2.1. IKE_SA_INIT Round: Negotiation
	2.2.2. IKE_INTERMEDIATE Round: Additional Key Exchanges
	2.2.3. IKE_AUTH Exchange
	2.2.4. CREATE_CHILD_SA Exchange
	2.2.5. Interaction with IKEv2 Extensions
	2.2.5.1. Interaction with Childless IKE SA

	3. IANA Considerations
	3.1. Additional Considerations and Changes

	4. Security Considerations
	5. Acknowledgements
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Sample Multiple Key Exchanges
	A.1. IKE_INTERMEDIATE Exchanges Carrying Additional Key Exchange Payloads
	A.2. No Additional Key Exchange Used
	A.3. Additional Key Exchange in the CREATE_CHILD_SA Exchange only
	A.4. No Matching Proposal for Additional Key Exchanges

	Appendix B. Design Criteria
	Appendix C. Alternative Design
	Authors' Addresses

