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Abstract

This document describes a mechanism for aggregation and

fragmentation of IP packets when they are being encapsulated in ESP

payload. This new payload type can be used for various purposes such

as decreasing encapsulation overhead for small IP packets; however,

the focus in this document is to enhance IPsec traffic flow security

(IP-TFS) by adding Traffic Flow Confidentiality (TFC) to encrypted

IP encapsulated traffic. TFC is provided by obscuring the size and

frequency of IP traffic using a fixed-sized, constant-send-rate

IPsec tunnel. The solution allows for congestion control as well as

non-constant send-rate usage.
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1. Introduction

Traffic Analysis ([RFC4301], [AppCrypt]) is the act of extracting

information about data being sent through a network. While directly

obscuring the data with encryption [RFC4303], the traffic pattern

itself exposes information due to variations in its shape and timing

([RFC8546], [AppCrypt]). Hiding the size and frequency of traffic is

referred to as Traffic Flow Confidentiality (TFC) per [RFC4303].

[RFC4303] provides for TFC by allowing padding to be added to

encrypted IP packets and allowing for transmission of all-pad

packets (indicated using protocol 59). This method has the major

limitation that it can significantly under-utilize the available

bandwidth.

This document defines an aggregation and fragmentation (AGGFRAG)

mode for ESP, and its use for IP Traffic Flow Security (IP-TFS).

This solution provides for full TFC without the aforementioned

bandwidth limitation. This is accomplished by using a constant-send-

rate IPsec [RFC4303] tunnel with fixed-sized encapsulating packets;

however, these fixed-sized packets can contain partial, whole or

multiple IP packets to maximize the bandwidth of the tunnel. A non-

constant send-rate is allowed, but the confidentiality properties of

its use are outside the scope of this document.

For a comparison of the overhead of IP-TFS with the RFC4303

prescribed TFC solution see Appendix C.

Additionally, IP-TFS provides for operating fairly within congested

networks [RFC2914]. This is important for when the IP-TFS user is

not in full control of the domain through which the IP-TFS tunnel

path flows.

The mechanisms, such as the AGGFRAG mode, defined in this document

are generic with the intent of allowing for non-TFS uses, but such

uses are outside the scope of this document.
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1.1. Terminology & Concepts

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document assumes familiarity with IP security concepts

including TFC as described in [RFC4301].

2. The AGGFRAG Tunnel

As mentioned in Section 1, AGGFRAG mode utilizes an IPsec [RFC4303]

tunnel as its transport. For the purpose of IP-TFS, fixed-sized

encapsulating packets are sent at a constant rate on the AGGFRAG

tunnel.

The primary input to the tunnel algorithm is the requested bandwidth

to be used by the tunnel. Two values are then required to provide

for this bandwidth use, the fixed size of the encapsulating packets,

and rate at which to send them.

The fixed packet size MAY either be specified manually or be

determined through other methods such as the Packetization Layer MTU

Discovery (PLMTUD) ([RFC4821], [RFC8899]) or Path MTU discovery

(PMTUD) ([RFC1191], [RFC8201]). PMTUD is known to have issues so

PLMTUD is considered the more robust option. For PLMTUD, congestion

control payloads can be used as in-band probes (see Section 6.1.2

and [RFC8899]).

Given the encapsulating packet size and the requested bandwidth to

be used, the corresponding packet send rate can be calculated. The

packet send rate is the requested bandwidth to be used divided by

the size of the encapsulating packet.

The egress (receiving) side of the AGGFRAG tunnel MUST allow for and

expect the ingress (sending) side of the AGGFRAG tunnel to vary the

size and rate of sent encapsulating packets, unless constrained by

other policy.

2.1. Tunnel Content

As previously mentioned, one issue with the TFC padding solution in 

[RFC4303] is the large amount of wasted bandwidth as only one IP

packet can be sent per encapsulating packet. In order to maximize

bandwidth, IP-TFS breaks this one-to-one association by introducing

an AGGFRAG mode for ESP.
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AGGFRAG mode aggregates as well as fragments the inner IP traffic

flow into encapsulating IPsec tunnel packets. For IP-TFS, the IPsec

encapsulating tunnel packets are a fixed size. Padding is only added

to the the tunnel packets if there is no data available to be sent

at the time of tunnel packet transmission, or if fragmentation has

been disabled by the receiver.

This is accomplished using a new Encapsulating Security Payload

(ESP, [RFC4303]) Next Header field value AGGFRAG_PAYLOAD (Section

6.1).

Other non-IP-TFS uses of this AGGFRAG mode have been suggested, such

as increased performance through packet aggregation, as well as

handling MTU issues using fragmentation. These uses are not defined

here, but are also not restricted by this document.

2.2. Payload Content

The AGGFRAG_PAYLOAD payload content defined in this document is

comprised of a 4 or 24 octet header followed by either a partial

datablock, a full datablock, or multiple partial or full datablocks.

The following diagram illustrates this payload within the ESP

packet. See Section 6.1 for the exact formats of the AGGFRAG_PAYLOAD

payload.

Figure 1: Layout of an AGGFRAG mode IPsec Packet

The BlockOffset value is either zero or some offset into or past the

end of the DataBlocks data.

If the BlockOffset value is zero it means that the DataBlocks data

begins with a new data block.
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 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . Outer Encapsulating Header ...                                .

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

 . ESP Header...                                                 .

 +---------------------------------------------------------------+

 |   [AGGFRAG subtype/flags]    :           BlockOffset          |

 +---------------------------------------------------------------+

 :                  [Optional Congestion Info]                   :

 +---------------------------------------------------------------+

 |       DataBlocks ...                                          ~

 ~                                                               ~

 ~                                                               |

 +---------------------------------------------------------------|

 . ESP Trailer...                                                .

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Conversely, if the BlockOffset value is non-zero it points to the

start of the new data block, and the initial DataBlocks data belongs

to the data block that is still being re-assembled.

If the BlockOffset points past the end of the DataBlocks data then

the next data block occurs in a subsequent encapsulating packet.

Having the BlockOffset always point at the next available data block

allows for recovering the next inner packet in the presence of outer

encapsulating packet loss.

An example AGGFRAG mode packet flow can be found in Appendix A.

2.2.1. Data Blocks

Figure 2: Layout of a DataBlock

A data block is defined by a 4-bit type code followed by the data

block data. The type values have been carefully chosen to coincide

with the IPv4/IPv6 version field values so that no per-data block

type overhead is required to encapsulate an IP packet. Likewise, the

length of the data block is extracted from the encapsulated IPv4's 

Total Length or IPv6's Payload Length fields.

2.2.2. End Padding

Since a data block's type is identified in its first 4-bits, the

only time padding is required is when there is no data to

encapsulate. For this end padding a Pad Data Block is used.

2.2.3. Fragmentation, Sequence Numbers and All-Pad Payloads

In order for a receiver to reassemble fragmented inner-packets, the

sender MUST send the inner-packet fragments back-to-back in the

logical outer packet stream (i.e., using consecutive ESP sequence

numbers). However, the sender is allowed to insert "all-pad"

payloads (i.e., payloads with a BlockOffset of zero and a single pad 

DataBlock) in between the packets carrying the inner-packet fragment

payloads. This interleaving of all-pad payloads allows the sender to

always send a tunnel packet, regardless of the encapsulation

computational requirements.

When a receiver is reassembling an inner-packet, and it receives an

"all-pad" payload, it increments the expected sequence number that

the next inner-packet fragment is expected to arrive in.
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 +---------------------------------------------------------------+

 | Type  | rest of IPv4, IPv6 or pad.

 +--------
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Given the above, the receiver will need to handle out-of-order

arrival of outer ESP packets prior to reassembly processing. ESP

already provides for optionally detecting replay attacks. Detecting

replay attacks normally utilizes a window method. A similar sequence

number based sliding window can be used to correct re-ordering of

the outer packet stream. Receiving a larger (newer) sequence number

packet advances the window, and received older ESP packets whose

sequence numbers the window has passed by are dropped. A good choice

for the size of this window depends on the amount of re-ordering the

user may normally experience.

As the amount of reordering that may be present is hard to predict,

the window size SHOULD be configurable by the user. Implementations

MAY also dynamically adjust the reordering window based on actual

reordering seen in arriving packets.

Please note when IP-TFS sends a continuous stream of packets, there

is no requirement for an explicit drop timer; however, using a drop

timer is RECOMMENDED. If an implementation does not use a drop timer

and only considers an outer packet lost when the reorder window

moves by it, the inner traffic can be delayed by up to the reorder

window size times the per packet send rate. This amount of delay

could be significant for slower send rates or when larger reorder

window sizes are in use.

While ESP guarantees an increasing sequence number with subsequently

sent packets, it does not actually require the sequence numbers to

be generated with no gaps (e.g., sending only even numbered sequence

numbers would be allowed as long as they are always increasing).

Gaps in the sequence numbers will not work for this document so the

sequence number stream MUST increase monotonically by 1 for each

subsequent packet.

When using the AGGFRAG_PAYLOAD in conjunction with replay detection,

the window size for both MAY be reduced to the smaller of the two

window sizes. This is because packets outside of the smaller window

but inside the larger would still be dropped by the mechanism with

the smaller window size. However, there is also no requirement to

make these values the same. Indeed, in some cases, such as slow

tunnels where a very small or zero reorder window size is

appropriate, the user may still want a large replay detection window

to log replayed packets. Additionally, large replay windows can be

implemented with very little overhead compared to large reorder

windows.

Finally, as sequence numbers are reset when switching SAs (e.g.,

when re-keying a child SA), senders MUST NOT send initial fragments

of an inner packet using one SA and subsequent fragments in a

different SA.
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2.2.3.1. Optional Extra Padding

When the tunnel bandwidth is not being fully utilized, a sender MAY

pad-out the current encapsulating packet in order to deliver an

inner packet un-fragmented in the following outer packet. The

benefit would be to avoid inner-packet fragmentation in the presence

of a bursty offered load (non-bursty traffic will naturally not

fragment). Senders MAY also choose to allow for a minimum fragment

size to be configured (e.g., as a percentage of the AGGFRAG_PAYLOAD

payload size) to avoid fragmentation at the cost of tunnel

bandwidth. The cost with these methods is complexity and added delay

of inner traffic. The main advantage to avoiding fragmentation is to

minimize inner packet loss in the presence of outer packet loss.

When this is worthwhile (e.g., how much loss and what type of loss

is required, given different inner traffic shapes and utilization,

for this to make sense), and what values to use for the allowable/

added delay may be worth researching, but is outside the scope of

this document.

While use of padding to avoid fragmentation does not impact

interoperability, used inappropriately it can reduce the effective

throughput of a tunnel. Senders implementing either of the above

approaches will need to take care to not reduce the effective

capacity, and overall utility, of the tunnel through the overuse of

padding.

2.2.4. Empty Payload

To support reporting of congestion control information (described

later) using a non-AGGFRAG_PAYLOAD enabled SA, it is allowed to send

an AGGFRAG_PAYLOAD payload with no data blocks (i.e., the ESP

payload length is equal to the AGGFRAG_PAYLOAD header length). This

special payload is called an empty payload.

Currently this situation is only applicable in non-IKEv2 use cases.

2.2.5. IP Header Value Mapping

[RFC4301] provides some direction on when and how to map various

values from an inner IP header to the outer encapsulating header,

namely the Don't-Fragment (DF) bit ([RFC0791] and [RFC8200]), the

Differentiated Services (DS) field [RFC2474] and the Explicit

Congestion Notification (ECN) field [RFC3168]. Unlike [RFC4301],

AGGFRAG mode may and often will be encapsulating more than one IP

packet per ESP packet. To deal with this, these mappings are

restricted further.

¶

¶

¶

¶

¶



2.2.5.1. DF bit

AGGFRAG mode never maps the inner DF bit as it is unrelated to the

AGGFRAG tunnel functionality; AGGFRAG mode never needs to IP

fragment the inner packets and the inner packets will not affect the

fragmentation of the outer encapsulation packets.

2.2.5.2. ECN value

The ECN value need not be mapped as any congestion related to the

constant-send-rate IP-TFS tunnel is unrelated (by design) to the

inner traffic flow. The sender MAY still set the ECN value of inner

packets based on the normal ECN specification [RFC3168].

2.2.5.3. DS field

By default the DS field SHOULD NOT be copied, although a sender MAY

choose to allow for configuration to override this behavior. A

sender SHOULD also allow the DS value to be set by configuration.

2.2.6. IP Time-To-Live (TTL) and Tunnel errors

[RFC4301] specifies how to modify the inner packet TTL [RFC0791].

Any errors (e.g., ICMP errors arriving back at the tunnel ingress

due to tunnel traffic) are handled the same as with non-AGGFRAG

IPsec tunnels.

2.2.7. Effective MTU of the Tunnel

Unlike [RFC4301], there is normally no effective MTU (EMTU) on an

AGGFRAG tunnel as all IP packet sizes are properly transmitted

without requiring IP fragmentation prior to tunnel ingress. That

said, a sender MAY allow for explicitly configuring an MTU for the

tunnel.

If fragmentation has been disabled on the AGGFRAG tunnel, then the

tunnel's EMTU and behaviors are the same as normal IPsec tunnels 

[RFC4301].

2.3. Exclusive SA Use

This document does not specify mixed use of an AGGFRAG_PAYLOAD

enabled SA. A sender MUST only send AGGFRAG_PAYLOAD payloads over an

SA configured for AGGFRAG mode.
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2.4. Modes of Operation

Just as with normal IPsec/ESP tunnels, AGGFRAG tunnels are

unidirectional. Bidirectional IP-TFS functionality is achieved by

setting up 2 AGGFRAG tunnels, one in either direction.

An AGGFRAG tunnel used for IP-TFS can operate in 2 modes, a non-

congestion controlled mode and congestion controlled mode.

2.4.1. Non-Congestion Controlled Mode

In the non-congestion controlled mode, IP-TFS sends fixed-sized

packets over an AGGFRAG tunnel at a constant rate. The packet send

rate is constant and is not automatically adjusted regardless of any

network congestion (e.g., packet loss).

For similar reasons as given in [RFC7510] the non-congestion

controlled mode should only be used where the user has full

administrative control over the path the tunnel will take. This is

required so the user can guarantee the bandwidth and also be sure as

to not be negatively affecting network congestion [RFC2914]. In this

case packet loss should be reported to the administrator (e.g., via

syslog, YANG notification, SNMP traps, etc) so that any failures due

to a lack of bandwidth can be corrected.

Non-congestion control mode is also appropriate if ESP over TCP is

in use [RFC8229].

2.4.2. Congestion Controlled Mode

With the congestion controlled mode, IP-TFS adapts to network

congestion by lowering the packet send rate to accommodate the

congestion, as well as raising the rate when congestion subsides.

Since overhead is per packet, by allowing for maximal fixed-size

packets and varying the send rate transport overhead is minimized.

The output of the congestion control algorithm will adjust the rate

at which the ingress sends packets. While this document does not

require a specific congestion control algorithm, best current

practice RECOMMENDS that the algorithm conform to [RFC5348].

Congestion control principles are documented in [RFC2914] as well. 

[RFC4342] provides an example of the [RFC5348] algorithm which

matches the requirements of IP-TFS (i.e., designed for fixed-size

packet and send rate varied based on congestion.

The required inputs for the TCP friendly rate control algorithm

described in [RFC5348] are the receiver's loss event rate and the

sender's estimated round-trip time (RTT). These values are provided

by IP-TFS using the congestion information header fields described
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in Section 3. In particular, these values are sufficient to

implement the algorithm described in [RFC5348].

At a minimum, the congestion information MUST be sent, from the

receiver and from the sender, at least once per RTT. Prior to

establishing an RTT the information SHOULD be sent constantly from

the sender and the receiver so that an RTT estimate can be

established. Not receiving this information over multiple

consecutive RTT intervals should be considered a congestion event

that causes the sender to adjust its sending rate lower. For

example, [RFC4342] calls this the "no feedback timeout" and it is

equal to 4 RTT intervals. When a "no feedback timeout" has occurred 

[RFC4342] halves the sending rate.

An implementation MAY choose to always include the congestion

information in its AGGFRAG payload header if sending on an IP-TFS

enabled SA. Since IP-TFS normally will operate with a large packet

size, the congestion information should represent a small portion of

the available tunnel bandwidth. An implementation choosing to always

send the data MAY also choose to only update the LossEventRate and 

RTT header field values it sends every RTT though.

When choosing a congestion control algorithm (or a selection of

algorithms) note that IP-TFS is not providing for reliable delivery

of IP traffic, and so per packet ACKs are not required and are not

provided.

It is worth noting that the variable send-rate of a congestion

controlled AGGFRAG tunnel, is not private; however, this send-rate

is being driven by network congestion, and as long as the

encapsulated (inner) traffic flow shape and timing are not directly

affecting the (outer) network congestion, the variations in the

tunnel rate will not weaken the provided inner traffic flow

confidentiality.

2.4.2.1. Circuit Breakers

In additional to congestion control, implementations MAY choose to

define and implement circuit breakers [RFC8084] as a recovery method

of last resort. Enabling circuit breakers is also a reason a user

may wish to enable congestion information reports even when using

the non-congestion controlled mode of operation. The definition of

circuit breakers are outside the scope of this document.

2.5. Summary of Receiver Processing

An AGGFRAG enabled SA receiver has a few tasks to perform.

The receiver first reorders, possibly out-of-order ESP packets

received on an SA into in-sequence-order AGGFRAG_PAYLOAD payloads
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(Section 2.2.3). If congestion control is enabled, the receiver

considers a packet lost when it's sequence number is abandoned

(e.g., pushed out of the re-ordering window, or timed-out) by the

reordering algorithm. As an optional optimization (e.g., to handle

very lossy and/or reordered tunnel paths), the receiver MAY transmit

any fully formed inner packets contained within the AGGFRAG_PAYLOADs

prior to re-ordering the outer packets.

Additionally, if congestion control is enabled, the receiver sends

congestion control data (Section 6.1.2) back to the sender as

described in Section 2.4.2 and Section 3.

Finally, the receiver processes the now in-order AGGFRAG_PAYLOAD

payload stream to extract the inner-packets (Section 2.2.3, Section

6.1).

3. Congestion Information

In order to support the congestion control mode, the sender needs to

know the loss event rate and to approximate the RTT [RFC5348]. In

order to obtain these values, the receiver sends congestion control

information on it's SA back to the sender. Thus, to support

congestion control the receiver must have a paired SA back to the

sender (this is always the case when the tunnel was created using

IKEv2). If the SA back to the sender is a non-AGGFRAG_PAYLOAD

enabled SA then an AGGFRAG_PAYLOAD empty payload (i.e., header only)

is used to convey the information.

In order to calculate a loss event rate compatible with [RFC5348],

the receiver needs to have a round-trip time estimate. Thus the

sender communicates this estimate in the RTT header field. On

startup this value will be zero as no RTT estimate is yet known.

In order for the sender to estimate its RTT value, the sender places

a timestamp value in the TVal header field. On first receipt of this 

TVal, the receiver records the new TVal value along with the time it

arrived locally, subsequent receipt of the same TVal MUST NOT update

the recorded time.

When the receiver sends its CC header it places this latest recorded

TVal in the TEcho header field, along with 2 delay values, Echo

Delay and Transmit Delay. The Echo Delay value is the time delta

from the recorded arrival time of TVal and the current clock in

microseconds. The second value, Transmit Delay, is the receiver's

current transmission delay on the tunnel (i.e., the average time

between sending packets on its half of the AGGFRAG tunnel).

When the sender receives back its TVal in the TEcho header field it

calculates 2 RTT estimates. The first is the actual delay found by

subtracting the TEcho value from its current clock and then
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subtracting Echo Delay as well. The second RTT estimate is found by

adding the received Transmit Delay header value to the senders own

transmission delay (i.e., the average time between sending packets

on its half of the AGGFRAG tunnel). The larger of these 2 RTT

estimates SHOULD be used as the RTT value.

The two RTT estimates are required to handle different combinations

of faster or slower tunnel packet paths with faster or slower fixed

tunnel rates. Choosing the larger of the two values guarantees that

the RTT is never considered faster than the aggregate transmission

delay based on the IP-TFS send rate (the second estimate), as well

as never being considered faster than the actual RTT along the

tunnel packet path (the first estimate).

The receiver also calculates, and communicates in the LossEventRate

header field, the loss event rate for use by the sender. This is

slightly different from [RFC4342] which periodically sends all the

loss interval data back to the sender so that it can do the

calculation. See Appendix B for a suggested way to calculate the

loss event rate value. Initially this value will be zero (indicating

no loss) until enough data has been collected by the receiver to

update it.

3.1. ECN Support

In additional to normal packet loss information AGGFRAG mode

supports use of the ECN bits in the encapsulating IP header 

[RFC3168] for identifying congestion. If ECN use is enabled and a

packet arrives at the egress (receiving) side with the Congestion

Experienced (CE) value set, then the receiver considers that packet

as being dropped, although it does not drop it. The receiver MUST

set the E bit in any AGGFRAG_PAYLOAD payload header containing a 

LossEventRate value derived from a CE value being considered.

As noted in [RFC3168] the ECN bits are not protected by IPsec and

thus may constitute a covert channel. For this reason, ECN use

SHOULD NOT be enabled by default.

4. Configuration of AGGFRAG Tunnels for IP-TFS

IP-TFS is meant to be deployable with a minimal amount of

configuration. All IP-TFS specific configuration should be specified

at the unidirectional tunnel ingress (sending) side. It is intended

that non-IKEv2 operation is supported, at least, with local static

configuration.

4.1. Bandwidth

Bandwidth is a local configuration option. For non-congestion

controlled mode, the bandwidth SHOULD be configured. For congestion
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controlled mode, the bandwidth can be configured or the congestion

control algorithm discovers and uses the maximum bandwidth

available. No standardized configuration method is required.

4.2. Fixed Packet Size

The fixed packet size to be used for the tunnel encapsulation

packets MAY be configured manually or can be automatically

determined using other methods such as PLMTUD ([RFC4821], [RFC8899])

or PMTUD ([RFC1191], [RFC8201]). As PMTUD is known to have issues,

PLMTUD is considered the more robust option. No standardized

configuration method is required.

4.3. Congestion Control

Congestion control is a local configuration option. No standardized

configuration method is required.

5. IKEv2

5.1. USE_AGGFRAG Notification Message

As mentioned previously AGGFRAG tunnels utilize ESP payloads of type

AGGFRAG_PAYLOAD.

When using IKEv2, a new "USE_AGGFRAG" Notification Message enables

the AGGFRAG_PAYLOAD payload on a child SA pair. The method used is

similar to how USE_TRANSPORT_MODE is negotiated, as described in 

[RFC7296].

To request use of the AGGFRAG_PAYLOAD payload on the Child SA pair,

the initiator includes the USE_AGGFRAG notification in an SA payload

requesting a new Child SA (either during the initial IKE_AUTH or

during CREATE_CHILD_SA exchanges). If the request is accepted then

the response MUST also include a notification of type USE_AGGFRAG.

If the responder declines the request the child SA will be

established without AGGFRAG_PAYLOAD payload use enabled. If this is

unacceptable to the initiator, the initiator MUST delete the child

SA.

As the use of the AGGFRAG_PAYLOAD payload is currently only defined

for non-transport mode tunnels, the USE_AGGFRAG notification MUST

NOT be combined with USE_TRANSPORT notification.

The USE_AGGFRAG notification contains a 1 octet payload of flags

that specify requirements from the sender of the notification. If

any requirement flags are not understood or cannot be supported by

the receiver then the receiver SHOULD NOT enable use of

AGGFRAG_PAYLOAD (either by not responding with the USE_AGGFRAG

notification, or in the case of the initiator, by deleting the child

¶
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¶
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¶



Sub-type:

Sub-type:

SA if the now established non-AGGFRAG_PAYLOAD using SA is

unacceptable).

The notification type and payload flag values are defined in Section

6.1.4.

6. Packet and Data Formats

The packet and data formats defined below are generic with the

intent of allowing for non-IP-TFS uses, but such uses are outside

the scope of this document.

6.1. AGGFRAG_PAYLOAD Payload

ESP Next Header value: 0x5

An AGGFRAG payload is identified by the ESP Next Header value

AGGFRAG_PAYLOAD which has the value 0x5. The value 5 was chosen to

not conflict with other used values. The first octet of this payload

indicates the format of the remaining payload data.

An 8-bit value indicating the payload format.

This document defines 2 payload sub-types. These payload formats are

defined in the following sections.

6.1.1. Non-Congestion Control AGGFRAG_PAYLOAD Payload Format

The non-congestion control AGGFRAG_PAYLOAD payload is comprised of a

4 octet header followed by a variable amount of DataBlocks data as

shown below.

An octet indicating the payload format. For this non-congestion

control format, the value is 0.

¶

¶

¶

¶

¶

  0 1 2 3 4 5 6 7

 +-+-+-+-+-+-+-+-+-+-+-

 |   Sub-type    | ...

 +-+-+-+-+-+-+-+-+-+-+-

¶

¶

¶

¶

                      1                   2                   3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |  Sub-Type (0) |   Reserved    |          BlockOffset          |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |       DataBlocks ...

 +-+-+-+-+-+-+-+-+-+-+-

¶

¶



Reserved:

BlockOffset:

DataBlocks:

Sub-type:

Reserved:

An octet set to 0 on generation, and ignored on receipt.

A 16-bit unsigned integer counting the number of octets of 

DataBlocks data before the start of a new data block. If the

start of a new data block occurs in a subsequent payload the 

BlockOffset will point past the end of the DataBlocks data. In

this case all the DataBlocks data belongs to the current data

block being assembled. When the BlockOffset extends into

subsequent payloads it continues to only count DataBlocks data

(i.e., it does not count subsequent packets non-DataBlocks data

such as header octets).

Variable number of octets that begins with the start of a data

block, or the continuation of a previous data block, followed by

zero or more additional data blocks.

6.1.2. Congestion Control AGGFRAG_PAYLOAD Payload Format

The congestion control AGGFRAG_PAYLOAD payload is comprised of a 24

octet header followed by a variable amount of DataBlocks data as

shown below.

An octet indicating the payload format. For this congestion

control format, the value is 1.

A 6-bit field set to 0 on generation, and ignored on receipt.

¶

¶

¶

¶

                      1                   2                   3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |  Sub-type (1) |  Reserved |P|E|          BlockOffset          |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                          LossEventRate                        |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                      RTT                  |   Echo Delay ...

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

      ... Echo Delay   |           Transmit Delay                |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                              TVal                             |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |                             TEcho                             |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |       DataBlocks ...

 +-+-+-+-+-+-+-+-+-+-+-

¶

¶

¶



P:

E:

BlockOffset:

LossEventRate:

RTT:

Echo Delay:

Transmit Delay:

TVal:

TEcho:

A 1-bit value if set indicates that PLMTUD probing is in

progress. This information can be used to avoid treating missing

packets as loss events by the CC algorithm when running the

PLMTUD probe algorithm.

A 1-bit value if set indicates that Congestion Experienced (CE)

ECN bits were received and used in deriving the reported 

LossEventRate.

The same value as the non-congestion controlled payload format

value.

A 32-bit value specifying the inverse of the current loss event

rate as calculated by the receiver. A value of zero indicates no

loss. Otherwise the loss event rate is 1/LossEventRate.

A 22-bit value specifying the sender's current round-trip time

estimate in microseconds. The value MAY be zero prior to the

sender having calculated a round-trip time estimate. The value

SHOULD be set to zero on non-AGGFRAG_PAYLOAD enabled SAs. If the

value is equal to or larger than 0x3FFFFF it MUST be set to 

0x3FFFFF.

A 21-bit value specifying the delay in microseconds incurred

between the receiver first receiving the TVal value which it is

sending back in TEcho. If the value is equal to or larger than 

0x1FFFFF it MUST be set to 0x1FFFFF.

A 21-bit value specifying the transmission delay in microseconds.

This is the fixed (or average) delay on the receiver between it

sending packets on the IPTFS tunnel. If the value is equal to or

larger than 0x1FFFFF it MUST be set to 0x1FFFFF.

An opaque 32-bit value that will be echoed back by the receiver

in later packets in the TEcho field, along with an Echo Delay

value of how long that echo took.

The opaque 32-bit value from a received packet's TVal field. The

received TVal is placed in TEcho along with an Echo Delay value

indicating how long it has been since receiving the TVal value.

¶
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DataBlocks:

Type:

Type:

TotalLength:

Variable number of octets that begins with the start of a data

block, or the continuation of a previous data block, followed by

zero or more additional data blocks. For the special case of

sending congestion control information on an non-IP-TFS enabled

SA this value MUST be empty (i.e., be zero octets long).

6.1.3. Data Blocks

A 4-bit field where 0x0 identifies a pad data block, 0x4

indicates an IPv4 data block, and 0x6 indicates an IPv6 data

block.

6.1.3.1. IPv4 Data Block

These values are the actual values within the encapsulated IPv4

header. In other words, the start of this data block is the start of

the encapsulated IP packet.

A 4-bit value of 0x4 indicating IPv4 (i.e., first nibble of the

IPv4 packet).

The 16-bit unsigned integer "Total Length" field of the IPv4

inner packet.

¶

                      1                   2                   3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Type  | IPv4, IPv6 or pad...

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

¶

¶

                      1                   2                   3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |  0x4  |  IHL  |  TypeOfService  |         TotalLength         |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 | Rest of the inner packet ...

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

¶

¶

¶

¶



Type:

PayloadLength:

Type:

Padding:

6.1.3.2. IPv6 Data Block

These values are the actual values within the encapsulated IPv6

header. In other words, the start of this data block is the start of

the encapsulated IP packet.

A 4-bit value of 0x6 indicating IPv6 (i.e., first nibble of the

IPv6 packet).

The 16-bit unsigned integer "Payload Length" field of the inner

IPv6 inner packet.

6.1.3.3. Pad Data Block

A 4-bit value of 0x0 indicating a padding data block.

Extends to end of the encapsulating packet.

6.1.4. IKEv2 USE_AGGFRAG Notification Message

As discussed in Section 5.1, a notification message USE_AGGFRAG is

used to negotiate use of the ESP AGGFRAG_PAYLOAD Next Header value.

The USE_AGGFRAG Notification Message State Type is (TBD2).

The notification payload contains 1 octet of requirement flags.

There are currently 2 requirement flags defined. This may be revised

by later specifications.

                      1                   2                   3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |  0x6  | TrafficClass  |               FlowLabel               |

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |         PayloadLength         | Rest of the inner packet ...

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

¶

¶

¶

¶

                      1                   2                   3

  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 |  0x0  | Padding ...

 +-+-+-+-+-+-+-+-+-+-+-

¶

¶

¶

¶

¶

¶

 +-+-+-+-+-+-+-+-+

 |0|0|0|0|0|0|C|D|

 +-+-+-+-+-+-+-+-+

¶



0:

C:

D:

Name:

Description:

Reference:

Value:

6 bits - reserved, MUST be zero on send, unless defined by later

specifications.

Congestion Control bit. If set, then the sender is requiring that

congestion control information MUST be returned to it

periodically as defined in Section 3.

Don't Fragment bit. If set, indicates the sender of the notify

message does not support receiving packet fragments (i.e., inner

packets MUST be sent using a single Data Block). This value only

applies to what the sender is capable of receiving; the sender

MAY still send packet fragments unless similarly restricted by

the receiver in it's USE_AGGFRAG notification.

7. IANA Considerations

7.1. AGGFRAG_PAYLOAD Sub-Type Registry

This document requests IANA create a registry called

"AGGFRAG_PAYLOAD Sub-Type Registry" under a new category named "ESP

AGGFRAG_PAYLOAD Parameters". The registration policy for this

registry is "Expert Review" ([RFC8126] and [RFC7120]).

AGGFRAG_PAYLOAD Sub-Type Registry

AGGFRAG_PAYLOAD Payload Formats.

This document

This initial content for this registry is as follows:

7.2. USE_AGGFRAG Notify Message Status Type

This document requests a status type USE_AGGFRAG be allocated from

the "IKEv2 Notify Message Types - Status Types" registry.

TBD2

¶
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¶
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 Sub-Type  Name                           Reference

--------------------------------------------------------

        0  Non-Congestion Control Format  This document

        1  Congestion Control Format      This document

    3-255  Reserved

¶

¶

¶



Name:

Reference:

[RFC2119]

[RFC4303]

[RFC7296]

[RFC8174]

[AppCrypt]

USE_AGGFRAG

This document

8. Security Considerations

This document describes an aggregation and fragmentation mechanism

and it use to add TFC to IP traffic. The use described is expected

to increase the security of the traffic being transported. Other

than the additional security afforded by using this mechanism, IP-

TFS utilizes the security protocols [RFC4303] and [RFC7296] and so

their security considerations apply to IP-TFS as well.

As noted in (Section 3.1) the ECN bits are not protected by IPsec

and thus may constitute a covert channel. For this reason, ECN use

SHOULD NOT be enabled by default.

As noted previously in Section 2.4.2, for TFC to be fully maintained

the encapsulated traffic flow should not be affecting network

congestion in a predictable way, and if it would be then non-

congestion controlled mode use should be considered instead.
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Appendix A. Example Of An Encapsulated IP Packet Flow

Below an example inner IP packet flow within the encapsulating

tunnel packet stream is shown. Notice how encapsulated IP packets

can start and end anywhere, and more than one or less than 1 may

occur in a single encapsulating packet.

Figure 3: Inner and Outer Packet Flow
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 [--800--][--800--][60][-240-][--4000----------------------][pad]
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The encapsulated IP packet flow (lengths include IP header and

payload) is as follows: an 800 octet packet, an 800 octet packet, a

60 octet packet, a 240 octet packet, a 4000 octet packet.

The BlockOffset values in the 4 AGGFRAG payload headers for this

packet flow would thus be: 0, 100, 2900, 1400 respectively. The

first encapsulating packet ESP1 has a zero BlockOffset which points

at the IP data block immediately following the AGGFRAG header. The

following packet ESP2s BlockOffset points inward 100 octets to the

start of the 60 octet data block. The third encapsulating packet

ESP3 contains the middle portion of the 4000 octet data block so the

offset points past its end and into the forth encapsulating packet.

The fourth packet ESP4s offset is 1400 pointing at the padding which

follows the completion of the continued 4000 octet packet.

Appendix B. A Send and Loss Event Rate Calculation

The current best practice indicates that congestion control SHOULD

be done in a TCP friendly way. A TCP friendly congestion control

algorithm is described in [RFC5348]. For this IP-TFS use case (as

with [RFC4342]) the (fixed) packet size is used as the segment size

for the algorithm. The main formula in the algorithm for the send

rate is then as follows:

Where X is the send rate in packets per second, R is the round trip

time estimate and p is the loss event rate (the inverse of which is

provided by the receiver).

In addition the algorithm in [RFC5348] also uses an X_recv value

(the receiver's receive rate). For IP-TFS one MAY set this value

according to the sender's current tunnel send-rate (X).

The IP-TFS receiver, having the RTT estimate from the sender can use

the same method as described in [RFC5348] and [RFC4342] to collect

the loss intervals and calculate the loss event rate value using the

weighted average as indicated. The receiver communicates the inverse

of this value back to the sender in the AGGFRAG_PAYLOAD payload

header field LossEventRate.

The IP-TFS sender now has both the R and p values and can calculate

the correct sending rate. If following [RFC5348] the sender should

also use the slow start mechanism described therein when the IP-TFS

SA is first established.

¶

¶

¶

                              1

   X = -----------------------------------------------

       R * (sqrt(2*p/3) + 12*sqrt(3*p/8)*p*(1+32*p^2))

¶

¶

¶

¶

¶



Appendix C. Comparisons of IP-TFS

C.1. Comparing Overhead

For comparing overhead the overhead of ESP for both normal and

AGGFRAG tunnel packets must be calculated, and so an algorithm for

encryption and authentication must be chosen. For the data below

AES-GCM-256 was selected. This leads to an IP+ESP overhead of 54.

Additionally, for IP-TFS, non-congestion control AGGFRAG_PAYLOAD

headers were chosen which adds 4 octets for a total overhead of 58.

C.1.1. IP-TFS Overhead

For comparison the overhead of AGGFRAG payload is 58 octets per

outer packet. Therefore the octet overhead per inner packet is 58

divided by the number of outer packets required (fractional

allowed). The overhead as a percentage of inner packet size is a

constant based on the Outer MTU size.

Figure 4: IP-TFS Overhead as Percentage of Inner Packet Size

C.1.2. ESP with Padding Overhead

The overhead per inner packet for constant-send-rate padded ESP

(i.e., traditional IPsec TFC) is 36 octets plus any padding, unless

fragmentation is required.

When fragmentation of the inner packet is required to fit in the

outer IPsec packet, overhead is the number of outer packets required

to carry the fragmented inner packet times both the inner IP

overhead (20) and the outer packet overhead (54) minus the initial

inner IP overhead plus any required tail padding in the last

encapsulation packet. The required tail padding is the number of

¶

  54 = 20 (IP) + 8 (ESPH) + 2 (ESPF) + 8 (IV) + 16 (ICV)¶

¶

¶

   OH = 58 / Outer Payload Size / Inner Packet Size

   OH % of Inner Packet Size = 100 * OH / Inner Packet Size

   OH % of Inner Packet Size = 5800 / Outer Payload Size

¶

                     Type  IP-TFS  IP-TFS  IP-TFS

                      MTU     576    1500    9000

                    PSize     518    1442    8942

                   -------------------------------

                       40  11.20%   4.02%   0.65%

                      576  11.20%   4.02%   0.65%

                     1500  11.20%   4.02%   0.65%

                     9000  11.20%   4.02%   0.65%

¶



required packets times the difference of the Outer Payload Size and

the IP Overhead minus the Inner Payload Size. So:

C.2. Overhead Comparison

The following tables collect the overhead values for some common L3

MTU sizes in order to compare them. The first table is the number of

octets of overhead for a given L3 MTU sized packet. The second table

is the percentage of overhead in the same MTU sized packet.

Figure 5: Overhead comparison in octets

¶

  Inner Paylaod Size = IP Packet Size - IP Overhead

  Outer Payload Size = MTU - IPsec Overhead

                Inner Payload Size

  NF0 = ----------------------------------

         Outer Payload Size - IP Overhead

  NF = CEILING(NF0)

  OH = NF * (IP Overhead + IPsec Overhead)

       - IP Overhead

       + NF * (Outer Payload Size - IP Overhead)

       - Inner Payload Size

  OH = NF * (IPsec Overhead + Outer Payload Size)

       - (IP Overhead + Inner Payload Size)

  OH = NF * (IPsec Overhead + Outer Payload Size)

       - Inner Packet Size

¶

¶

        Type  ESP+Pad  ESP+Pad  ESP+Pad  IP-TFS  IP-TFS  IP-TFS

      L3 MTU      576     1500     9000     576    1500    9000

       PSize      522     1446     8946     518    1442    8942

     -----------------------------------------------------------

          40      482     1406     8906     4.5     1.6     0.3

         128      394     1318     8818    14.3     5.1     0.8

         256      266     1190     8690    28.7    10.3     1.7

         518        4      928     8428    58.0    20.8     3.4

         576      576      870     8370    64.5    23.2     3.7

        1442      286        4     7504   161.5    58.0     9.4

        1500      228     1500     7446   168.0    60.3     9.7

        8942     1426     1558        4  1001.2   359.7    58.0

        9000     1368     1500     9000  1007.7   362.0    58.4



Figure 6: Overhead as Percentage of Inner Packet Size

C.3. Comparing Available Bandwidth

Another way to compare the two solutions is to look at the amount of

available bandwidth each solution provides. The following sections

consider and compare the percentage of available bandwidth. For the

sake of providing a well understood baseline normal (unencrypted)

Ethernet as well as normal ESP values are included.

C.3.1. Ethernet

In order to calculate the available bandwidth the per packet

overhead is calculated first. The total overhead of Ethernet is 14+4

octets of header and CRC plus and additional 20 octets of framing

(preamble, start, and inter-packet gap) for a total of 38 octets.

Additionally the minimum payload is 46 octets.

Figure 7: L2 Octets Per Packet

       Type  ESP+Pad  ESP+Pad   ESP+Pad  IP-TFS  IP-TFS  IP-TFS

        MTU      576     1500      9000     576    1500    9000

      PSize      522     1446      8946     518    1442    8942

     -----------------------------------------------------------

         40  1205.0%  3515.0%  22265.0%  11.20%   4.02%   0.65%

        128   307.8%  1029.7%   6889.1%  11.20%   4.02%   0.65%

        256   103.9%   464.8%   3394.5%  11.20%   4.02%   0.65%

        518     0.8%   179.2%   1627.0%  11.20%   4.02%   0.65%

        576   100.0%   151.0%   1453.1%  11.20%   4.02%   0.65%

       1442    19.8%     0.3%    520.4%  11.20%   4.02%   0.65%

       1500    15.2%   100.0%    496.4%  11.20%   4.02%   0.65%

       8942    15.9%    17.4%      0.0%  11.20%   4.02%   0.65%

       9000    15.2%    16.7%    100.0%  11.20%   4.02%   0.65%

¶

¶

      Size  E + P  E + P  E + P  IPTFS  IPTFS  IPTFS  Enet   ESP

       MTU    590   1514   9014    590   1514   9014   any   any

        OH     92     92     92     96     96     96    38    74

     ------------------------------------------------------------

        40    614   1538   9038     47     42     40    84   114

       128    614   1538   9038    151    136    129   166   202

       256    614   1538   9038    303    273    258   294   330

       518    614   1538   9038    614    552    523   574   610

       576   1228   1538   9038    682    614    582   614   650

      1442   1842   1538   9038   1709   1538   1457  1498  1534

      1500   1842   3076   9038   1777   1599   1516  1538  1574

      8942  11052  10766   9038  10599   9537   9038  8998  9034

      9000  11052  10766  18076  10667   9599   9096  9038  9074



Figure 8: Packets Per Second on 10G Ethernet

Figure 9: Percentage of Bandwidth on 10G Ethernet

A sometimes unexpected result of using an AGGFRAG tunnel (or any

packet aggregating tunnel) is that, for small to medium sized

packets, the available bandwidth is actually greater than native

Ethernet. This is due to the reduction in Ethernet framing overhead.

This increased bandwidth is paid for with an increase in latency.

This latency is the time to send the unrelated octets in the outer

tunnel frame. The following table illustrates the latency for some

common values on a 10G Ethernet link. The table also includes

latency introduced by padding if using ESP with padding.

     Size  E + P  E + P  E + P  IPTFS  IPTFS  IPTFS  Enet   ESP

      MTU  590    1514   9014   590    1514   9014   any    any

       OH  92     92     92     96     96     96     38     74

    --------------------------------------------------------------

       40  2.0M   0.8M   0.1M   26.4M  29.3M  30.9M  14.9M  11.0M

      128  2.0M   0.8M   0.1M   8.2M   9.2M   9.7M   7.5M   6.2M

      256  2.0M   0.8M   0.1M   4.1M   4.6M   4.8M   4.3M   3.8M

      518  2.0M   0.8M   0.1M   2.0M   2.3M   2.4M   2.2M   2.1M

      576  1.0M   0.8M   0.1M   1.8M   2.0M   2.1M   2.0M   1.9M

     1442  678K   812K   138K   731K   812K   857K   844K   824K

     1500  678K   406K   138K   703K   781K   824K   812K   794K

     8942  113K   116K   138K   117K   131K   138K   139K   138K

     9000  113K   116K   69K    117K   130K   137K   138K   137K

 Size   E + P   E + P   E + P   IPTFS   IPTFS   IPTFS    Enet     ESP

          590    1514    9014     590    1514    9014     any     any

           92      92      92      96      96      96      38      74

----------------------------------------------------------------------

   40   6.51%   2.60%   0.44%  84.36%  93.76%  98.94%  47.62%  35.09%

  128  20.85%   8.32%   1.42%  84.36%  93.76%  98.94%  77.11%  63.37%

  256  41.69%  16.64%   2.83%  84.36%  93.76%  98.94%  87.07%  77.58%

  518  84.36%  33.68%   5.73%  84.36%  93.76%  98.94%  93.17%  87.50%

  576  46.91%  37.45%   6.37%  84.36%  93.76%  98.94%  93.81%  88.62%

 1442  78.28%  93.76%  15.95%  84.36%  93.76%  98.94%  97.43%  95.12%

 1500  81.43%  48.76%  16.60%  84.36%  93.76%  98.94%  97.53%  95.30%

 8942  80.91%  83.06%  98.94%  84.36%  93.76%  98.94%  99.58%  99.18%

 9000  81.43%  83.60%  49.79%  84.36%  93.76%  98.94%  99.58%  99.18%

¶



Figure 10: Added Latency

Notice that the latency values are very similar between the two

solutions; however, whereas IP-TFS provides for constant high

bandwidth, in some cases even exceeding native Ethernet, ESP with

padding often greatly reduces available bandwidth.
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                     ESP+Pad  ESP+Pad  IP-TFS   IP-TFS

                     1500     9000     1500     9000

              ------------------------------------------

                 40  1.12 us  7.12 us  1.17 us  7.17 us
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                576  0.70 us  6.70 us  0.74 us  6.74 us

               1442  0.00 us  6.00 us  0.05 us  6.05 us

               1500  1.20 us  5.96 us  0.00 us  6.00 us

¶
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