
Internet Engineering Task Force IPTEL WG
Internet Draft Lennox/Schulzrinne
ietf-iptel-cpl-requirements-00.txt Lucent Bell Labs/Columbia University
July 30, 1998
Expires: February 1999

Call Processing Language Requirements

STATUS OF THIS MEMO

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress''.

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

 ABSTRACT

 A large number of the services we wish to make possible
 for Internet telephony require fairly elaborate
 combinations of signalling operations, often in network
 devices, to complete. We want a simple and standardized
 way to create such services to make them easier to
 implement and deploy. This document describes an
 architecture for such a method, which we call a call
 processing language. It also outlines requirements for
 such a language.

1 Introduction

 Recently, several protocols have been created to allow telephone
 calls to be made over IP networks, notably SIP [1] and H.323 [2].
 These emerging standards have opened up the possibility of a broad

Lennox/Schulzrinne [Page 1]

Internet Draft CPL-R July 30, 1998

 and dramatic decentralization of the provisioning of telephone
 services so they can be under the user's control.

 Many of these services may reside on end devices. A broad set of
 services, however -- those involving user location, call
 distribution, behavior-on-busy, and the like -- are independent of a
 particular end device, or need to be operational even when an end
 device is unavailable. These still best reside in a network device
 rather than an end system. To allow user control over such devices,
 we need a standardized way for end-users to specify the precise
 behavior of the servers. This document proposes an architecture in
 which network devices or end systems respond to call signalling
 events by triggering user-created programs which control the reaction
 to the events.

 For reasons discussed in section 3.7, this document proposes a
 relatively static, non-expressively-complete language to solve this
 problem. We call this a call processing language. However, most of
 the requirements this document lists apply equally well to a library
 of call processing routines for an existing language.

2 Motivating examples

 These are some specific examples of services which we want to be able
 to create programatically. They are arranged roughly in order of
 increasing requirements they impose. Note that some of these examples
 are deliberately somewhat complicated, so as to demonstrate the level
 of decision logic that should be possible.

 o Call forward on busy/no answer

 When a new call comes in, the call should ring at the user's
 desk telephone. If it is busy, the call should always be
 redirected to the user's voicemail box. If, instead, there's no
 answer after four rings, it should also be redirected to his or
 her voicemail, unless it's from a superviser, in which case it
 should be proxied to the user's cellphone if it has registered.

 o Administrative screening -- firewall

 An outgoing call should be rejected if it is going to any
 destination that is on a "banned" list. Otherwise, it should be
 forwarded on to the appropriate destination; if the destination
 accepts the call, the firewall should be told to open up the UDP
 host/port pairs the two endpoints specified for their media. The
 same thing should be done for incoming calls, checking the
 origination address.

Lennox/Schulzrinne [Page 2]

Internet Draft CPL-R July 30, 1998

 o Central phone server

 If a call comes in for a specific person, it should be
 redirected to the locations where they can currently be found.
 If a call comes in for the general "information" address we've
 advertised, if it's currently working hours, the caller should
 be given a list of the people currently willing to accept
 general information calls; if it's outside of working hours, the
 caller gets a recorded message indicating what times they can
 call.

 o Intelligent user location

 When a call comes in, it should ring at every station from which
 the user has registered. If the user picks up from more than one
 station, the pick-ups should be reported back separately to the
 calling party.

 o Intelligent user location with media knowledge

 When a call comes in, the call should be proxied to the station
 the user has registered from whose media capabilities best match
 those specified in the call request. If the user does not pick
 up from that station within four rings, the call should be
 proxied to the other stations from which he or she has
 registered, sequentially, in order of decreasing closeness of
 match.

 o Intelligent user location with mixer (home phone)

 When a call comes in, it should ring at every station from which
 the user has registered. If the call is picked up from more than
 one station, the media from each station should be transparently
 mixed together and sent to the caller.

 o Third-party registration control

 When a registration arrives for a user, make sure that the
 registration was authenticated, the person performing the
 registration has permission to perform the registration for the
 specified user, and the location registered is allowed for the
 registered user. If so, enter it in the registration database;
 if not, reject it.

 o Calendarbook access

 When a call comes in, the user's on-line calendar should be
 consulted. If it specifies that the user has a meeting scheduled

Lennox/Schulzrinne [Page 3]

Internet Draft CPL-R July 30, 1998

 for this time, the caller should get a busy indication.
 Otherwise, the call should be directed to the user's office
 telephone.

 o Client billing allocation -- lawyer's office

 When a call comes in, the calling address is correlated with the
 corresponding client, and client's name and the time and
 duration of the call are logged. If no corresponding client is
 found, the call is forwarded to the lawyer's secretary.

 o End system busy

 When a new call comes in, if the user is currently in a call, a
 call-waiting tone is generated, unless one of the calls
 currently in progress is with the user's boss or he or she has
 set "Do Not Disturb" in the user interface, in which case the
 caller gets a busy indication.

 o Phone bank (call distribution/queueing)

 Incoming calls should be distributed to the phone-bank workers,
 so that each worker handles approximately the same total number
 of calls. If all the phone-bank workers are busy, calls should
 be queued until someone is available. Calls coming from
 preferred customers should get priority in the queue. If the
 length of the queue grows to twice the size of the phone bank,
 calls should be directed to management as well until the queue
 length has decreased again. Each caller should be given an
 approximate indication of waiting time or number of calls ahead
 of them in the queue as they wait. Callers should be given the
 option of listening to the music-on-hold of their choice.

3 Architecture

3.1 Network components

 A network which supports Internet telephony consists of two types of
 components: end systems, which originate and/or receive media, and
 network systems, which relay signalling information.

 End systems are either user agents, which reach actual people, or
 automated systems, which do not; this document will deal primarily
 with the former. Network systems, in SIP, are proxy servers,
 redirect servers, or registrars; in H.323 they are gatekeepers. The
 functionality between the two protocols is largely equivalent, and
 this document will generally use the SIP names. Proxy servers are
 network systems which receive a request and forward it on. Redirect

Lennox/Schulzrinne [Page 4]

Internet Draft CPL-R July 30, 1998

 servers tell the originating location an alternate location to try.
 Registrars track users' current locations; they will usually be the
 same devices as proxy or redirect servers, but do not necessarily
 have to be. See the illustrations in [1]. End systems may also have
 some properties of network systems, most likely the ability to
 perform redirection.

3.2 Model of normal use

 Local Signalling Server Remote Signalling Server
 locates destination finds location for
 permanent address
 _______ Local server contacts _______ _______
 | | permanent address | | | |
 | | --------------------------------------> | | ----->| |
 |_____| Local address |_____| |_____|
 ^ ----- server con- permanent -------> \ Search Another
 Send to / \-----------\ /---------/ \ for Terminal
 local / X \ User
 server/ contacts / \ tacts terminal _|
 _______ Originator ---------/ \----------- address _______
 | | ----------/ \-------> | |
 | | --> | |
 |_____| Direct connection to terminal address |_____|
 Terminal
 Originator has terminal address

 Figure 1: Illustration of call signalling messages

 Internet telephony addresses can be divided into two broad
 categories: terminal addresses and permanent user addresses. A
 terminal address is one that refers to a particular device, whose
 network-level (IP) address does not change. A permanent user address,
 on the other hand, refers on a more abstract level to an individual
 user, whose current location and network address may change. When a
 user becomes available at a location, his or her end system registers
 itself with a network server indicating this fact. (In SIP, users
 register via the REGISTER message; in H.323, via RRQ and related RAS

Lennox/Schulzrinne [Page 5]

Internet Draft CPL-R July 30, 1998

 messages.) A user may register from more than one location
 simultaneously.

 Figure 1 shows how call signalling may flow. Calls may be placed
 either to terminal or permanent user addresses. Calls to terminal
 addresses may contact the corresponding device directly, or may
 travel through some signalling server. Calls to permanent user
 addresses must pass through the signalling server, which locates the
 user and proxies or redirects the call to the appropriate terminal
 addresses which the user has registered.

 Signalling servers may also be used on the originating side. Rather
 than locate a call's destination on its own, an end system, when
 originating a call, may have been configured to transfer all its call
 requests through a single, presumably local, server. This server can
 then perform the somewhat complex task of actually locating the
 destination, as well as other tasks such as firewall penetration or
 encryption of signalling information.

 Call requests may be forwarded between multiple signalling servers on
 both the origination and destination ends of a call. For example, a
 corporation could have a large company-wide server which forwards
 incoming call requests to individual departmental servers, which then
 perform the task of actually locating the desired user. This is
 similar to a typical configuration of e-mail forwarding.

 Different call invitations for a particular end system might travel
 through a different set of signalling servers; for instance, a user
 with several addresses might register his current end system with
 several different servers. Similarly, an end system placing a call
 might have several different outgoing signalling servers through
 which it could place the call. Thus, in general, a signalling server
 does not see all the signalling events for a particular end system;
 and so it does not have enough information to be able to determine
 the end system's state.

3.3 Purpose of a call processing language

 A call processing language (CPL) is primarily intended to allow the
 user to modify the way an Internet telephony system handles call
 events. Call events include signalling events such as call setup,
 termination, or parameter changes, and also, for servers with an
 appropriate media path, in-band events such as DTMF tones. The user
 can modify either incoming or outgoing calls.

 The most common sort of modification will be for incoming call
 setups. Some ways a user might want to alter the call setup process
 include: to search terminal addresses for a given user address in an

Lennox/Schulzrinne [Page 6]

Internet Draft CPL-R July 30, 1998

 alternate way; to specificy what happens when the initial search
 fails, either when it receives some sort of negative response (e.g.,
 busy), or does not receive any definitive response within a fixed
 time period (e.g., no answer); or to handle certain origination
 addresses specially, for instance by informing the caller that the
 call was refused. The useful changes to the outgoing call setup are
 somewhat more limited in scope, but one example is to translate a
 user's abbreviated addresses into an address specified with a fully-
 qualified domain name. The transformations to parameter changes or
 call terminations are generally only useful to complete the actions
 begun at call setup time; see for instance the lawyer's office
 example in section 2.

 Once a language with this level of power has been introduced, other
 applications of it present themselves. An administrator might wish to
 perform administrative restrictions on users' calls, for instance
 blocking incoming or outgoing calls from certain domains. The
 language could also be scripted on an end system; with minimal
 extensions, behavior specific to end systems, such as the specifics
 of how the user is alerted to incoming calls, could also be made
 programmable.

3.4 Creation and transport of a call processing language script

 Users create call processing language scripts, typically on end
 devices, and transmit them through the network to network systems.
 Scripts persist in network devices until changed or deleted, unless
 they are specifically given an expiration time; a network device
 which supports CPL scripting will need stable storage.

 The exact means by which the end device transmits the script to the
 server remains to be determined; it is likely that many solutions
 will be able to co-exist. This method will need to be authenticated
 in almost all cases. The methods that have been suggested include
 web access, SIP REGISTER message payloads, remote method invocation,
 SNMP, LDAP, and remote file systems such as NFS.

 Creation of a CPL script may be through the creation of a text file;
 or for a simpler user experience, a graphical user interface which
 allows the manipulation of some basic rules.

 The end device on which the user creates the CPL script need not bear
 any relationship to the end devices to which calls are actually
 placed. For example, a CPL script might be created on a PC, whereas
 calls might be intended to be received on a simple audio-only
 telephone. The CPL also might not necessarily be created on a device
 near either the end device or the signalling server in network terms;
 a user might, for example, decide to forward his or her calls to a

Lennox/Schulzrinne [Page 7]

Internet Draft CPL-R July 30, 1998

 remote location only after arriving at that location.

 Users can also retrieve their current script from the network to an
 end system so it can be edited. The signalling server should also be
 able to report errors related to the script to the user, both static
 errors that could be detected at upload time, and any run-time errors
 that occur.

 If a user's calls will pass through multiple local signalling servers
 which know about that user (as discussed in section 3.2), the user
 may choose to upload scripts to any or all of those servers. These
 scripts can be entirely independent; see section 3.6 for some
 implications of this.

 If, as discussed in section 3.3, the call processing language is
 extended to control end systems, the script-creation mechanism
 described above should also be able to create such end-system
 scripts. It may be possible that the end system on which the script
 executes (the simple telephone mentioned before) is not the same
 device as the end system on which the script is created; in this
 case, the script should be transmitted from the script creation site
 to the end system in the same way it is transmitted from creation
 sites to network systems.

3.5 Execution process of a CPL script

 When a call event arrives, a CPL server considers the information in
 the request and determines if any of the scripts it has stored are
 applicable to the call in question. If so, it performs the actions
 corresponding to the matching scripts.

 The most common type of script defines a set of actions to be taken
 for the entire process of call set-up -- from the time a call request
 is initially received, to the time that (from the point of view of
 this device) the call is either definitively accepted or definitively
 rejected. This could be near-instantaneous, if, for instance, the
 script decides to reject the call; or it could be an arbitrarily long
 time, if we are waiting for a call pick-up without a timeout.

 Generally, we expect a script to be structured as a list of
 condition/action pairs; if an incoming invitation matches a given
 condition, then the corresponding action (or more properly set of
 actions) will be taken. Whether this should be explicit in the
 language or just implicit in the normal usage remains to be seen. If
 no condition matches the invitation, the signalling server's standard
 action should be taken.

 Other types of scripts may define sets of actions to be taken for

Lennox/Schulzrinne [Page 8]

Internet Draft CPL-R July 30, 1998

 other call events: call termination; changes to media format or other
 call parameters (re-invitations, in SIP); or in-band call events,
 such as a user sending DTMF tones. However, it is important to note
 that many, if not most, network servers cannot expect to be able to
 observe such events; subsequent signalling information may short-cut
 past the server, as media information almost certainly will.

 While many of the uses of a CPL script are specific to one particular
 user, there are a number of circumstances in which an administrator
 of a signalling server would wish to provide a script which applies
 to all users of the server, or a large set of them. For instance, a
 system might be configured to prevent calls from or to a list of
 banned incoming or outgoing addresses; these should presumably be
 configured for everyone, but users still need to be able to have
 their own custom scripts as well. Similarly, an administrative script
 might perform the necessary operations to allow media to traverse a
 firewall; but individual users' scripts should not have permission to
 perform these operations. See the next section for some implications
 of this.

3.6 Feature interaction behavior

 Feature interaction is the term used in telephony systems when two or
 more requested features produce ambiguous or conflicting behavior
 [3]. Feature interaction issues for features implemented with a call
 processing language can be roughly divided into three categories:
 feature-to-feature in one server, script-to-script in one server, and
 server-to-server.

 Due to the explicit nature of event conditions discussed in the
 previous section, feature-to-feature interaction is not likely to be
 a problem in a call processing language environment. Whereas a
 subscriber to traditional telephone features might unthinkingly
 subscribe to both "call waiting" and "call forward on busy," a user
 creating a CPL script would only be able to trigger one action in
 response to the condition "a call arrives while the line is busy."
 Given a good user interface for creation, or a CPL server which can
 check for unreachable code in an uploaded script, contradictory
 condition/action pairs can be avoided.

 Script-to-script interactions can arise if both an originator and a
 destination have scripts specified on the same signalling server, or
 if an administrative script and a user's script are both specified.
 In the former case, the correct behavior is fairly obvious: a server
 should first execute the originator's script, and then, if that
 script placed a call to a destination, call the destination script
 with the appropriate conditions.

Lennox/Schulzrinne [Page 9]

Internet Draft CPL-R July 30, 1998

 The correct behavior in the latter case depends on the scope of the
 administrative script; however, normally, the administrator's script
 should run after origination scripts, intercepting any proxy or
 redirection decisions, and before recipient scripts, to avoid a
 user's script evading administrative restrictions.

 The third case -- server-to-server interactions -- is the most
 complex of these three. Many such problems are unsolvable in an
 administratively heterogeneous network, even a "lightly"
 heterogeneous network such as current telephone systems. The
 canonical example of this is the interaction of Originating Call
 Screening and Call Forwarding: a user (or administrator) may wish to
 prevent calls from being placed to a particular address, but the
 local script has no way of knowing if a call placed to some other,
 legitimate address will be proxied, by a remote server, to the banned
 address.

 Another class of server-to-server interactions are best resolved by
 the underlying signalling protocol, since they can arise whether the
 signalling servers are being controlled by a call processing language
 or by some entirely different means. One example of this is
 forwarding loops, where user X may have calls forwarded to Y, who has
 calls forwarded back to X. SIP has a mechanism to detect such loops.
 A call processing language server thus does not need to define any
 special mechanisms to prevent such occurrences; it should, however,
 be possible to trigger a different set of call processing actions in
 the event that a loop is detected, and/or to report back an error to
 the owner of the script through some standardized run-time error
 reporting mechanism.

 As an aside, [3] discusses a fourth type of feature interaction for
 traditional telephone networks, signalling ambiguity. This can arise
 when several features overload the same operation in the limited
 signal path from an end station to the network, for example, flashing
 the switch-hook can mean both "add a party to a three-way call" and
 "switch to call waiting." Because of the explicit nature of
 signalling in both the Internet telephony protocols discussed here,
 this issue does not arise.

3.7 Relationship with existing languages

 This document's description of the CPL as a "language" is not
 intended to imply that a new language necessarily needs to be
 implemented from scratch. A server could potentially implement all
 the functionality described here as a library or set of extensions
 for an existing language; Java, or the various freely-available
 scripting languages (Tcl, Perl, Python, Guile), are obvious
 possibilities.

Lennox/Schulzrinne [Page 10]

Internet Draft CPL-R July 30, 1998

 However, there are motivations for creating a new language. All the
 existing languages are, naturally, expressively complete; this has
 two inherent disadvantages. The first is that any function
 implemented in them can take an arbitrarily long time, use an
 arbitrarily large amount of memory, and may never terminate. For call
 processing, this sort of resource usage is probably not necessary,
 and as described in section 5.1, may in fact be undesirable. One
 model for this is the electronic mail filtering language Sieve [4],
 which deliberately restricts itself from being Turing-complete. The
 second disadvantage with expressively complete languages is that they
 make automatic generation and parsing very difficult; an analogy can
 be drawn with the difference between markup languages like HTML or
 XML, which can easily be manipulated by smart editors, and powerful
 document programming languages such as Latex or Postscript which
 usually cannot be.

4 Related work

 A future revision of this document will discuss such items as
 decision tree languages, AT&T's TOPS language, the IN service
 creation language, timed state diagrams, the Java servlet API, cgi-
 bin, and active networks.

5 Necessary language features

 This section lists those properties of a call processing language
 which we believe to be necessary to have in order to implement the
 motivating examples, in line with the described architecture.

5.1 Language characteristics

 These are some abstract attributes which any proposed call processing
 language should possess.

 o Light-weight, efficient, easy to implement

 In addition to the general reasons why this is desirable, a
 network server might conceivably handle very large call volumes,
 and we don't want CPL execution to be a major bottleneck. One
 way to achieve this might be to compile scripts before
 execution.

 o Easily verifiable for correctness

 For a script which runs in a server, mis-configurations can
 result in a user becoming unreachable, making it difficult to
 indicate run-time errors to a user (though a second-channel
 error reporting mechanism such as e-mail could ameliorate this).

Lennox/Schulzrinne [Page 11]

Internet Draft CPL-R July 30, 1998

 Thus, it should be possible to verify, when the script is
 committed to the server, that it is at least syntactically
 correct, does not have any obvious loops or other failure modes,
 and does not use too many server resources.

 o Executable in a safe manner

 No action the CPL script takes should be able to subvert
 anything about the server which the user shouldn't have access
 to, or affect the state of other users without permission.
 Additionally, since CPL scripts will typically run on a server
 on which users cannot normally run code, either the language or
 its execution environment must be designed so that scripts
 cannot use unlimited amounts of network resources, server CPU
 time, storage, or memory.

 o Easily writeable and parseable by both humans and machines.

 For maximum flexibility, we want to allow humans to write their
 own scripts, or to use and customize script libraries provided
 by others. However, most users will want to have a more
 intuitive user-interface for the same functionality, and so will
 have a program which creates scripts for them. Both cases
 should be easy; in particular, it should be easy for script
 editors to read human-generated scripts, and vice-versa.

 o Extensible

 It should be possible to add additional features to a language
 in a way that existing scripts continue to work, and existing
 servers can easily recognize features they don't understand and
 safely inform the user of this fact.

 o Independent of underlying signalling details

 The same scripts should be usable whether the underlying
 protocol is SIP, H.323, a traditional telephone network, or any
 other means of setting up calls. It should also be agnostic to
 address formats. (We use SIP terminology in our descriptions of
 requirements, but this should map fairly easily to other
 systems.) It may also be useful to have the language extend to
 processing of other sorts of communication, such as e-mail or
 fax.

5.2 Base features -- call signalling

 To be useful, a call processing language obviously should be able to
 react to and initiate call signalling events.

Lennox/Schulzrinne [Page 12]

Internet Draft CPL-R July 30, 1998

 o Should execute an action script when a call request arrives

 See section 3, particularly 3.5.

 o Should be able to make decisions based on event properties

 A number of properties of a call event are relevant for a
 script's decision process. These include, roughly in order of
 importance:

 - Event type

 It should be possible to handle call invitations, call
 terminations, user registrations, OPTIONS requests, and
 other distinct call events separately.

 - Originator address

 We want to be able to do originator-based screening or
 routing.

 - Destination address

 Similarly, we want to be able to do destination-based
 screening or routing. Note that in SIP we want to be able
 to filter on any or all of the addresses in the To header,
 the Location header, and the Request-URI.

 - Information about caller or call

 SIP has textual fields such as Subject, Organization,
 Priority, etc., and a display name for addresses; users can
 also add non-standard additional headers. H.323 has a
 single Display field.

 - Media description

 Requests specify the types of media that will flow, their
 bandwidth usage, their network destination addresses, etc.

 - Authentication/encryption status

 Requests can be authenticated. Many properties of the
 authentication are relevant: the method of
 authentication/encryption, who performed the
 authentication, which specific fields were encrypted, etc.

 o Should be able to take action based on a request

Lennox/Schulzrinne [Page 13]

Internet Draft CPL-R July 30, 1998

 There are a number of actions we can take in response to an
 incoming request. We can:

 - reject it

 We should be able to indicate that the call is not
 acceptable or not able to be completed. We should also
 be able to send more specific rejection codes
 (including, for SIP, the associated textual string,
 warning codes, or message payload).

 - send a provisional response to it

 While a call request is being processed, provisional
 responses such as "Trying," "Ringing," and "Queued" are
 sent back to the caller. It is not clear whether the
 script should specify the sending of such responses
 explicitly, or whether they should be implicit in other
 actions performed.

 - redirect it

 We should be able to tell the request sender to try a
 different location.

 - proxy it

 We should be able to send the request on to another
 location, or to several other locations, and await the
 responses. It should also be possible to specify a
 timeout value after which we give up on receiving any
 definitive responses.

 o Should be able to take action based a response to a
 proxied or forked request

 Once we have proxied requests, we need to be able to make
 decisions based on the responses we receive to those
 requests (or the lack thereof). We should be able to:

 - consider all its message fields

 This consists of a similar set of fields as appear in
 a request.

 - relay it on to the requestor

 If the response is satisfactory, it should be

Lennox/Schulzrinne [Page 14]

Internet Draft CPL-R July 30, 1998

 returned to the sender.

 - for a fork, choose one of several responses to
 relay back

 If we forked a request, we obviously expect to
 receive several responses. There are several issues
 here -- choosing among the responses, and how long to
 wait if we've received responses from some but not
 all destinations.

 - initiate other actions

 If we didn't get a response, or any we liked, we
 should be able to try something else instead (e.g.,
 call forward on busy).

5.3 Base features -- non-signalling

 A number of other features that a call processing language should
 have do not refer to call signalling per se; however, they are still
 extremely desirable to implement many useful features.

 The servers which provide these features might reside in other
 Internet devices, or might be local to the server (or other
 possibilities). The language should be independent of the location of
 these servers, at least at a high level.

 o Logging

 In addition to the CPL server's natural logging of events, the
 user will also want to be able to log arbitrary other items. The
 actual storage for this logging information might live either
 locally or remotely.

 o Error reporting

 If an unexpected error occurs, the script should be able to
 report the error to the script's owner. This should use the same
 mechanism as the script server uses to report language errors to
 the user (see section 5.9).

 o Access to user-location info

 Proxies will often collect information on users' current
 location, either through SIP REGISTER messages, the H.323 RRQ
 family of RAS messages, or some other mechanism (see section

3.2). The CPL should be able to refer to this information so a

Lennox/Schulzrinne [Page 15]

Internet Draft CPL-R July 30, 1998

 call can be forwarded to the registered locations or some subset
 of them.

 o Database access

 Much information for CPL control might be stored in external
 databases, for example a wide-area address database, or
 authorization information, for a CPL under administrative
 control. The language could specify some specific database
 access protocols (such as SQL or LDAP), or could be more
 generic.

 o Other external information

 Other external information the script should be able to access
 includes web pages, which could be sent back in a SIP message
 body; or a clean interface to remote procedure calls such as
 Corba, RMI, or DCOM, for instance to access an external billing
 database.

 o Creation of and access to local state

 A CPL script may wish to store state information, so that
 scripts invoked for future transactions related to this call or
 this user can have access to decisions made by an earlier
 invocation. For instance, a SIP re-invitation should be proxied
 to the same location as accepted the original invitation,
 regardless of the usual forwarding sequence; a server may wish
 to log the termination of a call in the same way it logged its
 initiation; or a user might want to limit the number of
 concurrent calls or calls per day allowed. The persistence of
 this state information for a call should be time-limited, either
 explicitly or by default. See section 3.5 for some caveats for a
 network system of expecting to receive events other than call
 initiation.

5.4 Higher-level features

 There are some, more complex services which it would be quite useful
 to be able to describe with a CPL, but which require considerably
 more maintenance of state, elaborate inter-call event triggering, and
 so forth, than the features described earlier.

 It is not clear whether these features should be specified as
 primitives of the language, or whether they should be assembled from
 lower-level features. In the latter case, the language may need to
 have additional low-level features added, beyond those specified in
 the previous sections, so these features can be constructed.

Lennox/Schulzrinne [Page 16]

Internet Draft CPL-R July 30, 1998

 o Queueing

 Calls which should go to end systems which aren't accepting
 calls currently can be queued to await delivery. This requires
 inter-call synchronization to know when to take calls off the
 queue.

 It should be possible for the CPL to specify a priority for a
 queue entry.

 o Call distribution

 Calls can be spread to a number of end systems, in a "phone
 bank" style set-up. Calls need to be directed to exactly one,
 currently available destination, in some fair manner (e.g.,
 hierarchical, round-robin, randomly distributed, or weighted
 fair queueing). In many cases, this means that the proxy system
 needs to be able to track the state of end systems.

 This should also be able to interface with queueing -- if all
 end systems are busy, the call is queued, and when one becomes
 free, the call is taken off the queue.

5.5 Contingent features

 Some features are only useful if other network entities are
 available.

 o Access to media servers

 We want to be able to connect a remote call to recorded audio
 (or video) messages.

 o Firewall control

 If we are working in an environment with a firewall, we need to
 be able to tell it to open up a specific host/port 5-tuple for
 our media to flow through.

 We should be able to specify authentication so the firewall
 knows it can trust the proxy.

 o Mixer/translator control

 If we have a media mixer or translator available, we want to be
 able to tell it to mix media between several addresses, with
 fine-grained control over what media flows to where, in what
 formats.

Lennox/Schulzrinne [Page 17]

Internet Draft CPL-R July 30, 1998

5.6 End-system specific features

 Some features can only be implemented in end-systems, either because
 some end-system state is not generally communicated over the network,
 or because there is no protocol to signal that actions need to be
 performed. If we want these features to be implementable with the
 CPL, these additional operations will be necessary.

 o Access to current calling state

 We want to know how many other calls are in progress, who they
 are with, etc.

 o Access to additional user interface state

 The end system's user interface might present options which the
 user could specify on a per-call basis (for example, setting "do
 not disturb").

 o Control of user notification UI

 This will allow such features as custom distinctive ringing,
 call-waiting tones (in combination with the call-state query),
 "reminder ring" for call forwarding, etc.

5.7 Language features

 Some features do not involve any operations external to the CPL's
 execution environment, but are still necessary to allow some standard
 services to be implemented. (This list is not exhaustive.)

 o Pattern-matching

 It should be possible to give special treatment to addresses and
 other text strings based not only on the full string but also on
 more general or complex sub-patterns of them.

 o Randomization

 Some forms of call distribution are randomized as to where they
 actually end up.

 o Date/time information

 Users may wish to condition some services (e.g., call
 forwarding, call distribution) on the current time of day, day
 of the week, etc.

Lennox/Schulzrinne [Page 18]

Internet Draft CPL-R July 30, 1998

5.8 Future features

 A number of services which don't exist yet or aren't widely deployed
 in the Internet will be relevant for Internet telephony. Once they
 are available, a CPL script should be able to control them.

 o Ability to specify quality-of-service

 Certain calls -- either on the basis of importance, or for
 known-troublesome destinations -- should be able to have their
 desired quality of service specified by the language.

 o Access to wide-area service location information

 A proxy doing call distribution might want to locate the service
 "closest" (in any one of a number of senses) to the caller; or
 we might want to find a PSTN gateway close to the destination of
 a PSTN-style call. In either case a script should be able to
 control these operations.

 o Control of payment authorization

 If any kind of per-call billing is required, a CPL might want to
 be able to decide whether to accept charges. This is obviously a
 rather delicate operation from a security standpoint.

5.9 Control

 As described in section 3.4, we must have a mechanism to send and
 retrieve CPL scripts, and associated data, to and from a signalling
 server. This method should support reporting upload-time errors to
 users; we also need some mechanism to report errors to users at
 script execution time. Authentication is vital, and encryption is
 very useful. The specification of this mechanism can be (and probably
 ought to be) a separate specification from that of the call
 processing language itself.

6 Security considerations

 The security considerations of transferring CPL scripts are discussed
 in sections 3.4 and 5.9. Some considerations about the execution of
 the language are discussed in section 5.1.

7 Acknowledgments

 We would like to thank Tom La Porta and Jonathan Rosenberg for their
 comments and suggestions.

Lennox/Schulzrinne [Page 19]

Internet Draft CPL-R July 30, 1998

8 Authors' Addresses

 Jonathan Lennox
 Lucent Technologies, Bell Laboratories
 Rm. 4F-520
 101 Crawfords Corner Road
 Holmdel, NJ 07733
 USA
 electronic mail: lennox@dnrc.bell-labs.com

 Henning Schulzrinne
 Dept. of Computer Science
 Columbia University
 1214 Amsterdam Avenue
 New York, NY 10027
 USA
 electronic mail: schulzrinne@cs.columbia.edu

9 Bibliography

 [1] M. Handley, H. Schulzrinne, and E. Schooler, "SIP: session
 initiation protocol," Internet Draft, Internet Engineering Task
 Force, May 1998. Work in progress.

 [2] International Telecommunication Union, "Visual telephone systems
 and equipment for local area networks which provide a non-guaranteed
 quality of service," Recommendation H.323, Telecommunication
 Standardization Sector of ITU, Geneva, Switzerland, May 1996.

 [3] E. J. Cameron, N. D. Griffeth, Y.-J. Lin, M. E. Nilson, and et
 al, "A feature interaction benchmark for IN and beyond," Feature
 Interactions in Telecommunications Systems, IOS Press , pp. 1--23,
 1994.

 [4] T. Showalter, "Sieve -- a mail filtering language," Internet
 Draft, Internet Engineering Task Force, Jan. 1998. Work in progress.

 Full Copyright Statement

 Copyright (c) The Internet Society (1998). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this

Lennox/Schulzrinne [Page 20]

Internet Draft CPL-R July 30, 1998

 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

 Table of Contents

1 Introduction .. 1
2 Motivating examples 2
3 Architecture .. 4
3.1 Network components 4
3.2 Model of normal use 5
3.3 Purpose of a call processing language 6

 3.4 Creation and transport of a call processing
 language script .. 7

3.5 Execution process of a CPL script 8
3.6 Feature interaction behavior 9
3.7 Relationship with existing languages 10
4 Related work .. 11
5 Necessary language features 11
5.1 Language characteristics 11
5.2 Base features -- call signalling 12

5.3 Base features -- non-signalling 15
5.4 Higher-level features 16
5.5 Contingent features 17
5.6 End-system specific features 18
5.7 Language features 18
5.8 Future features 19
5.9 Control ... 19
6 Security considerations 19

Lennox/Schulzrinne [Page 21]

Internet Draft CPL-R July 30, 1998

7 Acknowledgments 19
8 Authors' Addresses 20
9 Bibliography .. 20

Lennox/Schulzrinne [Page 22]

