
Internationalized Resource Identifiers

(iri)
M.J. Duerst

Internet-Draft
Aoyama Gakuin

University

Obsoletes: 3987 (if approved) M.L. Suignard

Intended status: Standards Track Unicode Consortium

Expires: February 15, 2012 L. Masinter

Adobe

August 14, 2011

Internationalized Resource Identifiers (IRIs)

draft-ietf-iri-3987bis-07

Abstract

This document defines the Internationalized Resource Identifier (IRI)

protocol element, as an extension of the Uniform Resource Identifier

(URI). An IRI is a sequence of characters from the Universal Character

Set (Unicode/ISO 10646). Grammar and processing rules are given for

IRIs and related syntactic forms.

In addition, this document provides named additional rule sets for

processing otherwise invalid IRIs, in a way that supports other

specifications that wish to mandate common behavior for 'error'

handling. In particular, rules used in some XML languages (LEIRI) and

web applications are given.

Defining IRI as new protocol element (rather than updating or extending

the definition of URI) allows independent orderly transitions: other

protocols and languages that use URIs must explicitly choose to allow

IRIs.

Guidelines are provided for the use and deployment of IRIs and related

protocol elements when revising protocols, formats, and software

components that currently deal only with URIs.

RFC Editor: Please remove the next paragraph before publication.

This (and several companion documents) are intended to obsolete RFC

3987, and also move towards IETF Draft Standard. For discussion and

comments on these drafts, please join the IETF IRI WG by subscribing to

the mailing list public-iri@w3.org, archives at http://lists.w3.org/

archives/public/public-iri/. For a list of open issues, please see the

issue tracker of the WG at http://trac.tools.ietf.org/wg/iri/trac/

report/1. For a list of individual edits, please see the change history

at http://trac.tools.ietf.org/wg/iri/trac/log/draft-ietf-iri-3987bis.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on February 15, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

This document may contain material from IETF Documents or IETF

Contributions published or made publicly available before November 10,

2008. The person(s) controlling the copyright in some of this material

may not have granted the IETF Trust the right to allow modifications of

such material outside the IETF Standards Process. Without obtaining an

adequate license from the person(s) controlling the copyright in such

materials, this document may not be modified outside the IETF Standards

Process, and derivative works of it may not be created outside the IETF

Standards Process, except to format it for publication as an RFC or to

translate it into languages other than English.

Table of Contents

1. Introduction

1.1. Overview and Motivation

1.2. Applicability

1.3. Definitions

1.4. Notation

2. IRI Syntax

2.1. Summary of IRI Syntax

2.2. ABNF for IRI References and IRIs

*

*

*

*

*

*

*

*

3. Processing IRIs and related protocol elements

3.1. Converting to UCS

3.2. Parse the IRI into IRI components

3.3. General percent-encoding of IRI components

3.4. Mapping ireg-name

3.4.1. Mapping using Percent-Encoding

3.4.2. Mapping using Punycode

3.4.3. Additional Considerations

3.5. Mapping query components

3.6. Mapping IRIs to URIs

3.7. Converting URIs to IRIs

3.7.1. Examples

4. Use of IRIs

4.1. Limitations on UCS Characters Allowed in IRIs

4.2. Software Interfaces and Protocols

4.3. Format of URIs and IRIs in Documents and Protocols

4.4. Use of UTF-8 for Encoding Original Characters

4.5. Relative IRI References

5. Liberal Handling of Otherwise Invalid IRIs

5.1. LEIRI Processing

6. Characters Not Allowed in IRIs

7. URI/IRI Processing Guidelines (Informative)

7.1. URI/IRI Software Interfaces

7.2. URI/IRI Entry

7.3. URI/IRI Transfer between Applications

7.4. URI/IRI Generation

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.5. URI/IRI Selection

7.6. Display of URIs/IRIs

7.7. Interpretation of URIs and IRIs

7.8. Upgrading Strategy

8. IANA Considerations

9. Security Considerations

10. Acknowledgements

11. Main Changes Since RFC 3987

11.1. Split out Bidi, processing guidelines, comparison sections

11.2. Major restructuring of IRI processing model

11.2.1. OLD WAY

11.2.2. NEW WAY

11.2.3. Extension of Syntax

11.2.4. More to be added

11.3. Change Log

11.3.1. Changes after draft-ietf-iri-3987bis-01

11.3.2. Changes from draft-duerst-iri-bis-07 to draft-ietf-

iri-3987bis-00

11.3.3. Changes from -06 to -07 of draft-duerst-iri-bis

11.4. Changes from -00 to -01

11.5. Changes from -05 to -06 of draft-duerst-iri-bis-00

11.6. Changes from -04 to -05 of draft-duerst-iri-bis

11.7. Changes from -03 to -04 of draft-duerst-iri-bis

11.8. Changes from -02 to -03 of draft-duerst-iri-bis

11.9. Changes from -01 to -02 of draft-duerst-iri-bis

11.10. Changes from -00 to -01 of draft-duerst-iri-bis

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

11.11. Changes from RFC 3987 to -00 of draft-duerst-iri-bis

12. References

12.1. Normative References

12.2. Informative References

Authors' Addresses

1. Introduction

1.1. Overview and Motivation

A Uniform Resource Identifier (URI) is defined in [RFC3986] as a

sequence of characters chosen from a limited subset of the repertoire

of US-ASCII [ASCII] characters.

The characters in URIs are frequently used for representing words of

natural languages. This usage has many advantages: Such URIs are easier

to memorize, easier to interpret, easier to transcribe, easier to

create, and easier to guess. For most languages other than English,

however, the natural script uses characters other than A - Z. For many

people, handling Latin characters is as difficult as handling the

characters of other scripts is for those who use only the Latin

alphabet. Many languages with non-Latin scripts are transcribed with

Latin letters. These transcriptions are now often used in URIs, but

they introduce additional difficulties.

The infrastructure for the appropriate handling of characters from

additional scripts is now widely deployed in operating system and

application software. Software that can handle a wide variety of

scripts and languages at the same time is increasingly common. Also, an

increasing number of protocols and formats can carry a wide range of

characters.

URIs are used both as a protocol element (for transmission and

processing by software) and also a presentation element (for display

and handling by people who read, interpret, coin, or guess them). The

transition between these roles is more difficult and complex when

dealing with the larger set of characters than allowed for URIs in

[RFC3986].

This document defines the protocol element called Internationalized

Resource Identifier (IRI), which allow applications of URIs to be

extended to use resource identifiers that have a much wider repertoire

of characters. It also provides corresponding "internationalized"

versions of other constructs from [RFC3986], such as URI references.

The syntax of IRIs is defined in Section 2.

Using characters outside of A - Z in IRIs adds a number of

difficulties. Section 4 discusses the use of IRIs in different

situations. Section 7 gives additional informative guidelines. Section

9 discusses IRI-specific security considerations.

*

*

*

*

*

a.

b.

c.

[Bidi] discusses the special case of bidirectional IRIs using

characters from scripts written right-to-left. [Equivalence] gives

guidelines for applications wishing to determine if two IRIs are

equivalent, as well as defining some equivalence methods. [RFC4395bis]

updates the URI scheme registration guidelines and proceedures to note

that every URI scheme is also automatically an IRI scheme and to allow

scheme definitions to be directly described in terms of Unicode

characters.

When originally defining IRIs, several design alternatives were

considered. Historically interested readers can find an overview in

Appendix A of [RFC3987]. For some additional background on the design

of URIs and IRIs, please also see [Gettys].

1.2. Applicability

IRIs are designed to allow protocols and software that deal with URIs

to be updated to handle IRIs. Processing of IRIs is accomplished by

extending the URI syntax while retaining (and not expanding) the set of

"reserved" characters, such that the syntax for any URI scheme may be

extended to allow non-ASCII characters. In addition, following parsing

of an IRI, it is possible to construct a corresponding URI by first

encoding characters outside of the allowed URI range and then

reassembling the components.

Practical use of IRIs forms in place of URIs forms depends on the

following conditions being met:

A protocol or format element MUST be explicitly designated to be

able to carry IRIs. The intent is to avoid introducing IRIs into

contexts that are not defined to accept them. For example, XML

schema [XMLSchema] has an explicit type "anyURI" that includes IRIs

and IRI references. Therefore, IRIs and IRI references can be in

attributes and elements of type "anyURI". On the other hand, in the

[RFC2616] definition of HTTP/1.1, the Request URI is defined as a

URI, which means that direct use of IRIs is not allowed in HTTP

requests.

The protocol or format carrying the IRIs MUST have a mechanism to

represent the wide range of characters used in IRIs, either natively

or by some protocol- or format-specific escaping mechanism (for

example, numeric character references in [XML1]).

The URI scheme definition, if it explicitly allows a percent sign

("%") in any syntactic component, SHOULD define the interpretation

of sequences of percent-encoded octets (using "%XX" hex octets) as

octet from sequences of UTF-8 encoded strings; this is recommended

in the guidelines for registering new schemes, [RFC4395bis]. For

example, this is the practice for IMAP URLs [RFC2192], POP URLs

[RFC2384] and the URN syntax [RFC2141]). Note that use of percent-

encoding may also be restricted in some situations, for example, URI

character:

octet:

character repertoire:

sequence of characters:

sequence of octets:

character encoding:

charset:

UCS:

IRI reference:

LEIRI (Legacy Extended IRI) processing:

running text:

schemes that disallow percent-encoding might still be used with a

fragment identifier which is percent-encoded (e.g., [XPointer]).

See Section 4.4 for further discussion.

1.3. Definitions

The following definitions are used in this document; they follow the

terms in [RFC2130], [RFC2277], and [ISO10646].

A member of a set of elements used for the organization,

control, or representation of data. For example, "LATIN CAPITAL

LETTER A" names a character.

An ordered sequence of eight bits considered as a unit.

A set of characters (set in the mathematical

sense).

A sequence of characters (one after another).

A sequence of octets (one after another).

A method of representing a sequence of characters

as a sequence of octets (maybe with variants). Also, a method of

(unambiguously) converting a sequence of octets into a sequence of

characters.

The name of a parameter or attribute used to identify a

character encoding.

Universal Character Set. The coded character set defined by ISO/

IEC 10646 [ISO10646] and the Unicode Standard [UNIV6].

Denotes the common usage of an Internationalized

Resource Identifier. An IRI reference may be absolute or relative.

However, the "IRI" that results from such a reference only includes

absolute IRIs; any relative IRI references are resolved to their

absolute form. Note that in [RFC2396] URIs did not include fragment

identifiers, but in [RFC3986] fragment identifiers are part of URIs.

This term was used in various

XML specifications to refer to strings that, although not valid

IRIs, were acceptable input to the processing rules in Section 5.1.

Human text (paragraphs, sentences, phrases) with syntax

according to orthographic conventions of a natural language, as

protocol element:

presentation element:

create (a URI or IRI):

generate (a URI or IRI):

parsed URI component:

parsed IRI component:

IRI scheme:

opposed to syntax defined for ease of processing by machines (e.g.,

markup, programming languages).

Any portion of a message that affects processing of

that message by the protocol in question.

A presentation form corresponding to a protocol

element; for example, using a wider range of characters.

With respect to URIs and IRIs, the term is used

for the initial creation. This may be the initial creation of a

resource with a certain identifier, or the initial exposition of a

resource under a particular identifier.

With respect to URIs and IRIs, the term is

used when the identifier is generated by derivation from other

information.

When a URI processor parses a URI (following the

generic syntax or a scheme-specific syntax, the result is a set of

parsed URI components, each of which has a type (corresponding to

the syntactic definition) and a sequence of URI characters.

When an IRI processor parses an IRI directly,

following the general syntax or a scheme-specific syntax, the result

is a set of parsed IRI components, each of which has a type

(corresponding to the syntactice definition) and a sequence of IRI

characters. (This definition is analogous to "parsed URI

component".)

A URI scheme may also be known as an "IRI scheme" if the

scheme's syntax has been extended to allow non-US-ASCII characters

according to the rules in this document.

1.4. Notation

RFCs and Internet Drafts currently do not allow any characters outside

the US-ASCII repertoire. Therefore, this document uses various special

notations to denote such characters in examples.

In text, characters outside US-ASCII are sometimes referenced by using

a prefix of 'U+', followed by four to six hexadecimal digits.

To represent characters outside US-ASCII in examples, this document

uses 'XML Notation'.

XML Notation uses a leading '&#x', a trailing ';', and the hexadecimal

number of the character in the UCS in between. For example, я

stands for CYRILLIC CAPITAL LETTER YA. In this notation, an actual '&'

is denoted by '&'.

To denote actual octets in examples (as opposed to percent-encoded

octets), the two hex digits denoting the octet are enclosed in "<" and

">". For example, the octet often denoted as 0xc9 is denoted here as

<c9>.

In this document, the key words "MUST", "MUST NOT", "REQUIRED",

"SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and

"OPTIONAL" are to be interpreted as described in [RFC2119].

2. IRI Syntax

This section defines the syntax of Internationalized Resource

Identifiers (IRIs).

As with URIs, an IRI is defined as a sequence of characters, not as a

sequence of octets. This definition accommodates the fact that IRIs may

be written on paper or read over the radio as well as stored or

transmitted digitally. The same IRI might be represented as different

sequences of octets in different protocols or documents if these

protocols or documents use different character encodings (and/or

transfer encodings). Using the same character encoding as the

containing protocol or document ensures that the characters in the IRI

can be handled (e.g., searched, converted, displayed) in the same way

as the rest of the protocol or document.

2.1. Summary of IRI Syntax

The IRI syntax extends the URI syntax in [RFC3986] by extending the

class of unreserved characters, primarily by adding the characters of

the UCS (Universal Character Set, [ISO10646]) beyond U+007F, subject to

the limitations given in the syntax rules below and in Section 4.1.

The syntax and use of components and reserved characters is the same as

that in [RFC3986]. Each "URI scheme" thus also functions as an "IRI

scheme", in that scheme-specific parsing rules for URIs of a scheme are

be extended to allow parsing of IRIs using the same parsing rules.

All the operations defined in [RFC3986], such as the resolution of

relative references, can be applied to IRIs by IRI-processing software

in exactly the same way as they are for URIs by URI-processing

software.

Characters outside the US-ASCII repertoire MUST NOT be reserved and

therefore MUST NOT be used for syntactical purposes, such as to delimit

components in newly defined schemes. For example, U+00A2, CENT SIGN, is

not allowed as a delimiter in IRIs, because it is in the 'iunreserved'

category. This is similar to the fact that it is not possible to use

'-' as a delimiter in URIs, because it is in the 'unreserved' category.

2.2. ABNF for IRI References and IRIs

An ABNF definition for IRI references (which are the most general

concept and the start of the grammar) and IRIs is given here. The

syntax of this ABNF is described in [STD68]. Character numbers are

taken from the UCS, without implying any actual binary encoding.

Terminals in the ABNF are characters, not octets.

The following grammar closely follows the URI grammar in [RFC3986],

except that the range of unreserved characters is expanded to include

UCS characters, with the restriction that private UCS characters can

occur only in query parts. The grammar is split into two parts: Rules

that differ from [RFC3986] because of the above-mentioned expansion,

and rules that are the same as those in [RFC3986]. For rules that are

different than those in [RFC3986], the names of the non-terminals have

been changed as follows. If the non-terminal contains 'URI', this has

been changed to 'IRI'. Otherwise, an 'i' has been prefixed. The rule

<pct-form> has been introduced in order to be able to reference it from

other parts of the document.

The following rules are different from those in [RFC3986]:

IRI = scheme ":" ihier-part ["?" iquery]

 ["#" ifragment]

ihier-part = "//" iauthority ipath-abempty

 / ipath-absolute

 / ipath-rootless

 / ipath-empty

IRI-reference = IRI / irelative-ref

absolute-IRI = scheme ":" ihier-part ["?" iquery]

irelative-ref = irelative-part ["?" iquery] ["#" ifragment]

irelative-part = "//" iauthority ipath-abempty

 / ipath-absolute

 / ipath-noscheme

 / ipath-empty

iauthority = [iuserinfo "@"] ihost [":" port]

iuserinfo = *(iunreserved / pct-form / sub-delims / ":")

ihost = IP-literal / IPv4address / ireg-name

pct-form = pct-encoded

ireg-name = *(iunreserved / sub-delims)

ipath = ipath-abempty ; begins with "/" or is empty

 / ipath-absolute ; begins with "/" but not "//"

 / ipath-noscheme ; begins with a non-colon segment

 / ipath-rootless ; begins with a segment

 / ipath-empty ; zero characters

ipath-abempty = *(path-sep isegment)

ipath-absolute = path-sep [isegment-nz *(path-sep isegment)]

ipath-noscheme = isegment-nz-nc *(path-sep isegment)

ipath-rootless = isegment-nz *(path-sep isegment)

ipath-empty = 0<ipchar>

path-sep = "/"

isegment = *ipchar

isegment-nz = 1*ipchar

isegment-nz-nc = 1*(iunreserved / pct-form / sub-delims

 / "@")

 ; non-zero-length segment without any colon ":"

ipchar = iunreserved / pct-form / sub-delims / ":"

 / "@"

iquery = *(ipchar / iprivate / "/" / "?")

ifragment = *(ipchar / "/" / "?")

iunreserved = ALPHA / DIGIT / "-" / "." / "_" / "~" / ucschar

ucschar = %xA0-D7FF / %xF900-FDCF / %xFDF0-FFEF

 / %x10000-1FFFD / %x20000-2FFFD / %x30000-3FFFD

 / %x40000-4FFFD / %x50000-5FFFD / %x60000-6FFFD

 / %x70000-7FFFD / %x80000-8FFFD / %x90000-9FFFD

 / %xA0000-AFFFD / %xB0000-BFFFD / %xC0000-CFFFD

 / %xD0000-DFFFD / %xE1000-EFFFD

iprivate = %xE000-F8FF / %xE0000-E0FFF / %xF0000-FFFFD

 / %x100000-10FFFD

Some productions are ambiguous. The "first-match-wins" (a.k.a.

"greedy") algorithm applies. For details, see [RFC3986].

The following rules are the same as those in [RFC3986]:

scheme = ALPHA *(ALPHA / DIGIT / "+" / "-" / ".")

port = *DIGIT

IP-literal = "[" (IPv6address / IPvFuture) "]"

IPvFuture = "v" 1*HEXDIG "." 1*(unreserved / sub-delims / ":")

IPv6address = 6(h16 ":") ls32

 / "::" 5(h16 ":") ls32

 / [h16] "::" 4(h16 ":") ls32

 / [*1(h16 ":") h16] "::" 3(h16 ":") ls32

 / [*2(h16 ":") h16] "::" 2(h16 ":") ls32

 / [*3(h16 ":") h16] "::" h16 ":" ls32

 / [*4(h16 ":") h16] "::" ls32

 / [*5(h16 ":") h16] "::" h16

 / [*6(h16 ":") h16] "::"

h16 = 1*4HEXDIG

ls32 = (h16 ":" h16) / IPv4address

IPv4address = dec-octet "." dec-octet "." dec-octet "." dec-octet

dec-octet = DIGIT ; 0-9

 / %x31-39 DIGIT ; 10-99

 / "1" 2DIGIT ; 100-199

 / "2" %x30-34 DIGIT ; 200-249

 / "25" %x30-35 ; 250-255

pct-encoded = "%" HEXDIG HEXDIG

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"

reserved = gen-delims / sub-delims

gen-delims = ":" / "/" / "?" / "#" / "[" / "]" / "@"

sub-delims = "!" / "$" / "&" / "'" / "(" / ")"

 / "*" / "+" / "," / ";" / "="

This syntax does not support IPv6 scoped addressing zone identifiers.

3. Processing IRIs and related protocol elements

IRIs are meant to replace URIs in identifying resources within new

versions of protocols, formats, and software components that use a UCS-

based character repertoire. Protocols and components may use and

process IRIs directly. However, there are still numerous systems and

protocols which only accept URIs or components of parsed URIs; that is,

they only accept sequences of characters within the subset of US-ASCII

characters allowed in URIs.

This section defines specific processing steps for IRI consumers which

establish the relationship between the string given and the interpreted

derivatives. These processing steps apply to both IRIs and IRI

references (i.e., absolute or relative forms); for IRIs, some steps are

scheme specific.

3.1. Converting to UCS

Input that is already in a Unicode form (i.e., a sequence of Unicode

characters or an octet-stream representing a Unicode-based character

encoding such as UTF-8 or UTF-16) should be left as is and not

normalized or changed.

An IRI or IRI reference is a sequence of characters from the UCS. For

resource identifiers that are not already in a Unicode form (as when

written on paper, read aloud, or represented in a text stream using a

legacy character encoding), convert the IRI to Unicode. Note that some

character encodings or transcriptions can be converted to or

represented by more than one sequence of Unicode characters. Ideally

the resulting IRI would use a normalized form, such as Unicode

Normalization Form C [UTR15], since that ensures a stable, consistent

representation that is most likely to produce the intended results.

Implementers and users are cautioned that, while denormalized character

sequences are valid, they might be difficult for other users or

processes to reproduce and might lead to unexpected results.

In other cases (written on paper, read aloud, or otherwise represented

independent of any character encoding) represent the IRI as a sequence

of characters from the UCS normalized according to Unicode

Normalization Form C (NFC, [UTR15]).

3.2. Parse the IRI into IRI components

Parse the IRI, either as a relative reference (no scheme) or using

scheme specific processing (according to the scheme given); the result

is a set of parsed IRI components.

3.3. General percent-encoding of IRI components

Except as noted in the following subsections, IRI components are mapped

to the equivalent URI components by percent-encoding those characters

not allowed in URIs. Previous processing steps will have removed some

characters, and the interpretation of reserved characters will have

already been done (with the syntactic reserved characters outside of

the IRI component). This mapping is defined for all sequences of

Unicode characters, whether or not they are valid for the component in

question.

For each character which is not allowed anywhere in a valid URI apply

the following steps.

Convert to UTF-8

Percent encode

Note:

Convert the character to a sequence of one or more

octets using UTF-8 [RFC3629].

Convert each octet of this sequence to %HH, where HH is

the hexadecimal notation of the octet value. The hexadecimal

notation SHOULD use uppercase letters. (This is the general URI

percent-encoding mechanism in Section 2.1 of [RFC3986].)

Note that the mapping is an identity transformation for parsed URI

components of valid URIs, and is idempotent: applying the mapping a

second time will not change anything.

3.4. Mapping ireg-name

3.4.1. Mapping using Percent-Encoding

The ireg-name component SHOULD be converted according to the general

procedure for percent-encoding of IRI components described in Section

3.3.

For example, the IRI

"http://résumé.example.org"

will be converted to

"http://r%C3%A9sum%C3%A9.example.org".

This conversion for ireg-name is in line with Section 3.2.2 of

[RFC3986], which does not mandate a particular registered name lookup

technology. For further background, see [RFC6055] and [Gettys].

3.4.2. Mapping using Punycode

The ireg-name component MAY also be converted as follows:

Replace the ireg-name part of the IRI by the part converted using the

Domain Name Lookup procedure (Subsections 5.3 to 5.5) of [RFC5891]. on

each dot-separated label, and by using U+002E (FULL STOP) as a label

separator. This procedure may fail, but this would mean that the IRI

cannot be resolved. In such cases, if the domain name conversion fails,

then the entire IRI conversion fails. Processors that have no mechanism

for signalling a failure MAY instead substitute an otherwise invalid

host name, although such processing SHOULD be avoided.

For example, the IRI

"http://résumé.example.org"

MAY be converted to

"http://xn--rsum-bad.example.org"

.

This conversion for ireg-name will be better able to deal with legacy

infrastructure that cannot handle percent-encoding in domain names.

3.4.3. Additional Considerations

Note:

Domain Names may appear in parts of an IRI other than the ireg-name

part. It is the responsibility of scheme-specific implementations

(if the Internationalized Domain Name is part of the scheme syntax)

or of server-side implementations (if the Internationalized Domain

Name is part of 'iquery') to apply the necessary conversions at the

appropriate point. Example: Trying to validate the Web page at

http://résumé.example.org would lead to an IRI of

http://validator.w3.org/check?uri=http%3A%2F%2Frésumé.

example.org, which would convert to a URI of

http://validator.w3.org/check?uri=http%3A%2F%2Fr%C3%A9sum%C3%A9.

example.org. The server-side implementation is responsible for

making the necessary conversions to be able to retrieve the Web

page.

In this process, characters allowed in URI references and

existing percent-encoded sequences are not encoded further. (This

mapping is similar to, but different from, the encoding applied when

arbitrary content is included in some part of a URI.) For example,

an IRI of

"http://www.example.org/red%09rosé#red" (in XML notation) is

converted to

"http://www.example.org/red%09ros%C3%A9#red", not to something like

"http%3A%2F%2Fwww.example.org%2Fred%2509ros%C3%A9%23red".

3.5. Mapping query components

For compatibility with existing deployed HTTP infrastructure, the

following special case applies for schemes "http" and "https" and IRIs

whose origin has a document charset other than one which is UCS-based

(e.g., UTF-8 or UTF-16). In such a case, the "query" component of an

IRI is mapped into a URI by using the document charset rather than

UTF-8 as the binary representation before pct-encoding. This mapping is

not applied for any other scheme or component.

3.6. Mapping IRIs to URIs

The mapping from an IRI to URI is accomplished by applying the mapping

above (from IRI to URI components) and then reassembling a URI from the

parsed URI components using the original punctuation that delimited the

IRI components.

3.7. Converting URIs to IRIs

In some situations, for presentation and further processing, it is

desirable to convert a URI into an equivalent IRI in which natural

characters are represented directly rather than percent encoded. Of

course, every URI is already an IRI in its own right without any

conversion, and in general there This section gives one such procedure

for this conversion.

1.

2.

3.

4.

1.

2.

3.

4.

5.

6.

The conversion described in this section, if given a valid URI, will

result in an IRI that maps back to the URI used as an input for the

conversion (except for potential case differences in percent-encoding

and for potential percent-encoded unreserved characters). However, the

IRI resulting from this conversion may differ from the original IRI (if

there ever was one).

URI-to-IRI conversion removes percent-encodings, but not all percent-

encodings can be eliminated. There are several reasons for this:

Some percent-encodings are necessary to distinguish percent-encoded

and unencoded uses of reserved characters.

Some percent-encodings cannot be interpreted as sequences of UTF-8

octets.

(Note: The octet patterns of UTF-8 are highly regular. Therefore,

there is a very high probability, but no guarantee, that percent-

encodings that can be interpreted as sequences of UTF-8 octets

actually originated from UTF-8. For a detailed discussion, see

[Duerst97].)

The conversion may result in a character that is not appropriate in

an IRI. See Section 2.2, and Section 4.1 for further details.

IRI to URI conversion has different rules for dealing with domain

names and query parameters.

Conversion from a URI to an IRI MAY be done by using the following

steps:

Represent the URI as a sequence of octets in US-ASCII.

Convert all percent-encodings ("%" followed by two hexadecimal

digits) to the corresponding octets, except those corresponding to

"%", characters in "reserved", and characters in US-ASCII not

allowed in URIs.

Re-percent-encode any octet produced in step 2 that is not part of

a strictly legal UTF-8 octet sequence.

Re-percent-encode all octets produced in step 3 that in UTF-8

represent characters that are not appropriate according to Section

2.2 and Section 4.1.

Interpret the resulting octet sequence as a sequence of characters

encoded in UTF-8.

URIs known to contain domain names in the reg-name component SHOULD

convert punycode-encoded domain name labels to the corresponding

characters using the ToUnicode procedure.

1.

2.

3.

4.

5.

6.

1.

2.

3.

4.

This procedure will convert as many percent-encoded characters as

possible to characters in an IRI. Because there are some choices when

step 4 is applied (see Section 4.1), results may vary.

Conversions from URIs to IRIs MUST NOT use any character encoding other

than UTF-8 in steps 3 and 4, even if it might be possible to guess from

the context that another character encoding than UTF-8 was used in the

URI. For example, the URI "http://www.example.org/r%E9sum%E9.html"

might with some guessing be interpreted to contain two e-acute

characters encoded as iso-8859-1. It must not be converted to an IRI

containing these e-acute characters. Otherwise, in the future the IRI

will be mapped to "http://www.example.org/r%C3%A9sum%C3%A9.html", which

is a different URI from "http://www.example.org/r%E9sum%E9.html".

3.7.1. Examples

This section shows various examples of converting URIs to IRIs. Each

example shows the result after each of the steps 1 through 6 is

applied. XML Notation is used for the final result. Octets are denoted

by "<" followed by two hexadecimal digits followed by ">".

The following example contains the sequence "%C3%BC", which is a

strictly legal UTF-8 sequence, and which is converted into the actual

character U+00FC, LATIN SMALL LETTER U WITH DIAERESIS (also known as u-

umlaut).

http://www.example.org/D%C3%BCrst

http://www.example.org/D<c3><bc>rst

http://www.example.org/D<c3><bc>rst

http://www.example.org/D<c3><bc>rst

http://www.example.org/Dürst

http://www.example.org/Dürst

The following example contains the sequence "%FC", which might

represent U+00FC, LATIN SMALL LETTER U WITH DIAERESIS, in the

iso-8859-1 character encoding. (It might represent other characters in

other character encodings. For example, the octet <fc> in iso-8859-5

represents U+045C, CYRILLIC SMALL LETTER KJE.) Because <fc> is not part

of a strictly legal UTF-8 sequence, it is re-percent-encoded in step 3.

http://www.example.org/D%FCrst

http://www.example.org/D<fc>rst

http://www.example.org/D%FCrst

http://www.example.org/D%FCrst

5.

6.

1.

2.

3.

4.

5.

6.

a.

b.

http://www.example.org/D%FCrst

http://www.example.org/D%FCrst

The following example contains "%e2%80%ae", which is the percent-

encoded

UTF-8 character encoding of U+202E, RIGHT-TO-LEFT OVERRIDE. The direct

use of this character is forbiddin in an IRI. Therefore, the

corresponding octets are re-percent-encoded in step 4. This example

shows that the case (upper- or lowercase) of letters used in percent-

encodings may not be preserved. The example also contains a punycode-

encoded domain name label (xn--99zt52a), which is not converted.

http://xn--99zt52a.example.org/%e2%80%ae

http://xn--99zt52a.example.org/<e2><80><ae>

http://xn--99zt52a.example.org/<e2><80><ae>

http://xn--99zt52a.example.org/%E2%80%AE

http://xn--99zt52a.example.org/%E2%80%AE

http://納豆.example.org/%E2%80%AE

Note that the label "xn--99zt52a" is converted to U+7D0D U+8C46

(Japanese Natto). ((EDITOR NOTE: There is some inconsistency in this

note.))

4. Use of IRIs

4.1. Limitations on UCS Characters Allowed in IRIs

This section discusses limitations on characters and character

sequences usable for IRIs beyond those given in Section 2.2. The

considerations in this section are relevant when IRIs are created and

when URIs are converted to IRIs.

The repertoire of characters allowed in each IRI component is

limited by the definition of that component. For example, the

definition of the scheme component does not allow characters beyond

US-ASCII.

(Note: In accordance with URI practice, generic IRI software cannot

and should not check for such limitations.)

The UCS contains many areas of characters for which there are

strong visual look-alikes. Because of the likelihood of

transcription errors, these also should be avoided. This includes

the full-width equivalents of Latin characters, half-width Katakana

characters for Japanese, and many others. It also includes many

look-alikes of "space", "delims", and "unwise", characters excluded

in [RFC3491].

Additional information is available from [UNIXML]. [UNIXML] is written

in the context of running text rather than in that of identifiers.

Nevertheless, it discusses many of the categories of characters not

appropriate for IRIs.

4.2. Software Interfaces and Protocols

Although an IRI is defined as a sequence of characters, software

interfaces for URIs typically function on sequences of octets or other

kinds of code units. Thus, software interfaces and protocols MUST

define which character encoding is used.

Intermediate software interfaces between IRI-capable components and

URI-only components MUST map the IRIs per Section 3.6, when

transferring from IRI-capable to URI-only components. This mapping

SHOULD be applied as late as possible. It SHOULD NOT be applied between

components that are known to be able to handle IRIs.

4.3. Format of URIs and IRIs in Documents and Protocols

Document formats that transport URIs may have to be upgraded to allow

the transport of IRIs. In cases where the document as a whole has a

native character encoding, IRIs MUST also be encoded in this character

encoding and converted accordingly by a parser or interpreter. IRI

characters not expressible in the native character encoding SHOULD be

escaped by using the escaping conventions of the document format if

such conventions are available. Alternatively, they MAY be percent-

encoded according to Section 3.6. For example, in HTML or XML, numeric

character references SHOULD be used. If a document as a whole has a

native character encoding and that character encoding is not UTF-8,

then IRIs MUST NOT be placed into the document in the UTF-8 character

encoding.

((UPDATE THIS NOTE)) Note: Some formats already accommodate IRIs,

although they use different terminology. HTML 4.0 [HTML4] defines the

conversion from IRIs to URIs as error-avoiding behavior. XML 1.0

[XML1], XLink [XLink], XML Schema [XMLSchema], and specifications based

upon them allow IRIs. Also, it is expected that all relevant new W3C

formats and protocols will be required to handle IRIs [CharMod].

4.4. Use of UTF-8 for Encoding Original Characters

This section discusses details and gives examples for point c) in

Section 1.2. To be able to use IRIs, the URI corresponding to the IRI

in question has to encode original characters into octets by using

UTF-8. This can be specified for all URIs of a URI scheme or can apply

to individual URIs for schemes that do not specify how to encode

original characters. It can apply to the whole URI, or only to some

part. For background information on encoding characters into URIs, see

also Section 2.5 of [RFC3986].

For new URI schemes, using UTF-8 is recommended in [RFC4395bis].

Examples where UTF-8 is already used are the URN syntax [RFC2141], IMAP

URLs [RFC2192], and POP URLs [RFC2384]. On the other hand, because the

HTTP URI scheme does not specify how to encode original characters,

only some HTTP URLs can have corresponding but different IRIs.

For example, for a document with a URI of

"http://www.example.org/r%C3%A9sum%C3%A9.html", it is possible to

construct a corresponding IRI (in XML notation, see Section 1.4):

"http://www.example.org/résumé.html" ("é" stands for the

e-acute character, and "%C3%A9" is the UTF-8 encoded and percent-

encoded representation of that character). On the other hand, for a

document with a URI of "http://www.example.org/r%E9sum%E9.html", the

percent-encoding octets cannot be converted to actual characters in an

IRI, as the percent-encoding is not based on UTF-8.

For most URI schemes, there is no need to upgrade their scheme

definition in order for them to work with IRIs. The main case where

upgrading makes sense is when a scheme definition, or a particular

component of a scheme, is strictly limited to the use of US-ASCII

characters with no provision to include non-ASCII characters/octets via

percent-encoding, or if a scheme definition currently uses highly

scheme-specific provisions for the encoding of non-ASCII characters. An

example of this is the mailto: scheme [RFC2368].

This specification updates the IANA registry of URI schemes to note

their applicability to IRIs, see Section 8. All IRIs use URI schemes,

and all URIs with URI schemes can be used as IRIs, even though in some

cases only by using URIs directly as IRIs, without any conversion.

Scheme definitions can impose restrictions on the syntax of scheme-

specific URIs; i.e., URIs that are admissible under the generic URI

syntax [RFC3986] may not be admissible due to narrower syntactic

constraints imposed by a URI scheme specification. URI scheme

definitions cannot broaden the syntactic restrictions of the generic

URI syntax; otherwise, it would be possible to generate URIs that

satisfied the scheme-specific syntactic constraints without satisfying

the syntactic constraints of the generic URI syntax. However,

additional syntactic constraints imposed by URI scheme specifications

are applicable to IRI, as the corresponding URI resulting from the

mapping defined in Section 3.6 MUST be a valid URI under the syntactic

restrictions of generic URI syntax and any narrower restrictions

imposed by the corresponding URI scheme specification.

The requirement for the use of UTF-8 generally applies to all parts of

a URI. However, it is possible that the capability of IRIs to represent

a wide range of characters directly is used just in some parts of the

IRI (or IRI reference). The other parts of the IRI may only contain US-

ASCII characters, or they may not be based on UTF-8. They may be based

on another character encoding, or they may directly encode raw binary

data (see also [RFC2397]).

For example, it is possible to have a URI reference of

"http://www.example.org/r%E9sum%E9.xml#r%C3%A9sum%C3%A9", where the

document name is encoded in iso-8859-1 based on server settings, but

where the fragment identifier is encoded in UTF-8 according to

[XPointer]. The IRI corresponding to the above URI would be (in XML

notation)

"http://www.example.org/r%E9sum%E9.xml#résumé".

Similar considerations apply to query parts. The functionality of IRIs

(namely, to be able to include non-ASCII characters) can only be used

if the query part is encoded in UTF-8.

4.5. Relative IRI References

Processing of relative IRI references against a base is handled

straightforwardly; the algorithms of [RFC3986] can be applied directly,

treating the characters additionally allowed in IRI references in the

same way that unreserved characters are in URI references.

5. Liberal Handling of Otherwise Invalid IRIs

Some technical specifications and widely-deployed software have allowed

additional variations and extensions of IRIs to be used in syntactic

components.

Future technical specifications SHOULD NOT allow conforming producers

to produce, or conforming content to contain, such forms, as they are

not interoperable with other IRI consuming software.

5.1. LEIRI Processing

This section defines Legacy Extended IRIs (LEIRIs). The syntax of

Legacy Extended IRIs is the same as that for <IRI-reference>, except

that the ucschar production is replaced by the leiri-ucschar

production:

 leiri-ucschar = " " / "<" / ">" / '"' / "{" / "}" / "|"

 / "\" / "^" / "`" / %x0-1F / %x7F-D7FF

 / %xE000-FFFD / %x10000-10FFFF

Among other extensions, processors based on this specification also did

not enforce the restriction on bidirectional formatting characters in

[Bidi], and the iprivate production becomes redundant.

To convert a string allowed as a LEIRI to an IRI, each character

allowed in leiri-ucschar but not in ucschar must be percent-encoded

using Section 3.3.

6. Characters Not Allowed in IRIs

This section provides a list of the groups of characters and code

points that are allowed in some contexts but are not allowed in IRIs or

are allowed in IRIs only in the query part. For each group of

characters, advice on the usage of these characters is also given,

concentrating on the reasons for why they are excluded from IRI use.

Space (U+0020): Some formats and applications use space as a

delimiter, e.g. for items in a list. Appendix C of [RFC3986] also

mentions that white space may have to be added when displaying or

printing long URIs; the same applies to long IRIs. This means

that spaces can disappear, or can make the what is intended as a

single IRI or IRI reference to be treated as two or more separate

IRIs.

Delimiters "<" (U+003C), ">" (U+003E), and '"' (U+0022): Appendix

C of [RFC3986] suggests the use of double-quotes ("http://

example.com/") and angle brackets (<http://example.com/>) as

delimiters for URIs in plain text. These conventions are often

used, and also apply to IRIs. Using these characters in strings

intended to be IRIs would result in the IRIs being cut off at the

wrong place.

Unwise characters "\" (U+005C), "^" (U+005E), "`" (U+0060), "{"

(U+007B), "|" (U+007C), and "}" (U+007D): These characters

originally have been excluded from URIs because the respective

codepoints are assigned to different graphic characters in some

7-bit or 8-bit encoding. Despite the move to Unicode, some of

these characters are still occasionally displayed differently on

some systems, e.g. U+005C may appear as a Japanese Yen symbol on

some systems. Also, the fact that these characters are not used

in URIs or IRIs has encouraged their use outside URIs or IRIs in

contexts that may include URIs or IRIs. If a string with such a

character were used as an IRI in such a context, it would likely

be interpreted piecemeal.

The controls (C0 controls, DEL, and C1 controls, #x0 - #x1F #x7F

- #x9F): There is generally no way to transmit these characters

reliably as text outside of a charset encoding. Even when in

encoded form, many software components silently filter out some

of these characters, or may stop processing alltogether when

encountering some of them. These characters may affect text

display in subtle, unnoticable ways or in drastic, global, and

irreversible ways depending on the hardware and software

involved. The use of some of these characters would allow

malicious users to manipulate the display of an IRI and its

context in many situations.

*

*

*

*

Bidi formatting characters (U+200E, U+200F, U+202A-202E): These

characters affect the display ordering of characters. If IRIs

were allowed to contain these characters and the resulting visual

display transcribed. they could not be converted back to

electronic form (logical order) unambiguously. These characters,

if allowed in IRIs, might allow malicious users to manipulate the

display of IRI and its context.

Specials (U+FFF0-FFFD): These code points provide functionality

beyond that useful in an IRI, for example byte order

identification, annotation, and replacements for unknown

characters and objects. Their use and interpretation in an IRI

would serve no purpose and might lead to confusing display

variations.

Private use code points (U+E000-F8FF, U+F0000-FFFFD,

U+100000-10FFFD): Display and interpretation of these code points

is by definition undefined without private agreement. Therefore,

these code points are not suited for use on the Internet. They

are not interoperable and may have unpredictable effects.

Tags (U+E0000-E0FFF): These characters provide a way to language

tag in Unicode plain text. They are not appropriate for IRIs

because language information in identifiers cannot reliably be

input, transmitted (e.g. on a visual medium such as paper), or

recognized.

Non-characters (U+FDD0-FDEF, U+1FFFE-1FFFF, U+2FFFE-2FFFF,

U+3FFFE-3FFFF, U+4FFFE-4FFFF, U+5FFFE-5FFFF, U+6FFFE-6FFFF,

U+7FFFE-7FFFF, U+8FFFE-8FFFF, U+9FFFE-9FFFF, U+AFFFE-AFFFF,

U+BFFFE-BFFFF, U+CFFFE-CFFFF, U+DFFFE-DFFFF, U+EFFFE-EFFFF,

U+FFFFE-FFFFF, U+10FFFE-10FFFF): These code points are defined as

non-characters. Applications may use some of them internally, but

are not prepared to interchange them.

LEIRI preprocessing disallowed some code points and code units:

Surrogate code units (D800-DFFF): These do not represent Unicode

codepoints.

7. URI/IRI Processing Guidelines (Informative)

This informative section provides guidelines for supporting IRIs in the

same software components and operations that currently process URIs:

Software interfaces that handle URIs, software that allows users to

enter URIs, software that creates or generates URIs, software that

displays URIs, formats and protocols that transport URIs, and software

that interprets URIs. These may all require modification before

functioning properly with IRIs. The considerations in this section also

apply to URI references and IRI references.

*

*

*

*

*

*

7.1. URI/IRI Software Interfaces

Software interfaces that handle URIs, such as URI-handling APIs and

protocols transferring URIs, need interfaces and protocol elements that

are designed to carry IRIs.

In case the current handling in an API or protocol is based on US-

ASCII, UTF-8 is recommended as the character encoding for IRIs, as it

is compatible with US-ASCII, is in accordance with the recommendations

of [RFC2277], and makes converting to URIs easy. In any case, the API

or protocol definition must clearly define the character encoding to be

used.

The transfer from URI-only to IRI-capable components requires no

mapping, although the conversion described in Section 3.7 above may be

performed. It is preferable not to perform this inverse conversion

unless it is certain this can be done correctly.

7.2. URI/IRI Entry

Some components allow users to enter URIs into the system by typing or

dictation, for example. This software must be updated to allow for IRI

entry.

A person viewing a visual representation of an IRI (as a sequence of

glyphs, in some order, in some visual display) or hearing an IRI will

use an entry method for characters in the user's language to input the

IRI. Depending on the script and the input method used, this may be a

more or less complicated process.

The process of IRI entry must ensure, as much as possible, that the

restrictions defined in Section 2.2 are met. This may be done by

choosing appropriate input methods or variants/settings thereof, by

appropriately converting the characters being input, by eliminating

characters that cannot be converted, and/or by issuing a warning or

error message to the user.

As an example of variant settings, input method editors for East Asian

Languages usually allow the input of Latin letters and related

characters in full-width or half-width versions. For IRI input, the

input method editor should be set so that it produces half-width Latin

letters and punctuation and full-width Katakana.

An input field primarily or solely used for the input of URIs/IRIs

might allow the user to view an IRI as it is mapped to a URI. Places

where the input of IRIs is frequent may provide the possibility for

viewing an IRI as mapped to a URI. This will help users when some of

the software they use does not yet accept IRIs.

An IRI input component interfacing to components that handle URIs, but

not IRIs, must map the IRI to a URI before passing it to these

components.

For the input of IRIs with right-to-left characters, please see [Bidi].

7.3. URI/IRI Transfer between Applications

Many applications (for example, mail user agents) try to detect URIs

appearing in plain text. For this, they use some heuristics based on

URI syntax. They then allow the user to click on such URIs and retrieve

the corresponding resource in an appropriate (usually scheme-dependent)

application.

Such applications would need to be upgraded, in order to use the IRI

syntax as a base for heuristics. In particular, a non-ASCII character

should not be taken as the indication of the end of an IRI. Such

applications also would need to make sure that they correctly convert

the detected IRI from the character encoding of the document or

application where the IRI appears, to the character encoding used by

the system-wide IRI invocation mechanism, or to a URI (according to

Section 3.6) if the system-wide invocation mechanism only accepts URIs.

The clipboard is another frequently used way to transfer URIs and IRIs

from one application to another. On most platforms, the clipboard is

able to store and transfer text in many languages and scripts.

Correctly used, the clipboard transfers characters, not octets, which

will do the right thing with IRIs.

7.4. URI/IRI Generation

Systems that offer resources through the Internet, where those

resources have logical names, sometimes automatically generate URIs for

the resources they offer. For example, some HTTP servers can generate a

directory listing for a file directory and then respond to the

generated URIs with the files.

Many legacy character encodings are in use in various file systems.

Many currently deployed systems do not transform the local character

representation of the underlying system before generating URIs.

For maximum interoperability, systems that generate resource

identifiers should make the appropriate transformations. For example,

if a file system contains a file named "résumé.html", a

server should expose this as "r%C3%A9sum%C3%A9.html" in a URI, which

allows use of "résumé.html" in an IRI, even if locally the

file name is kept in a character encoding other than UTF-8.

This recommendation particularly applies to HTTP servers. For FTP

servers, similar considerations apply; see [RFC2640].

7.5. URI/IRI Selection

In some cases, resource owners and publishers have control over the

IRIs used to identify their resources. This control is mostly executed

by controlling the resource names, such as file names, directly.

In these cases, it is recommended to avoid choosing IRIs that are

easily confused. For example, for US-ASCII, the lower-case ell ("l") is

easily confused with the digit one ("1"), and the upper-case oh ("O")

is easily confused with the digit zero ("0"). Publishers should avoid

confusing users with "br0ken" or "1ame" identifiers.

Outside the US-ASCII repertoire, there are many more opportunities for

confusion; a complete set of guidelines is too lengthy to include here.

As long as names are limited to characters from a single script, native

writers of a given script or language will know best when ambiguities

can appear, and how they can be avoided. What may look ambiguous to a

stranger may be completely obvious to the average native user. On the

other hand, in some cases, the UCS contains variants for compatibility

reasons; for example, for typographic purposes. These should be avoided

wherever possible. Although there may be exceptions, newly created

resource names should generally be in NFKC [UTR15] (which means that

they are also in NFC).

As an example, the UCS contains the "fi" ligature at U+FB01 for

compatibility reasons. Wherever possible, IRIs should use the two

letters "f" and "i" rather than the "fi" ligature. An example where the

latter may be used is in the query part of an IRI for an explicit

search for a word written containing the "fi" ligature.

In certain cases, there is a chance that characters from different

scripts look the same. The best known example is the similarity of the

Latin "A", the Greek "Alpha", and the Cyrillic "A". To avoid such

cases, IRIs should only be created where all the characters in a single

component are used together in a given language. This usually means

that all of these characters will be from the same script, but there

are languages that mix characters from different scripts (such as

Japanese). This is similar to the heuristics used to distinguish

between letters and numbers in the examples above. Also, for Latin,

Greek, and Cyrillic, using lowercase letters results in fewer

ambiguities than using uppercase letters would.

7.6. Display of URIs/IRIs

In situations where the rendering software is not expected to display

non-ASCII parts of the IRI correctly using the available layout and

font resources, these parts should be percent-encoded before being

displayed.

For display of Bidi IRIs, please see [Bidi].

7.7. Interpretation of URIs and IRIs

Software that interprets IRIs as the names of local resources should

accept IRIs in multiple forms and convert and match them with the

appropriate local resource names.

First, multiple representations include both IRIs in the native

character encoding of the protocol and also their URI counterparts.

Second, it may include URIs constructed based on character encodings

other than UTF-8. These URIs may be produced by user agents that do not

conform to this specification and that use legacy character encodings

to convert non-ASCII characters to URIs. Whether this is necessary, and

what character encodings to cover, depends on a number of factors, such

as the legacy character encodings used locally and the distribution of

various versions of user agents. For example, software for Japanese may

accept URIs in Shift_JIS and/or EUC-JP in addition to UTF-8.

Third, it may include additional mappings to be more user-friendly and

robust against transmission errors. These would be similar to how some

servers currently treat URIs as case insensitive or perform additional

matching to account for spelling errors. For characters beyond the US-

ASCII repertoire, this may, for example, include ignoring the accents

on received IRIs or resource names. Please note that such mappings,

including case mappings, are language dependent.

It can be difficult to identify a resource unambiguously if too many

mappings are taken into consideration. However, percent-encoded and not

percent-encoded parts of IRIs can always be clearly distinguished.

Also, the regularity of UTF-8 (see [Duerst97]) makes the potential for

collisions lower than it may seem at first.

7.8. Upgrading Strategy

Where this recommendation places further constraints on software for

which many instances are already deployed, it is important to introduce

upgrades carefully and to be aware of the various interdependencies.

If IRIs cannot be interpreted correctly, they should not be created,

generated, or transported. This suggests that upgrading URI

interpreting software to accept IRIs should have highest priority.

On the other hand, a single IRI is interpreted only by a single or very

few interpreters that are known in advance, although it may be entered

and transported very widely.

Therefore, IRIs benefit most from a broad upgrade of software to be

able to enter and transport IRIs. However, before an individual IRI is

published, care should be taken to upgrade the corresponding

interpreting software in order to cover the forms expected to be

received by various versions of entry and transport software.

The upgrade of generating software to generate IRIs instead of using a

local character encoding should happen only after the service is

upgraded to accept IRIs. Similarly, IRIs should only be generated when

the service accepts IRIs and the intervening infrastructure and

protocol is known to transport them safely.

Software converting from URIs to IRIs for display should be upgraded

only after upgraded entry software has been widely deployed to the

population that will see the displayed result.

Where there is a free choice of character encodings, it is often

possible to reduce the effort and dependencies for upgrading to IRIs by

using UTF-8 rather than another encoding. For example, when a new file-

based Web server is set up, using UTF-8 as the character encoding for

file names will make the transition to IRIs easier. Likewise, when a

new Web form is set up using UTF-8 as the character encoding of the

form page, the returned query URIs will use UTF-8 as the character

encoding (unless the user, for whatever reason, changes the character

encoding) and will therefore be compatible with IRIs.

These recommendations, when taken together, will allow for the

extension from URIs to IRIs in order to handle characters other than

US-ASCII while minimizing interoperability problems. For considerations

regarding the upgrade of URI scheme definitions, see Section 4.4.

8. IANA Considerations

RFC Editor and IANA note: Please Replace RFC XXXX with the number of

this document when it issues as an RFC.

IANA maintains a registry of "URI schemes". A "URI scheme" also serves

an "IRI scheme".

To clarify that the URI scheme registration process also applies to

IRIs, change the description of the "URI schemes" registry header to

say "[RFC4395] defines an IANA-maintained registry of URI Schemes.

These registries include the Permanent and Provisional URI Schemes. RFC

XXXX updates this registry to designate that schemes may also indicate

their usability as IRI schemes.

Update "per RFC 4395" to "per RFC 4395 and RFC XXXX".

9. Security Considerations

The security considerations discussed in [RFC3986] also apply to IRIs.

In addition, the following issues require particular care for IRIs.

Incorrect encoding or decoding can lead to security problems. For

example, some UTF-8 decoders do not check against overlong byte

sequences. See [UTR36] Section 3 for details.

There are serious difficulties with relying on a human to verify that a

an IRI (whether presented visually or aurally) is the same as another

IRI or is the one intended. These problems exist with ASCII-only URIs

(bl00mberg.com vs. bloomberg.com) but are strongly exacerbated when

using the much larger character repertoire of Unicode. For details, see

Section 2 of [UTR36]. Using administrative and technical means to

reduce the availability of such exploits is possible, but they are

difficult to eliminate altogether. User agents SHOULD NOT rely on

visual or perceptual comparison or verification of IRIs as a means of

validating or assuring safety, correctness or appropriateness of an

IRI. Other means of presenting users with the validity, safety, or

appropriateness of visited sites are being developed in the browser

community as an alternative means of avoiding these difficulties.

Besides the large character repertoire of Unicode, reasons for

confusion include different forms of normalization and different

normalization expectations, use of percent-encoding with various legacy

encodings, and bidirectionality issues. See also [Bidi].

Confusion can occur in various IRI components, such as the domain name

part or the path part, or between IRI components. For considerations

specific to the domain name part, see [RFC5890]. For considerations

specific to particular protocols or schemes, see the security sections

a

b

c

of the relevant specifications and registration templates.

Administrators of sites that allow independent users to create

resources in the same sub area have to be careful. Details are

discussed in Section 7.5.

The characters additionally allowed in Legacy Extended IRIs introduce

additional security issues. For details, see Section 6.

10. Acknowledgements

This document was derived from [RFC3987]; the acknowledgments from that

specification still apply.

In addition, this document was influenced by contributions from (in no

particular order)Norman Walsh, Richard Tobin, Henry S. Thomson, John

Cowan, Paul Grosso, the XML Core Working Group of the W3C, Chris

Lilley, Bjoern Hoehrmann, Felix Sasaki, Jeremy Carroll, Frank

Ellermann, Michael Everson, Cary Karp, Matitiahu Allouche, Richard

Ishida, Addison Phillips, Jonathan Rosenne, Najib Tounsi, Debbie

Garside, Mark Davis, Sarmad Hussain, Ted Hardie, Konrad Lanz, Thomas

Roessler, Lisa Dusseault, Julian Reschke, Giovanni Campagna, Anne van

Kesteren, Mark Nottingham, Erik van der Poel, Marcin Hanclik, Marcos

Caceres, Roy Fielding, Greg Wilkins, Pieter Hintjens, Daniel R. Tobias,

Marko Martin, Maciej Stanchowiak, Wil Tan, Yui Naruse, Michael A. Puls

II, Dave Thaler, Tom Petch, John Klensin, Shawn Steele, Peter Saint-

Andre, Geoffrey Sneddon, Chris Weber, Alex Melnikov, Slim Amamou, S.

Moonesamy, Tim Berners-Lee, Yaron Goland, Sam Ruby, Adam Barth,

Abdulrahman I. ALGhadir, Aharon Lanin, Thomas Milo, Murray Sargent,

Marc Blanchet, and Mykyta Yevstifeyev.

11. Main Changes Since RFC 3987

This section describes the main changes since [RFC3987].

11.1. Split out Bidi, processing guidelines, comparison sections

Move some components (comparison, bidi, processing) into separate

documents.

11.2. Major restructuring of IRI processing model

Major restructuring of IRI processing model to make scheme-specific

translation necessary to handle IDNA requirements and for consistency

with web implementations.

Starting with IRI, you want one of:

IRI components (IRI parsed into UTF8 pieces)

URI components (URI parsed into ASCII pieces, encoded correctly)

whole URI (for passing on to some other system that wants whole

URIs)

11.2.1. OLD WAY

Pct-encoding on the whole thing to a URI. (c1) If you want a

(maybe broken) whole URI, you might stop here.

Parsing the URI into URI components. (b1) If you want (maybe

broken) URI components, stop here.

Decode the components (undoing the pct-encoding). (a) if you

want IRI components, stop here.

reencode: Either using a different encoding some components

(for domain names, and query components in web pages, which

depends on the component, scheme and context), and otherwise

using pct-encoding. (b2) if you want (good) URI components,

stop here.

reassemble the reencoded components. (c2) if you want a

(*good*) whole URI stop here.

11.2.2. NEW WAY

Parse the IRI into IRI components using the generic syntax. (a)

if you want IRI components, stop here.

Encode each components, using pct-encoding, IDN encoding, or

special query part encoding depending on the component scheme

or context. (b) If you want URI components, stop here.

reassemble the a whole URI from URI components. (c) if you want

a whole URI stop here.

11.2.3. Extension of Syntax

Added the tag range (U+E0000-E0FFF) to the iprivate production. Some

IRIs generated with the new syntax may fail to pass very strict checks

relying on the old syntax. But characters in this range should be

extremely infrequent anyway.

11.2.4. More to be added

TODO: There are more main changes that need to be documented in this

section.

11.3. Change Log

Note to RFC Editor: Please completely remove this section before

publication.

1.

2.

3.

4.

5.

1.

2.

3.

11.3.1. Changes after draft-ietf-iri-3987bis-01

Changes from draft-ietf-iri-3987bis-01 onwards are available as

changesets in the IETF tools subversion repository at http://

trac.tools.ietf.org/wg/iri/trac/log/draft-ietf-iri-3987bis/draft-ietf-

iri-3987bis.xml.

11.3.2. Changes from draft-duerst-iri-bis-07 to draft-ietf-

iri-3987bis-00

Changed draft name, date, last paragraph of abstract, and titles in

change log, and added this section in moving from draft-duerst-iri-

bis-07 (personal submission) to draft-ietf-iri-3987bis-00 (WG

document).

11.3.3. Changes from -06 to -07 of draft-duerst-iri-bis

Major restructuring of the processing model, see Section 11.2.

11.4. Changes from -00 to -01

Removed 'mailto:' before mail addresses of authors.

Added "<to be done>" as right side of 'href-strip' rule. Fixed

'|' to '/' for alternatives.

11.5. Changes from -05 to -06 of draft-duerst-iri-bis-00

Add HyperText Reference, change abstract, acks and references for

it

Add Masinter back as another editor.

Masinter integrates HRef material from HTML5 spec.

Rewrite introduction sections to modernize.

11.6. Changes from -04 to -05 of draft-duerst-iri-bis

Updated references.

Changed IPR text to pre5378Trust200902.

11.7. Changes from -03 to -04 of draft-duerst-iri-bis

Added explicit abbreviation for LEIRIs.

Mentioned LEIRI references.

Completed text in LEIRI section about tag characters and about

specials.

*

*

*

*

*

*

*

*

*

*

*

11.8. Changes from -02 to -03 of draft-duerst-iri-bis

Updated some references.

Updated Michel Suginard's coordinates.

11.9. Changes from -01 to -02 of draft-duerst-iri-bis

Added tag range to iprivate (issue private-include-tags-115).

Added Specials (U+FFF0-FFFD) to Legacy Extended IRIs.

11.10. Changes from -00 to -01 of draft-duerst-iri-bis

Changed from "IRIs with Spaces/Controls" to "Legacy Extended IRI"

based on input from the W3C XML Core WG. Moved the relevant

subsections to the back and promoted them to a section.

Added some text re. Legacy Extended IRIs to the security section.

Added a IANA Consideration Section.

Added this Change Log Section.

Added a section about "IRIs with Spaces/Controls" (converting

from a Note in RFC 3987).

11.11. Changes from RFC 3987 to -00 of draft-duerst-iri-bis

Fixed errata (see http://www.rfc-editor.org/cgi-bin/

errataSearch.pl?rfc=3987).

12. References

12.1. Normative References

[ASCII]

American National Standards Institute, "Coded

Character Set -- 7-bit American Standard Code for

Information Interchange", ANSI X3.4, 1986.

[ISO10646]

International Organization for Standardization, "ISO/

IEC 10646:2003: Information Technology - Universal

Multiple-Octet Coded Character Set (UCS)", ISO

Standard 10646, December 2003.

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3490]

Faltstrom, P., Hoffman, P. and A. Costello,

"Internationalizing Domain Names in Applications

(IDNA)", RFC 3490, March 2003.

[RFC3491]

*

*

*

*

*

*

*

*

*

*

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3490
http://tools.ietf.org/html/rfc3490

Hoffman, P. and M. Blanchet, "Nameprep: A Stringprep

Profile for Internationalized Domain Names (IDN)", RFC

3491, March 2003.

[RFC3629]
Yergeau, F., "UTF-8, a transformation format of ISO

10646", STD 63, RFC 3629, November 2003.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter,

"Uniform Resource Identifier (URI): Generic Syntax",

STD 66, RFC 3986, January 2005.

[STD68]
Crocker, D. and P. Overell, "Augmented BNF for Syntax

Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC5890]

Klensin, J., "Internationalized Domain Names for

Applications (IDNA): Definitions and Document

Framework", RFC 5890, August 2010.

[RFC5891]
Klensin, J., "Internationalized Domain Names in

Applications (IDNA): Protocol", RFC 5891, August 2010.

[UNIV6]

The Unicode Consortium, "The Unicode Standard, Version

6.0.0 (Mountain View, CA, The Unicode Consortium,

2011, ISBN 978-1-936213-01-6)", October 2010.

[UTR15]
Davis, M. and M.J. Duerst, "Unicode Normalization

Forms", Unicode Standard Annex #15, March 2008.

12.2. Informative References

[CharMod]

Duerst, M., Yergeau, F., Ishida, R., Wolf, M. and

T. Texin, "Character Model for the World Wide Web:

Resource Identifiers", World Wide Web Consortium

Candidate Recommendation, November 2004.

[Duerst97]

Duerst, M.J., "The Properties and Promises of

UTF-8", Proc. 11th International Unicode

Conference, San Jose , September 1997.

[Gettys] Gettys, J., "URI Model Consequences", .

[HTML4]

Raggett, D., Le Hors, A. and I. Jacobs, "HTML 4.01

Specification", World Wide Web Consortium

Recommendation, December 1999.

[LEIRI]

Thompson, H., Tobin, R. and N. Walsh, "Legacy

extended IRIs for XML resource identification",

World Wide Web Consortium Note, November 2008.

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part One: Format

of Internet Message Bodies", RFC 2045, November

1996.

[RFC2130]

Weider, C., Preston, C., Simonsen, K., Alvestrand,

H.T., Atkinson, R., Crispin, M. and P. Svanberg,

"The Report of the IAB Character Set Workshop held

29 February - 1 March, 1996", RFC 2130, April

1997.

[RFC2141] Moats, R., "URN Syntax", RFC 2141, May 1997.

[RFC2192]

http://tools.ietf.org/html/rfc3491
http://tools.ietf.org/html/rfc3491
http://tools.ietf.org/html/rfc3629
http://tools.ietf.org/html/rfc3629
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5890
http://tools.ietf.org/html/rfc5891
http://tools.ietf.org/html/rfc5891
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
mailto:cweider@microsoft.com
mailto:cecilia@well.com
mailto:Keld@dkuug.dk
mailto:Harald.T.Alvestrand@uninett.no
mailto:Harald.T.Alvestrand@uninett.no
mailto:rja@cisco.com
mailto:mrc@cac.washington.edu
mailto:psv@nada.kth.se
http://tools.ietf.org/html/rfc2130
http://tools.ietf.org/html/rfc2130
mailto:jayhawk@ds.internic.net
http://tools.ietf.org/html/rfc2141

Newman, C., "IMAP URL Scheme", RFC 2192, September

1997.

[RFC2277]
Alvestrand, H.T., "IETF Policy on Character Sets

and Languages", BCP 18, RFC 2277, January 1998.

[RFC2368]
Hoffman, P.E., Masinter, L. and J. Zawinski, "The

mailto URL scheme", RFC 2368, July 1998.

[RFC2384]
Gellens, R., "POP URL Scheme", RFC 2384, August

1998.

[RFC2396]

Berners-Lee, T., Fielding, R.T. and L. Masinter,

"Uniform Resource Identifiers (URI): Generic

Syntax", RFC 2396, August 1998.

[RFC2397]
Masinter, L., "The "data" URL scheme", RFC 2397,

August 1998.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee,

"Hypertext Transfer Protocol -- HTTP/1.1", RFC

2616, June 1999.

[RFC2640]
Curtin, B., "Internationalization of the File

Transfer Protocol", RFC 2640, July 1999.

[RFC3987]

Duerst, M. and M. Suignard, "Internationalized

Resource Identifiers (IRIs)", RFC 3987, January

2005.

[RFC6055]

Thaler, D., Klensin, J. and S. Cheshire, "IAB

Thoughts on Encodings for Internationalized Domain

Names", RFC 6055, February 2011.

[Bidi]

Duerst, M. and L. Masinter, "Guidelines for

Internationalized Resource Identifiers with Bi-

directional Characters (Bidi IRIs)", Internet-

Draft draft-ietf-iri-bidi-guidelines-00, August

2011.

[Equivalence]

Masinter, L. and M. Duerst, "Equivalence and

Canonicalization of Internationalized Resource

Identifiers (IRIs)", Internet-Draft draft-ietf-

iri-comparison-00, August 2011.

[RFC4395bis]

Hansen, T., Hardie, T. and L. Masinter,

"Guidelines and Registration Procedures for New

URI/IRI Schemes", Internet-Draft draft-ietf-

iri-4395bis-irireg-03, July 2011.

[UNIXML]

Duerst, M.J. and A. Freytag, "Unicode in XML and

other Markup Languages", Unicode Technical Report

#20, World Wide Web Consortium Note, June 2003.

[UTR36]

Davis, M. and M. Suignard, "Unicode Security

Considerations", Unicode Technical Report #36,

August 2010.

[XLink]

DeRose, S., Maler, E. and D. Orchard, "XML Linking

Language (XLink) Version 1.0", World Wide Web

Consortium Recommendation, June 2001.

[XML1]

mailto:chris.newman@innosoft.com
http://tools.ietf.org/html/rfc2192
mailto:Harald.T.Alvestrand@uninett.no
http://tools.ietf.org/html/rfc2277
http://tools.ietf.org/html/rfc2277
mailto:phoffman@imc.org
mailto:masinter@parc.xerox.com
mailto:jwz@netscape.com
http://tools.ietf.org/html/rfc2368
http://tools.ietf.org/html/rfc2368
mailto:Randy@Qualcomm.Com
http://tools.ietf.org/html/rfc2384
mailto:timbl@w3.org
mailto:fielding@ics.uci.edu
mailto:masinter@parc.xerox.com
http://tools.ietf.org/html/rfc2396
http://tools.ietf.org/html/rfc2396
mailto:masinter@parc.xerox.com
http://tools.ietf.org/html/rfc2397
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
mailto:curtinw@ftm.disa.mil
http://tools.ietf.org/html/rfc2640
http://tools.ietf.org/html/rfc2640
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc3987
http://tools.ietf.org/html/rfc6055
http://tools.ietf.org/html/rfc6055
http://tools.ietf.org/html/rfc6055
http://tools.ietf.org/html/draft-ietf-iri-bidi-guidelines-00
http://tools.ietf.org/html/draft-ietf-iri-bidi-guidelines-00
http://tools.ietf.org/html/draft-ietf-iri-bidi-guidelines-00
http://tools.ietf.org/html/draft-ietf-iri-comparison-00
http://tools.ietf.org/html/draft-ietf-iri-comparison-00
http://tools.ietf.org/html/draft-ietf-iri-comparison-00
http://tools.ietf.org/html/draft-ietf-iri-4395bis-irireg-03
http://tools.ietf.org/html/draft-ietf-iri-4395bis-irireg-03

Bray, T., Paoli, J., Sperberg-McQueen, C.M.,

Maler, E. and F. Yergeau, "Extensible Markup

Language (XML) 1.0 (Forth Edition)", World Wide

Web Consortium Recommendation, August 2006.

[XMLNamespace]

Bray, T., Hollander, D., Layman, A. and R. Tobin,

"Namespaces in XML (Second Edition)", World Wide

Web Consortium Recommendation, August 2006.

[XMLSchema]

Biron, P. and A. Malhotra, "XML Schema Part 2:

Datatypes", World Wide Web Consortium

Recommendation, May 2001.

[XPointer]

Grosso, P., Maler, E., Marsh, J. and N. Walsh,

"XPointer Framework", World Wide Web Consortium

Recommendation, March 2003.

Authors' Addresses

Martin Duerst Duerst Aoyama Gakuin University 5-10-1 Fuchinobe

Sagamihara, Kanagawa 229-8558 Japan Phone: +81 42 759 6329 EMail:

duerst@it.aoyama.ac.jp URI: http://www.sw.it.aoyama.ac.jp/

D%C3%BCrst/

Michel Suignard Suignard Unicode Consortium P.O. Box 391476 Mountain

View, CA 94039-1476 U.S.A. Phone: +1-650-693-3921 EMail:

michel@unicode.org URI: http://www.suignard.com

Larry Masinter Masinter Adobe

345 Park Ave San Jose, CA 95110 U.S.A. Phone: +1-408-536-3024 EMail:

masinter@adobe.com URI: http://larry.masinter.net

mailto:duerst@it.aoyama.ac.jp
http://www.sw.it.aoyama.ac.jp/D%C3%BCrst/
http://www.sw.it.aoyama.ac.jp/D%C3%BCrst/
mailto:michel@unicode.org
http://www.suignard.com
mailto:masinter@adobe.com
http://larry.masinter.net

	Abstract
	RFC Editor: Please remove the next paragraph before publication.
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Overview and Motivation
	1.2. Applicability
	1.3. Definitions
	1.4. Notation
	2. IRI Syntax
	2.1. Summary of IRI Syntax
	2.2. ABNF for IRI References and IRIs
	3. Processing IRIs and related protocol elements
	3.1. Converting to UCS
	3.2. Parse the IRI into IRI components
	3.3. General percent-encoding of IRI components
	3.4. Mapping ireg-name
	3.4.1. Mapping using Percent-Encoding
	3.4.2. Mapping using Punycode
	3.4.3. Additional Considerations
	3.5. Mapping query components
	3.6. Mapping IRIs to URIs
	3.7. Converting URIs to IRIs
	3.7.1. Examples
	4. Use of IRIs
	4.1. Limitations on UCS Characters Allowed in IRIs
	4.2. Software Interfaces and Protocols
	4.3. Format of URIs and IRIs in Documents and Protocols
	4.4. Use of UTF-8 for Encoding Original Characters
	4.5. Relative IRI References
	5. Liberal Handling of Otherwise Invalid IRIs
	5.1. LEIRI Processing
	6. Characters Not Allowed in IRIs
	7. URI/IRI Processing Guidelines (Informative)
	7.1. URI/IRI Software Interfaces
	7.2. URI/IRI Entry
	7.3. URI/IRI Transfer between Applications
	7.4. URI/IRI Generation
	7.5. URI/IRI Selection
	7.6. Display of URIs/IRIs
	7.7. Interpretation of URIs and IRIs
	7.8. Upgrading Strategy
	8. IANA Considerations
	9. Security Considerations
	10. Acknowledgements
	11. Main Changes Since RFC 3987
	11.1. Split out Bidi, processing guidelines, comparison sections
	11.2. Major restructuring of IRI processing model
	11.2.1. OLD WAY
	11.2.2. NEW WAY
	11.2.3. Extension of Syntax
	11.2.4. More to be added
	11.3. Change Log
	11.3.1. Changes after draft-ietf-iri-3987bis-01
	11.3.2. Changes from draft-duerst-iri-bis-07 to draft-ietf-iri-3987bis-00
	11.3.3. Changes from -06 to -07 of draft-duerst-iri-bis
	11.4. Changes from -00 to -01
	11.5. Changes from -05 to -06 of draft-duerst-iri-bis-00
	11.6. Changes from -04 to -05 of draft-duerst-iri-bis
	11.7. Changes from -03 to -04 of draft-duerst-iri-bis
	11.8. Changes from -02 to -03 of draft-duerst-iri-bis
	11.9. Changes from -01 to -02 of draft-duerst-iri-bis
	11.10. Changes from -00 to -01 of draft-duerst-iri-bis
	11.11. Changes from RFC 3987 to -00 of draft-duerst-iri-bis
	12. References
	12.1. Normative References
	12.2. Informative References
	Authors' Addresses

