
ISMS W. Hardaker
Internet-Draft Sparta, Inc.
Intended status: Standards Track January 8, 2010
Expires: July 12, 2010

Transport Layer Security (TLS) Transport Model for SNMP
draft-ietf-isms-dtls-tm-05.txt

Abstract

 This document describes a Transport Model for the Simple Network
 Management Protocol (SNMP), that uses either the Transport Layer
 Security protocol or the Datagram Transport Layer Security (DTLS)
 protocol. The TLS and DTLS protocols provide authentication and
 privacy services for SNMP applications. This document describes how
 the TLS Transport Model (TLSTM) implements the needed features of a
 SNMP Transport Subsystem to make this protection possible in an
 interoperable way.

 This transport model is designed to meet the security and operational
 needs of network administrators. It supports sending of SNMP
 messages over TLS/TCP, DTLS/UDP and DTLS/SCTP. The TLS mode can make
 use of TCP's improved support for larger packet sizes and the DTLS
 mode provides potentially superior operation in environments where a
 connectionless (e.g. UDP or SCTP) transport is preferred. Both TLS
 and DTLS integrate well into existing public keying infrastructures.

 This document also defines a portion of the Management Information
 Base (MIB) for use with network management protocols. In particular
 it defines objects for managing the TLS Transport Model for SNMP.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at

Hardaker Expires July 12, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft TLS Transport Model for SNMP January 2010

http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on July 12, 2010.

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hardaker Expires July 12, 2010 [Page 2]

Internet-Draft TLS Transport Model for SNMP January 2010

Table of Contents

1. Introduction . 5
1.1. Conventions . 7

2. The Transport Layer Security Protocol 8
3. How the TLSTM fits into the Transport Subsystem 9
3.1. Security Capabilities of this Model 10
3.1.1. Threats . 10
3.1.2. Message Protection 12
3.1.3. (D)TLS Sessions 13

3.2. Security Parameter Passing 13
3.3. Notifications and Proxy 14

4. Elements of the Model . 15
4.1. X.509 Certificates . 15
4.1.1. Provisioning for the Certificate 15

4.2. Messages . 16
4.3. SNMP Services . 16
4.3.1. SNMP Services for an Outgoing Message 17
4.3.2. SNMP Services for an Incoming Message 18

4.4. Cached Information and References 18
4.4.1. TLS Transport Model Cached Information 19
4.4.1.1. tmSecurityName 19
4.4.1.2. tmSessionID 19
4.4.1.3. Session State 19

5. Elements of Procedure . 20
5.1. Procedures for an Incoming Message 20
5.1.1. DTLS Processing for Incoming Messages 20
5.1.2. Transport Processing for Incoming SNMP Messages . . . 22

5.2. Procedures for an Outgoing SNMP Message 23
5.3. Establishing a Session 24
5.4. Closing a Session . 27

6. MIB Module Overview . 28
6.1. Structure of the MIB Module 28
6.2. Textual Conventions 28
6.3. Statistical Counters 28
6.4. Configuration Tables 28
6.4.1. Notifications . 29

6.5. Relationship to Other MIB Modules 29
6.5.1. MIB Modules Required for IMPORTS 29

7. MIB Module Definition . 29
8. Operational Considerations 50
8.1. Sessions . 51
8.2. Notification Receiver Credential Selection 51
8.3. contextEngineID Discovery 52
8.4. Transport Considerations 52

9. Security Considerations 52
9.1. Certificates, Authentication, and Authorization 52
9.2. Use with SNMPv1/SNMPv2c Messages 53

Hardaker Expires July 12, 2010 [Page 3]

Internet-Draft TLS Transport Model for SNMP January 2010

9.3. MIB Module Security 54
10. IANA Considerations . 55
11. Acknowledgements . 56
12. References . 57
12.1. Normative References 57
12.2. Informative References 58

Appendix A. (D)TLS Overview 59
A.1. The (D)TLS Record Protocol 59
A.2. The (D)TLS Handshake Protocol 60

Appendix B. PKIX Certificate Infrastructure 61
Appendix C. Target and Notificaton Configuration Example 62
C.1. Configuring the Notification Generator 63
C.2. Configuring the Command Responder 63

 Author's Address . 64

Hardaker Expires July 12, 2010 [Page 4]

Internet-Draft TLS Transport Model for SNMP January 2010

1. Introduction

 It is important to understand the modular SNMPv3 architecture as
 defined by [RFC3411] and enhanced by the Transport Subsystem
 [RFC5590]. It is also important to understand the terminology of the
 SNMPv3 architecture in order to understand where the Transport Model
 described in this document fits into the architecture and how it
 interacts with the other architecture subsystems. For a detailed
 overview of the documents that describe the current Internet-Standard
 Management Framework, please refer to Section 7 of [RFC3410].

 This document describes a Transport Model that makes use of the
 Transport Layer Security (TLS) [RFC5246] and the Datagram Transport
 Layer Security (DTLS) Protocol [RFC4347], within a transport
 subsystem [RFC5590]. DTLS is the datagram variant of the Transport
 Layer Security (TLS) protocol [RFC5246]. The Transport Model in this
 document is referred to as the Transport Layer Security Transport
 Model (TLSTM). TLS and DTLS take advantage of the X.509 public
 keying infrastructure [RFC5280]. While (D)TLS supports multiple
 authentication mechanisms, this document only discusses X.509
 certificate based authentication. Although other forms of
 authentication are possible they are outside the scope of this
 specification. This transport model is designed to meet the security
 and operational needs of network administrators, operating in both
 environments where a connectionless (e.g. UDP or SCTP) transport is
 preferred and in environments where large quantities of data need to
 be sent (e.g. over a TCP based stream). Both TLS and DTLS integrate
 well into existing public keying infrastructures. This document
 supports sending of SNMP messages over TLS/TCP, DTLS/UDP and DTLS/
 SCTP.

 This document also defines a portion of the Management Information
 Base (MIB) for use with network management protocols. In particular
 it defines objects for managing the TLS Transport Model for SNMP.

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58:
 [RFC2578], [RFC2579] and [RFC2580].

 The diagram shown below gives a conceptual overview of two SNMP
 entities communicating using the TLS Transport Model. One entity
 contains a command responder and notification originator application,
 and the other a command generator and notification responder
 application. It should be understood that this particular mix of

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc5590
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5590
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580

Hardaker Expires July 12, 2010 [Page 5]

Internet-Draft TLS Transport Model for SNMP January 2010

 application types is an example only and other combinations are
 equally valid. Note: this diagram shows the Transport Security Model
 (TSM) being used as the security model which is defined in [RFC5591].

 +--+
 | Network |
 +--+
 ^ | ^ |
 |Notifications |Commands |Commands |Notifications
 +---|---------------------|--------+ +--|---------------|-------------+
	V			V																
+------------+ +------------+		+-----------+ +----------+																		
	(D)TLS		(D)TLS				(D)TLS		(D)TLS											
	Service		Service				Service		Service											
	(Client)		(Server)				(Client)		(Server)											
+------------+ +------------+		+-----------+ +----------+																		
^ ^		^ ^																		
+--+----------+		+-+--------------+																		
+-----	---------+----+		+---	--------+----+																
	V	LCD	+-------+			V	LCD	+--------+												
	+------+ +----+					+------+ +----+														
		TLS	<---------->	Cache					TLS	<---->	Cache									
		TM								TM										
	+------+	+-------+			+------+	+--------+														
	Transport Subsystem	^			Transport Sub.	^														
+--------------------+			+-----------------+																	
^ +----+		^																		
v			V																	
+-------+ +----------+ +-----+			+-----+ +------+ +-----+																	
			Message		Sec.							MP		Sec.						
	Disp.		Processing		Sub-					Disp.		Sub-		Sub-						
			Subsystem		sys.							system		sys.						
					+---+									+---+						
			+-----+											+----+						
	<--->	v3MP	<-->		TSM	<-+			<-->	v3MP	<->	TSM	<-+							
			+-----+										+----+							
+-------+			+---+			+-----+			+---+											
^						^														
	+----------+ +-----+			+------+ +-----+																
+-+------------+		+-+------------+																		
^ ^		^ ^																		
v v		V V																		
+-------------+ +--------------+		+-----------+ +--------------+																		

https://datatracker.ietf.org/doc/html/rfc5591

Hardaker Expires July 12, 2010 [Page 6]

Internet-Draft TLS Transport Model for SNMP January 2010

	COMMAND		NOTIFICATION				COMMAND		NOTIFICATION	
	RESPONDER		ORIGINATOR				GENERATOR		RECEIVER	
	application		application				application		application	
+-------------+ +--------------+		+-----------+ +--------------+								
SNMP entity		SNMP entity								
 +----------------------------------+ +--------------------------------+

1.1. Conventions

 For consistency with SNMP-related specifications, this document
 favors terminology as defined in STD 62, rather than favoring
 terminology that is consistent with non-SNMP specifications. This is
 consistent with the IESG decision to not require the SNMPv3
 terminology be modified to match the usage of other non-SNMP
 specifications when SNMPv3 was advanced to Full Standard.

 "Authentication" in this document typically refers to the English
 meaning of "serving to prove the authenticity of" the message, not
 data source authentication or peer identity authentication.

 The terms "manager" and "agent" are not used in this document
 because, in the RFC 3411 architecture, all SNMP entities have the
 capability of acting as manager, agent, or both depending on the SNMP
 application types supported in the implementation. Where distinction
 is required, the application names of command generator, command
 responder, notification originator, notification receiver, and proxy
 forwarder are used. See "SNMP Applications" [RFC3413] for further
 information.

 Authentication in this document typically refers to the English
 meaning of "serving to prove the authenticity of" the message, not
 data source authentication or peer identity authentication.

 The terms "manager" and "agent" are not used in this document,
 because in the RFC 3411 architecture [RFC3411], all SNMP entities
 have the capability of acting in either manager or agent or in both
 roles depending on the SNMP application types supported in the
 implementation. Where distinction is required, the application names
 of command generator, command responder, notification originator,
 Notification Receiver, and proxy forwarder are used. See "SNMP
 Applications" [RFC3413] for further information.

 Large portions of this document simultaneously refer to both TLS and
 DTLS when discussing TLSTM components that function equally with
 either protocol. "(D)TLS" is used in these places to indicate that
 the statement applies to either or both protocols as appropriate.
 When a distinction between the protocols is needed they are referred
 to independently through the use of "TLS" or "DTLS". The Transport

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413

Hardaker Expires July 12, 2010 [Page 7]

Internet-Draft TLS Transport Model for SNMP January 2010

 Model, however, is named "TLS Transport Model" and refers not to the
 TLS or DTLS protocol but to the standard defined in this document,
 which includes support for both TLS and DTLS.

 Throughout this document, the terms "client" and "server" are used to
 refer to the two ends of the (D)TLS transport connection. The client
 actively opens the (D)TLS connection, and the server passively
 listens for the incoming (D)TLS connection. An SNMP entity may act
 as a (D)TLS client or server or both, depending on the SNMP
 applications supported.

 The User-Based Security Model (USM) [RFC3414] is a mandatory-to-
 implement Security Model in STD 62. While (D)TLS and USM frequently
 refer to a user, the terminology preferred in RFC3411 and in this
 memo is "principal". A principal is the "who" on whose behalf
 services are provided or processing takes place. A principal can be,
 among other things, an individual acting in a particular role; a set
 of individuals, with each acting in a particular role; an application
 or a set of applications, or a combination of these within an
 administrative domain.

 Throughout this document, the term "session" is used to refer to a
 secure association between two TLS Transport Models that permits the
 transmission of one or more SNMP messages within the lifetime of the
 session. The (D)TLS protocols also have an internal notion of a
 session and although these two concepts of a session are related,
 this document (unless otherwise specified) is referring to TLSTM's
 specific session and not directly to the (D)TLS protocol's session.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The Transport Layer Security Protocol

 (D)TLS provides authentication, data message integrity, and privacy
 at the transport layer. (See [RFC4347])

 The primary goals of the TLS Transport Model are to provide privacy,
 peer identity authentication and data integrity between two
 communicating SNMP entities. The TLS and DTLS protocols provide a
 secure transport upon which the TLSTM is based. An overview of
 (D)TLS can be found in section Appendix A. Please refer to [RFC5246]
 and [RFC4347] for complete descriptions of the protocols.

https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires July 12, 2010 [Page 8]

Internet-Draft TLS Transport Model for SNMP January 2010

3. How the TLSTM fits into the Transport Subsystem

 A transport model is a component of the Transport Subsystem. The TLS
 Transport Model thus fits between the underlying (D)TLS transport
 layer and the Message Dispatcher [RFC3411] component of the SNMP
 engine and the Transport Subsystem.

 The TLS Transport Model will establish a session between itself and
 the TLS Transport Model of another SNMP engine. The sending
 transport model passes unencrypted and unauthenticated messages from
 the Dispatcher to (D)TLS to be encrypted and authenticated, and the
 receiving transport model accepts decrypted and authenticated/
 integrity-checked incoming messages from (D)TLS and passes them to
 the Dispatcher.

 After a TLS Transport Model session is established, SNMP messages can
 conceptually be sent through the session from one SNMP message
 Dispatcher to another SNMP Message Dispatcher. If multiple SNMP
 messages are needed to be passed between two SNMP applications they
 MAY be passed through the same session. A TLSTM implementation
 engine MAY choose to close a (D)TLS session to conserve resources.

 The TLS Transport Model of an SNMP engine will perform the
 translation between (D)TLS-specific security parameters and SNMP-
 specific, model-independent parameters.

 The diagram below depicts where the TLS Transport Model fits into the
 architecture described in RFC3411 and the Transport Subsystem:

 +------------------------------+
 | Network |
 +------------------------------+
 ^ ^ ^
 | | |
 v v v
 +---+
 | +--+ |
	Transport Subsystem	+--------+										
	+-----+ +-----+ +-------+ +-------+											
		UDP		SSH		(D)TLS	. . .	other	<--->	Cache		
				TM		TM						
	+-----+ +-----+ +-------+ +-------+	+--------+										
+--+ ^												
^												
Dispatcher v												
+--------------+ +---------------------+ +----------------+												

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires July 12, 2010 [Page 9]

Internet-Draft TLS Transport Model for SNMP January 2010

	Transport		Message Processing		Security					
	Dispatch		Subsystem		Subsystem					
			+------------+		+------------+					
			+->	v1MP	<--->		USM			
				+------------+		+------------+				
				+------------+		+------------+				
			+->	v2cMP	<--->		Transport			
	Message			+------------+			Security	<--+		
	Dispatch <---->	+------------+			Model					
			+->	v3MP	<--->	+------------+				
				+------------+		+------------+				
	PDU Dispatch			+------------+			Other			
+--------------+	+->	otherMP	<--->		Model(s)					
^	+------------+		+------------+							
	+---------------------+ +----------------+									
v										
+-------+-------------------------+---------------+										
^ ^ ^										
v v v										
+-------------+ +---------+ +--------------+ +-------------+										
	COMMAND		ACCESS		NOTIFICATION		PROXY			
	RESPONDER	<->	CONTROL	<->	ORIGINATOR		FORWARDER			
	application				applications		application			
+-------------+ +---------+ +--------------+ +-------------+										
^ ^										
v v										
+--+										
	MIB instrumentation	SNMP entity								
 +---+

3.1. Security Capabilities of this Model

3.1.1. Threats

 The TLS Transport Model provides protection against the threats
 identified by the RFC 3411 architecture [RFC3411]:

 1. Modification of Information - The modification threat is the
 danger that an unauthorized entity may alter in-transit SNMP
 messages generated on behalf of an authorized principal in such a
 way as to effect unauthorized management operations, including
 falsifying the value of an object.

 (D)TLS provides verification that the content of each received
 message has not been modified during its transmission through the
 network, data has not been altered or destroyed in an

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires July 12, 2010 [Page 10]

Internet-Draft TLS Transport Model for SNMP January 2010

 unauthorized manner, and data sequences have not been altered to
 an extent greater than can occur non-maliciously.

 2. Masquerade - The masquerade threat is the danger that management
 operations unauthorized for a given principal may be attempted by
 assuming the identity of another principal that has the
 appropriate authorizations.

 The TLSTM verifies of the identity of the (D)TLS server through
 the use of the (D)TLS protocol and X.509 certificates. The TLS
 Transport Model MUST support authentication of both the server
 and the client.

 3. Message stream modification - The re-ordering, delay or replay of
 messages can and does occur through the natural operation of many
 connectionless transport services. The message stream
 modification threat is the danger that messages may be
 maliciously re-ordered, delayed or replayed to an extent which is
 greater than can occur through the natural operation of
 connectionless transport services, in order to effect
 unauthorized management operations.

 (D)TLS provides replay protection with a MAC that includes a
 sequence number. Since UDP provides no sequencing ability DTLS
 uses a sliding window protocol with the sequence number for
 replay protection (see [RFC4347]).

 4. Disclosure - The disclosure threat is the danger of eavesdropping
 on the exchanges between SNMP engines.

 (D)TLS provides protection against the disclosure of information
 to unauthorized recipients or eavesdroppers by allowing for
 encryption of all traffic between SNMP engines. The TLS
 Transport Model SHOULD support the message encryption to protect
 sensitive data from eavesdropping attacks.

 5. Denial of Service - the RFC 3411 architecture [RFC3411] states
 that denial of service (DoS) attacks need not be addressed by an
 SNMP security protocol. However, datagram-based security
 protocols like DTLS are susceptible to a variety of denial of
 service attacks because they are more vulnerable to spoofed
 messages.

 In order to counter these attacks, DTLS borrows the stateless
 cookie technique used by Photuris [RFC2522] and IKEv2 [RFC4306]
 and is described fully in section 4.2.1 of [RFC4347]. This
 mechanism, though, does not provide any defense against denial of
 service attacks mounted from valid IP addresses. DTLS Transport

https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4347#section-4.2.1

Hardaker Expires July 12, 2010 [Page 11]

Internet-Draft TLS Transport Model for SNMP January 2010

 Model server implementations MUST support DTLS cookies.

 Implementations are not required to perform the stateless cookie
 exchange for every DTLS handshake, but in environments where an
 overload on server side resources is detectable by the
 implementation it is RECOMMENDED that the cookie exchange is
 utilized by the implementation.

 See Section 9 for more detail on the security considerations
 associated with the TLSTM and these security threats.

3.1.2. Message Protection

 The RFC 3411 architecture recognizes three levels of security:

 o without authentication and without privacy (noAuthNoPriv)

 o with authentication but without privacy (authNoPriv)

 o with authentication and with privacy (authPriv)

 The TLS Transport Model determines from (D)TLS the identity of the
 authenticated principal, the transport type and the transport address
 associated with an incoming message. The TLS Transport Model
 provides the identity and destination type and address to (D)TLS for
 outgoing messages.

 When an application requests a session for a message, through the
 cache, the application requests a security level for that session.
 The TLS Transport Model MUST ensure that the (D)TLS session provides
 security at least as high as the requested level of security. How
 the security level is translated into the algorithms used to provide
 data integrity and privacy is implementation-dependent. However, the
 NULL integrity and encryption algorithms MUST NOT be used to fulfill
 security level requests for authentication or privacy.
 Implementations MAY choose to force (D)TLS to only allow
 cipher_suites that provide both authentication and privacy to
 guarantee this assertion.

 If a suitable interface between the TLS Transport Model and the
 (D)TLS Handshake Protocol is implemented to allow the selection of
 security level dependent algorithms (for example a security level to
 cipher_suites mapping table) then different security levels may be
 utilized by the application.

 The authentication, integrity and privacy algorithms used by the
 (D)TLS Protocols may vary over time as the science of cryptography
 continues to evolve and the development of (D)TLS continues over

https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires July 12, 2010 [Page 12]

Internet-Draft TLS Transport Model for SNMP January 2010

 time. Implementers are encouraged to plan for changes in operator
 trust of particular algorithms. Implementations should offer
 configuration settings for mapping algorithms to SNMPv3 security
 levels.

3.1.3. (D)TLS Sessions

 (D)TLS sessions are opened by the TLS Transport Model during the
 elements of procedure for an outgoing SNMP message. Since the sender
 of a message initiates the creation of a (D)TLS session if needed,
 the (D)TLS session will already exist for an incoming message.

 Implementations MAY choose to instantiate (D)TLS sessions in
 anticipation of outgoing messages. This approach might be useful to
 ensure that a (D)TLS session to a given target can be established
 before it becomes important to send a message over the (D)TLS
 session. Of course, there is no guarantee that a pre-established
 session will still be valid when needed.

 DTLS sessions, when used over UDP, are uniquely identified within the
 TLS Transport Model by the combination of transportDomain,
 transportAddress, tmSecurityName, and requestedSecurityLevel
 associated with each session. Each unique combination of these
 parameters MUST have a locally-chosen unique tlstmSessionID for each
 active session. For further information see Section 5. TLS over TCP
 and DTLS over SCTP sessions, on the other hand, do not require a
 unique pairing of address and port attributes since their lower layer
 protocols (TCP and SCTP) already provide adequate session framing.
 But they must still provide a unique tlstmSessionID for referencing
 the session.

 As an implementation hint: although the tlstmSessionID may be the
 same as the (D)TLS internal SessionID caution must be exercised since
 the (D)TLS internal SessionID may change over the life of the
 connection as seen by the TLSTM (for example during renegotiation).
 The tlstmSessionID identifier MUST NOT change during the entire
 duration of the session from the TLSTM's perspective even if the TLS
 internal session identifier does change.

3.2. Security Parameter Passing

 For the (D)TLS server-side, (D)TLS-specific security parameters
 (i.e., cipher_suites, X.509 certificate fields, IP address and port)
 are translated by the TLS Transport Model into security parameters
 for the TLS Transport Model and security model (e.g.,
 tmSecurityLevel, tmSecurityName, transportDomain, transportAddress).
 The transport- related and (D)TLS-security-related information,
 including the authenticated identity, are stored in a cache

Hardaker Expires July 12, 2010 [Page 13]

Internet-Draft TLS Transport Model for SNMP January 2010

 referenced by tmStateReference.

 For the (D)TLS client-side, the TLS Transport Model takes input
 provided by the Dispatcher in the sendMessage() Abstract Service
 Interface (ASI) and input from the tmStateReference cache. The
 (D)TLS Transport Model converts that information into suitable
 security parameters for (D)TLS and establishes sessions as needed.

 The elements of procedure in Section 5 discuss these concepts in much
 greater detail.

3.3. Notifications and Proxy

 (D)TLS sessions may be initiated by (D)TLS clients on behalf of SNMP
 appplications that initiate communications, such as command
 generators, notification originators, proxy forwarders. Command
 generators are frequently operated by a human, but notification
 originators and proxy forwarders are usually unmanned automated
 processes. The targets to whom notifications and proxied requests
 should be sent is typically determined and configured by a network
 administrator.

 The SNMP-TARGET-MIB module [RFC3413] contains objects for defining
 management targets, including transportDomain, transportAddress,
 securityName, securityModel, and securityLevel parameters, for
 notification generator, proxy forwarder, and SNMP-controllable
 command generator applications. Transport domains and transport
 addresses are configured in the snmpTargetAddrTable, and the
 securityModel, securityName, and securityLevel parameters are
 configured in the snmpTargetParamsTable. This document defines a MIB
 module that extends the SNMP-TARGET-MIB's snmpTargetParamsTable to
 specify a (D)TLS client-side certificate to use for the connection.

 When configuring a (D)TLS target, the snmpTargetAddrTDomain and
 snmpTargetAddrTAddress parameters in snmpTargetAddrTable should be
 set to the snmpTLSTCPDomain, snmpDTLSUDPDomain, or snmpDTLSSCTPDomain
 object and an appropriate snmpTLSAddress value. When used with the
 SNMPv3 message processing model, the snmpTargetParamsMPModel column
 of the snmpTargetParamsTable should be set to a value of 3. The
 snmpTargetParamsSecurityName should be set to an appropriate
 securityName value and the tlstmParamsClientFingerprint parameter of
 the tlstmParamsTable should be set a value that refers to a locally
 held certificate to be used. Other parameters, for example
 cryptographic configuration such as cipher suites to use, must come
 from configuration mechanisms not defined in this document. The
 securityName defined in the snmpTargetParamsSecurityName column will
 be used by the access control model to authorize any notifications
 that need to be sent.

https://datatracker.ietf.org/doc/html/rfc3413

Hardaker Expires July 12, 2010 [Page 14]

Internet-Draft TLS Transport Model for SNMP January 2010

4. Elements of the Model

 This section contains definitions required to realize the (D)TLS
 Transport Model defined by this document.

4.1. X.509 Certificates

 (D)TLS can make use of X.509 certificates for authentication of both
 sides of the transport. This section discusses the use of X.509
 certificates in the TLSTM. A brief overview of X.509 certificate
 infrastructure can be found in Appendix B.

 While (D)TLS supports multiple authentication mechanisms, this
 document only discusses X.509 certificate based authentication.
 Although other forms of authentication are possible they are outside
 the scope of this specification. TLSTM implementations are REQUIRED
 to support X.509 certificates.

4.1.1. Provisioning for the Certificate

 Authentication using (D)TLS will require that SNMP entities are
 provisioned with certificates, which are signed by trusted
 certificate authorities (possibly the certificate itself).
 Furthermore, SNMP entities will most commonly need to be provisioned
 with root certificates which represent the list of trusted
 certificate authorities that an SNMP entity can use for certificate
 verification. SNMP entities SHOULD also be provisioned with a X.509
 certificate revocation mechanism which can be used to verify that a
 certificate has not been revoked. Trusted public keys from either CA
 certificates and/or self-signed certificates, MUST be installed
 through a trusted out of band mechanism into the server and its
 authenticity MUST be verified before access is granted.

 Having received a certificate from a connecting TLSTM client, the
 authenticated tmSecurityName of the principal is derived using the
 tlstmCertToTSNTable. This table allows mapping of incoming
 connections to tmSecurityNames through defined transformations. The
 transformations defined in the TLSTM-MIB include:

 o Mapping a certificate's fingerprint type and value to a directly
 specified tmSecurityName, or

 o Mapping a certificate's subjectAltName or CommonName components to
 a tmSecurityName.

 As an implementation hint: implementations may choose to discard any
 connections for which no potential tlstmCertToTSNTable mapping exists
 before performing certificate verification to avoid expending

Hardaker Expires July 12, 2010 [Page 15]

Internet-Draft TLS Transport Model for SNMP January 2010

 computational resources associated with certificate verification.

 Enterprise configurations are encouraged to map a "subjectAltName"
 component of the X.509 certificate to the TLSTM specific
 tmSecurityName. The authenticated identity can be obtained by the
 TLS Transport Model by extracting the subjectAltName(s) from the
 peer's certificate. The receiving application will then have an
 appropriate tmSecurityName for use by other SNMPv3 components like an
 access control model.

 An example of this type of mapping setup can be found in Appendix C.

 This tmSecurityName may be later translated from a TLSTM specific
 tmSecurityName to a SNMP engine securityName by the security model.
 A security model, like the TSM security model [RFC5591], may perform
 an identity mapping or a more complex mapping to derive the
 securityName from the tmSecurityName offered by the TLS Transport
 Model.

 A pictorial view of the complete transformation process (using the
 TSM security model for the example) is shown below:

 +-------------+ +-------+ +----------------+ +-----+
Certificate						
Path		TLSTM		tmSecurityName		TSM
Validation	-->		-->		-->	
 +-------------+ +-------+ +----------------+ +-----+
 |
 V
 +-------------+ +--------------+
 | application | <-- | securityName |
 +-------------+ +--------------+

4.2. Messages

 As stated in Section 4.1.1 of [RFC4347], each DTLS record must fit
 within a single DTLS datagram. The TLSTM SHOULD prohibit SNMP
 messages from being sent that exceeds the maximum DTLS message size.
 The TLSTM implementation SHOULD return an error when the DTLS message
 size would be exceeded and the message won't be sent.

4.3. SNMP Services

 This section describes the services provided by the TLS Transport
 Model with their inputs and outputs. The services are between the
 Transport Model and the Dispatcher.

 The services are described as primitives of an abstract service

https://datatracker.ietf.org/doc/html/rfc5591
https://datatracker.ietf.org/doc/html/rfc4347#section-4.1.1

Hardaker Expires July 12, 2010 [Page 16]

Internet-Draft TLS Transport Model for SNMP January 2010

 interface (ASI) and the inputs and outputs are described as abstract
 data elements as they are passed in these abstract service
 primitives.

4.3.1. SNMP Services for an Outgoing Message

 The Dispatcher passes the information to the TLS Transport Model
 using the ASI defined in the transport subsystem:

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference -- reference to transport state
)

 The abstract data elements returned from or passed as parameters into
 the abstract service primitives are as follows:

 statusInformation: An indication of whether the passing of the
 message was successful. If not, it is an indication of the
 problem.

 destTransportDomain: The transport domain for the associated
 destTransportAddress. The Transport Model uses this parameter to
 determine the transport type of the associated
 destTransportAddress. This document specifies the snmpTLSDomain,
 the snmpDTLSUDPDomain and the snmpDTLSSCTPDomain" transport
 domains.

 destTransportAddress: The transport address of the destination TLS
 Transport Model in a format specified by the SnmpTLSAddress
 TEXTUAL-CONVENTION.

 outgoingMessage: The outgoing message to send to (D)TLS for
 encapsulation.

 outgoingMessageLength: The length of the outgoingMessage field.

 tmStateReference: A handle/reference to tmState to be used when
 securing outgoing messages.

Hardaker Expires July 12, 2010 [Page 17]

Internet-Draft TLS Transport Model for SNMP January 2010

4.3.2. SNMP Services for an Incoming Message

 The TLS Transport Model processes the received message from the
 network using the (D)TLS service and then passes it to the Dispatcher
 using the following ASI:

 statusInformation =
 receiveMessage(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN incomingMessage -- the message received
 IN incomingMessageLength -- its length
 IN tmStateReference -- reference to transport state
)

 The abstract data elements returned from or passed as parameters into
 the abstract service primitives are as follows:

 statusInformation: An indication of whether the passing of the
 message was successful. If not, it is an indication of the
 problem.

 transportDomain: The transport domain for the associated
 transportAddress. This document specifies the snmpTLSDomain, the
 snmpDTLSUDPDomain and the snmpDTLSSCTPDomain" transport domains.

 transportAddress: The transport address of the source of the
 received message in a format specified by the SnmpTLSAddress
 TEXTUAL-CONVENTION.

 incomingMessage: The whole SNMP message after being processed by
 (D)TLS and removed of the (D)TLS transport layer data.

 incomingMessageLength: The length of the incomingMessage field.

 tmStateReference: A handle/reference to tmSecurityData to be used by
 the security model.

4.4. Cached Information and References

 When performing SNMP processing, there are two levels of state
 information that may need to be retained: the immediate state linking
 a request-response pair, and potentially longer-term state relating
 to transport and security. "Transport Subsystem for the Simple
 Network Management Protocol" [RFC5590] defines general requirements
 for caches and references.

https://datatracker.ietf.org/doc/html/rfc5590

Hardaker Expires July 12, 2010 [Page 18]

Internet-Draft TLS Transport Model for SNMP January 2010

4.4.1. TLS Transport Model Cached Information

 The TLS Transport Model has specific responsibilities regarding the
 cached information. See the Elements of Procedure in Section 5 for
 detailed processing instructions on the use of the tmStateReference
 fields by the TLS Transport Model.

4.4.1.1. tmSecurityName

 The tmSecurityName MUST be a human-readable name (in snmpAdminString
 format) representing the identity that has been set according to the
 procedures in Section 5. The tmSecurityName MUST be constant for all
 traffic passing through an TLSTM session. Messages MUST NOT be sent
 through an existing (D)TLS session that was established using a
 different tmSecurityName.

 On the (D)TLS server side of a connection the tmSecurityName is
 derived using the procedures described in Section 5.3 and the TLSTM-
 MIB's tlstmCertToTSNTable DESCRIPTION clause.

 On the (D)TLS client side of a connection the tmSecurityName is
 presented to the TLS Transport Model by the application (possibly
 because of configuration specified in the SNMP-TARGET-MIB).

 The securityName MAY be derived from the tmSecurityName by a Security
 Model and MAY be used to configure notifications and access controls
 in MIB modules. Transport Models SHOULD generate a predictable
 tmSecurityName so operators will know what to use when configuring
 MIB modules that use securityNames derived from tmSecurityNames.

4.4.1.2. tmSessionID

 The tmSessionID MUST be recorded per message at the time of receipt.
 When tmSameSecurity is set, the recorded tmSessionID can be used to
 determine whether the (D)TLS session available for sending a
 corresponding outgoing message is the same (D)TLS session as was used
 when receiving the incoming message (e.g., a response to a request).

4.4.1.3. Session State

 The per-session state that is referenced by tmStateReference may be
 saved across multiple messages in a Local Configuration Datastore.
 Additional session/connection state information might also be stored
 in a Local Configuration Datastore.

Hardaker Expires July 12, 2010 [Page 19]

Internet-Draft TLS Transport Model for SNMP January 2010

5. Elements of Procedure

 Abstract service interfaces have been defined by [RFC3411] and
 further augmented by [RFC5590] to describe the conceptual data flows
 between the various subsystems within an SNMP entity. The TLSTM uses
 some of these conceptual data flows when communicating between
 subsystems.

 To simplify the elements of procedure, the release of state
 information is not always explicitly specified. As a general rule,
 if state information is available when a message gets discarded, the
 message-state information should also be released. If state
 information is available when a session is closed, the session state
 information should also be released. Sensitive information, like
 cryptographic keys, should be overwritten appropriately first prior
 to being released.

 An error indication in statusInformation will typically include the
 Object Identifier (OID) and value for an incremented error counter.
 This may be accompanied by the requested securityLevel and the
 tmStateReference. Per-message context information is not accessible
 to Transport Models, so for the returned counter OID and value,
 contextEngine would be set to the local value of snmpEngineID and
 contextName to the default context for error counters.

5.1. Procedures for an Incoming Message

 This section describes the procedures followed by the (D)TLS
 Transport Model when it receives a (D)TLS protected packet. The
 steps are broken into two different sections. Section 5.1.1
 describes the needed steps for de-multiplexing multiple DTLS
 sessions, which is specifically needed for DTLS over UDP sessions.

Section 5.1.2 describes the steps specific to transport processing
 once the (D)TLS processing has been completed. It is assumed that
 TLS and DTLS/SCP protocol implementations already provide appropriate
 message demultiplexing and only the processing steps in Section 5.1.2
 are needed.

5.1.1. DTLS Processing for Incoming Messages

 DTLS over UDP is significantly different in terms of session handling
 than when TLS or DTLS is run over session based streaming protocols
 like TCP or SCTP. Specifically, the DTLS protocol, when run over
 UDP, does not have a session identifier that allows implementations
 to determine through which session a packet arrived. It is always
 critical, however, that implementations be able to derive a
 tlstmSessionID from any session demultiplexing process. When
 establishing a new session implementations MUST use a different UDP

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc5590

Hardaker Expires July 12, 2010 [Page 20]

Internet-Draft TLS Transport Model for SNMP January 2010

 source port number for each connection to a remote destination IP-
 address/port-number combination to ensure the remote entity can
 easily disambiguate between multiple sessions from a host to the same
 port on a server.

 A process for demultiplexing multiple DTLS sessions arriving over UDP
 must be incorporated into the procedures for processing an incoming
 message. The steps in this section describe one possible method to
 accomplish this, although any implementation-dependent method should
 be suitable as long as the results are deterministic. The important
 output results from the steps in this process are the
 transportDomain, the transportAddress, the wholeMessage, the
 wholeMessageLength, and a unique implementation-dependent session
 identifier (tlstmSessionID).

 This demultiplexing procedure assumes that upon session establishment
 an entry in a local transport mapping table is created in the
 Transport Model's Local Configuration Datastore (LCD). The transport
 mapping table's entry should map a unique combination of the remote
 address, remote port number, local address and local port number to
 an implementation-dependent tlstmSessionID.

 1) The TLS Transport Model examines the raw UDP message, in an
 implementation-dependent manner.

 2) The TLS Transport Model queries the LCD using the transport
 parameters (source and destination addresses and ports) to
 determine if a session already exists and its tlstmSessionID.

 If a matching entry in the LCD does not exist then the message is
 passed to DTLS for processing without a corresponding
 tlstmSessionID. The incoming packet may result in a new session
 being established if the receiving entity is acting as a DTLS
 server. If DTLS returns success then stop processing of this
 message. If DTLS returns an error then increment the
 snmpTlstmSessionNoSessions counter and stop processing the
 message.

 Note that an entry would already exist if the client and server's
 session establishment procedures had been successfully completed
 previously (as described both above and in Section 5.3) even if
 no message had yet been sent through the newly established
 session. An entry may not exist, however, if a message not
 intended the SNMP entity was routed to it by mistake. An entry
 might also be missing because of a "broken" session (see
 operational considerations).

Hardaker Expires July 12, 2010 [Page 21]

Internet-Draft TLS Transport Model for SNMP January 2010

 3) Retrieve the tlstmSessionID from the LCD.

 4) The UDP packet and the tlstmSessionID are passed to DTLS for
 integrity checking and decryption.

 If the message fails integrity checks or other (D)TLS security
 processing then increment the tlstmDTLSProtectionErrors counter,
 discard and stop processing the message.

 5) DTLS should return an incomingMessage and an
 incomingMessageLength. These results and the tlstmSessionID are
 used below in the Section 5.1.2 to complete the processing of the
 incoming message.

5.1.2. Transport Processing for Incoming SNMP Messages

 The procedures in this section describe how the TLS Transport Model
 should process messages that have already been properly extracted
 from the (D)TLS stream. Note that care must be taken when processing
 messages originating from either TLS or DTLS to ensure they're
 complete and single. For example, multiple SNMP messages can be
 passed through a single DTLS message and partial SNMP messages may be
 received from a TLS stream. These steps describe the processing of a
 singular SNMP message after it has been delivered from the (D)TLS
 stream.

 Create a tmStateReference cache for the subsequent reference and
 assign the following values within it:

 tmTransportDomain = snmpTLSTCPDomain, snmpDTLSUDPDomain or
 snmpDTLSSCTPDomain as appropriate.

 tmTransportAddress = The address the message originated from.

 tmSecurityLevel = The derived tmSecurityLevel for the session, as
 discussed in Section 3.1.2 and Section 5.3.

 tmSecurityName = The derived tmSecurityName for the session as
 discussed in Section 5.3. This value MUST be constant during the
 lifetime of the (D)TLS session.

 tmSessionID = The tlstmSessionID, which MUST be a unique session
 identifier for this (D)TLS connection. The contents and format of
 this identifier are implementation-dependent as long as it is
 unique to the session. A session identifier MUST NOT be reused
 until all references to it are no longer in use. The tmSessionID
 is equal to the tlstmSessionID discussed in Section 5.1.1.
 tmSessionID refers to the session identifier when stored in the

Hardaker Expires July 12, 2010 [Page 22]

Internet-Draft TLS Transport Model for SNMP January 2010

 tmStateReference and tlstmSessionID refers to the session
 identifier when stored in the LCD. They MUST always be equal when
 processing a given session's traffic.

 The wholeMessage and the wholeMessageLength are assigned values from
 the incomingMessage and incomingMessageLength values from the (D)TLS
 processing.

 The TLS Transport Model passes the transportDomain, transportAddress,
 wholeMessage, and wholeMessageLength to the Dispatcher using the
 receiveMessage ASI:

 statusInformation =
 receiveMessage(
 IN transportDomain -- snmpTLSTCPDomain, snmpDTLSUDPDomain,
 -- or snmpDTLSSCTPDomain
 IN transportAddress -- address for the received message
 IN wholeMessage -- the whole SNMP message from (D)TLS
 IN wholeMessageLength -- the length of the SNMP message
 IN tmStateReference -- transport info
)

5.2. Procedures for an Outgoing SNMP Message

 The Dispatcher sends a message to the TLS Transport Model using the
 following ASI:

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference -- transport info
)

 This section describes the procedure followed by the TLS Transport
 Model whenever it is requested through this ASI to send a message.

 1) If tmStateReference does not refer to a cache containing values
 for tmTransportDomain, tmTransportAddress, tmSecurityName,
 tmRequestedSecurityLevel, and tmSameSecurity, then increment the
 snmpTlstmSessionInvalidCaches counter, discard the message, and
 return the error indication in the statusInformation. Processing
 of this message stops.

Hardaker Expires July 12, 2010 [Page 23]

Internet-Draft TLS Transport Model for SNMP January 2010

 2) Extract the tmSessionID, tmTransportDomain, tmTransportAddress,
 tmSecurityName, tmRequestedSecurityLevel, and tmSameSecurity
 values from the tmStateReference. Note: The tmSessionID value
 may be undefined if no session exists yet over which the message
 can be sent.

 3) If tmSameSecurity is true and either tmSessionID is undefined or
 refers to a session that is no longer open then increment the
 snmpTlstmSessionNoSessions counter, discard the message and
 return the error indication in the statusInformation. Processing
 of this message stops.

 4) If tmSameSecurity is false and tmSessionID refers to a session
 that is no longer available then an implementation SHOULD open a
 new session using the openSession() ASI (described in greater
 detail in step 4b). Instead of opening a new session an
 implementation MAY return a snmpTlstmSessionNoSessions error to
 the calling module and stop processing of the message.

 5) If tmSessionID is undefined, then use tmTransportDomain,
 tmTransportAddress, tmSecurityName and tmRequestedSecurityLevel
 to see if there is a corresponding entry in the LCD suitable to
 send the message over.

 5a) If there is a corresponding LCD entry, then this session
 will be used to send the message.

 5b) If there is not a corresponding LCD entry, then open a
 session using the openSession() ASI (discussed further in

Section 5.3). Implementations MAY wish to offer message
 buffering to prevent redundant openSession() calls for the
 same cache entry. If an error is returned from
 openSession(), then discard the message, discard the
 tmStateReference, increment the snmpTlstmSessionOpenErrors,
 return an error indication to the calling module and stop
 processing of the message.

 6) Using either the session indicated by the tmSessionID if there
 was one or the session resulting from a previous step (3 or 4),
 pass the outgoingMessage to (D)TLS for encapsulation and
 transmission.

5.3. Establishing a Session

 The TLS Transport Model provides the following primitive to establish
 a new (D)TLS session:

Hardaker Expires July 12, 2010 [Page 24]

Internet-Draft TLS Transport Model for SNMP January 2010

 statusInformation = -- errorIndication or success
 openSession(
 IN tmStateReference -- transport information to be used
 OUT tmStateReference -- transport information to be used
 IN maxMessageSize -- of the sending SNMP entity
)

 The following describes the procedure to follow when establishing a
 SNMP over (D)TLS session between SNMP engines for exchanging SNMP
 messages. This process is followed by any SNMP engine establishing a
 session for subsequent use.

 This MAY be done automatically for an SNMP application that initiates
 a transaction, such as a command generator, a notification
 originator, or a proxy forwarder.

 1) The client selects the appropriate certificate and cipher_suites
 for the key agreement based on the tmSecurityName and the
 tmRequestedSecurityLevel for the session. For sessions being
 established as a result of a SNMP-TARGET-MIB based operation, the
 certificate will potentially have been identified via the
 tlstmParamsTable mapping and the cipher_suites will have to be
 taken from system-wide or implementation-specific configuration.
 Otherwise, the certificate and appropriate cipher_suites will
 need to be passed to the openSession() ASI as supplemental
 information or configured through an implementation-dependent
 mechanism. It is also implementation-dependent and possibly
 policy-dependent how tmRequestedSecurityLevel will be used to
 influence the security capabilities provided by the (D)TLS
 session. However this is done, the security capabilities
 provided by (D)TLS MUST be at least as high as the level of
 security indicated by the tmRequestedSecurityLevel parameter.
 The actual security level of the session is reported in the
 tmStateReference cache as tmSecurityLevel. For (D)TLS to provide
 strong authentication, each principal acting as a command
 generator SHOULD have its own certificate.

 2) Using the destTransportDomain and destTransportAddress values,
 the client will initiate the (D)TLS handshake protocol to
 establish session keys for message integrity and encryption.

 If the attempt to establish a session is unsuccessful, then
 snmpTlstmSessionOpenErrors is incremented, an error indication is
 returned, and processing stops. If the session failed to open
 because the presented server certificate was unknown or invalid
 then the snmpTlstmSessionUnknownServerCertificate or
 snmpTlstmSessionInvalidServerCertificates MUST be incremented and
 a tlstmServerCertificateUnknown or tlstmServerInvalidCertificate

Hardaker Expires July 12, 2010 [Page 25]

Internet-Draft TLS Transport Model for SNMP January 2010

 notification SHOULD be sent as appropriate. Reasons for server
 certificate invalidation includes, but is not limited to,
 cryptographic validation failures and an unexpected presented
 certificate identity.

 3) Once a (D)TLS secured session is established and both sides have
 verified the authenticity of the peer's certificate (e.g.
 [RFC5280]) then each side will determine and/or check the
 identity of the remote entity using the procedures described
 below.

 a) The (D)TLS server side of the connection identifies the
 authenticated identity from the (D)TLS client's principal
 certificate using configuration information from the
 tlstmCertToTSNTable mapping table. The (D)TLS server MUST
 request and expect a certificate from the client and MUST NOT
 accept SNMP messages over the (D)TLS session until the client
 has sent a certificate and it has been authenticated. The
 resulting derived tmSecurityName is recorded in the
 tmStateReference cache as tmSecurityName. The details of the
 lookup process are fully described in the DESCRIPTION clause
 of the tlstmCertToTSNTable MIB object. If any verification
 fails in any way (for example because of failures in
 cryptographic verification or because of the lack of an
 appropriate row in the tlstmCertToTSNTable) then the session
 establishment MUST fail, the
 snmpTlstmSessionInvalidClientCertificates object is
 incremented and processing stops.

 b) The (D)TLS client side of the connection MUST verify that the
 (D)TLS server's presented certificate is the expected
 certificate. The (D)TLS client MUST NOT transmit SNMP
 messages until the server certificate has been authenticated
 and the client certificate has been transmitted.

 If the connection is being established from configuration
 based on SNMP-TARGET-MIB configuration then the procedures in
 the tlstmAddrTable DESCRIPTION clause should be followed to
 determine if the presented identity matches the expectations
 of the configuration. Path validation procedures (like those
 defined in [RFC5280]) MUST be followed. If a server identity
 name has been configured in the tlstmAddrServerIdentity
 column then this reference identity must be compared against
 the presented identity (for example using procedures
 described in [I-D.saintandre-tls-server-id-check]).

 If the connection is being established for other reasons then
 configuration and procedures outside the scope of this

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Hardaker Expires July 12, 2010 [Page 26]

Internet-Draft TLS Transport Model for SNMP January 2010

 document should be followed.

 (D)TLS provides assurance that the authenticated identity has
 been signed by a trusted configured certificate authority.
 If verification of the server's certificate fails in any way
 (for example because of failures in cryptographic
 verification or the presented identity did not match the
 expected named entity) then the session establishment MUST
 fail, the snmpTlstmSessionInvalidServerCertificates object is
 incremented and processing stops.

 4) The TLSTM-specific session identifier (tlstmSessionID) is set in
 the tmSessionID of the tmStateReference passed to the TLS
 Transport Model to indicate that the session has been established
 successfully and to point to a specific (D)TLS session for future
 use.

 Servers that wish to support multiple principals at a particular port
 SHOULD make use of a (D)TLS extension that allows server-side
 principal selection like the Server Name Indication extension defined
 in Section 3.1 of [RFC4366]. Supporting this will allow, for
 example, sending notifications to a specific principal at a given
 TCP, UDP or SCTP port.

5.4. Closing a Session

 The TLS Transport Model provides the following primitive to close a
 session:

 statusInformation =
 closeSession(
 IN tmSessionID -- session ID of the session to be closed
)

 The following describes the procedure to follow to close a session
 between a client and server. This process is followed by any SNMP
 engine closing the corresponding SNMP session.

 1) Increment the snmpTlstmSessionCloses counter.

 2) Look up the session using the tmSessionID.

 3) If there is no open session associated with the tmSessionID, then
 closeSession processing is completed.

https://datatracker.ietf.org/doc/html/rfc4366#section-3.1

Hardaker Expires July 12, 2010 [Page 27]

Internet-Draft TLS Transport Model for SNMP January 2010

 4) Have (D)TLS close the specified session. This SHOULD include
 sending a close_notify TLS Alert to inform the other side that
 session cleanup may be performed.

6. MIB Module Overview

 This MIB module provides management of the TLS Transport Model. It
 defines needed textual conventions, statistical counters,
 notifications and configuration infrastructure necessary for session
 establishment. Example usage of the configuration tables can be
 found in Appendix C.

6.1. Structure of the MIB Module

 Objects in this MIB module are arranged into subtrees. Each subtree
 is organized as a set of related objects. The overall structure and
 assignment of objects to their subtrees, and the intended purpose of
 each subtree, is shown below.

6.2. Textual Conventions

 Generic and Common Textual Conventions used in this module can be
 found summarized at http://www.ops.ietf.org/mib-common-tcs.html

 This module defines the following new Textual Conventions:

 o New TransportDomain and TransportAddress formats for describing
 (D)TLS connection addressing requirements.

 o A certificate fingerprint allowing MIB module objects to
 generically refer to a stored X.509 certificate using a
 cryptographic hash as a reference pointer.

6.3. Statistical Counters

 The TLSTM-MIB defines some counters that can provide network managers
 with information about (D)TLS session usage and potential errors that
 a MIB-instrumented device may be experiencing.

6.4. Configuration Tables

 The TLSTM-MIB defines configuration tables that a manager can use for
 configuring a MIB-instrumented device for sending and receiving SNMP
 messages over (D)TLS. In particular, there are MIB tables that
 extend the SNMP-TARGET-MIB for configuring (D)TLS certificate usage
 and a MIB table for mapping incoming (D)TLS client certificates to
 SNMPv3 securityNames.

http://www.ops.ietf.org/mib-common-tcs.html

Hardaker Expires July 12, 2010 [Page 28]

Internet-Draft TLS Transport Model for SNMP January 2010

6.4.1. Notifications

 The TLSTM-MIB defines notifications to alert management stations when
 a (D)TLS connection fails because a server's presented certificate
 did not meet an expected value (tlstmServerCertificateUnknown) or
 because cryptographic validation failed
 (tlstmServerInvalidCertificate).

6.5. Relationship to Other MIB Modules

 Some management objects defined in other MIB modules are applicable
 to an entity implementing the TLS Transport Model. In particular, it
 is assumed that an entity implementing the TLSTM-MIB will implement
 the SNMPv2-MIB [RFC3418], the SNMP-FRAMEWORK-MIB [RFC3411], the SNMP-
 TARGET-MIB [RFC3413], the SNMP-NOTIFICATION-MIB [RFC3413] and the
 SNMP-VIEW-BASED-ACM-MIB [RFC3415].

 The TLSTM-MIB module contained in this document is for managing TLS
 Transport Model information.

6.5.1. MIB Modules Required for IMPORTS

 The TLSTM-MIB module imports items from SNMPv2-SMI [RFC2578],
 SNMPv2-TC [RFC2579], SNMP-FRAMEWORK-MIB [RFC3411], SNMP-TARGET-MIB
 [RFC3413] and SNMPv2-CONF [RFC2580].

7. MIB Module Definition

TLSTM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 OBJECT-IDENTITY, snmpModules, snmpDomains,
 Counter32, Unsigned32, NOTIFICATION-TYPE
 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, TimeStamp, RowStatus, StorageType,
 AutonomousType
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB
 snmpTargetParamsName, snmpTargetAddrName
 FROM SNMP-TARGET-MIB
 ;

https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3415
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc2580

Hardaker Expires July 12, 2010 [Page 29]

Internet-Draft TLS Transport Model for SNMP January 2010

tlstmMIB MODULE-IDENTITY
 LAST-UPDATED "201001080000Z"
 ORGANIZATION "ISMS Working Group"
 CONTACT-INFO "WG-EMail: isms@lists.ietf.org
 Subscribe: isms-request@lists.ietf.org

 Chairs:
 Juergen Schoenwaelder
 Jacobs University Bremen
 Campus Ring 1
 28725 Bremen
 Germany
 +49 421 200-3587
 j.schoenwaelder@jacobs-university.de

 Russ Mundy
 SPARTA, Inc.
 7110 Samuel Morse Drive
 Columbia, MD 21046
 USA

 Co-editors:
 Wes Hardaker
 Sparta, Inc.
 P.O. Box 382
 Davis, CA 95617
 USA
 ietf@hardakers.net
 "

 DESCRIPTION "
 The TLS Transport Model MIB

 Copyright (c) 2010 IETF Trust and the persons identified as
 the document authors. All rights reserved.

 Redistribution and use in source and binary forms, with or
 without modification, is permitted pursuant to, and subject
 to the license terms contained in, the Simplified BSD License
 set forth in Section 4.c of the IETF Trust's Legal Provisions
 Relating to IETF Documents
 (http://trustee.ietf.org/license-info).

 This version of this MIB module is part of RFC XXXX;
 see the RFC itself for full legal notices."

-- NOTE to RFC editor: replace XXXX with actual RFC number
-- for this document and remove this note

http://trustee.ietf.org/license-info

Hardaker Expires July 12, 2010 [Page 30]

Internet-Draft TLS Transport Model for SNMP January 2010

 REVISION "201001080000Z"
 DESCRIPTION "The initial version, published in RFC XXXX."
-- NOTE to RFC editor: replace XXXX with actual RFC number
-- for this document and remove this note

 ::= { snmpModules xxxx }
-- RFC Ed.: replace xxxx with IANA-assigned number and
-- remove this note

-- **
-- subtrees of the TLSTM-MIB
-- **

tlstmNotifications OBJECT IDENTIFIER ::= { tlstmMIB 0 }
tlstmIdentities OBJECT IDENTIFIER ::= { tlstmMIB 1 }
tlstmObjects OBJECT IDENTIFIER ::= { tlstmMIB 2 }
tlstmConformance OBJECT IDENTIFIER ::= { tlstmMIB 3 }

-- **
-- tlstmObjects - Objects
-- **

snmpTLSTCPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over TLS transport domain. The corresponding
 transport address is of type SnmpTLSAddress.

 The securityName prefix to be associated with the
 snmpTLSTCPDomain is 'tls'. This prefix may be used by
 security models or other components to identify which secure
 transport infrastructure authenticated a securityName."

 ::= { snmpDomains xx }

-- RFC Ed.: replace xx with IANA-assigned number and
-- remove this note

-- RFC Ed.: replace 'tls' with the actual IANA assigned prefix string
-- if 'tls' is not assigned to this document.

snmpDTLSUDPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over DTLS/UDP transport domain. The corresponding
 transport address is of type SnmpTLSAddress.

Hardaker Expires July 12, 2010 [Page 31]

Internet-Draft TLS Transport Model for SNMP January 2010

 The securityName prefix to be associated with the
 snmpDTLSUDPDomain is 'dudp'. This prefix may be used by
 security models or other components to identify which secure
 transport infrastructure authenticated a securityName."

 ::= { snmpDomains yy }

-- RFC Ed.: replace yy with IANA-assigned number and
-- remove this note

-- RFC Ed.: replace 'dudp' with the actual IANA assigned prefix string
-- if 'dtls' is not assigned to this document.

snmpDTLSSCTPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over DTLS/SCTP transport domain. The corresponding
 transport address is of type SnmpTLSAddress.

 The securityName prefix to be associated with the
 snmpDTLSSCTPDomain is 'dsct'. This prefix may be used by
 security models or other components to identify which secure
 transport infrastructure authenticated a securityName."

 ::= { snmpDomains zz }

-- RFC Ed.: replace zz with IANA-assigned number and
-- remove this note

-- RFC Ed.: replace 'dsct' with the actual IANA assigned prefix string
-- if 'dtls' is not assigned to this document.

SnmpTLSAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1a"
 STATUS current
 DESCRIPTION
 "Represents a IPv4 address, an IPv6 address or an US-ASCII
 encoded hostname and port number.

 An IPv4 address must be in dotted decimal format followed by a
 colon ':' (US-ASCII character 0x3A) and a decimal port number
 in US-ASCII.

 An IPv6 address must be a colon separated format, surrounded
 by square brackets ('[', US-ASCII character 0x5B, and ']',
 US-ASCII character 0x5D), followed by a colon ':' (US-ASCII

Hardaker Expires July 12, 2010 [Page 32]

Internet-Draft TLS Transport Model for SNMP January 2010

 character 0x3A) and a decimal port number in US-ASCII.

 A hostname is always in US-ASCII (as per RFC1033);
 internationalized hostnames are encoded in US-ASCII as
 specified in RFC 3490. The hostname is followed by a colon
 ':' (US-ASCII character 0x3A) and a decimal port number in
 US-ASCII. The name SHOULD be fully qualified whenever
 possible.

 Values of this textual convention may not be directly usable
 as transport-layer addressing information, and may require
 run-time resolution. As such, applications that write them
 must be prepared for handling errors if such values are not
 supported, or cannot be resolved (if resolution occurs at the
 time of the management operation).

 The DESCRIPTION clause of TransportAddress objects that may
 have SnmpTLSAddress values must fully describe how (and
 when) such names are to be resolved to IP addresses and vice
 versa.

 This textual convention SHOULD NOT be used directly in object
 definitions since it restricts addresses to a specific
 format. However, if it is used, it MAY be used either on its
 own or in conjunction with TransportAddressType or
 TransportDomain as a pair.

 When this textual convention is used as a syntax of an index
 object, there may be issues with the limit of 128
 sub-identifiers specified in SMIv2 (STD 58). It is RECOMMENDED
 that all MIB documents using this textual convention make
 explicit any limitations on index component lengths that
 management software must observe. This may be done either by
 including SIZE constraints on the index components or by
 specifying applicable constraints in the conceptual row
 DESCRIPTION clause or in the surrounding documentation."
 REFERENCE
 "RFC 1033: DOMAIN ADMINISTRATORS OPERATIONS GUIDE

RFC 3490: Internationalizing Domain Names in Applications
RFC 3986: Uniform Resource Identifier (URI): Generic Syntax
RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2

 "
 SYNTAX OCTET STRING (SIZE (1..255))

Fingerprint ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1x:254x"
 STATUS current
 DESCRIPTION

https://datatracker.ietf.org/doc/html/rfc1033
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc1033
https://datatracker.ietf.org/doc/html/rfc3490
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc5246

Hardaker Expires July 12, 2010 [Page 33]

Internet-Draft TLS Transport Model for SNMP January 2010

 "A Fingerprint value that can be used to uniquely reference
 other data of potentially arbitrary length.

 A Fingerprint value is composed of a 1-octet hashing algorithm
 identifier followed by the fingerprint value. The octet value
 encoded is taken from the IANA TLS HashAlgorithm Registry
 (RFC5246). The remaining octets are filled using the results
 of the hashing algorithm.

 This TEXTUAL-CONVENTION allows for a zero-length (blank)
 Fingerprint value for use in tables where the fingerprint value
 may be optional. MIB definitions or implementations may refuse
 to accept a zero-length value as appropriate."
 REFERENCE
 "RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2
 "
 SYNTAX OCTET STRING (SIZE (0..255))

-- Identities

tlstmCertToTSNMIdentities OBJECT IDENTIFIER ::= { tlstmIdentities 1 }

tlstmCertSpecified OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Directly specifies the tmSecurityName to be used for
 this certificate. The value of the tmSecurityName to
 use is specified in the tlstmCertToTSNData column.
 The column must contain a SnmpAdminString compliant
 value or contains a zero length string then the
 mapping will be considered a failure."
 ::= { tlstmCertToTSNMIdentities 1 }

tlstmCertSANRFC822Name OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Maps a subjectAltName's rfc822Name to a
 tmSecurityName. The local part of the rfc822Name is
 passed unaltered but the host-part of the name must
 be passed in lower case.

 Example rfc822Name Field: FooBar@Example.COM
 is mapped to tmSecurityName: FooBar@exmaple.com"
 ::= { tlstmCertToTSNMIdentities 2 }

tlstmCertSANDNSName OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Maps a subjectAltName's dNSName to a
 tmSecurityName by directly passing the value without
 any transformations."

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Hardaker Expires July 12, 2010 [Page 34]

Internet-Draft TLS Transport Model for SNMP January 2010

 ::= { tlstmCertToTSNMIdentities 3 }

tlstmCertSANIpAddress OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Maps a subjectAltName's ipAddress to a
 tmSecurityName by transforming the binary encoded
 address as follows:

 1) for IPv4 the value is converted into a decimal
 dotted quad address (e.g. '192.0.2.1')

 2) for IPv6 addresses the value is converted into a
 32-character hexadecimal string without any colon
 separators.

 Note that the resulting length is the maximum
 length supported by the View-Based Access Control
 Model (VACM). Note that using both the Transport
 Security Model's support for transport prefixes
 (see the SNMP-TSM-MIB's
 snmpTsmConfigurationUsePrefix object for details)
 will result in securityName lengths that exceed
 what VACM can handle."
 ::= { tlstmCertToTSNMIdentities 4 }

tlstmCertSANAny OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Maps any of the following fields using the
 corresponding mapping algorithms:

 |------------+------------------------|
 | Type | Algorithm |
 |------------+------------------------|
 | rfc822Name | tlstmCertSANRFC822Name |
 | dNSName | tlstmCertSANDNSName |
 | ipAddress | tlstmCertSANIpAddress |
 |------------+------------------------|

 The first matching subjectAltName value found in the
 certificate any of the above types MUST be used when
 deriving the tmSecurityName."
 ::= { tlstmCertToTSNMIdentities 5 }

tlstmCertCommonName OBJECT-IDENTITY
 STATUS current
 DESCRIPTION "Maps a certificate's CommonName to a
 tmSecurityName by directly passing the value without

Hardaker Expires July 12, 2010 [Page 35]

Internet-Draft TLS Transport Model for SNMP January 2010

 any transformations."
 ::= { tlstmCertToTSNMIdentities 6 }

-- The snmpTlstmSession Group

snmpTlstmSession OBJECT IDENTIFIER ::= { tlstmObjects 1 }

snmpTlstmSessionOpens OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an openSession() request has been
 executed as an (D)TLS client, whether it succeeded or failed."
 ::= { snmpTlstmSession 1 }

snmpTlstmSessionCloses OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times a closeSession() request has been
 executed as an (D)TLS client, whether it succeeded or failed."
 ::= { snmpTlstmSession 2 }

snmpTlstmSessionOpenErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an openSession() request failed to open a
 session as a (D)TLS client, for any reason."
 ::= { snmpTlstmSession 3 }

snmpTlstmSessionNoSessions OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an outgoing message was dropped because
 the session associated with the passed tmStateReference was no
 longer (or was never) available."
 ::= { snmpTlstmSession 4 }

snmpTlstmSessionInvalidClientCertificates OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current

Hardaker Expires July 12, 2010 [Page 36]

Internet-Draft TLS Transport Model for SNMP January 2010

 DESCRIPTION
 "The number of times an incoming session was not established
 on an (D)TLS server because the presented client certificate was
 invalid. Reasons for invalidation include, but are not
 limited to, cryptographic validation failures or lack of a
 suitable mapping row in the tlstmCertToTSNTable."
 ::= { snmpTlstmSession 5 }

snmpTlstmSessionUnknownServerCertificate OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an outgoing session was not established
 on an (D)TLS client because the server certificate presented
 by a SNMP over (D)TLS server was invalid because no
 configured fingerprint or CA was acceptable to validate it.
 This may result because there was no entry in the
 tlstmAddrTable or because no path could be found to known
 certificate authority."
 ::= { snmpTlstmSession 6 }

snmpTlstmSessionInvalidServerCertificates OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an outgoing session was not established
 on an (D)TLS client because the server certificate presented
 by an SNMP over (D)TLS server could not be validated even if
 the fingerprint or expected validation path was known. I.E.,
 a cryptographic validation occurred during certificate
 validation processing.

 Reasons for invalidation include, but are not
 limited to, cryptographic validation failures."
 ::= { snmpTlstmSession 7 }

snmpTlstmSessionInvalidCaches OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of outgoing messages dropped because the
 tmStateReference referred to an invalid cache."
 ::= { snmpTlstmSession 8 }

tlstmTLSProtectionErrors OBJECT-TYPE

Hardaker Expires July 12, 2010 [Page 37]

Internet-Draft TLS Transport Model for SNMP January 2010

 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times (D)TLS processing resulted in a message
 being discarded because it failed its integrity test,
 decryption processing or other (D)TLS processing."
 ::= { snmpTlstmSession 9 }

-- Configuration Objects

tlstmConfig OBJECT IDENTIFIER ::= { tlstmObjects 2 }

-- Certificate mapping

tlstmCertificateMapping OBJECT IDENTIFIER ::= { tlstmConfig 1 }

tlstmCertToTSNCount OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A count of the number of entries in the tlstmCertToTSNTable"
 ::= { tlstmCertificateMapping 1 }

tlstmCertToTSNTableLastChanged OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime.0 when the tlstmCertToTSNTable
 was last modified through any means, or 0 if it has not been
 modified since the command responder was started."
 ::= { tlstmCertificateMapping 2 }

tlstmCertToTSNTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TlstmCertToTSNEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table listing the X.509 certificates known to the entity
 and the associated method for determining the SNMPv3 security
 name from a certificate.

 On an incoming (D)TLS/SNMP connection the client's presented
 certificate must be examined and validated based on an
 established trusted path from a CA certificate or self-signed

Hardaker Expires July 12, 2010 [Page 38]

Internet-Draft TLS Transport Model for SNMP January 2010

 public certificate (e.g. RFC5280). This table provides a
 mapping from a validated certificate to a tmSecurityName.
 This table does not provide any mechanisms for uploading
 trusted certificates; the transfer of any needed trusted
 certificates for path validation is expected to occur through
 an out-of-band transfer.

 Once the authenticity of a certificate has been verified, this
 table is consulted to determine the appropriate tmSecurityName
 to identify with the remote connection. This is done by
 considering each active row from this table in prioritized
 order according to its tlstmCertToTSNID value. Each row's
 tlstmCertToTSNFingerprint value determines whether the row is a
 match for the incoming connection:

 1) If the row's tlstmCertToTSNFingerprint value identifies
 the presented certificate then consider the row as a
 successful match.

 2) If the row's tlstmCertToTSNFingerprint value identifies
 a locally held copy of a trusted CA certificate and
 that CA certificated was used to validate the path to
 the presented certificate then consider the row as a
 successful match.

 Once a matching row has been found, the tlstmCertToTSNMapType
 value can be used to determine how the tmSecurityName to
 associate with the session should be determined. See the
 tlstmCertToTSNMapType column's DESCRIPTION for details on
 determining the tmSecurityName value. If it is impossible to
 determine a tmSecurityName from the row's data combined with the
 data presented in the certificate then additional rows MUST be
 searched looking for another potential match. If a resulting
 tmSecurityName mapped from a given row is not compatible with
 the needed requirements of a tmSecurityName (e.g., VACM imposes
 a 32-octet-maximum length and the certificate derived
 securityName could be longer) then it must be considered an
 invalid match and additional rows MUST be searched looking for
 another potential match.

 Missing values of tlstmCertToTSNID are acceptable and
 implementations should continue to the next highest numbered
 row. E.G., the table may legally contain only two rows with
 tlstmCertToTSNID values of 10 and 20.

 Users are encouraged to make use of certificates with
 subjectAltName fields that can be used as tmSecurityNames so
 that a single root CA certificate can allow all child

https://datatracker.ietf.org/doc/html/rfc5280

Hardaker Expires July 12, 2010 [Page 39]

Internet-Draft TLS Transport Model for SNMP January 2010

 certificate's subjectAltName to map directly to a tmSecurityName
 via a 1:1 transformation. However, this table is flexible to
 allow for situations where existing deployed certificate
 infrastructures do not provide adequate subjectAltName values
 for use as tmSecurityNames. Certificates may also be
 mapped to tmSecurityNames using the CommonName portion of the
 Subject field but usage of the CommonName field is deprecated.
 Direct mapping from each individual certificate fingerprint to
 a tmSecurityName is also possible but requires one entry in the
 table per tmSecurityName and requires more management operations
 to completely configure a device."
 ::= { tlstmCertificateMapping 3 }

tlstmCertToTSNEntry OBJECT-TYPE
 SYNTAX TlstmCertToTSNEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A row in the tlstmCertToTSNTable that specifies a mapping for
 an incoming (D)TLS certificate to a tmSecurityName to use for a
 connection."
 INDEX { tlstmCertToTSNID }
 ::= { tlstmCertToTSNTable 1 }

TlstmCertToTSNEntry ::= SEQUENCE {
 tlstmCertToTSNID Unsigned32,
 tlstmCertToTSNFingerprint Fingerprint,
 tlstmCertToTSNMapType AutonomousType,
 tlstmCertToTSNData OCTET STRING,
 tlstmCertToTSNStorageType StorageType,
 tlstmCertToTSNRowStatus RowStatus
}

tlstmCertToTSNID OBJECT-TYPE
 SYNTAX Unsigned32 (1..4294967295)
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique, prioritized index for the given entry."
 ::= { tlstmCertToTSNEntry 1 }

tlstmCertToTSNFingerprint OBJECT-TYPE
 SYNTAX Fingerprint (SIZE(1..255))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A cryptographic hash of a X.509 certificate. The results of
 a successful matching fingerprint to either the trusted CA in

Hardaker Expires July 12, 2010 [Page 40]

Internet-Draft TLS Transport Model for SNMP January 2010

 the certificate validation path or to the certificate itself
 is dictated by the tlstmCertToTSNMapType column."
 ::= { tlstmCertToTSNEntry 2 }

tlstmCertToTSNMapType OBJECT-TYPE
 SYNTAX AutonomousType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Specifies the mapping type for deriving a tmSecurityName from a
 certificate. Details for mapping of a particular type SHALL
 be specified in the DESCRIPTION clause of the OBJECT-IDENTITY
 that describes the mapping. If a mapping succeeds it will
 return a tmSecurityName for use by the TLSTM model and
 processing stops.

 If the resulting mapped value is not compatible with the
 needed requirements of a tmSecurityName (e.g., VACM imposes a
 32-octet-maximum length and the certificate derived
 securityName could be longer) then future rows MUST be
 searched for additional tlstmCertToTSNFingerprint matches to
 look for a mapping that succeeds."
 DEFVAL { tlstmCertSpecified }
 ::= { tlstmCertToTSNEntry 3 }

tlstmCertToTSNData OBJECT-TYPE
 SYNTAX OCTET STRING (SIZE(0..1024))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "Axillary data used as optional configuration information for
 a given mapping specified by the tlstmCertToTSNMapType column.
 Only some mapping systems will make use of this column. The
 value in this column MUST be ignored for any mapping type that
 does not require data present in this column."
 DEFVAL { "" }
 ::= { tlstmCertToTSNEntry 4 }

tlstmCertToTSNStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row. Conceptual rows
 having the value 'permanent' need not allow write-access to
 any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { tlstmCertToTSNEntry 5 }

Hardaker Expires July 12, 2010 [Page 41]

Internet-Draft TLS Transport Model for SNMP January 2010

tlstmCertToTSNRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row. This object may be used
 to create or remove rows from this table.

 To create a row in this table, a manager must set this object
 to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are appropriately
 configured, the value of the corresponding instance of the
 tlstmParamsRowStatus column is 'notReady'.

 In particular, a newly created row cannot be made active until
 the corresponding tlstmCertToTSNFingerprint,
 tlstmCertToTSNMapType, and tlstmCertToTSNData columns have been
 set.

 The following objects may not be modified while the
 value of this object is active(1):
 - tlstmCertToTSNFingerprint
 - tlstmCertToTSNMapType
 - tlstmCertToTSNData
 An attempt to set these objects while the value of
 tlstmParamsRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { tlstmCertToTSNEntry 6 }

-- Maps tmSecurityNames to certificates for use by the SNMP-TARGET-MIB

tlstmParamsCount OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A count of the number of entries in the tlstmParamsTable"
 ::= { tlstmCertificateMapping 4 }

tlstmParamsTableLastChanged OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime.0 when the tlstmParamsTable
 was last modified through any means, or 0 if it has not been
 modified since the command responder was started."

Hardaker Expires July 12, 2010 [Page 42]

Internet-Draft TLS Transport Model for SNMP January 2010

 ::= { tlstmCertificateMapping 5 }

tlstmParamsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TlstmParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table extends the SNMP-TARGET-MIB's
 snmpTargetParamsTable with an additional (D)TLS client-side
 certificate fingerprint identifier to use when establishing
 new (D)TLS connections."
 ::= { tlstmCertificateMapping 6 }

tlstmParamsEntry OBJECT-TYPE
 SYNTAX TlstmParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual row containing a fingerprint hash of a locally
 held certificate for a given snmpTargetParamsEntry. The
 values in this row should be ignored if the connection that
 needs to be established, as indicated by the SNMP-TARGET-MIB
 infrastructure, is not a certificate and (D)TLS based
 connection. The connection SHOULD NOT be established if the
 certificate fingerprint stored in this entry does not point to
 a valid locally held certificate or if it points to an unusable
 certificate (such as might happen when the certificate's
 expiration date has been reached)."
 INDEX { IMPLIED snmpTargetParamsName }
 ::= { tlstmParamsTable 1 }

TlstmParamsEntry ::= SEQUENCE {
 tlstmParamsClientFingerprint Fingerprint,
 tlstmParamsStorageType StorageType,
 tlstmParamsRowStatus RowStatus
}

tlstmParamsClientFingerprint OBJECT-TYPE
 SYNTAX Fingerprint
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A cryptographic hash of a X.509 certificate. This object
 should store the hash of a locally held X.509 certificate that
 should be used when initiating a (D)TLS connection as a (D)TLS
 client."
 ::= { tlstmParamsEntry 1 }

Hardaker Expires July 12, 2010 [Page 43]

Internet-Draft TLS Transport Model for SNMP January 2010

tlstmParamsStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row. Conceptual rows
 having the value 'permanent' need not allow write-access to
 any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { tlstmParamsEntry 2 }

tlstmParamsRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row. This object may be used
 to create or remove rows from this table.

 To create a row in this table, a manager must set this object
 to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are appropriately
 configured, the value of the corresponding instance of the
 tlstmParamsRowStatus column is 'notReady'.

 In particular, a newly created row cannot be made active until
 the corresponding tlstmParamsClientFingerprint column has
 been set.

 The tlstmParamsClientFingerprint object may not be modified
 while the value of this object is active(1).

 An attempt to set these objects while the value of
 tlstmParamsRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { tlstmParamsEntry 3 }

-- Lists expected certificate fingerprints to be presented by a DTLS
-- server

tlstmAddrCount OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A count of the number of entries in the tlstmAddrTable"

Hardaker Expires July 12, 2010 [Page 44]

Internet-Draft TLS Transport Model for SNMP January 2010

 ::= { tlstmCertificateMapping 7 }

tlstmAddrTableLastChanged OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime.0 when the tlstmAddrTable
 was last modified through any means, or 0 if it has not been
 modified since the command responder was started."
 ::= { tlstmCertificateMapping 8 }

tlstmAddrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TlstmAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table extends the SNMP-TARGET-MIB's snmpTargetAddrTable
 with an expected (D)TLS server-side certificate identifier to
 expect when establishing a new (D)TLS connections. If a
 matching row in this table exists and the row is active then
 the fingerprint identifier from the tlstmAddrServerFingerprint
 columnshould be compared against the fingerprint of the
 certificate being presented by the server. If the fingerprint
 of the certificate presented by the server does not match the
 tlstmAddrServerFingerprint column's value then the connection
 MUST NOT be established.

 If a matching row exists with a zero-length
 tlstmAddrServerFingerprint value and the certificate can still
 be validated through another certificate validation path
 (e.g. RFC5280) then the server's presented identity should be
 checked against the value of the tlstmAddrServerIdentity
 column. If the server's identity does not match the reference
 identity found in the tlstmAddrServerIdentity column then the
 connection MUST NOT be established. A tlstmAddrServerIdentity
 may contain a '*' to match any server's identity or may
 contain a '*.' prefix to match any server identity from a
 given domain (e.g. '*.example.com').

 If no matching row exists in this table then the connection
 SHOULD still proceed if another certificate validation path
 algorithm (e.g. RFC5280) can be followed to a configured trust
 anchor."
 ::= { tlstmCertificateMapping 9 }

tlstmAddrEntry OBJECT-TYPE
 SYNTAX TlstmAddrEntry

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280

Hardaker Expires July 12, 2010 [Page 45]

Internet-Draft TLS Transport Model for SNMP January 2010

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual row containing a copy of a certificate's
 fingerprint for a given snmpTargetAddrEntry. The values in
 this row should be ignored if the connection that needs to be
 established, as indicated by the SNMP-TARGET-MIB
 infrastructure, is not a (D)TLS based connection. If an
 tlstmAddrEntry exists for a given snmpTargetAddrEntry then the
 presented server certificate MUST match or the connection MUST
 NOT be established. If a row in this table does not exist to
 match a snmpTargetAddrEntry row then the connection SHOULD
 still proceed if some other certificate validation path
 algorithm (e.g. RFC5280) can be followed to a configured trust
 anchor."
 INDEX { IMPLIED snmpTargetAddrName }
 ::= { tlstmAddrTable 1 }

TlstmAddrEntry ::= SEQUENCE {
 tlstmAddrServerFingerprint Fingerprint,
 tlstmAddrServerIdentity SnmpAdminString,
 tlstmAddrStorageType StorageType,
 tlstmAddrRowStatus RowStatus
}

tlstmAddrServerFingerprint OBJECT-TYPE
 SYNTAX Fingerprint
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A cryptographic hash of a public X.509 certificate. This
 object should store the hash of the public X.509 certificate
 that the remote server should present during the (D)TLS
 connection setup. The fingerprint of the presented
 certificate and this hash value MUST match exactly or the
 connection MUST NOT be established."
 DEFVAL { "" }
 ::= { tlstmAddrEntry 1 }

tlstmAddrServerIdentity OBJECT-TYPE
 SYNTAX SnmpAdminString
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The reference identity to check against the identity
 presented by the remote system. A single ASCII '*' character
 (ASCII code 0x2a) may be used as a wildcard string and will
 match any presented server identity. A '*.' prefix may also

https://datatracker.ietf.org/doc/html/rfc5280

Hardaker Expires July 12, 2010 [Page 46]

Internet-Draft TLS Transport Model for SNMP January 2010

 be used to match any identity within a given domain
 (e.g. '*.example.com' will match both 'foo.example.com' and
 'bar.example.com')."
 REFERENCE "draft-saintandre-tls-server-id-check"
 DEFVAL { "*" }
 ::= { tlstmAddrEntry 2 }

tlstmAddrStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row. Conceptual rows
 having the value 'permanent' need not allow write-access to
 any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { tlstmAddrEntry 3 }

tlstmAddrRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row. This object may be used
 to create or remove rows from this table.

 To create a row in this table, a manager must
 set this object to either createAndGo(4) or
 createAndWait(5).

 Until instances of all corresponding columns are
 appropriately configured, the value of the
 corresponding instance of the tlstmAddrRowStatus
 column is 'notReady'.

 In particular, a newly created row cannot be made active until
 the corresponding tlstmAddrServerFingerprint column has been
 set.

 The tlstmAddrServerFingerprint object may not be modified
 while the value of this object is active(1).

 An attempt to set these objects while the value of
 tlstmAddrRowStatus is active(1) will result in
 an inconsistentValue error."
 ::= { tlstmAddrEntry 4 }

https://datatracker.ietf.org/doc/html/draft-saintandre-tls-server-id-check

Hardaker Expires July 12, 2010 [Page 47]

Internet-Draft TLS Transport Model for SNMP January 2010

-- **
-- tlstmNotifications - Notifications Information
-- **

tlstmServerCertificateUnknown NOTIFICATION-TYPE
 OBJECTS { snmpTlstmSessionUnknownServerCertificate }
 STATUS current
 DESCRIPTION
 "Notification that the server certificate presented by a SNMP
 over (D)TLS server was invalid because no configured
 fingerprint or CA was acceptable to validate it. This may
 result because there was no entry in the tlstmAddrTable or
 because no path could be found to known certificate
 authority.

 To avoid notification loops, this notification MUST NOT be
 sent to servers that themselves have triggered the
 notification."
 ::= { tlstmNotifications 1 }

tlstmServerInvalidCertificate NOTIFICATION-TYPE
 OBJECTS { tlstmAddrServerFingerprint,
 snmpTlstmSessionInvalidServerCertificates}
 STATUS current
 DESCRIPTION
 "Notification that the server certificate presented by an SNMP
 over (D)TLS server could not be validated even if the
 fingerprint or expected validation path was known. I.E., a
 cryptographic validation occurred during certificate
 validation processing.

 To avoid notification loops, this notification MUST NOT be
 sent to servers that themselves have triggered the
 notification."
 ::= { tlstmNotifications 2 }

-- **
-- tlstmCompliances - Conformance Information
-- **

tlstmCompliances OBJECT IDENTIFIER ::= { tlstmConformance 1 }

tlstmGroups OBJECT IDENTIFIER ::= { tlstmConformance 2 }

-- **
-- Compliance statements

Hardaker Expires July 12, 2010 [Page 48]

Internet-Draft TLS Transport Model for SNMP January 2010

-- **

tlstmCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP engines that support the
 TLSTM-MIB"
 MODULE
 MANDATORY-GROUPS { tlstmStatsGroup,
 tlstmIncomingGroup,
 tlstmOutgoingGroup,
 tlstmNotificationGroup }
 ::= { tlstmCompliances 1 }

-- **
-- Units of conformance
-- **
tlstmStatsGroup OBJECT-GROUP
 OBJECTS {
 snmpTlstmSessionOpens,
 snmpTlstmSessionCloses,
 snmpTlstmSessionOpenErrors,
 snmpTlstmSessionNoSessions,
 snmpTlstmSessionInvalidClientCertificates,
 snmpTlstmSessionUnknownServerCertificate,
 snmpTlstmSessionInvalidServerCertificates,
 snmpTlstmSessionInvalidCaches,
 tlstmTLSProtectionErrors
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for maintaining
 statistical information of an SNMP engine which
 implements the SNMP TLS Transport Model."
 ::= { tlstmGroups 1 }

tlstmIncomingGroup OBJECT-GROUP
 OBJECTS {
 tlstmCertToTSNCount,
 tlstmCertToTSNTableLastChanged,
 tlstmCertToTSNFingerprint,
 tlstmCertToTSNMapType,
 tlstmCertToTSNData,
 tlstmCertToTSNStorageType,
 tlstmCertToTSNRowStatus
 }
 STATUS current
 DESCRIPTION

Hardaker Expires July 12, 2010 [Page 49]

Internet-Draft TLS Transport Model for SNMP January 2010

 "A collection of objects for maintaining
 incoming connection certificate mappings to
 tmSecurityNames of an SNMP engine which implements the
 SNMP TLS Transport Model."
 ::= { tlstmGroups 2 }

tlstmOutgoingGroup OBJECT-GROUP
 OBJECTS {
 tlstmParamsCount,
 tlstmParamsTableLastChanged,
 tlstmParamsClientFingerprint,
 tlstmParamsStorageType,
 tlstmParamsRowStatus,
 tlstmAddrCount,
 tlstmAddrTableLastChanged,
 tlstmAddrServerFingerprint,
 tlstmAddrServerIdentity,
 tlstmAddrStorageType,
 tlstmAddrRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for maintaining
 outgoing connection certificates to use when opening
 connections as a result of SNMP-TARGET-MIB settings."
 ::= { tlstmGroups 3 }

tlstmNotificationGroup NOTIFICATION-GROUP
 NOTIFICATIONS {
 tlstmServerCertificateUnknown,
 tlstmServerInvalidCertificate
 }
 STATUS current
 DESCRIPTION
 "Notifications"
 ::= { tlstmGroups 4 }

END

8. Operational Considerations

 This section discusses various operational aspects of deploying
 TLSTM.

Hardaker Expires July 12, 2010 [Page 50]

Internet-Draft TLS Transport Model for SNMP January 2010

8.1. Sessions

 A session is discussed throughout this document as meaning a security
 association between the (D)TLS client and the (D)TLS server. State
 information for the sessions are maintained in each TLSTM
 implementation and this information is created and destroyed as
 sessions are opened and closed. A "broken" session (one side up and
 one side down) can result if one side of a session is brought down
 abruptly (i.e., reboot, power outage, etc.). Whenever possible,
 implementations SHOULD provide graceful session termination through
 the use of disconnect messages. Implementations SHOULD also have a
 system in place for detecting "broken" sessions through the use of
 heartbeats [I-D.seggelmann-tls-dtls-heartbeat] or other detection
 mechanisms.

 Implementations SHOULD limit the lifetime of established sessions
 depending on the algorithms used for generation of the master session
 secret, the privacy and integrity algorithms used to protect
 messages, the environment of the session, the amount of data
 transferred, and the sensitivity of the data.

8.2. Notification Receiver Credential Selection

 When an SNMP engine needs to establish an outgoing session for
 notifications, the snmpTargetParamsTable includes an entry for the
 snmpTargetParamsSecurityName of the target. Servers that wish to
 support multiple principals at a particular port SHOULD make use of
 the Server Name Indication extension defined in Section 3.1 of
 [RFC4366]. Without the Server Name Indication the receiving SNMP
 engine (Server) will not know which (D)TLS certificate to offer to
 the Client so that the tmSecurityName identity-authentication will be
 successful.

 Another solution is to maintain a one-to-one mapping between
 certificates and incoming ports for notification receivers. This can
 be handled at the notification originator by configuring the
 snmpTargetAddrTable (snmpTargetAddrTDomain and
 snmpTargetAddrTAddress) and requiring the receiving SNMP engine to
 monitor multiple incoming static ports based on which principals are
 capable of receiving notifications.

 Implementations MAY also choose to designate a single Notification
 Receiver Principal to receive all incoming notifications or select an
 implementation specific method of selecting a server certificate to
 present to clients.

https://datatracker.ietf.org/doc/html/rfc4366#section-3.1
https://datatracker.ietf.org/doc/html/rfc4366#section-3.1

Hardaker Expires July 12, 2010 [Page 51]

Internet-Draft TLS Transport Model for SNMP January 2010

8.3. contextEngineID Discovery

 Most command responders have contextEngineIDs that are identical to
 the USM securityEngineID. USM provides a discovery service that
 allows command generators to determine a securityEngineID and thus a
 default contextEngineID to use. Because the TLS Transport Model does
 not make use of a securityEngineID, it may be difficult for command
 generators to discover a suitable default contextEngineID.
 Implementations should consider offering another engineID discovery
 mechanism to continue providing Command Generators with a suitable
 contextEngineID mechanism. A recommended discovery solution is
 documented in [RFC5343].

8.4. Transport Considerations

 This document defines how SNMP messages can be transmitted over the
 TLS and DTLS based protocols. Each of these protocols are
 additionally based on other transports (TCP, UDP and SCTP). These
 three protocols also have operational considerations that must be
 taken into consideration when selecting a (D)TLS based protocol to
 use such as its performance in degraded or limited networks. It is
 beyond the scope of this document to summarize the characteristics of
 these transport mechanisms. Please refer to the base protocol
 documents for details on messaging considerations with respect to MTU
 size, fragmentation, performance in lossy-networks, etc.

9. Security Considerations

 This document describes a transport model that permits SNMP to
 utilize (D)TLS security services. The security threats and how the
 (D)TLS transport model mitigates these threats are covered in detail
 throughout this document. Security considerations for DTLS are
 covered in [RFC4347] and security considerations for TLS are
 described in Section 11 and Appendices D, E, and F of TLS 1.2
 [RFC5246]. DTLS adds to the security considerations of TLS only
 because it is more vulnerable to denial of service attacks. A random
 cookie exchange was added to the handshake to prevent anonymous
 denial of service attacks. RFC 4347 recommends that the cookie
 exchange is utilized for all handshakes and therefore this
 specification also RECOMMENDEDs that implementers also support this
 cookie exchange.

9.1. Certificates, Authentication, and Authorization

 Implementations are responsible for providing a security certificate
 installation and configuration mechanism. Implementations SHOULD
 support certificate revocation lists.

https://datatracker.ietf.org/doc/html/rfc5343
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires July 12, 2010 [Page 52]

Internet-Draft TLS Transport Model for SNMP January 2010

 (D)TLS provides for authentication of the identity of both the (D)TLS
 server and the (D)TLS client. Access to MIB objects for the
 authenticated principal MUST be enforced by an access control
 subsystem (e.g. the VACM).

 Authentication of the command generator principal's identity is
 important for use with the SNMP access control subsystem to ensure
 that only authorized principals have access to potentially sensitive
 data. The authenticated identity of the command generator
 principal's certificate is mapped to an SNMP model-independent
 securityName for use with SNMP access control.

 The (D)TLS handshake only provides assurance that the certificate of
 the authenticated identity has been signed by an configured accepted
 Certificate Authority. (D)TLS has no way to further authorize or
 reject access based on the authenticated identity. An Access Control
 Model (such as the VACM) provides access control and authorization of
 a command generator's requests to a command responder and a
 notification responder's authorization to receive Notifications from
 a notification originator. However to avoid man-in-the-middle
 attacks both ends of the (D)TLS based connection MUST check the
 certificate presented by the other side against what was expected.
 For example, command generators must check that the command responder
 presented and authenticated itself with a X.509 certificate that was
 expected. Not doing so would allow an impostor, at a minimum, to
 present false data, receive sensitive information and/or provide a
 false belief that configuration was actually received and acted upon.
 Authenticating and verifying the identity of the (D)TLS server and
 the (D)TLS client for all operations ensures the authenticity of the
 SNMP engine that provides MIB data.

 The instructions found in the DESCRIPTION clause of the
 tlstmCertToTSNTable object must be followed exactly. It is also
 important that the rows of the table be searched in prioritized order
 starting with the row containing the lowest numbered tlstmCertToTSNID
 value.

9.2. Use with SNMPv1/SNMPv2c Messages

 The SNMPv1 and SNMPv2c message processing described in [RFC3584] (BCP
74) always selects the SNMPv1 or SNMPv2c Security Models,

 respectively. Both of these and the User-based Security Model
 typically used with SNMPv3 derive the securityName and securityLevel
 from the SNMP message received, even when the message was received
 over a secure transport. Access control decisions are therefore made
 based on the contents of the SNMP message, rather than using the
 authenticated identity and securityLevel provided by the TLS
 Transport Model.

https://datatracker.ietf.org/doc/html/rfc3584
https://datatracker.ietf.org/doc/html/bcp74
https://datatracker.ietf.org/doc/html/bcp74

Hardaker Expires July 12, 2010 [Page 53]

Internet-Draft TLS Transport Model for SNMP January 2010

9.3. MIB Module Security

 There are a number of management objects defined in this MIB module
 with a MAX-ACCESS clause of read-write and/or read-create. Such
 objects may be considered sensitive or vulnerable in some network
 environments. The support for SET operations in a non-secure
 environment without proper protection can have a negative effect on
 network operations. These are the tables and objects and their
 sensitivity/vulnerability:

 o The tlstmParamsTable can be used to change the outgoing X.509
 certificate used to establish a (D)TLS connection. Modification
 to objects in this table need to be adequately authenticated since
 modification to values in this table will have profound impacts to
 the security of outbound connections from the device. Since
 knowledge of authorization rules and certificate usage mechanisms
 may be considered sensitive, protection from disclosure of the
 SNMP traffic via encryption is also highly recommended.

 o The tlstmAddrTable can be used to change the expectations of the
 certificates presented by a remote (D)TLS server. Modification to
 objects in this table need to be adequately authenticated since
 modification to values in this table will have profound impacts to
 the security of outbound connections from the device. Since
 knowledge of authorization rules and certificate usage mechanisms
 may be considered sensitive, protection from disclosure of the
 SNMP traffic via encryption is also highly recommended.

 o The tlstmCertToTSNTable is used to specify the mapping of incoming
 X.509 certificates to tmSecurityNames which eventually get mapped
 to a SNMPv3 securityName. Modification to objects in this table
 need to be adequately authenticated since modification to values
 in this table will have profound impacts to the security of
 incoming connections to the device. Since knowledge of
 authorization rules and certificate usage mechanisms may be
 considered sensitive, protection from disclosure of the SNMP
 traffic via encryption is also highly recommended.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:

 o This MIB contains a collection of counters that monitor the (D)TLS
 connections being established with a device. Since knowledge of

Hardaker Expires July 12, 2010 [Page 54]

Internet-Draft TLS Transport Model for SNMP January 2010

 connection and certificate usage mechanisms may be considered
 sensitive, protection from disclosure of the SNMP traffic via
 encryption is also highly recommended.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPsec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

10. IANA Considerations

 IANA is requested to assign:

 1. a TCP port number above 1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for receipt of SNMP command messages over a
 TLS Transport Model as defined in this document,

 2. a TCP port number above 1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for receipt of SNMP notification messages
 over a TLS Transport Model as defined in this document,

 3. a UDP port number above 1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for receipt of SNMP command messages over a
 DTLS/UDP connection as defined in this document,

 4. a UDP port number above 1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for receipt of SNMP notification messages
 over a DTLS/UDP connection as defined in this document,

https://datatracker.ietf.org/doc/html/rfc3410#section-8
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Hardaker Expires July 12, 2010 [Page 55]

Internet-Draft TLS Transport Model for SNMP January 2010

 5. a SCTP port number above 1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for receipt of SNMP command messages over a
 DTLS/SCTP connection as defined in this document,

 6. a SCTP port number above 1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for receipt of SNMP notification messages
 over a DTLS/SCTP connection as defined in this document,

 7. an SMI number under snmpDomains for the snmpTLSTCPDomain object
 identifier,

 8. an SMI number under snmpDomains for the snmpDTLSUDPDomain object
 identifier,

 9. an SMI number under snmpDomains for the snmpDTLSSCTPDomain
 object identifier,

 10. a SMI number under snmpModules, for the MIB module in this
 document,

 11. "tls" as the corresponding prefix for the snmpTLSTCPDomain in
 the SNMP Transport Model registry,

 12. "dudp" as the corresponding prefix for the snmpDTLSUDPDomain in
 the SNMP Transport Model registry,

 13. "dsct" as the corresponding prefix for the snmpDTLSSCTPDomain in
 the SNMP Transport Model registry;

 If possible, IANA is requested to use matching port numbers for all
 assignments for SNMP Commands being sent over TLS, DTLS/UDP, DTLS/
 SCTP.

 If possible, IANA is requested to use matching port numbers for all
 assignments for SNMP Notifications being sent over TLS, DTLS/UDP,
 DTLS/SCTP.

 Editor's note: this section should be replaced with appropriate
 descriptive assignment text after IANA assignments are made and prior
 to publication.

11. Acknowledgements

 This document closely follows and copies the Secure Shell Transport
 Model for SNMP defined by David Harrington and Joseph Salowey in

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Hardaker Expires July 12, 2010 [Page 56]

Internet-Draft TLS Transport Model for SNMP January 2010

 [RFC5292].

 This document was reviewed by the following people who helped provide
 useful comments (in alphabetical order): Andy Donati, Pasi Eronen,
 David Harrington, Jeffrey Hutzelman, Alan Luchuk, Tom Petch, Randy
 Presuhn, Ray Purvis, Joseph Salowey, Jurgen Schonwalder, Dave Shield.

 This work was supported in part by the United States Department of
 Defense. Large portions of this document are based on work by
 General Dynamics C4 Systems and the following individuals: Brian
 Baril, Kim Bryant, Dana Deluca, Dan Hanson, Tim Huemiller, John
 Holzhauer, Colin Hoogeboom, Dave Kornbau, Chris Knaian, Dan Knaul,
 Charles Limoges, Steve Moccaldi, Gerardo Orlando, and Brandon Yip.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3413] Levi, D., Meyer, P., and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62,

RFC 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [RFC3415] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based

https://datatracker.ietf.org/doc/html/rfc5292
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3414

Hardaker Expires July 12, 2010 [Page 57]

Internet-Draft TLS Transport Model for SNMP January 2010

 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415,
 December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62,

RFC 3418, December 2002.

 [RFC3584] Frye, R., Levi, D., Routhier, S., and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",

BCP 74, RFC 3584, August 2003.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5590] Harrington, D. and J. Schoenwaelder, "Transport Subsystem
 for the Simple Network Management Protocol (SNMP)",

RFC 5590, June 2009.

 [RFC5591] Harrington, D. and W. Hardaker, "Transport Security Model
 for the Simple Network Management Protocol (SNMP)",

RFC 5591, June 2009.

12.2. Informative References

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, March 1999.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, December 2005.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

https://datatracker.ietf.org/doc/html/rfc3415
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/bcp74
https://datatracker.ietf.org/doc/html/rfc3584
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5590
https://datatracker.ietf.org/doc/html/rfc5591
https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4366

Hardaker Expires July 12, 2010 [Page 58]

Internet-Draft TLS Transport Model for SNMP January 2010

 [RFC5292] Chen, E. and S. Sangli, "Address-Prefix-Based Outbound
 Route Filter for BGP-4", RFC 5292, August 2008.

 [RFC5343] Schoenwaelder, J., "Simple Network Management Protocol
 (SNMP) Context EngineID Discovery", RFC 5343,
 September 2008.

 [I-D.saintandre-tls-server-id-check]
 Saint-Andre, P., Zeilenga, K., Hodges, J., and B. Morgan,
 "Best Practices for Checking of Server Identities in the
 Context of Transport Layer Security (TLS)".

 [I-D.seggelmann-tls-dtls-heartbeat]
 Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security and Datagram Transport Layer Security
 Heartbeat Extension".

 [AES] National Institute of Standards, "Specification for the
 Advanced Encryption Standard (AES)".

 [DES] National Institute of Standards, "American National
 Standard for Information Systems-Data Link Encryption".

 [DSS] National Institute of Standards, "Digital Signature
 Standard".

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems".

 [X509] , ITU., "INFORMATION TECHNOLOGY OPEN SYSTEMS
 INTERCONNECTION THE DIRECTORY: PUBLIC-KEY AND ATTRIBUTE
 CERTIFICATE FRAMEWORKS".

Appendix A. (D)TLS Overview

 The (D)TLS protocol is composed of two layers: the (D)TLS Record
 Protocol and the (D)TLS Handshake Protocol. The following
 subsections provide an overview of these two layers. Please refer to
 [RFC4347] for a complete description of the protocol.

A.1. The (D)TLS Record Protocol

 At the lowest layer, layered on top of the transport control protocol
 or a datagram transport protocol (e.g. UDP or SCTP) is the (D)TLS
 Record Protocol.

https://datatracker.ietf.org/doc/html/rfc5292
https://datatracker.ietf.org/doc/html/rfc5343
https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires July 12, 2010 [Page 59]

Internet-Draft TLS Transport Model for SNMP January 2010

 The (D)TLS Record Protocol provides security that has three basic
 properties:

 o The session can be confidential. Symmetric cryptography is used
 for data encryption (e.g., [AES], [DES] etc.). The keys for this
 symmetric encryption are generated uniquely for each session and
 are based on a secret negotiated by another protocol (such as the
 (D)TLS Handshake Protocol). The Record Protocol can also be used
 without encryption.

 o Messages can have data integrity. Message transport includes a
 message integrity check using a keyed MAC. Secure hash functions
 (e.g., SHA, MD5, etc.) are used for MAC computations. The Record
 Protocol can operate without a MAC, but is generally only used in
 this mode while another protocol is using the Record Protocol as a
 transport for negotiating security parameters.

 o Messages are protected against replay. (D)TLS uses explicit
 sequence numbers and integrity checks. DTLS uses a sliding window
 to protect against replay of messages within a session.

 (D)TLS also provides protection against replay of entire sessions.
 In a properly-implemented keying material exchange, both sides will
 generate new random numbers for each exchange. This results in
 different encryption and integrity keys for every session.

A.2. The (D)TLS Handshake Protocol

 The (D)TLS Record Protocol is used for encapsulation of various
 higher-level protocols. One such encapsulated protocol, the (D)TLS
 Handshake Protocol, allows the server and client to authenticate each
 other and to negotiate an integrity algorithm, an encryption
 algorithm and cryptographic keys before the application protocol
 transmits or receives its first octet of data. Only the (D)TLS
 client can initiate the handshake protocol. The (D)TLS Handshake
 Protocol provides security that has four basic properties:

 o The peer's identity can be authenticated using asymmetric (public
 key) cryptography (e.g., RSA [RSA], DSS [DSS], etc.). This
 authentication can be made optional, but is generally required by
 at least one of the peers.

 (D)TLS supports three authentication modes: authentication of both
 the server and the client, server authentication with an
 unauthenticated client, and total anonymity. For authentication
 of both entities, each entity provides a valid certificate chain
 leading to an acceptable certificate authority. Each entity is
 responsible for verifying that the other's certificate is valid

Hardaker Expires July 12, 2010 [Page 60]

Internet-Draft TLS Transport Model for SNMP January 2010

 and has not expired or been revoked. See
 [I-D.saintandre-tls-server-id-check] for further details on
 standardized processing when checking server certificate
 identities.

 o The negotiation of a shared secret is secure: the negotiated
 secret is unavailable to eavesdroppers, and for any authenticated
 handshake the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the session.

 o The negotiation is not vulnerable to malicious modification: it is
 infeasible for an attacker to modify negotiation communication
 without being detected by the parties to the communication.

 o DTLS uses a stateless cookie exchange to protect against anonymous
 denial of service attacks and has retransmission timers, sequence
 numbers, and counters to handle message loss, reordering, and
 fragmentation.

Appendix B. PKIX Certificate Infrastructure

 Users of a public key from a PKIX / X.509 certificate can be be
 confident that the associated private key is owned by the correct
 remote subject (person or system) with which an encryption or digital
 signature mechanism will be used. This confidence is obtained
 through the use of public key certificates, which are data structures
 that bind public key values to subjects. The binding is asserted by
 having a trusted CA digitally sign each certificate. The CA may base
 this assertion upon technical means (i.e., proof of possession
 through a challenge-response protocol), presentation of the private
 key, or on an assertion by the subject. A certificate has a limited
 valid lifetime which is indicated in its signed contents. Because a
 certificate's signature and timeliness can be independently checked
 by a certificate-using client, certificates can be distributed via
 untrusted communications and server systems, and can be cached in
 unsecured storage in certificate-using systems.

 ITU-T X.509 (formerly CCITT X.509) or ISO/IEC/ITU 9594-8 [X509],
 which was first published in 1988 as part of the X.500 Directory
 recommendations, defines a standard certificate format which is a
 certificate which binds a subject (principal) to a public key value.
 This was later further expanded and documented in [RFC5280].

 A X.509 certificate is a sequence of three required fields:

https://datatracker.ietf.org/doc/html/rfc5280

Hardaker Expires July 12, 2010 [Page 61]

Internet-Draft TLS Transport Model for SNMP January 2010

 tbsCertificate: The tbsCertificate field contains the names of the
 subject and issuer, a public key associated with the subject, a
 validity period, and other associated information. This field may
 also contain extension components.

 signatureAlgorithm: The signatureAlgorithm field contains the
 identifier for the cryptographic algorithm used by the certificate
 authority (CA) to sign this certificate.

 signatureValue: The signatureValue field contains a digital
 signature computed by the CA upon the ASN.1 DER encoded
 tbsCertificate field. The ASN.1 DER encoded tbsCertificate is
 used as the input to the signature function. This signature value
 is then ASN.1 DER encoded as a BIT STRING and included in the
 Certificate's signature field. By generating this signature, the
 CA certifies the validity of the information in the tbsCertificate
 field. In particular, the CA certifies the binding between the
 public key material and the subject of the certificate.

 The basic X.509 authentication procedure is as follows: A system is
 initialized with a number of root certificates that contain the
 public keys of a number of trusted CAs. When a system receives a
 X.509 certificate, signed by one of those CAs, the certificate has to
 be verified. It first checks the signatureValue field by using the
 public key of the corresponding trusted CA. Then it compares the
 digest of the received certificate with a digest of the
 tbsCertificate field. If they match, then the subject in the
 tbsCertificate field is authenticated.

Appendix C. Target and Notificaton Configuration Example

 Configuring the SNMP-TARGET-MIB and NOTIFICATION-MIB along with
 access control settings for the SNMP-VIEW-BASED-ACM-MIB can be a
 daunting task without an example to follow. The following section
 describes an example of what pieces must be in place to accomplish
 this configuration.

 The isAccessAllowed() ASI requires configuration to exist in the
 following SNMP-VIEW-BASED-ACM-MIB tables:

 vacmSecurityToGroupTable
 vacmAccessTable
 vacmViewTreeFamilyTable

 The only table that needs to be discussed as particularly different
 here is the vacmSecurityToGroupTable. This table is indexed by both
 the SNMPv3 security model and the security name. The security model,

Hardaker Expires July 12, 2010 [Page 62]

Internet-Draft TLS Transport Model for SNMP January 2010

 when TLSTM is in use, should be set to the value of 4, corresponding
 to the TSM [RFC5591]. An example vacmSecurityToGroupTable row might
 be filled out as follows (using a single SNMP SET request):

 vacmSecurityModel = 4 (TSM)
 vacmSecurityName = "blueberry"
 vacmGroupName = "administrators"
 vacmSecurityToGroupStorageType = 3 (nonVolatile)
 vacmSecurityToGroupStatus = 4 (createAndGo)

 This example will assume that the "administrators" group has been
 given proper permissions via rows in the vacmAccessTable and
 vacmViewTreeFamilyTable.

 Depending on whether this VACM configuration is for a Command
 Responder or a command generator the security name "blueberry" will
 come from a few different locations.

C.1. Configuring the Notification Generator

 For notification generators performing authorization checks, the
 server's certificate must be verified against the expected
 certificate before proceeding to send the notification. The expected
 certificate from the server may be listed in the tlstmAddrTable or
 may be determined through other X.509 path validation mechanisms.
 The securityName to use for VACM authorization checks is set by the
 SNMP-TARGET-MIB's snmpTargetParamsSecurityName column.

 The certificate that the notification generator should present to the
 server is taken from the tlstmParamsClientFingerprint column from the
 appropriate entry in the tlstmParamsTable table.

C.2. Configuring the Command Responder

 For command responder applications, the vacmSecurityName "blueberry"
 value is a value that derived from an incoming (D)TLS session. The
 mapping from a recevied (D)TLS client certificate to a tmSecurityName
 is done with the tlstmCertToTSNTable. The certificates must be
 loaded into the device so that a tlstmCertToTSNEntry may refer to it.
 As an example, consider the following entry which will provide a
 mapping from a client's public X.509's hash fingerprint directly to
 the "blueberry" tmSecurityName:

https://datatracker.ietf.org/doc/html/rfc5591

Hardaker Expires July 12, 2010 [Page 63]

Internet-Draft TLS Transport Model for SNMP January 2010

 tlstmCertToTSNID = 1 (chosen by ordering preference)
 tlstmCertToTSNFingerprint = HASH (appropriate fingerprint)
 tlstmCertToTSNMapType = 1 (specified)
 tlstmCertToTSNSecurityName = "blueberry"
 tlstmCertToTSNStorageType = 3 (nonVolatile)
 tlstmCertToTSNRowStatus = 4 (createAndGo)

 The above is an example of how to map a particular certificate to a
 particular tmSecurityName. It is recommended, however, that users
 make use of direct subjectAltName or CommonName mappings where
 possible as it provides a more scalable approach to certificate
 management. This entry provides an example of using a subjectAltName
 mapping:

 tlstmCertToTSNID = 1 (chosen by ordering preference)
 tlstmCertToTSNFingerprint = HASH (appropriate fingerprint)
 tlstmCertToTSNMapType = 2 (bySubjectAltName)
 tlstmCertToTSNSANType = 1 (any)
 tlstmCertToTSNStorageType = 3 (nonVolatile)
 tlstmCertToTSNRowStatus = 4 (createAndGo)

 The above entry indicates the subjectAltName field for certificates
 created by an issuing certificate with a corresponding fingerprint
 will be trusted to always produce common names that are directly one-
 to-one mappable into tmSecurityNames. This type of configuration
 should only be used when the certificate authorities naming
 conventions are carefully controlled.

 In the example, if the incoming (D)TLS client provided certificate
 contained a subjectAltName where the first listed subjectAltName in
 the extension is the rfc822Name of "blueberry@example.com", the
 certificate was signed by a certificate matching the
 tlstmCertToTSNFingerprint value and the CA's certificate was properly
 installed on the device then the string "blueberry@example.com" would
 be used as the tmSecurityName for the session.

Author's Address

 Wes Hardaker
 Sparta, Inc.
 P.O. Box 382
 Davis, CA 95617
 USA

 Phone: +1 530 792 1913
 Email: ietf@hardakers.net

Hardaker Expires July 12, 2010 [Page 64]

