
Network Working Group D. Harrington
Internet-Draft Huawei Technologies (USA)
Intended status: Informational J. Schoenwaelder
Expires: April 14, 2007 International University Bremen
 October 11, 2006

Transport Subsystem for the Simple Network Management Protocol (SNMP)
draft-ietf-isms-tmsm-04.txt

Status of This Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 14, 2007.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document describes a Transport Subsystem, extending the Simple
 Network Management Protocol (SNMP) architecture defined in RFC 3411.
 This document describes a subsystem to contain transport models,
 comparable to other subsystems in the RFC3411 architecture. As work
 is being done to expand the transport to include secure transport
 such as SSH and TLS, using a subsystem will enable consistent design
 and modularity of such transport models. This document identifies

Harrington & Schoenwaelder Expires April 14, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Internet-Draft SNMP Transport Subsystem October 2006

 and discusses some key aspects that need to be considered for any
 transport model for SNMP.

 This memo also defines a portion of the Management Information Base
 (MIB) for managing models in the Transport Subsystem.

Table of Contents

1. Introduction . 4
1.1. The Internet-Standard Management Framework 4
1.2. Conventions . 4
1.3. Acronyms . 4
1.4. Motivation . 4

2. Requirements of a Transport Model 6
2.1. Message Security Requirements 6
2.1.1. Security Protocol Requirements 6

2.2. SNMP Requirements . 7
2.2.1. Architectural Modularity Requirements 7
2.2.2. Access Control Requirements 14
2.2.3. Security Parameter Passing Requirements 16

2.3. Session Requirements 17
2.3.1. Session Establishment Requirements 18
2.3.2. Session Maintenance Requirements 19
2.3.3. Message security versus session security 19

3. Scenario Diagrams for the Transport Subsystem 21
3.1. Command Generator or Notification Originator 21
3.2. Command Responder . 22

4. Cached Information and References 23
4.1. securityStateReference 24
4.2. tmStateReference . 25

5. Abstract Service Interfaces 25
5.1. Generating an Outgoing SNMP Message 26
5.2. Processing for an Outgoing Message 27
5.3. Processing an Incoming SNMP Message 28
5.3.1. Processing an Incoming Message 28
5.3.2. Prepare Data Elements from Incoming Messages 28
5.3.3. Processing an Incoming Message 29

6. The Transport-Subsystem-MIB Module 30
6.1. Structure of the MIB Module 31
6.1.1. The tmsmStats Subtree 31

6.2. Relationship to Other MIB Modules 31
6.2.1. Textual Conventions 31
6.2.2. MIB Modules Required for IMPORTS 31

6.3. Definitions . 31
7. Security Considerations 36
8. IANA Considerations . 37
9. Acknowledgments . 37
10. References . 38

Harrington & Schoenwaelder Expires April 14, 2007 [Page 2]

Internet-Draft SNMP Transport Subsystem October 2006

10.1. Normative References 38
10.2. Informative References 39

Appendix A. Parameter Table 39
A.1. ParameterList.csv . 39

Appendix B. Why tmStateReference? 41
B.1. Define an Abstract Service Interface 41
B.2. Using an Encapsulating Header 41
B.3. Modifying Existing Fields in an SNMP Message 42
B.4. Using a Cache . 42

Appendix C. Open Issues . 42
Appendix D. Change Log . 42

Harrington & Schoenwaelder Expires April 14, 2007 [Page 3]

Internet-Draft SNMP Transport Subsystem October 2006

1. Introduction

 This document describes a Transport Subsystem, extending the Simple
 Network Management Protocol (SNMP) architecture defined in [RFC3411].
 This document identifies and discusses some key aspects that need to
 be considered for any transport model for SNMP.

1.1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,

RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

1.2. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Some points requiring further WG research and discussion are
 identified by [discuss] markers in the text. Some points requiring
 further editing by the editors are marked [todo] in the text.

1.3. Acronyms

 This section contains a list of acronyms used within the document and
 references to where in the document the acronym is defined, for easy
 lookup.
 o [todo]

1.4. Motivation

 There are multiple ways to secure one's home or business, in a
 continuum of alternatives. Let's consider three general approaches.
 In the first approach, an individual could buy a gun, learn to use
 it, and sit on your front porch waiting for intruders. In the second
 approach, one could hire an employee with a gun, schedule the
 employee, position the employee to guard what you want protected,
 hire a second guard to cover if the first gets sick, and so on. In

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Harrington & Schoenwaelder Expires April 14, 2007 [Page 4]

Internet-Draft SNMP Transport Subsystem October 2006

 the third approach, you could hire a security company, tell them what
 you want protected, and they could hire employees, train them, buy
 the guns, position the guards, schedule the guards, send a
 replacement when a guard cannot make it, etc., thus providing the
 security you want, with no significant effort on your part other than
 identifying requirements and verifying the quality of the service
 being provided.

 The User-based Security Model (USM) as defined in [RFC3414] largely
 uses the first approach - it provides its own security. It utilizes
 existing mechanisms (MD5=the gun), but provides all the coordination.
 USM provides for the authentication of a principal, message
 encryption, data integrity checking, timeliness checking, etc.

 USM was designed to be independent of other existing security
 infrastructures. USM therefore requires a separate principal and key
 management infrastructure. Operators have reported that deploying
 another principal and key management infrastructure in order to use
 SNMPv3 is a deterrent to deploying SNMPv3. It is possible but
 difficult to define external mechanisms that handle the distribution
 of keys for use by the USM approach.

 A solution based on the second approach might use a USM-compliant
 architecture, but combine the authentication mechanism with an
 external mechanism, such as RADIUS [RFC2865], to provide the
 authentication service. It might be possible to utilize an external
 protocol to encrypt a message, to check timeliness, to check data
 integrity, etc. It is difficult to cobble together a number of
 subcontracted services and coordinate them however, because it is
 difficult to build solid security bindings between the various
 services, and potential for gaps in the security is significant.

 A solution based on the third approach might utilize one or more
 lower-layer security mechanisms to provide the message-oriented
 security services required. These would include authentication of
 the sender, encryption, timeliness checking, and data integrity
 checking. There are a number of IETF standards available or in
 development to address these problems through security layers at the
 transport layer or application layer, among them TLS [RFC4366], SASL
 [RFC4422], and SSH [RFC4251].

 From an operational perspective, it is highly desirable to use
 security mechanisms that can unify the administrative security
 management for SNMPv3, command line interfaces (CLIs) and other
 management interfaces. The use of security services provided by
 lower layers is the approach commonly used for the CLI, and is also
 the approach being proposed for NETCONF [I-D.ietf-netconf-ssh].

https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4251

Harrington & Schoenwaelder Expires April 14, 2007 [Page 5]

Internet-Draft SNMP Transport Subsystem October 2006

 This document describes a Transport Subsystem extension to the
RFC3411 architecture, that allows security to be provided by an

 external protocol connected to the SNMP engine through an SNMP
 transport-model [RFC3417]. Such a transport model would then enable
 the use of existing security mechanisms such as (TLS) [RFC4366] or
 SSH [RFC4251] within the RFC3411 architecture.

 There are a number of Internet security protocols and mechanisms that
 are in wide spread use. Many of them try to provide a generic
 infrastructure to be used by many different application layer
 protocols. The motivation behind the transport subsystem is to
 leverage these protocols where it seems useful.

 There are a number of challenges to be addressed to map the security
 provided by a secure transport into the SNMP architecture so that
 SNMP continues to work without any surprises. These challenges are
 discussed in detail in this document. For some key issues, design
 choices are discussed that may be made to provide a workable solution
 that meets operational requirements and fits into the SNMP
 architecture defined in [RFC3411].

2. Requirements of a Transport Model

2.1. Message Security Requirements

 Transport security protocols SHOULD ideally provide the protection
 against the following message-oriented threats [RFC3411]:

 1. modification of information
 2. masquerade
 3. message stream modification
 4. disclosure

 According to [RFC3411], it is not required to protect against denial
 of service or traffic analysis.

2.1.1. Security Protocol Requirements

 There are a number of standard protocols that could be proposed as
 possible solutions within the transport subsystem. Some factors
 should be considered when selecting a protocol.

 Using a protocol in a manner for which it was not designed has
 numerous problems. The advertised security characteristics of a
 protocol may depend on its being used as designed; when used in other
 ways, it may not deliver the expected security characteristics. It
 is recommended that any proposed model include a discussion of the
 applicability statement of the protocols to be used.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 6]

Internet-Draft SNMP Transport Subsystem October 2006

 A transport model should require no modifications to the underlying
 protocol. Modifying the protocol may change its security
 characteristics in ways that would impact other existing usages. If
 a change is necessary, the change should be an extension that has no
 impact on the existing usages. It is recommended that any transport
 model include a discussion of potential impact on other usages of the
 protocol.

 It has been a long-standing requirement that SNMP be able to work
 when the network is unstable, to enable network troubleshooting and
 repair. The UDP approach has been considered to meet that need well,
 with an assumption that getting small messages through, even if out
 of order, is better than getting no messages through. There has been
 a long debate about whether UDP actually offers better support than
 TCP when the underlying IP or lower layers are unstable. There has
 been recent discussion of whether operators actually use SNMP to
 troubleshoot and repair unstable networks.

 There has been discussion of ways SNMP could be extended to better
 support management/monitoring needs when a network is running just
 fine. Use of a TCP transport, for example, could enable larger
 message sizes and more efficient table retrievals.

 Transport models MUST be able to coexist with other transport models,
 and may be designed to utilize either TCP or UDP or SCTP.

2.2. SNMP Requirements

2.2.1. Architectural Modularity Requirements

 SNMP version 3 (SNMPv3) is based on a modular architecture (described
 in [RFC3411] section 3) to allow the evolution of the SNMP protocol
 standards over time, and to minimize side effects between subsystems
 when changes are made.

 The RFC3411 architecture includes a security subsystem for enabling
 different methods of providing security services, a messaging
 subsystem permitting different message versions to be handled by a
 single engine, an application subsystem to support different types of
 application processors, and an access control subsystem for allowing
 multiple approaches to access control. The RFC3411 architecture does
 not include a subsystem for transport models, despite the fact there
 are multiple transport mappings already defined for SNMP. This
 document addresses the need for a transport subsystem compatible with
 the RFC3411 architecture.

 In SNMPv2, there were many problems of side effects between
 subsystems caused by the manipulation of MIB objects, especially

https://datatracker.ietf.org/doc/html/rfc3411#section-3
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 7]

Internet-Draft SNMP Transport Subsystem October 2006

 those related to authentication and authorization, because many of
 the parameters were stored in shared MIB objects, and different
 models and protocols could assign different values to the objects.
 Contributors assumed slightly different shades of meaning depending
 on the models and protocols being used. As the shared MIB module
 design was modified to accommodate a specific model, other models
 which used the same MIB objects would be broken.

 Abstract Service Interfaces (ASIs) were developed to pass model-
 independent parameters. The models were required to translate from
 their model-dependent formats into a model-independent format,
 defined using model-independent semantics, which would not impact
 other models.

 Parameters have been provided in the ASIs to pass model-independent
 information about the authentication that has been provided. These
 parameters include a model-independent identifier of the security
 "principal", the security model used to perform the authentication,
 and which SNMP-specific security features were applied to the message
 (authentication and/or privacy).

 Parameters have been provided in the ASIs to pass model-independent
 transport address information. These parameters utilize the
 TransportType and TransportAddress

 The design of a transport subsystem must abide the goals of the
RFC3411 architecture defined in [RFC3411]. To that end, this

 transport subsystem proposal uses a modular design that will permit
 transport models to be advanced through the standards process
 independently of other transport models, and independent of other
 modular SNMP components as much as possible.

 IETF standards typically require one mandatory to implement solution,
 with the capability of adding new mechanisms in the future. Part of
 the motivstion of developing transport models is to develop support
 for secure transport protocols, such as a transport model that
 utilizes the Secure Shell protocol. Any transport model should
 define one minimum-compliance security mechanism, preferably one
 which is already widely used to secure the transport layer protocol.

 The Transport Subsystem permits multiple transport protocols to be
 "plugged into" the RFC3411 architecture, supported by corresponding
 transport models, including models that are security-aware.

 The RFC3411 architecture,and the USM assume that a security model is
 called by a message-processing model and will perform multiple
 security functions within the security subsystem. A transport model
 that supports a secure transport protocol may perform similar

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 8]

Internet-Draft SNMP Transport Subsystem October 2006

 security functions within the transport subsystem. A transport model
 may perform the translation of transport security parameters to/from
 security-model-independent parameters. To accommodate this, the ASIs
 for the transport subsystem, the messaging subsystem, and the
 security subsystem will be extended to pass security-model-
 independent values, and a cache of transport-specific information.

Harrington & Schoenwaelder Expires April 14, 2007 [Page 9]

Internet-Draft SNMP Transport Subsystem October 2006

 +------------------------------+
 | Network |
 +------------------------------+
 ^ ^ ^
 | | |
 v v v (traditional SNMP agent)
 +---+
 | +--+ |
	Transport Subsystem											
	+-----+ +-----+ +-----+ +-----+ +-------+											
		UDP		TCP		SSH		TLS	. . .	other		
	+-----+ +-----+ +-----+ +-----+ +-------+											
+--+												
^												
Dispatcher v												
+-------------------+ +---------------------+ +----------------+												
			Message Processing		Security							
			Subsystem		Subsystem							
			+------------+		+------------+							
			+->	v1MP *	<--->		USM *					
				+------------+		+------------+						
				+------------+		+------------+						
			+->	v2cMP *	<--->		Transport*					
	Message			+------------+			Security					
	Dispatcher <--------->	+------------+			Model							
			+->	v3MP *	<--->	+------------+						
				+------------+		+------------+						
	PDU Dispatcher			+------------+			Other *					
+-------------------+	+->	otherMP *	<--->		Model(s)							
^	+------------+		+------------+									
	+---------------------+ +----------------+											
v												
+-------+-------------------------+---------------+												
^ ^ ^												
v v v												
+-------------+ +---------+ +--------------+ +-------------+												
	COMMAND		ACCESS		NOTIFICATION		PROXY					
	RESPONDER	<->	CONTROL	<->	ORIGINATOR		FORWARDER					
	application				applications		application					
+-------------+ +---------+ +--------------+ +-------------+												
^ ^												
v v												
+--+												
	MIB instrumentation	SNMP entity										
 +---+

Harrington & Schoenwaelder Expires April 14, 2007 [Page 10]

Internet-Draft SNMP Transport Subsystem October 2006

2.2.1.1. USM and the RFC3411 Architecture

 The following diagrams illustrate the difference in the security
 processing done by the USM model and the security processing
 potentially done by a transport model.

 The USM security model is encapsulated by the messaging model,
 because the messaging model needs to perform the following steps (for
 incoming messages)
 1) decode the ASN.1 (messaging model)
 2) determine the SNMP security model and parameters (messaging model)
 3) decrypt the encrypted portions of the message (security model)
 4) translate parameters to model-independent parameters (security
 model)
 5) determine which application should get the decrypted portions
 (messaging model), and
 6) pass on the decrypted portions with model-independent parameters.

 The USM approach uses SNMP-specific message security and parameters.

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 11]

Internet-Draft SNMP Transport Subsystem October 2006

 | ---|
transport layer
 ^
 |
 v
 --
 | ---|
 | | transport mapping |
 | ---|
 | ^
 | |
v
--------------------- ------------------
SNMP messaging <-->
--------------------- ------------------
^
v
--------------------- ------------------
--------------------- ------------------

 | --- |

2.2.1.2. Transport Subsystem and the RFC3411 Architecture

 With the Transport Subsystem, the order of the steps may differ and
 may be handled by different subsystems:
 1) decrypt the encrypted portions of the message (transport layer)
 2*) translate parameters to model-independent parameters (transport
 model)
 3) determine the SNMP security model and parameters (messaging model)
 4) decode the ASN.1 (messaging model)
 5) determine which application should get the decrypted portions
 (messaging model)
 7) pass on the decrypted portions with model-independent security
 parameters

 If a message is secured using non-SNMP-specific message security and
 parameters, then the transport model should provide the translation
 from e.g., an SSH user name to the securityName in step 3,

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 12]

Internet-Draft SNMP Transport Subsystem October 2006

transport layer <-->

 ^
 |
 v
 --

transport model <-->

^
v

message model

^
v

security model

^
v
--------------------- ------------------
--------------------- ------------------

 | --- |

2.2.1.3. Passing Information between Engines

 A secure transport model will establish an encrypted tunnel between
 the transport models of two SNMP engines. One transport model
 instance encrypts all messages, and the other transport model
 instance decrypts the messages.

Harrington & Schoenwaelder Expires April 14, 2007 [Page 13]

Internet-Draft SNMP Transport Subsystem October 2006

 After a transport layer tunnel is established, then SNMP messages can
 conceptually be sent through the tunnel from one SNMP engine to
 another SNMP engine. Once the tunnel is established, multiple SNMP
 messages may be able to be passed through the same tunnel.

2.2.2. Access Control Requirements

2.2.2.1. securityName Binding

 For SNMP access control to function properly, security processing
 must establish a securityModel identifier, a securityLevel, and a
 securityName, which is the security model independent identifier for
 a principal. The message processing subsystem relies on a security
 model, such as USM, to play a role in security that goes beyond
 protecting the message - it provides a mapping between the USM-
 specific principal to a security-model independent securityName which
 can be used for subsequent processing, such as for access control.

 The securityName MUST be bound to the mechanism-specific
 authenticated identity, and this mapping MUST be done for incoming
 messages before the security model passes securityName to the message
 processing model via the processIncoming() ASI. This translation
 from a mechanism-specific authenticated identity to a securityName
 MAY be done by the transport model, and the securityname is then
 provided to the security model to be passed to the message processing
 model..

 If the type of authentication provided by the transport layer (e.g.
 TLS) is considered adequate to secure and/or encrypt the message, but
 inadequate to provide the desired granularity of access control (e.g.
 user-based), then a second authentication (e.g., one provided via a
 RADIUS server) MAY be used to provide the authentication identity
 which is bound to the securityName. This approach would require a
 good analysis of the potential for man-in-the-middle attacks or
 masquerade possibilities.

2.2.2.2. Separation of Authentication and Authorization

 A transport model that provides security services should take care to
 not violate the separation of authentication and authorization in the

RFC3411 architecture. The isAccessAllowed() primitive is used for
 passing security-model independent parameters between the subsystems
 of the architecture.

 Mapping of (securityModel, securityName) to an access control policy
 should be handled within the access control subsystem, not the
 transport or security subsystems, to be consistent with the
 modularity of the RFC3411 architecture. This separation was a

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 14]

Internet-Draft SNMP Transport Subsystem October 2006

 deliberate decision of the SNMPv3 WG, to allow support for
 authentication protocols which did not provide authorization
 capabilities, and to support authorization schemes, such as VACM,
 that do not perform their own authentication.

 An authorization model (in the access control subsystem) MAY require
 authentication by certain securityModels and a minimum securityLevel
 to allow access to the data.

 Transport models that provide secure transport are an enhancement for
 the SNMPv3 privacy and authentication, but they are not a significant
 improvement for the authorization (access control) needs of SNMPv3.
 Only the model-independent parameters for the isAccessAllowed()
 primitive [RFC3411] are provided by the transport and security
 subsystems.

 A transport model must not specify how the securityModel and
 securityName could be dynamically mapped to an access control
 mechanism, such as a VACM-style groupName. The mapping of
 (securityModel, securityName) to a groupName is a VACM-specific
 mechanism for naming an access control policy, and for tying the
 named policy to the addressing capabilities of the data modeling
 language (e.g. SMIv2 [RFC2578]), the operations supported, and other
 factors. Providing a binding outside the Access Control subsystem
 might create dependencies that could make it harder to develop
 alternate models of access control, such as one built on UNIX groups
 or Windows domains. The preferred approach is to pass the model-
 independent security parameters via the isAccessAllowed() ASI, and
 perform the mapping from the model-independent security parameters to
 an authorization-model-dependent access policy within the access
 control model.

 To provide support for protocols which simultaneously send
 information for authentication and authorization, such as RADIUS
 [RFC2865], model-specific authorization information MAY be cached or
 otherwise made available to the access control subsystem, e.g., via a
 MIB table similar to the vacmSecurityToGroupTable, so the access
 control subsystem can create an appropriate binding between the
 model-independent securityModel and securityName and a model-specific
 access control policy. This may be highly undesirable, however, if
 it creates a dependency between a transport model or a security model
 and an access control model, just as it is undesirable for a
 transport model to create a dependency between an SNMP message
 version and the security provided by a transport model.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2865

Harrington & Schoenwaelder Expires April 14, 2007 [Page 15]

Internet-Draft SNMP Transport Subsystem October 2006

2.2.3. Security Parameter Passing Requirements

RFC3411 section 4 describes primitives to describe the abstract data
 flows between the various subsystems, models and applications within
 the architecture. Abstract Service Interfaces describe the flow of
 data between subsystems within an engine. The ASIs generally pass
 model-independent information.

 Within an engine using a transport model, outgoing SNMP messages are
 passed unencrypted from the message dispatcher to the transport
 model, and incoming messages are passed unencrypted from the
 transport model to the message dispatcher.

 The security parameters include a model-independent identifier of the
 security "principal", the security model used to perform the
 authentication, and which SNMP-specific security services were
 (should be) applied to the message (authentication and/or privacy).

 In the RFC3411 architecture, which reflects the USM security model
 design, the messaging model must unpack SNMP-specific security
 parameters from an incoming message before calling a specific
 security model to authenticate and decrypt an incoming message,
 perform integrity checking, and translate model-specific security
 parameters into model-independent parameters.

 When using a secure transport model, security parameters MAY be
 provided through means other than carrying them in the SNMP message.
 The parameters MAY be provided by SNMP applications for outgoing
 messages, and the parameters for incoming messages MAY be extracted
 from the transport layer by the transport model before the message is
 passed to the message processing subsystem.

 For outgoing messages, even when a secure transport model will
 provide the security services, it is necessary to have an security
 model because it is the security model that actually creates the
 message from its component parts. Whether there are any security
 services provided by the security model for an outgoing message is
 model-dependent.

 For incoming messages, even when a secure transport model provides
 security services, a security model is necessary because there might
 be some security functionality that can only be provided after the
 message version is known. The message version is determined by the
 Message Processing model and passed to the security model via the
 processIncoming() ASI.

 The RFC3411 architecture has no ASI parameters for passing security
 information between a transport mapping (a transport model) and the

https://datatracker.ietf.org/doc/html/rfc3411#section-4
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 16]

Internet-Draft SNMP Transport Subsystem October 2006

 dispatcher, and between the dispatcher and the message processing
 model.

 This document describes a cache mechanism, into which the transport
 model puts information about the transport and security parameters
 applied to a transport connection or an incoming message, and a
 security model MAY extract that information from the cache. A
 tmStateReference is passed as an extra parameter in the ASIs of the
 transport subsystem and the messaging and security subsystems, to
 identify the relevant cache.

 This approach of passing a model-independent reference is consistent
 with the securityStateReference cache already being passed around in
 the RFC3411 ASIs. [todo: can we avoid dependencies?]

2.3. Session Requirements

 Throughout this document, the term session is used. Some underlying
 secure transports will have a notion of session. Some underlying
 secure transports might enable the use of channels or other session-
 like thing. In this document the term session refers to an
 association between two SNMP engines that permits the secure
 transmission of one or more SNMP messages within the lifetime of the
 session. How the session is actually established, opened, closed, or
 maintained is specific to a particular transport model.

 Sessions are not part of the SNMP architecture described in
 [RFC3411], but are considered desirable because the cost of
 authentication can be amortized over potentially many transactions.

 It is important to note that the architecture described in [RFC3411]
 does not include a session selector in the Abstract Service
 Interfaces, and neither is that done for the transport subsystem, so
 an SNMP application cannot select the session except by passing a
 unique combination of transport type, transport address,
 securityName, securityModel, and securityLevel.

 All transport models should discuss the impact of sessions on SNMP
 usage, including how to establish/open a transport session (i.e., how
 it maps to the concepts of session-like things of the underlying
 protocol), how to behave when a session cannot be established, how to
 close a session properly, how to behave when a session is closed
 improperly, the session security properties, session establishment
 overhead, and session maintenance overhead.

 To reduce redundancy, this document will discuss aspects that are
 expected to be common to all transport model sessions.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 17]

Internet-Draft SNMP Transport Subsystem October 2006

2.3.1. Session Establishment Requirements

 SNMP applications must provide the transport type, transport address,
 securityName, securityModel, and securityLevel to be used for a
 session.

 SNMP Applications typically have no knowledge of whether the session
 that will be used to carry commands was initially established as a
 notification session, or a request-response session, and SHOULD NOT
 make any assumptions based on knowing the direction of the session.
 If an administrator or transport model designer wants to
 differentiate a session established for different purposes, such as a
 notification session versus a request-response session, the
 application can use different securityNames or transport addresses
 (e.g., port 161 vs. port 162) for different purposes.

 An SNMP engine containing an application that initiates
 communication, e.g., a Command Generator or Notification Originator,
 MUST be able to attempt to establish a session for delivery if a
 session does not yet exist. If a session cannot be established then
 the message is discarded.

 Sessions are usually established by the transport model when no
 appropriate session is found for an outgoing message, but sessions
 may be established in advance to support features such as
 notifications. How sessions are established in advance is beyond the
 scope of this document.

 Sessions are initiated by notification originators when there is no
 currently established connection that can be used to send the
 notification. For a client-server security protocol, this may
 require provisioning authentication credentials on the agent, either
 statically or dynamically, so the client/agent can successfully
 authenticate to a notification receiver.

 A transport model must be able to determine whether a session does or
 does not exist, and must be able to determine which session has the
 appropriate security characteristics (transport type, transport
 address, securityName, securityModel, and securityLevel) for an
 outgoing message. [discuss: does the transport model have insight
 into the securityModel?]

 A transport model implementation MAY reuse an already established
 session with the appropriate transport type, transport address,
 securityName, securityModel, and securityLevel characteristics for
 delivery of a message originated by a different type of application
 than originally caused the session to be created. For example, an
 implementation that has an existing session originally established to

Harrington & Schoenwaelder Expires April 14, 2007 [Page 18]

Internet-Draft SNMP Transport Subsystem October 2006

 receive a request may use that session to send an outgoing
 notification, and may use a session that was originally established
 to send a notification to send a request. Responses are expected to
 be returned using the same session that carried the corresponding
 request message. Reuse of sessions is not required for conformance.

 If a session can be reused for a different type of message, but a
 receiver is not prepared to accept different message types over the
 same session, then the message MAY be dropped by the receiver. This
 may strongly affect the usefulness of session reuse.

2.3.2. Session Maintenance Requirements

 A transport model can tear down sessions as needed. It may be
 necessary for some implementations to tear down sessions as the
 result of resource constraints, for example.

 The decision to tear down a session is implementation-dependent.
 While it is possible for an implementation to automatically tear down
 each session once an operation has completed, this is not recommended
 for anticipated performance reasons. How an implementation
 determines that an operation has completed, including all potential
 error paths, is implementation-dependent.

 Implementations should be careful to not tear down a session between
 the time a request is received and the time the response is sent.
 The elements of procedure for transport models should be sure to
 describe the expected behavior when no session exists for a response.
 [todo: do we already say that the message should be discarded, or is
 that just in the ssh transport model?]

 The elements of procedure may discuss when cached information can be
 discarded, and the timing of cache cleanup may have security
 implications, but cache memory management is an implementation issue.

 If a transport model defines MIB module objects to maintain session
 state information, then the transport model MUST describe what
 happens to the objects when a related session is torn down, since
 this will impact interoperability of the MIB module.

2.3.3. Message security versus session security

 A transport model session is associated with state information that
 is maintained for its lifetime. This state information allows for
 the application of various security services to multiple messages.
 Cryptographic keys established at the beginning of the session SHOULD
 be used to provide authentication, integrity checking, and encryption
 services for data that is communicated during the session. The

Harrington & Schoenwaelder Expires April 14, 2007 [Page 19]

Internet-Draft SNMP Transport Subsystem October 2006

 cryptographic protocols used to establish keys for a transport model
 session SHOULD ensure that fresh new session keys are generated for
 each session. If each session uses new session keys, then messages
 cannot be replayed from one session to another. In addition sequence
 information MAY be maintained in the session which can be used to
 prevent the replay and reordering of messages within a session.

 A transport model session will typically have a single transport
 type, ransport address, securityModel, securityName and securityLevel
 associated with it. If an exchange between communicating engines
 would require a different securityLevel or would be on behalf of a
 different securityName, or to use a different securityModel, then
 another session would be needed. An immediate consequence of this is
 that implementations should be able to maintain some reasonable
 number of concurrent sessions.

 For transport models, securityName is typically specified during
 session setup, and associated with the session identifier.

 SNMPv3 was designed to support multiple levels of security,
 selectable on a per-message basis by an SNMP application, because
 there is not much value in using encryption for a Commander Generator
 to poll for non-sensitive performance data on thousands of interfaces
 every ten minutes; the encryption adds significant overhead to
 processing of the messages.

 Some transport models MAY support only specific authentication and
 encryption services, such as requiring all messages to be carried
 using both authentication and encryption, regardless of the security
 level requested by an SNMP application.

 Some transport models may use an underlying transport that provides a
 per-message requested level of authentication and encryption
 services. For example, if a session is created as 'authPriv', then
 keys for encryption could still be negotiated once at the beginning
 of the session. But if a message is presented to the session with a
 security level of authNoPriv, then that message could simply be
 authenticated and not encrypted within the same transport session.
 Whether this is possible depends on the transport model and the
 secure transport used.

 If the underlying transport layer security is configurable on a per-
 message basis, a transport model could have a transport-model MIB
 module with configurable maxSecurityLevel and a minSecurityLevel
 objects to identify the range of possible levels. A session's
 maxSecurityLevel would identify the maximum security it could
 provide, and a session created with a minSecurityLevel of authPriv
 would reject an attempt to send an authNoPriv message. The elements

Harrington & Schoenwaelder Expires April 14, 2007 [Page 20]

Internet-Draft SNMP Transport Subsystem October 2006

 of procedure of the transport model would need to describe the
 procedures to enable this determination. [discuss: this is a feature
 I find questionable. It can be developed as a feature of a specific
 transport model. Do we need this discussion here?]

 For transport models that do not support variable security services
 in one session, multiple sessions could be established with different
 security levels, and for every packet the SNMP engine could select
 the appropriate session based on the requested securityLevel. Some
 SNMP entities are resource-constrained. Adding sessions increases
 the need for resources, but so does encrypting unnecessarily.
 Designers of transport models should consider the trade offs for
 resource-constrained devices.

3. Scenario Diagrams for the Transport Subsystem

RFC3411 section 4.6 provides scenario diagrams to illustrate how an
 outgoing message is created, and how an incoming message is
 processed. Both diagrams are incomplete, however. In section 4.6.1,
 the diagram doesn't show the ASI for sending an SNMP request to the
 network or receiving an SNMP response message from the network. In

section 4.6.2, the diagram doesn't illustrate the interfaces required
 to receive an SNMP message from the network, or to send an SNMP
 message to the network.

3.1. Command Generator or Notification Originator

 This diagram from RFC3411 4.6.1 shows how a Command Generator or
 Notification Originator application [RFC3413] requests that a PDU be
 sent, and how the response is returned (asynchronously) to that
 application.

https://datatracker.ietf.org/doc/html/rfc3411#section-4.6
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413

Harrington & Schoenwaelder Expires April 14, 2007 [Page 21]

Internet-Draft SNMP Transport Subsystem October 2006

 Command Dispatcher Message Security
 Generator | Processing Model
	Model	
sendPdu		
------------------->		
	prepareOutgoingMessage	
:	----------------------->	
:		generateRequestMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
:		
:	------------------+	
:	Send SNMP	
:	Request Message	
:	to Network	
:	v	
: : : : :		
: : : : :		
: : : : :		
:		
:	Receive SNMP	
:	Response Message	
:	from Network	
:	<-----------------+	
:		
:	prepareDataElements	
:	----------------------->	
:		processIncomingMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
processResponsePdu		
<-------------------		

3.2. Command Responder

 This diagram shows how a Command Responder or Notification Receiver
 application registers for handling a pduType, how a PDU is dispatched
 to the application after an SNMP message is received, and how the
 Response is (asynchronously) send back to the network.

Harrington & Schoenwaelder Expires April 14, 2007 [Page 22]

Internet-Draft SNMP Transport Subsystem October 2006

 Command Dispatcher Message Security
 Responder | Processing Model
	Model		
registerContextEngineID			
------------------------>			
<------------------------			
	Receive SNMP		
:	Message		
:	from Network		
:	<-------------+		
:			
:	prepareDataElements		
:	------------------->		
:		processIncomingMsg	
:		------------------->	
:			
:		<-------------------	
:			
:	<-------------------		
processPdu			
<------------------------			
: : : :			
: : : :			
returnResponsePdu			
------------------------>			
 : | prepareResponseMsg | |
 : |------------------->| |
 : | |generateResponseMsg |
 : | |------------------->|
 : | | |
 : | |<-------------------|
 : | | |
 : |<-------------------| |
 : | | |
 : |--------------+ | |
 : | Send SNMP | | |
 : | Message | | |
 : | to Network | | |
 : | v | |

4. Cached Information and References

 The RFC3411 architecture uses caches to store dynamic model-specific
 information, and uses references in the ASIs to indicate in a model-
 independent manner which cached information must flow between

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 23]

Internet-Draft SNMP Transport Subsystem October 2006

 subsystems.

 There are two levels of state that may need to be maintained: the
 security state in a request-response pair, and potentially long-term
 state relating to transport and security.

 This state is maintained in caches and a Local Configuration
 Datastore (LCD). To simplify the elements of procedure, the release
 of state information is not always explicitly specified. As a
 general rule, if state information is available when a message being
 processed gets discarded, the state related to that message should
 also be discarded, and if state information is available when a
 relationship between engines is severed, such as the closing of a
 transport session, the state information for that relationship might
 also be discarded.

 This document differentiates the tmStateReference from the
 securityStateReference. This document does not specify an
 implementation strategy, only an abstract discussion of the data that
 must flow between subsystems. An implementation MAY use one cache
 and one reference to serve both functions, but an implementer must be
 aware of the cache-release issues to prevent the cache from being
 released before a security or transport model has had an opportunity
 to extract the information it needs.

4.1. securityStateReference

 From RFC3411: "For each message received, the Security Model caches
 the state information such that a Response message can be generated
 using the same security information, even if the Local Configuration
 Datastore is altered between the time of the incoming request and the
 outgoing response.

 A Message Processing Model has the responsibility for explicitly
 releasing the cached data if such data is no longer needed. To
 enable this, an abstract securityStateReference data element is
 passed from the Security Model to the Message Processing Model. The
 cached security data may be implicitly released via the generation of
 a response, or explicitly released by using the stateRelease
 primitive, as described in RFC3411 section 4.5.1."

 The information saved should include the model-independent parameters
 (transportType, transportAddress, securityName, securityModel, and
 securityLevel), related security parameters, and other information
 needed to imatch the response with the request. The Message
 Processing Model has the responsibility for explicitly releasing the
 securityStateReference when such data is no longer needed. The
 securityStateReference cached data may be implicitly released via the

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411#section-4.5.1

Harrington & Schoenwaelder Expires April 14, 2007 [Page 24]

Internet-Draft SNMP Transport Subsystem October 2006

 generation of a response, or explicitly released by using the
 stateRelease primitive, as described in RFC 3411 section 4.5.1."

 If the transport model connection is closed between the time a
 Request is received and a Response message is being prepared, then
 the Response message MAY be discarded.

4.2. tmStateReference

 For each message or transport session, information about the message
 security is stored in the Local Configuration Datastore (LCD),
 supplemented with a cache, to pass model- and mechanism-specific
 parameters. The state referenced by tmStateReference may be saved
 across multiple messages, as compared to securityStateReference which
 is only saved for the life of a request-response pair of messages.

 The format of the cache and the LCD are implementation-specific. For
 ease of explanation, this document defines a MIB module to
 conceptually represent the LCD, but this is not meant to contrain
 implementations from doing it differently.

 It is expected that the LCD will allow lookup based on the
 combination of transportType, transportAddress, securityName,
 securityModel, and securityLevel. It is expected that the cache
 contain these values or contain pointers/references to entries in the
 LCD.

 It is expected that a transport model may store transport-specific
 parameters in the LCD for subsequent usage.

5. Abstract Service Interfaces

 [todo: the discussion of ASIs that are not directly related to the
 transport or security models was added to the document because it was
 difficult to understand what information was available at what
 points, and who provided the information. The presence of this
 expository text can make it hard to find the relevant ASIs for the
 transport subsystem, and can be confusing because it talks about
 things that the transport subsystem should not know about. This text
 should be reduced.

 Abstract service interfaces have been defined by RFC 3411 to describe
 the conceptual data flows between the various subsystems within an
 SNMP entity.

 To simplify the elements of procedure, the release of state
 information is not always explicitly specified. As a general rule,
 if state information is available when a message gets discarded, the

https://datatracker.ietf.org/doc/html/rfc3411#section-4.5.1
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 25]

Internet-Draft SNMP Transport Subsystem October 2006

 message-state information should also be released, and if state
 information is available when a session is closed, the session state
 information should also be released.

 An error indication may return an OID and value for an incremented
 counter and a value for securityLevel, and values for contextEngineID
 and contextName for the counter, and the securityStateReference if
 the information is available at the point where the error is
 detected.

5.1. Generating an Outgoing SNMP Message

 This section describes the procedure followed by an RFC3411-
 compatible system whenever it generates a message containing a
 management operation (such as a request, a response, a notification,
 or a report) on behalf of a user.

 statusInformation = -- success or errorIndication
 prepareOutgoingMessage(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
 IN sendPduHandle -- the handle for matching
 incoming responses
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
 OUT tmStateReference
)

 Note that tmStateReference has been added to this ASI.

 The IN parameters of the prepareOutgoingMessage() ASI are used to
 pass information from the dispatcher (for the application subsystem)
 to the message processing subsystem.

 The abstract service primitive from a Message Processing Model to a
 Security Model to generate the components of a Request message is
 generateRequestMsg().

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 26]

Internet-Draft SNMP Transport Subsystem October 2006

 The abstract service primitive from a Message Processing Model to a
 Security Model to generate the components of a Response message is
 generateResponseMsg().

 Upon completion of processing, the Security Model returns
 statusInformation. If the process was successful, the completed
 message is returned. If the process was not successful, then an
 errorIndication is returned.

 The OUT parameters of the prepareOutgoingMessage() ASI are used to
 pass information from the message processing model to the dispatcher
 and on to the transport model:

5.2. Processing for an Outgoing Message

 The sendMessage ASI is used to pass a message from the Dispatcher to
 the appropriate transport model for sending.

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference
)

 The Transport Subsystem provides the following primitives to pass
 data back and forth between the dispatcher and specific transport
 models, which provide the interface to the underlying secure
 transport service. Each transport model should define the elements
 of procedure for the openSession() and closeSession() interfaces.

 statusInformation =
 openSession(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN tmStateReference
)

 statusInformation =
 closeSession(
 IN tmStateReference
)

Harrington & Schoenwaelder Expires April 14, 2007 [Page 27]

Internet-Draft SNMP Transport Subsystem October 2006

5.3. Processing an Incoming SNMP Message

5.3.1. Processing an Incoming Message

 If one does not exist, the Transport Model will need to create an
 entry in a Local Configuration Datastore referenced by
 tmStateReference. This information will include transportDomain,
 transportAddress, the securityModel, the securityLevel, and the
 securityName, plus any model or mechanism-specific details. How this
 information is determined is model-specific.

 The recvMessage ASI is used to pass a message from the transport
 subsystem to the Dispatcher.

 statusInformation =
 recvMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN incomingMessage -- the message received
 IN incomingMessageLength -- its length
 IN tmStateReference
)

5.3.2. Prepare Data Elements from Incoming Messages

 The abstract service primitive from the Dispatcher to a Message
 Processing Model for a received message is:

Harrington & Schoenwaelder Expires April 14, 2007 [Page 28]

Internet-Draft SNMP Transport Subsystem October 2006

 result = -- SUCCESS or errorIndication
 prepareDataElements(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN wholeMsg -- as received from the network
 IN wholeMsgLength -- as received from the network
 IN tmStateReference -- from the transport model
 OUT messageProcessingModel -- typically, SNMP version
 OUT securityModel -- Security Model to use
 OUT securityName -- on behalf of this principal
 OUT securityLevel -- Level of Security requested
 OUT contextEngineID -- data from/at this entity
 OUT contextName -- data from/in this context
 OUT pduVersion -- the version of the PDU
 OUT PDU -- SNMP Protocol Data Unit
 OUT pduType -- SNMP PDU type
 OUT sendPduHandle -- handle for matched request
 OUT maxSizeResponseScopedPDU -- maximum size sender can accept
 OUT statusInformation -- success or errorIndication
 -- error counter OID/value if error
 OUT stateReference -- reference to state information
 -- to be used for possible Response
)

 Note that tmStateReference has been added to this ASI.

5.3.3. Processing an Incoming Message

 This section describes the procedure followed by the Security Model
 whenever it receives an incoming message containing a management
 operation on behalf of a user from a Message Processing model.

 The Message Processing Model extracts some information from the
 wholeMsg. The abstract service primitive from a Message Processing
 Model to the Security Subsystem for a received message is::

Harrington & Schoenwaelder Expires April 14, 2007 [Page 29]

Internet-Draft SNMP Transport Subsystem October 2006

 statusInformation = -- errorIndication or success
 -- error counter OID/value if error
 processIncomingMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN maxMessageSize -- of the sending SNMP entity
 IN securityParameters -- for the received message
 IN securityModel -- for the received message
 IN securityLevel -- Level of Security
 IN wholeMsg -- as received on the wire
 IN wholeMsgLength -- length as received on the wire
 IN tmStateReference -- from the transport model
 OUT securityEngineID -- authoritative SNMP entity
 OUT securityName -- identification of the principal
 OUT scopedPDU, -- message (plaintext) payload
 OUT maxSizeResponseScopedPDU -- maximum size sender can handle
 OUT securityStateReference -- reference to security state
) -- information, needed for response

 1) The securityEngineID is set to a value in a model-specific manner.
 If the securityEngineID is not utilized by the specific model, then
 it should be set to the local snmpEngineID, to satisfy the SNMPv3
 message processing model in RFC 3412 section 7.2 13a).

 2) Extract the value of securityName from the Local Configuration
 Datastore entry referenced by tmStateReference.

 3) The scopedPDU component is extracted from the wholeMsg.

 4) The maxSizeResponseScopedPDU is calculated. This is the maximum
 size allowed for a scopedPDU for a possible Response message.

 5)The security data is cached as cachedSecurityData, so that a
 possible response to this message can and will use the same security
 parameters. Then securityStateReference is set for subsequent
 reference to this cached data.

 4) The statusInformation is set to success and a return is made to
 the calling module passing back the OUT parameters as specified in
 the processIncomingMsg primitive.

6. The Transport-Subsystem-MIB Module

 This memo defines a portion of the Management Information Base (MIB)
 for statistics in the Transport Subsystem.

https://datatracker.ietf.org/doc/html/rfc3412#section-7.2

Harrington & Schoenwaelder Expires April 14, 2007 [Page 30]

Internet-Draft SNMP Transport Subsystem October 2006

6.1. Structure of the MIB Module

 Objects in this MIB module are arranged into subtrees. Each subtree
 is organized as a set of related objects. The overall structure and
 assignment of objects to their subtrees, and the intended purpose of
 each subtree, is shown below.

6.1.1. The tmsmStats Subtree

 This subtree contains security-model-independent counters which are
 applicable to all security models based on the .Transport Subsystem.
 This subtree provides information for identifying fault conditions
 and performance degradation.

6.2. Relationship to Other MIB Modules

 Some management objects defined in other MIB modules are applicable
 to an entity implementing this MIB. In particular, it is assumed
 that an entity implementing the Transport-Subsystem-MIB module will
 also implement the SNMPv2-MIB [RFC3418].

 This MIB module is expected to be used with the MIB modules defined
 for managing specific transport models within the transport
 subsystem. This MIB module is designed to be transport-model
 independent and security-model independent, and contains objects
 useful for managing common aspects of any transport model. Specific
 transport models may define a MIB module to contain transport-model
 dependent information.

6.2.1. Textual Conventions

 Generic and Common Textual Conventions used in this document can be
 found summarized at http://www.ops.ietf.org/mib-common-tcs.html

6.2.2. MIB Modules Required for IMPORTS

 The. following MIB module imports items from [RFC2578], [RFC2579],
 [RFC2580], [RFC3411], and [RFC3419]

6.3. Definitions

 Transport-Subsystem-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 mib-2, Integer32, Unsigned32, Gauge32
 FROM SNMPv2-SMI
 TestAndIncr, StorageType, RowStatus

https://datatracker.ietf.org/doc/html/rfc3418
http://www.ops.ietf.org/mib-common-tcs.html
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3419

Harrington & Schoenwaelder Expires April 14, 2007 [Page 31]

Internet-Draft SNMP Transport Subsystem October 2006

 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 SnmpSecurityModel,
 SnmpAdminString, SnmpSecurityLevel, SnmpEngineID
 FROM SNMP-FRAMEWORK-MIB
 TransportAddress, TransportAddressType
 FROM TRANSPORT-ADDRESS-MIB
 ;

 tmsMIB MODULE-IDENTITY
 LAST-UPDATED "200610060000Z"
 ORGANIZATION "ISMS Working Group"
 CONTACT-INFO "WG-EMail: isms@lists.ietf.org
 Subscribe: isms-request@lists.ietf.org

 Chairs:
 Juergen Quittek
 NEC Europe Ltd.
 Network Laboratories
 Kurfuersten-Anlage 36
 69115 Heidelberg
 Germany
 +49 6221 90511-15
 quittek@netlab.nec.de

 Juergen Schoenwaelder
 International University Bremen
 Campus Ring 1
 28725 Bremen
 Germany
 +49 421 200-3587
 j.schoenwaelder@iu-bremen.de

 Editor:
 David Harrington
 FutureWei Technologies
 1700 Alma Drive, Suite 100
 Plano, Texas 75075
 USA
 +1 603-436-8634
 dharrington@huawei.com
 "
 DESCRIPTION "The Transport Subsystem MIB Module

 Copyright (C) The Internet Society (2006). This
 version of this MIB module is part of RFC XXXX;
 see the RFC itself for full legal notices.

Harrington & Schoenwaelder Expires April 14, 2007 [Page 32]

Internet-Draft SNMP Transport Subsystem October 2006

 -- NOTE to RFC editor: replace XXXX with actual RFC number
 -- for this document and remove this note
 "

 REVISION "200610060000Z" -- 20 April 2006
 DESCRIPTION "The initial version, published in RFC XXXX.
 -- NOTE to RFC editor: replace XXXX with actual RFC number
 -- for this document and remove this note
 "

 ::= { mib-2 xxxx }
 -- RFC Ed.: replace xxxx with IANA-assigned number and
 -- remove this note

 -- -- --
 -- subtrees in the Transport-Subsystem-MIB
 -- -- --

 tmsNotifications OBJECT IDENTIFIER ::= { tmsMIB 0 }
 tmsObjects OBJECT IDENTIFIER ::= { tmsMIB 1 }
 tmsConformance OBJECT IDENTIFIER ::= { tmsMIB 2 }

 -- ---
 -- Objects
 -- ---

 -- Textual Conventions

 SnmpTransportModel ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION "An identifier that uniquely identifies a
 Transport Model of the Transport Subsystem within
 the SNMP Management Architecture.

 The values for transportModel are allocated as
 follows:

 - The zero value does not identify any particular
 transport model.

 - Values between 1 and 255, inclusive, are reserved
 for standards-track Transport Models and are
 managed by the Internet Assigned Numbers Authority
 (IANA).
 - Values greater than 255 are allocated to
 enterprise-specific Transport Models. An
 enterprise-specific transportModel value is defined
 to be:

Harrington & Schoenwaelder Expires April 14, 2007 [Page 33]

Internet-Draft SNMP Transport Subsystem October 2006

 enterpriseID * 256 + transport model within
 enterprise

 For example, the fourth Transport Model defined by
 the enterprise whose enterpriseID is 1 would be
 260.

 This scheme for allocation of transportModel
 values allows for a maximum of 255 standards-
 based Transport Models, and for a maximum of
 256 Transport Models per enterprise.

 It is believed that the assignment of new
 transportModel values will be rare in practice
 because the larger the number of simultaneously
 utilized Transport Models, the larger the
 chance that interoperability will suffer.
 Consequently, it is believed that such a range
 will be sufficient. In the unlikely event that
 the standards committee finds this number to be
 insufficient over time, an enterprise number
 can be allocated to obtain an additional 256
 possible values.

 Note that the most significant bit must be zero;
 hence, there are 23 bits allocated for various
 organizations to design and define non-standard
 transportModels. This limits the ability to
 define new proprietary implementations of Transport
 Models to the first 8,388,608 enterprises.

 It is worthwhile to note that, in its encoded
 form, the transportModel value will normally
 require only a single byte since, in practice,
 the leftmost bits will be zero for most messages
 and sign extension is suppressed by the encoding
 rules.

 As of this writing, there are several values
 of transportModel defined for use with SNMP or
 reserved for use with supporting MIB objects.
 They are as follows:

 0 reserved for 'any'
 1 reserved for UDP
 2 reserved for TCP
 3 SSH Transport Model
 "

Harrington & Schoenwaelder Expires April 14, 2007 [Page 34]

Internet-Draft SNMP Transport Subsystem October 2006

 SYNTAX INTEGER(0 .. 2147483647)

 -- Notifications for the Transport Subsystem

 -- Statistics for the Transport Subsystem

 tmsStats OBJECT IDENTIFIER ::= { tmsObjects 1 }

 -- ---
 -- Conformance Information
 -- ---

 tmsGroups OBJECT IDENTIFIER ::= { tmsConformance 1 }

 tmsCompliances OBJECT IDENTIFIER ::= { tmsConformance 2 }

 -- ---
 -- Units of conformance
 -- ---
 tmsGroup OBJECT-GROUP
 OBJECTS {

 }
 STATUS current
 DESCRIPTION "A collection of objects for maintaining session
 information of an SNMP engine which implements the
 Transport subsystem.
 "

 ::= { tmsGroups 2 }

 -- ---
 -- Compliance statements
 -- ---

 tmsCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP engines that support the
 Transport-Subsystem-MIB"
 MODULE
 MANDATORY-GROUPS { tmsGroup }
 ::= { tmsCompliances 1 }

 END

Harrington & Schoenwaelder Expires April 14, 2007 [Page 35]

Internet-Draft SNMP Transport Subsystem October 2006

7. Security Considerations

 This document describes an architectural approach and multiple
 proposed configurations that would permit SNMP to utilize transport
 layer security services. Each section containing a proposal should
 discuss the security considerations.

 It is considered desirable by some industry segments that SNMP
 transport models should utilize transport layer security that
 addresses perfect forward secrecy at least for encryption keys.
 Perfect forward secrecy guarantees that compromise of long term
 secret keys does not result in disclosure of past session keys.

 There are no management objects defined in this MIB module that have
 a MAX-ACCESS clause of read-write and/or read-create. So, if this
 MIB module is implemented correctly, then there is no risk that an
 intruder can alter or create any management objects of this MIB
 module via direct SNMP SET operations.

 Some of the readable objects in this MIB module (i.e., objects with a
 MAX-ACCESS other than not-accessible) may be considered sensitive or
 vulnerable in some network environments. It is thus important to
 control even GET and/or NOTIFY access to these objects and possibly
 to even encrypt the values of these objects when sending them over
 the network via SNMP. These are the tables and objects and their
 sensitivity/vulnerability:
 o [todo] list the tables and objects and state why they are
 sensitive.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPSec),
 even then, there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see [RFC3410], section 8),
 including full support for the SNMPv3 cryptographic mechanisms (for
 authentication and privacy).

 Further, deployment of SNMP versions prior to SNMPv3 is NOT
 RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to
 enable cryptographic security. It is then a customer/operator
 responsibility to ensure that the SNMP entity giving access to an
 instance of this MIB module is properly configured to give access to
 the objects only to those principals (users) that have legitimate
 rights to indeed GET or SET (change/create/delete) them.

https://datatracker.ietf.org/doc/html/rfc3410#section-8

Harrington & Schoenwaelder Expires April 14, 2007 [Page 36]

Internet-Draft SNMP Transport Subsystem October 2006

8. IANA Considerations

 IANA is requested to create a new registry in the Simple Network
 Management Protocol (SNMP) Number Spaces for SnmpTransportModels, as
 described in the Transport-Subsystem-MIB defined in this document.
 Values 0 through 255 are IANA-assigned by Standards Action, as
 defined in RFC2434. Values above 255 are assigned by Hierarchical
 allocation, using the algorithm defined in the definition of the
 SnmpTransportModels TEXTUAL-CONVENTION in the Transport-Subsystem-MIB
 in this document.

 The MIB module in this document uses the following IANA-assigned
 OBJECT IDENTIFIER values recorded in the SMI Numbers registry:

 Descriptor OBJECT IDENTIFIER value
 ---------- -----------------------

 Transport-Subsystem-MIB { mib-2 XXXX }

 Editor's Note (to be removed prior to publication): the IANA is
 requested to assign a value for "XXXX" under the 'mib-2' subtree
 and to record the assignment in the SMI Numbers registry. When
 the assignment has been made, the RFC Editor is asked to replace
 "XXXX" (here and in the MIB module) with the assigned value and to
 remove this note.

9. Acknowledgments

 The Integrated Security for SNMP WG would like to thank the following
 people for their contributions to the process:

 The authors of submitted security model proposals: Chris Elliot, Wes
 Hardaker, Dave Harrington, Keith McCloghrie, Kaushik Narayan, Dave
 Perkins, Joseph Salowey, and Juergen Schoenwaelder.

 The members of the Protocol Evaluation Team: Uri Blumenthal,
 Lakshminath Dondeti, Randy Presuhn, and Eric Rescorla.

 WG members who committed to and performed detailed reviews: Jeffrey
 Hutzelman

10. References

https://datatracker.ietf.org/doc/html/rfc2434

Harrington & Schoenwaelder Expires April 14, 2007 [Page 37]

Internet-Draft SNMP Transport Subsystem October 2006

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4366] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC2865] Rigney, C., Willens, S., Rubens, A., and W. Simpson,
 "Remote Authentication Dial In User Service (RADIUS)",

RFC 2865, June 2000.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3412] Case, J., Harrington, D., Presuhn, R., and B. Wijnen,
 "Message Processing and Dispatching for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

 [RFC3416] Presuhn, R., "Version 2 of the Protocol Operations for the
 Simple Network Management Protocol (SNMP)", STD 62,

RFC 3416, December 2002.

 [RFC3417] Presuhn, R., "Transport Mappings for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3417,
 December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3416
https://datatracker.ietf.org/doc/html/rfc3417

Harrington & Schoenwaelder Expires April 14, 2007 [Page 38]

Internet-Draft SNMP Transport Subsystem October 2006

 Simple Network Management Protocol (SNMP)", STD 62,
RFC 3418, December 2002.

 [RFC3419] Daniele, M. and J. Schoenwaelder, "Textual Conventions for
 Transport Addresses", RFC 3419, December 2002.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

10.2. Informative References

 [RFC3410] Case, J., Mundy, R., Partain, D., and B.
 Stewart, "Introduction and Applicability
 Statements for Internet-Standard Management
 Framework", RFC 3410, December 2002.

 [RFC3413] Levi, D., Meyer, P., and B. Stewart, "Simple
 Network Management Protocol (SNMP)
 Applications", STD 62, RFC 3413,
 December 2002.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple
 Authentication and Security Layer (SASL)",

RFC 4422, June 2006.

 [I-D.ietf-netconf-ssh] Wasserman, M. and T. Goddard, "Using the
 NETCONF Configuration Protocol over Secure
 Shell (SSH)", draft-ietf-netconf-ssh-06 (work
 in progress), March 2006.

Appendix A. Parameter Table

 Following is a CSV formatted matrix useful for tracking data flows
 into and out of the dispatcher, message, and security subsystems.
 Import this into your favorite spreadsheet or other CSV compatible
 application. You will need to remove lines feeds from the second and
 third lines, which needed to be wrapped to fit into RFC limits.

A.1. ParameterList.csv

 ,Dispatcher,,,,Messaging,,,Security,,

 ,sendPdu,returnResponse,processPdu,processResponse
 ,prepareOutgoingMessage,prepareResponseMessage,prepareDataElements
 ,generateRequest,processIncoming,generateResponse

 transportDomain,In,,,,In,,In,,,

https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc3419
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-ssh-06

Harrington & Schoenwaelder Expires April 14, 2007 [Page 39]

Internet-Draft SNMP Transport Subsystem October 2006

 transportAddress,In,,,,In,,In,,,

 destTransportDomain,,,,,Out,Out,,,,

 destTransportAddress,,,,,Out,Out,,,,

 messageProcessingModel,In,In,In,In,In,In,Out,In,In,In

 securityModel,In,In,In,In,In,In,Out,In,In,In

 securityName,In,In,In,In,In,In,Out,In,Out,In

 securityLevel,In,In,In,In,In,In,Out,In,In,In

 contextEngineID,In,In,In,In,In,In,Out,,,

 contextName,In,In,In,In,In,In,Out,,,

 expectResponse,In,,,,In,,,,,

 PDU,In,In,In,In,In,In,Out,,,

 pduVersion,In,In,In,In,In,In,Out,,,

 statusInfo,Out,In,,In,,In,Out,Out,Out,Out

 errorIndication,Out,Out,,,,,Out,,,

 sendPduHandle,Out,,,In,In,,Out,,,

 maxSizeResponsePDU,,In,In,,,In,Out,,Out,

 stateReference,,In,In,,,In,Out,,,

 wholeMessage,,,,,Out,Out,,Out,In,Out

 messageLength,,,,,Out,Out,,Out,In,Out

 maxMessageSize,,,,,,,,In,In,In

 globalData,,,,,,,,In,,In

 securityEngineID,,,,,,,,In,Out,In

 scopedPDU,,,,,,,,In,Out,In

 securityParameters,,,,,,,,Out,,Out

Harrington & Schoenwaelder Expires April 14, 2007 [Page 40]

Internet-Draft SNMP Transport Subsystem October 2006

 securityStateReference,,,,,,,,,Out,In

 pduType,,,,,,,Out,,,

 tmStateReference,,,,,,Out,In,,In,

Appendix B. Why tmStateReference?

 This appendix considers why a cache-based approach was selected for
 passing parameters. This section may be removed from subsequent
 revisions of the document.

 There are four approaches that could be used for passing information
 between the Transport Model and an Security Model.

 1. one could define an ASI to supplement the existing ASIs, or
 2. one could add a header to encapsulate the SNMP message,
 3. one could utilize fields already defined in the existing SNMPv3
 message, or
 4. one could pass the information in an implementation-specific
 cache or via a MIB module.

B.1. Define an Abstract Service Interface

 Abstract Service Interfaces (ASIs) [RFC3411] are defined by a set of
 primitives that specify the services provided and the abstract data
 elements that are to be passed when the services are invoked.
 Defining additional ASIs to pass the security and transport
 information from the transport subsystem to security subsystem has
 the advantage of being consistent with existing RFC3411/3412
 practice, and helps to ensure that any transport model proposals pass
 the necessary data, and do not cause side effects by creating model-
 specific dependencies between itself and other models or other
 subsystems other than those that are clearly defined by an ASI.

B.2. Using an Encapsulating Header

 A header could encapsulate the SNMP message to pass necessary
 information from the Transport Model to the dispatcher and then to a
 messaging security model. The message header would be included in
 the wholeMessage ASI parameter, and would be removed by a
 corresponding messaging model. This would imply the (one and only)
 messaging dispatcher would need to be modified to determine which
 SNMP message version was involved, and a new message processing model
 would need to be developed that knew how to extract the header from
 the message and pass it to the Security Model.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 41]

Internet-Draft SNMP Transport Subsystem October 2006

B.3. Modifying Existing Fields in an SNMP Message

 [RFC3412] describes the SNMPv3 message, which contains fields to pass
 security related parameters. The transport subsystem could use these
 fields in an SNMPv3 message, or comparable fields in other message
 formats to pass information between transport models in different
 SNMP engines, and to pass information between a transport model and a
 corresponding messaging security model.

 If the fields in an incoming SNMPv3 message are changed by the
 Transport Model before passing it to the Security Model, then the
 Transport Model will need to decode the ASN.1 message, modify the
 fields, and re-encode the message in ASN.1 before passing the message
 on to the message dispatcher or to the transport layer. This would
 require an intimate knowledge of the message format and message
 versions so the Transport Model knew which fields could be modified.
 This would seriously violate the modularity of the architecture.

B.4. Using a Cache

 This document describes a cache, into which the Transport Model puts
 information about the security applied to an incoming message, and an
 Security Model extracts that information from the cache. Given that
 there may be multiple TM-security caches, a tmStateReference is
 passed as an extra parameter in the ASIs between the transport
 subsystem and the security subsystem, so the Security Model knows
 which cache of information to consult.

 This approach does create dependencies between a specific Transport
 Model and a corresponding specific Security Model. This approach of
 passing a model-independent reference is consistent with the
 securityStateReference cache already being passed around in the

RFC3411 ASIs.

Appendix C. Open Issues

Appendix D. Change Log

 NOTE to RFC editor: Please remove this change log before publishing
 this document as an RFC.

 Changes from revision -03- to -04-

 changed title from Transport Mapping Security Model Architectural
 Extension to Transport Subsystem
 modified the abstract and introduction

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires April 14, 2007 [Page 42]

Internet-Draft SNMP Transport Subsystem October 2006

 changed TMSM to TMS
 changed MPSP to simply Security Model
 changed SMSP to simply Security Model
 changed TMSP to Transport Model
 removed MPSP and TMSP and SMSP from Acronyms section
 modified diagrams
 removed most references to dispatcher functionality
 worked to remove dependencies between transport and security
 models.
 defined snmpTransportModel enumeration similar to
 snmpSecurityModel, etc.
 eliminated all reference to SNMPv3 msgXXXX fields
 changed tmSessionReference back to tmStateReference

 Changes from revision -02- to -03-

 o removed session table from MIB module
 o removed sessionID from ASIs
 o reorganized to put ASI discussions in EOP section, as was done in
 SSHSM
 o changed user auth to client auth
 o changed tmStateReference to tmSessionReference
 o modified document to meet consensus positions published by JS
 o
 * authoritative is model-specific
 * msgSecurityParameters usage is model-specific
 * msgFlags vs. securityLevel is model/implementation-specific
 * notifications must be able to cause creation of a session
 * security considerations must be model-specific
 * TDomain and TAddress are model-specific
 * MPSP changed to SMSP (Security model security processing)

 Changes from revision -01- to -02-

 o wrote text for session establishment requirements section.
 o wrote text for session maintenance requirements section.
 o removed section on relation to SNMPv2-MIB
 o updated MIB module to pass smilint
 o Added Structure of the MIB module, and other expected MIB-related
 sections.
 o updated author address
 o corrected spelling
 o removed msgFlags appendix
 o Removed section on implementation considerations.
 o started modifying the security boilerplate to address TMS and MIB
 security issues

Harrington & Schoenwaelder Expires April 14, 2007 [Page 43]

Internet-Draft SNMP Transport Subsystem October 2006

 o reorganized slightly to better separate requirements from proposed
 solution. This probably needs additional work.
 o removed section with sample protocols and sample
 tmSessionReference.
 o Added section for acronyms
 o moved section comparing parameter passing techniques to appendix.
 o Removed section on notification requirements.

 Changes from revision -00-
 o changed SSH references from I-Ds to RFCs
 o removed parameters from tmSessionReference for DTLS that revealed
 lower layer info.
 o Added TMS-MIB module
 o Added Internet-Standard Management Framework boilerplate
 o Added Structure of the MIB Module
 o Added MIB security considerations boilerplate (to be completed)
 o Added IANA Considerations
 o Added ASI Parameter table
 o Added discussion of Sessions
 o Added Open issues and Change Log
 o Rearranged sections

Authors' Addresses

 David Harrington
 Huawei Technologies (USA)
 1700 Alma Dr. Suite 100
 Plano, TX 75075
 USA

 Phone: +1 603 436 8634
 EMail: dharrington@huawei.com

 Juergen Schoenwaelder
 International University Bremen
 Campus Ring 1
 28725 Bremen
 Germany

 Phone: +49 421 200-3587
 EMail: j.schoenwaelder@iu-bremen.de

Harrington & Schoenwaelder Expires April 14, 2007 [Page 44]

Internet-Draft SNMP Transport Subsystem October 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Harrington & Schoenwaelder Expires April 14, 2007 [Page 45]

