
Network Working Group D. Harrington
Internet-Draft Huawei Technologies (USA)
Updates: 3411,3412,3414,3417 J. Schoenwaelder
(if approved) International University Bremen
Intended status: Standards Track February 5, 2007
Expires: August 9, 2007

Transport Subsystem for the Simple Network Management Protocol (SNMP)
draft-ietf-isms-tmsm-06

Status of This Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 9, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 This document defines a Transport Subsystem, extending the Simple
 Network Management Protocol (SNMP) architecture defined in RFC 3411.
 This document defines a subsystem to contain Transport Models,
 comparable to other subsystems in the RFC3411 architecture. As work
 is being done to expand the transport to include secure transport
 such as SSH and TLS, using a subsystem will enable consistent design

Harrington & Schoenwaelder Expires August 9, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Internet-Draft SNMP Transport Subsystem February 2007

 and modularity of such Transport Models. This document identifies
 and describes some key aspects that need to be considered for any
 Transport Model for SNMP.

Harrington & Schoenwaelder Expires August 9, 2007 [Page 2]

Internet-Draft SNMP Transport Subsystem February 2007

Table of Contents

1. Introduction . 4
1.1. The Internet-Standard Management Framework 4
1.2. Where this Extension Fits 4
1.3. Conventions . 6

2. Motivation . 6
3. Requirements of a Transport Model 8
3.1. Message Security Requirements 8
3.1.1. Security Protocol Requirements 8

3.2. SNMP Requirements . 9
3.2.1. Architectural Modularity Requirements 9
3.2.2. Access Control Requirements 13
3.2.3. Security Parameter Passing Requirements 14
3.2.4. Separation of Authentication and Authorization 15

3.3. Session Requirements 16
3.3.1. Session Establishment Requirements 17
3.3.2. Session Maintenance Requirements 18
3.3.3. Message security versus session security 18

4. Scenario Diagrams for the Transport Subsystem 19
4.1. Command Generator or Notification Originator 19
4.2. Command Responder . 21

5. Cached Information and References 22
5.1. securityStateReference 23
5.2. tmStateReference . 24

6. Abstract Service Interfaces 24
6.1. sendMessage ASI . 24
6.2. Other Outgoing ASIs 25
6.3. The receiveMessage ASI 26
6.4. Other Incoming ASIs 27

7. Security Considerations 28
8. IANA Considerations . 29
9. Acknowledgments . 29
10. References . 29
10.1. Normative References 29
10.2. Informative References 30

Appendix A. Parameter Table 31
A.1. ParameterList.csv . 31

Appendix B. Why tmStateReference? 33
B.1. Define an Abstract Service Interface 33
B.2. Using an Encapsulating Header 33
B.3. Modifying Existing Fields in an SNMP Message 34
B.4. Using a Cache . 34

Appendix C. Open Issues . 34
Appendix D. Change Log . 35

Harrington & Schoenwaelder Expires August 9, 2007 [Page 3]

Internet-Draft SNMP Transport Subsystem February 2007

1. Introduction

 This document defines a Transport Subsystem, extending the Simple
 Network Management Protocol (SNMP) architecture defined in [RFC3411].
 This document identifies and describes some key aspects that need to
 be considered for any Transport Model for SNMP.

1.1. The Internet-Standard Management Framework

 For a detailed overview of the documents that describe the current
 Internet-Standard Management Framework, please refer to section 7 of
 RFC 3410 [RFC3410].

1.2. Where this Extension Fits

 It is expected that readers of this document will have read RFC3410
 and RFC3411, and have a general understanding of the functionality
 defined in RFCs 3412-3418.

 The "Transport Subsystem" is an additional component for the SNMP
 Engine depicted in RFC3411, section 3.1.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411#section-3.1

Harrington & Schoenwaelder Expires August 9, 2007 [Page 4]

Internet-Draft SNMP Transport Subsystem February 2007

 The following diagram depicts its place in the RFC3411 architecture.:

 +---+
 | SNMP entity |
 | |
 | +---+ |
	SNMP engine (identified by snmpEngineID)									
	+------------+									
		Transport								
		Subsystem								
	+------------+									
	+------------+ +------------+ +-----------+ +-----------+									
		Dispatcher		Message		Security		Access		
				Processing		Subsystem		Control		
				Subsystem				Subsystem		
	+------------+ +------------+ +-----------+ +-----------+									
+---+										
+---+										
	Application(s)									
	+-------------+ +--------------+ +--------------+									
		Command		Notification		Proxy				
		Generator		Receiver		Forwarder				
	+-------------+ +--------------+ +--------------+									
	+-------------+ +--------------+ +--------------+									
		Command		Notification		Other				
		Responder		Originator						
	+-------------+ +--------------+ +--------------+									
+---+										
 +---+

 The transport mappings defined in RFC3417 do not provide lower-layer
 security functionality, and thus do not provide transport-specific
 security parameters. This document updates RFC3411 and RFC3417 by
 defining an architectural extension and ASIs that transport mappings
 (models) can use to pass transport-specific security parameters to
 other subsystems, including transport-specific security parameters
 translated into the transport-independent securityName and
 securityLevel.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3417

Harrington & Schoenwaelder Expires August 9, 2007 [Page 5]

Internet-Draft SNMP Transport Subsystem February 2007

1.3. Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The key words "must", "must not", "required", "shall", "shall not",
 "should", "should not", "recommended", "may", and "optional" in this
 document are not to be interpreted as described in RFC2119. They
 will usually, but not always, be used in a context relating to
 compatibility with the RFC3411 architecture or the subsystem defined
 here, but which might have no impact on on-the-wire compatibility.
 These terms are used as guidance for designers of proposed IETF
 models to make the designs compatible with RFC3411 subsystems and
 Abstract Service Interfaces (see section 3.2). Implementers are free
 to implement differently. Some usages of these lowercase terms are
 simply normal English usage.

2. Motivation

 Just as there are multiple ways to secure one's home or business, in
 a continuum of alternatives, there are multiple ways to secure a
 network management protocol. Let's consider three general
 approaches.

 In the first approach, an individual could sit on his front porch
 waiting for intruders. In the second approach, he could hire an
 employee , schedule the employee, position the employee to guard what
 he wants protected, hire a second guard to cover if the first gets
 sick, and so on. In the third approach, he could hire a security
 company, tell them what he wants protected, and they could hire
 employees, train them, position the guards, schedule the guards, send
 a replacement when a guard cannot make it, etc., thus providing the
 desired security, with no significant effort on his part other than
 identifying requirements and verifying the quality of the service
 being provided.

 The User-based Security Model (USM) as defined in [RFC3414] largely
 uses the first approach - it provides its own security. It utilizes
 existing mechanisms (e.g., SHA), but provides all the coordination.
 USM provides for the authentication of a principal, message
 encryption, data integrity checking, timeliness checking, etc.

 USM was designed to be independent of other existing security
 infrastructures. USM therefore requires a separate principal and key
 management infrastructure. Operators have reported that deploying
 another principal and key management infrastructure in order to use
 SNMPv3 is a deterrent to deploying SNMPv3. It is possible to use

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3414

Harrington & Schoenwaelder Expires August 9, 2007 [Page 6]

Internet-Draft SNMP Transport Subsystem February 2007

 external mechanisms to handle the distribution of keys for use by
 USM. The more important issue is that operators wanted to leverage a
 single user base that wasn't specific to SNMP.

 A solution based on the second approach might use a USM-compliant
 architecture, but combine the authentication mechanism with an
 external mechanism, such as RADIUS [RFC2865], to provide the
 authentication service. It might be possible to utilize an external
 protocol to encrypt a message, to check timeliness, to check data
 integrity, etc. It is difficult to cobble together a number of
 subcontracted services and coordinate them however, because it is
 difficult to build solid security bindings between the various
 services, and potential for gaps in the security is significant.

 A solution based on the third approach might utilize one or more
 lower-layer security mechanisms to provide the message-oriented
 security services required. These would include authentication of
 the sender, encryption, timeliness checking, and data integrity
 checking. There are a number of IETF standards available or in
 development to address these problems through security layers at the
 transport layer or application layer, among them TLS [RFC4366], SASL
 [RFC4422], and SSH [RFC4251].

 From an operational perspective, it is highly desirable to use
 security mechanisms that can unify the administrative security
 management for SNMPv3, command line interfaces (CLIs) and other
 management interfaces. The use of security services provided by
 lower layers is the approach commonly used for the CLI, and is also
 the approach being proposed for NETCONF [RFC4741].

 This document defines a Transport Subsystem extension to the RFC3411
 architecture based on the third approach. This extension specifies
 how other lower layer protocols with common security infrastructures
 can be used underneath the SNMP protocol and the desired goal of
 unified administrative security can be met.

 This extension allows security to be provided by an external protocol
 connected to the SNMP engine through an SNMP Transport Model
 [RFC3417]. Such a Transport Model would then enable the use of
 existing security mechanisms such as (TLS) [RFC4366] or SSH [RFC4251]
 within the RFC3411 architecture.

 There are a number of Internet security protocols and mechanisms that
 are in wide spread use. Many of them try to provide a generic
 infrastructure to be used by many different application layer
 protocols. The motivation behind the Transport Subsystem is to
 leverage these protocols where it seems useful.

https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 7]

Internet-Draft SNMP Transport Subsystem February 2007

 There are a number of challenges to be addressed to map the security
 provided by a secure transport into the SNMP architecture so that
 SNMP continues to provide interoperability with existing
 implementations. These challenges are described in detail in this
 document. For some key issues, design choices are described that
 might be made to provide a workable solution that meets operational
 requirements and fits into the SNMP architecture defined in
 [RFC3411].

3. Requirements of a Transport Model

3.1. Message Security Requirements

 Transport security protocols SHOULD provide protection against the
 following message-oriented threats [RFC3411]:

 1. modification of information
 2. masquerade
 3. message stream modification
 4. disclosure

 These threats are described in section 1.4 of [RFC3411]. It is not
 required to protect against denial of service or traffic analysis,
 but it should not make those threats significantly worse.

3.1.1. Security Protocol Requirements

 There are a number of standard protocols that could be proposed as
 possible solutions within the Transport Subsystem. Some factors
 SHOULD be considered when selecting a protocol.

 Using a protocol in a manner for which it was not designed has
 numerous problems. The advertised security characteristics of a
 protocol might depend on it being used as designed; when used in
 other ways, it might not deliver the expected security
 characteristics. It is recommended that any proposed model include a
 description of the applicability of the Transport Model.

 A Transport Model SHOULD require no modifications to the underlying
 protocol. Modifying the protocol might change its security
 characteristics in ways that would impact other existing usages. If
 a change is necessary, the change SHOULD be an extension that has no
 impact on the existing usages. Any Transport Model SHOULD include a
 description of potential impact on other usages of the protocol.

 Transport Models MUST be able to coexist with each other.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411#section-1.4

Harrington & Schoenwaelder Expires August 9, 2007 [Page 8]

Internet-Draft SNMP Transport Subsystem February 2007

3.2. SNMP Requirements

3.2.1. Architectural Modularity Requirements

 SNMP version 3 (SNMPv3) is based on a modular architecture (defined
 in [RFC3411] section 3) to allow the evolution of the SNMP protocol
 standards over time, and to minimize side effects between subsystems
 when changes are made.

 The RFC3411 architecture includes a Security Subsystem for enabling
 different methods of providing security services, a Message
 Processing Subsystem permitting different message versions to be
 handled by a single engine, Applications(s) to support different
 types of application processors, and an Access Control Subsystem for
 allowing multiple approaches to access control. The RFC3411
 architecture does not include a subsystem for Transport Models,
 despite the fact there are multiple transport mappings already
 defined for SNMP. This document addresses the need for a Transport
 Subsystem compatible with the RFC3411 architecture. As work is being
 done to expand the transport to include secure transport such as SSH
 and TLS, using a subsystem will enable consistent design and
 modularity of such Transport Models.

 The design of this Transport Subsystem accepts the goals of the
RFC3411 architecture defined in section 1.5 of [RFC3411]. This

 Transport Subsystem uses a modular design that will permit Transport
 Models to be advanced through the standards process independently of
 other Transport Models, and independent of other modular SNMP
 components as much as possible.

 Parameters have been added to the ASIs to pass model-independent
 transport address information.

 IETF standards typically require one mandatory to implement solution,
 with the capability of adding new mechanisms in the future. Part of
 the motivation of developing Transport Models is to develop support
 for secure transport protocols, such as a Transport Model that
 utilizes the Secure Shell protocol. Any Transport Model SHOULD
 define one minimum-compliance security mechanism, such as
 certificates, to ensure a basic level of interoperability, but should
 also be able to support additional existing and new mechanisms.

 The Transport Subsystem permits multiple transport protocols to be
 "plugged into" the RFC3411 architecture, supported by corresponding
 Transport Models, including models that are security-aware.

 The RFC3411 architecture and the Security Subsystem assume that a
 Security Model is called by a Message Processing Model and will

https://datatracker.ietf.org/doc/html/rfc3411#section-3
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411#section-1.5
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 9]

Internet-Draft SNMP Transport Subsystem February 2007

 perform multiple security functions within the Security Subsystem. A
 Transport Model that supports a secure transport protocol might
 perform similar security functions within the Transport Subsystem. A
 Transport Model might perform the translation of transport security
 parameters to/from security-model-independent parameters.

 To accommodate this, an implementation-specific cache of transport-
 specific information will be described (not shown), and the data
 flows between the Transport Subsystem and the Transport Dispatch,
 between the Message Dispatch and the Message Processing Subsystem,
 and between the Message Processing Subsystem and the Security
 Subsystem will be extended to pass security-model-independent values.
 New Security Models may also be defined that understand how to work
 with the modified ASIs and the cache. One such Security Mode, the
 Transport Security Model, is defined in

 The following diagram depicts the SNMPv3 architecture including the
 new Transport Subsystem defined in this document, and a new Transport
 Security Model defined in [I-D.ietf-isms-transport-security-model].

Harrington & Schoenwaelder Expires August 9, 2007 [Page 10]

Internet-Draft SNMP Transport Subsystem February 2007

 +------------------------------+
 | Network |
 +------------------------------+
 ^ ^ ^
 | | |
 v v v
 +---+
 | +--+ |
	Transport Subsystem											
	+-----+ +-----+ +-----+ +-----+ +-------+											
		UDP		TCP		SSH		TLS	. . .	other		
	+-----+ +-----+ +-----+ +-----+ +-------+											
+--+												
^												
Dispatcher v												
+-------------------+ +---------------------+ +----------------+												
	Transport		Message Processing		Security							
	Dispatch		Subsystem		Subsystem							
			+------------+		+------------+							
			+->	v1MP	<--->		USM					
				+------------+		+------------+						
				+------------+		+------------+						
			+->	v2cMP	<--->		Transport					
	Message			+------------+			Security					
	Dispatch <--------->	+------------+			Model							
			+->	v3MP	<--->	+------------+						
				+------------+		+------------+						
	PDU Dispatch			+------------+			Other					
+-------------------+	+->	otherMP	<--->		Model(s)							
^	+------------+		+------------+									
	+---------------------+ +----------------+											
v												
+-------+-------------------------+---------------+												
^ ^ ^												
v v v												
+-------------+ +---------+ +--------------+ +-------------+												
	COMMAND		ACCESS		NOTIFICATION		PROXY					
	RESPONDER	<->	CONTROL	<->	ORIGINATOR		FORWARDER					
	application				applications		application					
+-------------+ +---------+ +--------------+ +-------------+												
^ ^												
v v												
+--+												
	MIB instrumentation	SNMP entity										
 +---+

Harrington & Schoenwaelder Expires August 9, 2007 [Page 11]

Internet-Draft SNMP Transport Subsystem February 2007

3.2.1.1. Processing Differences between USM and Secure Transport

 USM and secure transports differ is the processing order and
 responsibilities within the RFC3411 architecture. While the steps
 are the same, they occur in a different order, and may be done by
 different subsystems. The following lists illustrate the difference
 in the flow and the responsibility for different processing steps for
 incoming messages when using USM and when using a secure transport.
 (Note that these lists are simplified for illustrative purposes, and
 do not represent all details of processing. Transport Models must
 provide the detailed elements of procedure.)

 With USM and other Security Models, security processing starts when
 the Message Processing Model decodes portions of the ASN.1 message to
 extract an opaque block of security parameters and header parameters
 that identify which Security Model should process the message to
 perform authentication, decryption, timeliness checking, integrity
 checking, and translation of parameters to model-independent
 parameters. A secure transport performs those security functions on
 the message, before the ASN.1 is decoded.

 Step 6 cannot occur until after decryption occurs. Step 6 and beyond
 are the same for USM and a secure transport.

3.2.1.1.1. USM and the RFC3411 Architecture

 1) decode the ASN.1 header (Message Processing Model)
 2) determine the SNMP Security Model and parameters (Message
 Processing Model)
 3) verify securityLevel. [Security Model]
 4) translate parameters to model-independent parameters (Security
 Model)
 5) authenticate and decrypt message. [Security Model]
 6) determine the pduType in the decrypted portions (Message
 Processing Model), and
 7) pass on the decrypted portions with model-independent parameters.

3.2.1.2. Transport Subsystem and the RFC3411 Architecture

 1) authenticate and decrypt message. [Transport Model]
 2) translate parameters to model-independent parameters (Transport
 Model)
 3) decode the ASN.1 header (Message Processing Model)
 4) determine the SNMP Security Model and parameters (Message
 Processing Model)

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 12]

Internet-Draft SNMP Transport Subsystem February 2007

 5) verify securityLevel [Security Model]
 6) determine the pduType in the decrypted portions (Message
 Processing Model), and
 7) pass on the decrypted portions with model-independent security
 parameters

 If a message is secured using a secure transport layer, then the
 Transport Model should provide the translation from the authenticated
 identity (e.g., an SSH user name) to the securityName in step 3.

3.2.1.3. Passing Information between Engines

 A secure Transport Model will establish an authenticated and/or
 encrypted tunnel between the Transport Models of two SNMP engines.
 After a transport layer tunnel is established, then SNMP messages can
 be sent through the tunnel from one SNMP engine to the other SNMP
 engine. Transport Models MAY support sending multiple SNMP messages
 through the same tunnel.

3.2.2. Access Control Requirements

RFC3411 made some design decisions related to the support of an
 Access Control Subsystem. These include a securityName and
 securityLevel mapping, the separation of Authentication and
 Authorization, and the passing of model-independent security
 parameters.

3.2.2.1. securityName and securityLevel Mapping

 For SNMP access control to function properly, Security Models MUST
 establish a securityLevel and a securityName, which is the security-
 model-independent identifier for a principal. The Message Processing
 Subsystem relies on a Security Model, such as USM, to play a role in
 security that goes beyond protecting the message - it provides a
 mapping between the security-model-specific principal to a security-
 model independent securityName which can be used for subsequent
 processing, such as for access control.

 The securityName MUST be mapped from the mechanism-specific
 authenticated identity, and this mapping must be done for incoming
 messages before the Security Model passes securityName to the Message
 Processing Model via the processIncoming ASI. This translation from
 a mechanism-specific authenticated identity to a securityName might
 be done by the Transport Model, and the securityName is then provided
 to the Security Model via the tmStateReference to be passed to the
 Message Processing Model.

 If the type of authentication provided by the transport layer (e.g.,

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 13]

Internet-Draft SNMP Transport Subsystem February 2007

 TLS) is considered adequate to secure and/or encrypt the message, but
 inadequate to provide the desired granularity of access control
 (e.g., user-based), then a second authentication (e.g., one provided
 via a RADIUS server) MAY be used to provide the authentication
 identity which is mapped to the securityName. This approach would
 require a good analysis of the potential for man-in-the-middle
 attacks or masquerade possibilities.

3.2.3. Security Parameter Passing Requirements

RFC3411 section 4 describes abstract data flows between the
 subsystems, models and applications within the architecture.
 Abstract Service Interfaces describe the flow of data, passing model-
 independent information between subsystems within an engine. The

RFC3411 architecture has no ASI parameters for passing security
 information between the Transport Subsystem and the dispatcher, or
 between the dispatcher and the Message Processing Model. This
 document defines or modifies ASIs for this purpose.

 The security parameters include a model-independent identifier of the
 security "principal" (the securityName), the Security Model used to
 perform the authentication, and which authentication and privacy
 services were (should be) applied to the message (securityLevel).

 A Message Processing Model might unpack SNMP-specific security
 parameters from an incoming message before calling a specific
 Security Model to authenticate and decrypt an incoming message,
 perform integrity checking, and translate security-model-specific
 parameters into model-independent parameters. When using a secure
 Transport Model, security parameters might be provided through means
 other than carrying them in the SNMP message; the parameters for
 incoming messages might be extracted from the transport layer by the
 Transport Model before the message is passed to the Message
 Processing Subsystem.

 This document describes a cache mechanism (see Section 5), into which
 the Transport Model puts information about the transport and security
 parameters applied to a transport connection or an incoming message,
 and a Security Model may extract that information from the cache. A
 tmStateReference is passed as an extra parameter in the ASIs of the
 Transport Subsystem and the Message Processing and Security
 Subsystems, to identify the relevant cache. This approach of passing
 a model-independent reference is consistent with the
 securityStateReference cache already being passed around in the

RFC3411 ASIs.

 For outgoing messages, even when a secure Transport Model will
 provide the security services, a Message Processing Model might have

https://datatracker.ietf.org/doc/html/rfc3411#section-4
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 14]

Internet-Draft SNMP Transport Subsystem February 2007

 a Security Model actually create the message from its component
 parts. Whether there are any security services provided by the
 Security Model for an outgoing message is security-model-dependent.
 For incoming messages, even when a secure Transport Model provides
 security services, a Security Model might provide some security
 functionality that can only be provided after the message version or
 other parameters are extracted from the message.

3.2.4. Separation of Authentication and Authorization

 The RFC3411 architecture defines a separation of authentication and
 authorization (access control), and a Transport Model that provides
 security services should take care to not violate this separation. A
 Transport Model must not specify how the securityModel and
 securityName could be dynamically mapped to an access control
 mechanism, such as a VACM-style groupName.

 The RECOMMENDED approach is to pass the model-independent security
 parameters via the isAccessAllowed ASI, and perform the mapping from
 the model-independent security parameters to an access-control-model-
 dependent policy within the Access Control Model. The
 isAccessAllowed ASI is used for passing the securityModel,
 securityName, and securityLevel parameters that are independent of
 any specific security model and any specific access control model to
 the Access Control Subsystem.

 The mapping of (securityModel, securityName, securityLevel) to an
 access-control-model-specific policy should be handled within a
 specific access control model. This mapping should not be done in
 the Transport or Security Subsystems, to be consistent with the
 modularity of the RFC3411 architecture. This separation was a
 deliberate decision of the SNMPv3 WG, to allow support for
 authentication protocols which did not provide authorization (access
 control) capabilities, and to support authorization schemes, such as
 VACM, that do not perform their own authentication.

 The View-based Access Control Model uses the securityModel and the
 securityName as inputs to check for access rights. It determines the
 groupName as a function of securityModel and securityName. Providing
 a binding outside the Access Control Subsystem might create
 dependencies that could make it harder to develop alternate models of
 access control, such as one built on UNIX groups or Windows domains.

 To provide support for protocols which simultaneously send
 information for authentication and authorization (access control),
 such as RADIUS [RFC2865], access-control-model-specific information
 might be cached or otherwise made available to the Access Control
 Subsystem, e.g., via a MIB table similar to the

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2865

Harrington & Schoenwaelder Expires August 9, 2007 [Page 15]

Internet-Draft SNMP Transport Subsystem February 2007

 vacmSecurityToGroupTable, so the Access Control Subsystem can create
 an appropriate binding between the access-control-model-independent
 securityModel and securityName and an access-control-model-specific
 policy. This would be highly undesirable, however, if it creates a
 dependency between a Transport Model or a Security Model and an
 Access Control Model.

3.3. Session Requirements

 Some secure transports might have a notion of sessions, while other
 secure transports might provide channels or other session-like
 mechanism. Throughout this document, the term session is used in a
 broad sense to cover sessions, channels, and session-like mechanisms.
 Session refers to an association between two SNMP engines that
 permits the transmission of one or more SNMP messages within the
 lifetime of the session. How the session is actually established,
 opened, closed, or maintained is specific to a particular Transport
 Model.

 Sessions are not part of the SNMP architecture defined in [RFC3411],
 but are considered desirable because the cost of authentication can
 be amortized over potentially many transactions.

 The architecture defined in [RFC3411] does not include a session
 selector in the Abstract Service Interfaces, and neither is that done
 for the Transport Subsystem, so an SNMP application has no mechanism
 to select a session using the ASIs except by passing a unique
 combination of transportDomain, transportAddress, securityName,
 securityModel, and securityLevel. Implementers, of course, might
 provide non-standard mechanisms to select sessions. The
 transportDomain and transportAddress identify the transport
 connection to a remote network node; the securityName identifies
 which security principal to communicate with at that address (e.g.,
 different NMS applications), and the securityModel and securityLevel
 might permit selection of different sets of security properties for
 different purposes (e.g., encrypted SETs vs. non-encrypted GETs).

 All Transport Models should discuss the impact of sessions on SNMP
 usage, including how to establish/open a transport session (i.e., how
 it maps to the concepts of session-like mechanisms of the underlying
 protocol), how to behave when a session cannot be established, how to
 close a session properly, how to behave when a session is closed
 improperly, the session security properties, session establishment
 overhead, and session maintenance overhead.

 To reduce redundancy, this document describes aspects that are
 expected to be common to all Transport Model sessions.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 16]

Internet-Draft SNMP Transport Subsystem February 2007

3.3.1. Session Establishment Requirements

 SNMP applications must provide the transportDomain, transportAddress,
 securityName, securityModel, and securityLevel to be used for a
 session.

 SNMP Applications might have no knowledge of whether the session that
 will be used to carry commands was initially established as a
 notification session, or a request-response session, and SHOULD NOT
 make any assumptions based on knowing the direction of the session.
 If an administrator or Transport Model designer wants to
 differentiate a session established for different purposes, such as a
 notification session versus a request-response session, the
 application can use different securityNames or transport addresses
 (e.g., port 161 vs. port 162) for different purposes.

 An SNMP engine containing an application that initiates
 communication, e.g., a Command Generator or Notification Originator,
 must be able to attempt to establish a session for delivery if a
 session does not yet exist. If a session cannot be established then
 the message is discarded.

 Sessions are usually established by the Transport Model when no
 appropriate session is found for an outgoing message, but sessions
 might be established in advance to support features such as
 notifications. How sessions are established in advance is beyond the
 scope of this document.

 Sessions are initiated by notification originators when there is no
 currently established connection that can be used to send the
 notification. For a client-server security protocol, this might
 require provisioning authentication credentials on the agent, either
 statically or dynamically, so the client/agent can successfully
 authenticate to a notification receiver.

 A Transport Model must be able to determine whether a session does or
 does not exist, and must be able to determine which session has the
 appropriate security characteristics (transportDomain,
 transportAddress, securityName, securityModel, and securityLevel) for
 an outgoing message.

 A Transport Model implementation MAY reuse an already established
 session with the appropriate transportDomain, transportAddress,
 securityName, securityModel, and securityLevel characteristics for
 delivery of a message containing a different pduType than originally
 caused the session to be created. For example, an implementation
 that has an existing session originally established to receive a
 request MAY use that session to send an outgoing notification, and

Harrington & Schoenwaelder Expires August 9, 2007 [Page 17]

Internet-Draft SNMP Transport Subsystem February 2007

 MAY use a session that was originally established to send a
 notification to send a request. Responses SHOULD be returned using
 the same session that carried the corresponding request message.
 Reuse of sessions is not required for conformance.

 If a session can be reused for a different pduType, but a receiver is
 not prepared to accept different pduTypes over the same session, then
 the message MAY be dropped by the receiver.

3.3.2. Session Maintenance Requirements

 A Transport Model can tear down sessions as needed. It might be
 necessary for some implementations to tear down sessions as the
 result of resource constraints, for example.

 The decision to tear down a session is implementation-dependent.
 While it is possible for an implementation to automatically tear down
 each session once an operation has completed, this is not recommended
 for anticipated performance reasons. How an implementation
 determines that an operation has completed, including all potential
 error paths, is implementation-dependent.

 The elements of procedure describe when cached information can be
 discarded, in some circumstances, and the timing of cache cleanup
 might have security implications, but cache memory management is an
 implementation issue.

 If a Transport Model defines MIB module objects to maintain session
 state information, then the Transport Model MUST define what SHOULD
 happen to the objects when a related session is torn down, since this
 will impact interoperability of the MIB module.

3.3.3. Message security versus session security

 A Transport Model session is associated with state information that
 is maintained for its lifetime. This state information allows for
 the application of various security services to multiple messages.
 Cryptographic keys established at the beginning of the session SHOULD
 be used to provide authentication, integrity checking, and encryption
 services for data that is communicated during the session. The
 cryptographic protocols used to establish keys for a Transport Model
 session SHOULD ensure that fresh new session keys are generated for
 each session. In addition sequence information might be maintained
 in the session which can be used to prevent the replay and reordering
 of messages within a session. If each session uses new keys, then a
 cross-session replay attack will be unsuccessful; that is, an
 attacker cannot successfully replay on one session a message he
 observed from another session. A good security protocol will also

Harrington & Schoenwaelder Expires August 9, 2007 [Page 18]

Internet-Draft SNMP Transport Subsystem February 2007

 protect against replay attacks _within_ a session; that is, an
 attacker cannot successfully replay a message observed earlier in the
 same session.

 A Transport Model session will have a single transportDomain,
 transportAddress, securityModel, securityName and securityLevel
 associated with it. If an exchange between communicating engines
 requires a different securityLevel or is on behalf of a different
 securityName, or uses a different securityModel, then another session
 would be needed. An immediate consequence of this is that
 implementations SHOULD be able to maintain some reasonable number of
 concurrent sessions.

 For Transport Models, securityName should be specified during session
 setup, and associated with the session identifier.

 SNMPv3 was designed to support multiple levels of security,
 selectable on a per-message basis by an SNMP application, because,
 for example, there is not much value in using encryption for a
 Commander Generator to poll for potentially non-sensitive performance
 data on thousands of interfaces every ten minutes; the encryption
 might add significant overhead to processing of the messages.

 Some Transport Models might support only specific authentication and
 encryption services, such as requiring all messages to be carried
 using both authentication and encryption, regardless of the security
 level requested by an SNMP application. A Transport Model may
 upgrade the requested security level, i.e. noAuthNoPriv and
 authNoPriv MAY be sent over an authenticated and encrypted session.

4. Scenario Diagrams for the Transport Subsystem

RFC3411 section 4.6 provides scenario diagrams to illustrate how an
 outgoing message is created, and how an incoming message is
 processed. Both diagrams are incomplete, however. In section 4.6.1,
 the diagram doesn't show an ASI for sending an SNMP request to the
 network or for receiving an SNMP response message from the network.
 In section 4.6.2, the diagram doesn't show the ASIs to receive an
 SNMP message from the network, or to send an SNMP message to the
 network.

4.1. Command Generator or Notification Originator

 This diagram from RFC3411 4.6.1 shows how a Command Generator or
 Notification Originator application [RFC3413] requests that a PDU be
 sent, and how the response is returned (asynchronously) to that
 application.

https://datatracker.ietf.org/doc/html/rfc3411#section-4.6
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413

Harrington & Schoenwaelder Expires August 9, 2007 [Page 19]

Internet-Draft SNMP Transport Subsystem February 2007

 This document defines a sendMessage ASI to send SNMP messages to the
 network, and a receiveMessage ASI to receive SNMP messages from the
 network.

 Command Dispatcher Message Security
 Generator | Processing Model
	Model	
sendPdu		
------------------->		
	prepareOutgoingMessage	
:	----------------------->	
:		generateRequestMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
:		
:	------------------+	
:	Send SNMP	
:	Request Message	
:	to Network	
:	v	
: : : : :		
: : : : :		
: : : : :		
:		
:	Receive SNMP	
:	Response Message	
:	from Network	
:	<-----------------+	
:		
:	prepareDataElements	
:	----------------------->	
:		processIncomingMsg
:		-------------------->
:		
:		<--------------------
:		
:	<-----------------------	
processResponsePdu		
<-------------------		

Harrington & Schoenwaelder Expires August 9, 2007 [Page 20]

Internet-Draft SNMP Transport Subsystem February 2007

4.2. Command Responder

 This diagram shows how a Command Responder or Notification Receiver
 application registers for handling a pduType, how a PDU is dispatched
 to the application after an SNMP message is received, and how the
 Response is (asynchronously) sent back to the network.

 This document defines the sendMessage and receiveMessage ASIs for
 this purpose.

Harrington & Schoenwaelder Expires August 9, 2007 [Page 21]

Internet-Draft SNMP Transport Subsystem February 2007

 Command Dispatcher Message Security
 Responder | Processing Model
	Model		
registerContextEngineID			
------------------------>			
<------------------------			
	Receive SNMP		
:	Message		
:	from Network		
:	<-------------+		
:			
:	prepareDataElements		
:	------------------->		
:		processIncomingMsg	
:		------------------->	
:			
:		<-------------------	
:			
:	<-------------------		
processPdu			
<------------------------			
: : : :			
: : : :			
returnResponsePdu			
------------------------>			
 : | prepareResponseMsg | |
 : |------------------->| |
 : | |generateResponseMsg |
 : | |------------------->|
 : | | |
 : | |<-------------------|
 : | | |
 : |<-------------------| |
 : | | |
 : |--------------+ | |
 : | Send SNMP | | |
 : | Message | | |
 : | to Network | | |
 : | v | |

5. Cached Information and References

 The RFC3411 architecture uses caches to store dynamic model-specific
 information, and uses references in the ASIs to indicate in a model-
 independent manner which cached information flows between subsystems.

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 22]

Internet-Draft SNMP Transport Subsystem February 2007

 There are two levels of state that might need to be maintained: the
 security state in a request-response pair, and potentially long-term
 state relating to transport and security.

 This state is maintained in caches. To simplify the elements of
 procedure, the release of state information is not always explicitly
 specified. As a general rule, if state information is available when
 a message being processed gets discarded, the state related to that
 message should also be discarded, and if state information is
 available when a relationship between engines is severed, such as the
 closing of a transport session, the state information for that
 relationship might also be discarded.

 This document differentiates the tmStateReference from the
 securityStateReference. This document does not specify an
 implementation strategy, only an abstract description of the data
 that flows between subsystems. An implementation might use one cache
 and one reference to serve both functions, but an implementer must be
 aware of the cache-release issues to prevent the cache from being
 released before a security or Transport Model has had an opportunity
 to extract the information it needs.

5.1. securityStateReference

 From RFC3411: "For each message received, the Security Model caches
 the state information such that a Response message can be generated
 using the same security information, even if the Local Configuration
 Datastore is altered between the time of the incoming request and the
 outgoing response." To enable this, an abstract
 securityStateReference data element, defined in RFC3411 section
 A.1.5, is passed from the Security Model to the Message Processing
 Model.

 The information saved should include the model-independent parameters
 (transportDomain, transportAddress, securityName, securityModel, and
 securityLevel), related security parameters, and other information
 needed to match the response with the request. The related security
 parameters may include transport-specific security information.

 The Message Processing Model has the responsibility for explicitly
 releasing the securityStateReference when such data is no longer
 needed. The securityStateReference cached data may be implicitly
 released via the generation of a response, or explicitly released by
 using the stateRelease ASI, as defined in RFC 3411 section 4.5.1."

 If the Transport Model connection is closed between the time a
 Request is received and a Response message is being prepared, then
 the Response message MAY be discarded.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411#section-4.5.1

Harrington & Schoenwaelder Expires August 9, 2007 [Page 23]

Internet-Draft SNMP Transport Subsystem February 2007

5.2. tmStateReference

 For each message or transport session, information about the message
 security is stored in a cache, which may include model- and
 mechanism-specific parameters. The tmStateReference is passed
 between subsystems to provide a handle for the cache. A Transport
 Model may store transport-specific parameters in the cache for
 subsequent usage. Since the contents of a cache are meaningful only
 within an implementation, and not on-the-wire, the format of the
 cache is implementation-specific.

 The state referenced by tmStateReference might be saved in a Local
 Configuration Datastore (LCD) to make it available across multiple
 messages, as compared to securityStateReference which is designed to
 be saved only for the life of a request-response pair of messages.
 It is expected that an LCD will allow lookup based on the combination
 of transportDomain, transportAddress, securityName, securityModel,
 and securityLevel, and that the cache contain these values to
 reference entries in the LCD.

6. Abstract Service Interfaces

 Abstract service interfaces have been defined by RFC 3411 to describe
 the conceptual data flows between the various subsystems within an
 SNMP entity, and to help keep the subsystems independent of each
 other except for the common parameters.

 This document follows the example of RFC3411 regarding the release of
 state information, and regarding error indications.

 1) The release of state information is not always explicitly
 specified in a transport model. As a general rule, if state
 information is available when a message gets discarded, the message-
 state information should also be released, and if state information
 is available when a session is closed, the session state information
 should also be released.

 2) An error indication in statusInformation may include an OID and
 value for an incremented counter and a value for securityLevel, and
 values for contextEngineID and contextName for the counter, and the
 securityStateReference if the information is available at the point
 where the error is detected.

6.1. sendMessage ASI

 The sendMessage ASI is used to pass a message from the Dispatcher to
 the appropriate Transport Model for sending.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 24]

Internet-Draft SNMP Transport Subsystem February 2007

 If present and valid, the tmStateReference refers to a cache
 containing transport-model-specific parameters for the transport and
 transport security. How the information in the cache is used is
 transport-model-dependent and implementation-dependent. How a
 tmStateReference is determined to be present and valid is
 implementation-dependent.

 This may sound underspecified, but keep in mind that a transport
 model might be something like SNMP over UDP over IPv6, where no
 security is provided, so it might have no mechanisms for utilizing a
 securityName and securityLevel.

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference -- reference to transport state
)

6.2. Other Outgoing ASIs

 A tmStateReference parameter has been added to the
 prepareOutgoingMessage, generateRequestMsg, and generateResponseMsg
 ASIs as an OUT parameter.

 statusInformation = -- success or errorIndication
 prepareOutgoingMessage(
 IN transportDomain -- transport domain to be used
 IN transportAddress -- transport address to be used
 IN messageProcessingModel -- typically, SNMP version
 IN securityModel -- Security Model to use
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 IN contextEngineID -- data from/at this entity
 IN contextName -- data from/in this context
 IN pduVersion -- the version of the PDU
 IN PDU -- SNMP Protocol Data Unit
 IN expectResponse -- TRUE or FALSE
 IN sendPduHandle -- the handle for matching
 incoming responses
 OUT destTransportDomain -- destination transport domain
 OUT destTransportAddress -- destination transport address
 OUT outgoingMessage -- the message to send
 OUT outgoingMessageLength -- its length
 OUT tmStateReference -- (NEW) reference to transport state
)

Harrington & Schoenwaelder Expires August 9, 2007 [Page 25]

Internet-Draft SNMP Transport Subsystem February 2007

 The tmStateReference parameter of generateRequestMsg or
 generateResponseMsg is passed in the return parameters of the
 Security Subsystem to the Message Processing Subsystem. If a cache
 exists for a session identifiable from transportDomain,
 transportAddress, securityModel, securityName, and securityLevel,
 then an appropriate Security Model might create a tmStateReference to
 the cache and pass that as an OUT parameter.

 If one does not exist, the Security Model might create a cache
 referenced by tmStateReference. This information might include
 transportDomain, transportAddress, the securityModel, the
 securityLevel, and the securityName, plus any model or mechanism-
 specific details. The contents of the cache may be incomplete until
 the Transport Model has established a session. What information is
 passed, and how this information is determined, is implementation and
 security-model-specific.

 The prepareOutgoingMessage ASI passes tmStateReference from the
 Message Processing Subsystem to the dispatcher. How or if the
 Message Processing Subsystem modifies or utilizes the contents of the
 cache is message-processing-model-specific.

 This may sound underspecified, but keep in mind that a message
 processing model might have access to all the information from the
 cache and from the message, and have no need to call a Security Model
 to do any processing; an application might choose a Security Model
 such as USM to authenticate and secure the SNMP message, but also
 utilize a secure transport such as that provided by the SSH Transport
 Model to send the message to its destination.

6.3. The receiveMessage ASI

 If one does not exist, the Transport Model might create a cache
 referenced by tmStateReference. If present, this information might
 include transportDomain, transportAddress, securityLevel, and
 securityName, plus model or mechanism-specific details. How this
 information is determined is implementation and transport-model-
 specific.

 This may sound underspecified, but keep in mind that a transport
 model might be something like SNMP over UDP over IPv6, where no
 security is provided, so it might have no mechanisms for determining
 a securityName and securityLevel.

 The Transport Model does not know the securityModel for an incoming
 message; this will be determined by the Message Processing Model in a
 message-processing-model-dependent manner.

Harrington & Schoenwaelder Expires August 9, 2007 [Page 26]

Internet-Draft SNMP Transport Subsystem February 2007

 The receiveMessage ASI is used to pass a message from the Transport
 Subsystem to the Dispatcher.

 statusInformation =
 receiveMessage(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN incomingMessage -- the message received
 IN incomingMessageLength -- its length
 IN tmStateReference -- reference to transport state
)

6.4. Other Incoming ASIs

 To support the Transport Subsystem, the tmStateReference is added to
 the prepareDataElements ASI (from the Dispatcher to the Message
 Processing Subsystem), and to the processIncomingMsg ASI (from the
 Message Processing Subsystem to the Security Model Subsystem). How
 or if a Message Processing Model or Security Model uses
 tmStateReference is message-processing-model-dependent and security-
 model-dependent.

 result = -- SUCCESS or errorIndication
 prepareDataElements(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN wholeMsg -- as received from the network
 IN wholeMsgLength -- as received from the network
 IN tmStateReference -- (NEW) from the Transport Model
 OUT messageProcessingModel -- typically, SNMP version
 OUT securityModel -- Security Model to use
 OUT securityName -- on behalf of this principal
 OUT securityLevel -- Level of Security requested
 OUT contextEngineID -- data from/at this entity
 OUT contextName -- data from/in this context
 OUT pduVersion -- the version of the PDU
 OUT PDU -- SNMP Protocol Data Unit
 OUT pduType -- SNMP PDU type
 OUT sendPduHandle -- handle for matched request
 OUT maxSizeResponseScopedPDU -- maximum size sender can accept
 OUT statusInformation -- success or errorIndication
 -- error counter OID/value if error
 OUT stateReference -- reference to state information
 -- to be used for possible Response
)

Harrington & Schoenwaelder Expires August 9, 2007 [Page 27]

Internet-Draft SNMP Transport Subsystem February 2007

 statusInformation = -- errorIndication or success
 -- error counter OID/value if error
 processIncomingMsg(
 IN messageProcessingModel -- typically, SNMP version
 IN maxMessageSize -- of the sending SNMP entity
 IN securityParameters -- for the received message
 IN securityModel -- for the received message
 IN securityLevel -- Level of Security
 IN wholeMsg -- as received on the wire
 IN wholeMsgLength -- length as received on the wire
 IN tmStateReference -- (NEW) from the Transport Model
 OUT securityEngineID -- authoritative SNMP entity
 OUT securityName -- identification of the principal
 OUT scopedPDU, -- message (plaintext) payload
 OUT maxSizeResponseScopedPDU -- maximum size sender can handle
 OUT securityStateReference -- reference to security state
) -- information, needed for response

 The tmStateReference parameter of prepareDataElements is passed from
 the dispatcher to the Message Processing Subsystem. How or if the
 Message Processing Subsystem modifies or utilizes the contents of the
 cache is message-processing-model-specific.

 The processIncomingMessage ASI passes tmStateReference from the
 Message Processing Subsystem to the Security Subsystem.

 If tmStateReference is present and valid, an appropriate Security
 Model might utilize the information in the cache. How or if the
 Security Subsystem utilizes the information in the cache is security-
 model-specific.

 This may sound underspecified, but keep in mind that a message
 processing model might have access to all the information from the
 cache and from the message, and have no need to call a Security Model
 to do any processing. The Message Processing Model might determine
 that the USM Security Model is specified in an SNMPv3 message header;
 the USM Security Model has no need of values in the tmStateReference
 cache to authenticate and secure the SNMP message, but an application
 might have chosen to use a secure transport such as that provided by
 the SSH Transport Model to send the message to its destination.

7. Security Considerations

 This document defines an architectural approach that permits SNMP to
 utilize transport layer security services. Each proposed Transport
 Model should discuss the security considerations of the Transport
 Model.

Harrington & Schoenwaelder Expires August 9, 2007 [Page 28]

Internet-Draft SNMP Transport Subsystem February 2007

 It is considered desirable by some industry segments that SNMP
 Transport Models should utilize transport layer security that
 addresses perfect forward secrecy at least for encryption keys.
 Perfect forward secrecy guarantees that compromise of long term
 secret keys does not result in disclosure of past session keys. Each
 proposed Transport Model should include a discussion in its security
 considerations of whether perfect forward security is appropriate for
 the Transport Model.

 Since the cache and LCD will contain security-related parameters,
 implementers should store this information (in memory or in
 persistent storage) in a manner to protect it from unauthorized
 disclosure and/or modification.

 Care must be taken to ensure that a SNMP engine is sending packets
 out over a transport using credentials that are legal for that engine
 to use on behalf of that user. Otherwise an engine that has multiple
 transports open might be "tricked" into sending a message through the
 wrong transport.

8. IANA Considerations

 This document requires no action by IANA.

9. Acknowledgments

 The Integrated Security for SNMP WG would like to thank the following
 people for their contributions to the process:

 The authors of submitted Security Model proposals: Chris Elliot, Wes
 Hardaker, David Harrington, Keith McCloghrie, Kaushik Narayan, David
 Perkins, Joseph Salowey, and Juergen Schoenwaelder.

 The members of the Protocol Evaluation Team: Uri Blumenthal,
 Lakshminath Dondeti, Randy Presuhn, and Eric Rescorla.

 WG members who committed to and performed detailed reviews: Jeffrey
 Hutzelman

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for
 use in RFCs to Indicate
 Requirement Levels",

BCP 14, RFC 2119,
 March 1997.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Harrington & Schoenwaelder Expires August 9, 2007 [Page 29]

Internet-Draft SNMP Transport Subsystem February 2007

 [RFC3411] Harrington, D., Presuhn,
 R., and B. Wijnen, "An
 Architecture for Describing
 Simple Network Management
 Protocol (SNMP) Management
 Frameworks", STD 62,

RFC 3411, December 2002.

 [RFC3412] Case, J., Harrington, D.,
 Presuhn, R., and B. Wijnen,
 "Message Processing and
 Dispatching for the Simple
 Network Management Protocol
 (SNMP)", STD 62, RFC 3412,
 December 2002.

 [RFC3414] Blumenthal, U. and B.
 Wijnen, "User-based
 Security Model (USM) for
 version 3 of the Simple
 Network Management Protocol
 (SNMPv3)", STD 62,

RFC 3414, December 2002.

 [RFC3417] Presuhn, R., "Transport
 Mappings for the Simple
 Network Management Protocol
 (SNMP)", STD 62, RFC 3417,
 December 2002.

10.2. Informative References

 [RFC2865] Rigney, C., Willens, S.,
 Rubens, A., and W. Simpson,
 "Remote Authentication Dial
 In User Service (RADIUS)",

RFC 2865, June 2000.

 [RFC3410] Case, J., Mundy, R.,
 Partain, D., and B.
 Stewart, "Introduction and
 Applicability Statements
 for Internet-Standard
 Management Framework",

RFC 3410, December 2002.

 [RFC3413] Levi, D., Meyer, P., and B.
 Stewart, "Simple Network

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc3410

Harrington & Schoenwaelder Expires August 9, 2007 [Page 30]

Internet-Draft SNMP Transport Subsystem February 2007

 Management Protocol (SNMP)
 Applications", STD 62,

RFC 3413, December 2002.

 [RFC4366] Blake-Wilson, S., Nystrom,
 M., Hopwood, D., Mikkelsen,
 J., and T. Wright,
 "Transport Layer Security
 (TLS) Extensions",

RFC 4366, April 2006.

 [RFC4422] Melnikov, A. and K.
 Zeilenga, "Simple
 Authentication and Security
 Layer (SASL)", RFC 4422,
 June 2006.

 [RFC4251] Ylonen, T. and C. Lonvick,
 "The Secure Shell (SSH)
 Protocol Architecture",

RFC 4251, January 2006.

 [RFC4741] Enns, R., "NETCONF
 Configuration Protocol",

RFC 4741, December 2006.

 [I-D.ietf-isms-transport-security-model] Harrington, D., "Transport
 Security Model for SNMP", d
 raft-ietf-isms-transport-
 security-model-02 (work in
 progress), January 2007.

Appendix A. Parameter Table

 Following is a Comma-separated-values (CSV) formatted matrix useful
 for tracking data flows into and out of the dispatcher, Transport,
 Message Processing, and Security Subsystems. This will be of most
 use to designers of models, to understand what information is
 available at which points in the processing, following the RFC3411
 architecture (and this subsystem). Import this into your favorite
 spreadsheet or other CSV compatible application. You will need to
 remove lines feeds from the second, third, and fourth lines, which
 needed to be wrapped to fit into RFC line lengths.

A.1. ParameterList.csv

 ,Dispatcher,,,,Messaging,,,Security,,,Transport,

https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc4741
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 31]

Internet-Draft SNMP Transport Subsystem February 2007

 ,sendPDU,returnResponse,processPDU,processResponse,

 prepareOutgoingMessage,prepareResponseMessage,prepareDataElements,

 generateRequest,processIncoming,generateResponse,

 sendMessage,receiveMessage

 transportDomain,In,,,,In,,In,,,,,In

 transportAddress,In,,,,In,,In,,,,,In

 destTransportDomain,,,,,Out,Out,,,,,In,

 destTransportAddress,,,,,Out,Out,,,,,In,

 messageProcessingModel,In,In,In,In,In,In,Out,In,In,In,,

 securityModel,In,In,In,In,In,In,Out,In,In,In,,

 securityName,In,In,In,In,In,In,Out,In,Out,In,,

 securityLevel,In,In,In,In,In,In,Out,In,In,In,,

 contextEngineID,In,In,In,In,In,In,Out,,,,,

 contextName,In,In,In,In,In,In,Out,,,,,

 expectResponse,In,,,,In,,,,,,,

 PDU,In,In,In,In,In,In,Out,,,,,

 pduVersion,In,In,In,In,In,In,Out,,,,,

 statusInfo,Out,In,,In,,In,Out,Out,Out,Out,,

 errorIndication,Out,Out,,,,,Out,,,,,

 sendPduHandle,Out,,,In,In,,Out,,,,,

 maxSizeResponsePDU,,In,In,,,In,Out,,Out,,,

 stateReference,,In,In,,,In,Out,,,,,

 wholeMessage,,,,,Out,Out,In,Out,In,Out,In,In

 messageLength,,,,,Out,Out,In,Out,In,Out,In,In

Harrington & Schoenwaelder Expires August 9, 2007 [Page 32]

Internet-Draft SNMP Transport Subsystem February 2007

 maxMessageSize,,,,,,,,In,In,In,,

 globalData,,,,,,,,In,,In,,

 securityEngineID,,,,,,,,In,Out,In,,

 scopedPDU,,,,,,,,In,Out,In,,

 securityParameters,,,,,,,,Out,In,Out,,

 securityStateReference,,,,,,,,,Out,In,,

 pduType,,,,,,,Out,,,,,

 tmStateReference,,,,,Out,Out,In,,In,,In,In

Appendix B. Why tmStateReference?

 This appendix considers why a cache-based approach was selected for
 passing parameters.

 There are four approaches that could be used for passing information
 between the Transport Model and a Security Model.

 1. one could define an ASI to supplement the existing ASIs, or
 2. one could add a header to encapsulate the SNMP message,
 3. one could utilize fields already defined in the existing SNMPv3
 message, or
 4. one could pass the information in an implementation-specific
 cache or via a MIB module.

B.1. Define an Abstract Service Interface

 Abstract Service Interfaces (ASIs) are defined by a set of primitives
 that specify the services provided and the abstract data elements
 that are to be passed when the services are invoked. Defining
 additional ASIs to pass the security and transport information from
 the Transport Subsystem to Security Subsystem has the advantage of
 being consistent with existing RFC3411/3412 practice, and helps to
 ensure that any Transport Model proposals pass the necessary data,
 and do not cause side effects by creating model-specific dependencies
 between itself and other models or other subsystems other than those
 that are clearly defined by an ASI.

B.2. Using an Encapsulating Header

 A header could encapsulate the SNMP message to pass necessary
 information from the Transport Model to the dispatcher and then to a

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 33]

Internet-Draft SNMP Transport Subsystem February 2007

 Message Processing Model. The message header would be included in
 the wholeMessage ASI parameter, and would be removed by a
 corresponding Message Processing Model. This would imply the (one
 and only) messaging dispatcher would need to be modified to determine
 which SNMP message version was involved, and a new Message Processing
 Model would need to be developed that knew how to extract the header
 from the message and pass it to the Security Model.

B.3. Modifying Existing Fields in an SNMP Message

 [RFC3412] defines the SNMPv3 message, which contains fields to pass
 security related parameters. The Transport Subsystem could use these
 fields in an SNMPv3 message, or comparable fields in other message
 formats to pass information between Transport Models in different
 SNMP engines, and to pass information between a Transport Model and a
 corresponding Message Processing Model.

 If the fields in an incoming SNMPv3 message are changed by the
 Transport Model before passing it to the Security Model, then the
 Transport Model will need to decode the ASN.1 message, modify the
 fields, and re-encode the message in ASN.1 before passing the message
 on to the message dispatcher or to the transport layer. This would
 require an intimate knowledge of the message format and message
 versions so the Transport Model knew which fields could be modified.
 This would seriously violate the modularity of the architecture.

B.4. Using a Cache

 This document describes a cache, into which the Transport Model puts
 information about the security applied to an incoming message, and a
 Security Model can extract that information from the cache. Given
 that there might be multiple TM-security caches, a tmStateReference
 is passed as an extra parameter in the ASIs between the Transport
 Subsystem and the Security Subsystem, so the Security Model knows
 which cache of information to consult.

 This approach does create dependencies between a specific Transport
 Model and a corresponding specific Security Model. However, the
 approach of passing a model-independent reference to a model-
 dependent cache is consistent with the securityStateReference already
 being passed around in the RFC3411 ASIs.

Appendix C. Open Issues

 NOTE to RFC editor: If this section is empty, then please remove this
 open issues section before publishing this document as an RFC. (If
 it is not empty, please send it back to the editor to resolve.

https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 34]

Internet-Draft SNMP Transport Subsystem February 2007

 o MUST responses go back on the same session?
 o How should we describe the case where a management system wants to
 keep session info available for inspection after a session has
 closed? see "Abstract Service Interfaces"
 o Do Informs work correctly?
 o How does a Transport Model know whether a message is a
 notification or a request/response?
 o cache contents - do we define this?

Appendix D. Change Log

 NOTE to RFC editor: Please remove this change log before publishing
 this document as an RFC.

 Changes from revision -05- to -06-

 mostly editorial changes
 removed some paragraphs considered unnecessary
 added Updates to header
 modified some text to get the security details right
 modified text re: ASIs so they are not API-like
 cleaned up some diagrams
 cleaned up RFC2119 language
 added section numbers to citations to RFC3411
 removed gun for political correctness

 Changes from revision -04- to -05-

 removed all objects from the MIB module.
 changed document status to "Standard" rather than the xml2rfc
 default of informational.

 changed mention of MD5 to SHA
 moved addressing style to TDomain and TAddress
 modified the diagrams as requested
 removed the "layered stack" diagrams that compared USM and a
 Transport Model processing
 removed discussion of speculative features that might exist in
 future Transport Models
 removed openSession and closeSession ASIs, since those are model-
 dependent
 removed the MIB module
 removed the MIB boilerplate intro (this memo defines a SMIv2 MIB
 ...)
 removed IANA considerations related to the now-gone MIB module
 removed security considerations related to the MIB module

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3411

Harrington & Schoenwaelder Expires August 9, 2007 [Page 35]

Internet-Draft SNMP Transport Subsystem February 2007

 removed references needed for the MIB module
 changed receiveMessage ASI to use origin transport domain/address
 updated Parameter CSV appendix

Changes from revision -03- to -04-

 changed title from Transport Mapping Security Model Architectural
 Extension to Transport Subsystem
 modified the abstract and introduction
 changed TMSM to TMS
 changed MPSP to simply Security Model
 changed SMSP to simply Security Model
 changed TMSP to Transport Model
 removed MPSP and TMSP and SMSP from Acronyms section
 modified diagrams
 removed most references to dispatcher functionality
 worked to remove dependencies between transport and security
 models.
 defined snmpTransportModel enumeration similar to
 snmpSecurityModel, etc.
 eliminated all reference to SNMPv3 msgXXXX fields
 changed tmSessionReference back to tmStateReference

 Changes from revision -02- to -03-

 o removed session table from MIB module
 o removed sessionID from ASIs
 o reorganized to put ASI discussions in EOP section, as was done in
 SSHSM
 o changed user auth to client auth
 o changed tmStateReference to tmSessionReference
 o modified document to meet consensus positions published by JS
 o
 * authoritative is model-specific
 * msgSecurityParameters usage is model-specific
 * msgFlags vs. securityLevel is model/implementation-specific
 * notifications must be able to cause creation of a session
 * security considerations must be model-specific
 * TDomain and TAddress are model-specific
 * MPSP changed to SMSP (Security Model security processing)

 Changes from revision -01- to -02-

 o wrote text for session establishment requirements section.
 o wrote text for session maintenance requirements section.
 o removed section on relation to SNMPv2-MIB
 o updated MIB module to pass smilint

Harrington & Schoenwaelder Expires August 9, 2007 [Page 36]

Internet-Draft SNMP Transport Subsystem February 2007

 o Added Structure of the MIB module, and other expected MIB-related
 sections.
 o updated author address
 o corrected spelling
 o removed msgFlags appendix
 o Removed section on implementation considerations.
 o started modifying the security boilerplate to address TMS and MIB
 security issues
 o reorganized slightly to better separate requirements from proposed
 solution. This probably needs additional work.
 o removed section with sample protocols and sample
 tmSessionReference.
 o Added section for acronyms
 o moved section comparing parameter passing techniques to appendix.
 o Removed section on notification requirements.

 Changes from revision -00-
 o changed SSH references from I-Ds to RFCs
 o removed parameters from tmSessionReference for DTLS that revealed
 lower layer info.
 o Added TMS-MIB module
 o Added Internet-Standard Management Framework boilerplate
 o Added Structure of the MIB Module
 o Added MIB security considerations boilerplate (to be completed)
 o Added IANA Considerations
 o Added ASI Parameter table
 o Added discussion of Sessions
 o Added Open issues and Change Log
 o Rearranged sections

Authors' Addresses

 David Harrington
 Huawei Technologies (USA)
 1700 Alma Dr. Suite 100
 Plano, TX 75075
 USA

 Phone: +1 603 436 8634
 EMail: dharrington@huawei.com

Harrington & Schoenwaelder Expires August 9, 2007 [Page 37]

Internet-Draft SNMP Transport Subsystem February 2007

 Juergen Schoenwaelder
 International University Bremen
 Campus Ring 1
 28725 Bremen
 Germany

 Phone: +49 421 200-3587
 EMail: j.schoenwaelder@iu-bremen.de

Harrington & Schoenwaelder Expires August 9, 2007 [Page 38]

Internet-Draft SNMP Transport Subsystem February 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgement

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Harrington & Schoenwaelder Expires August 9, 2007 [Page 39]

