
Network Working Group R. Andrades
INTERNET DRAFT isochrone, Inc.
Document: draft-ietf-issll-framing-ext-00.txt F. Burg
Expires: May 25, 1997 AT&T
 November 26, 1996

QOSPPP Framing Extensions to PPP
(draft-ietf-issll-framing-ext-00.txt)

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are
 working documents of the Internet Engineering Task Force (IETF), its
 areas, and its working groups. Note that other groups may also
 distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as ``work in
 progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 Distribution of this document is unlimited.

Abstract

 The Point-to-Point Protocol (PPP) [2] provides a standard method for
 transporting multi-protocol datagrams over point-to-point links.
 PPP datagrams are often encapsulated in HDLC frames [1] when used
 over standard analog modems.

 This document describes the extensions to PPP encapsulation and
 HDLC framing to support Quality of Service (QoS) over low bandwidth
 links.

 This document is a submission to the IETF ISSLL working group.
 Comments are solicited and should be addressed to the working
 group's mailing list at issll@mercury.lcs.mit.edu and/or the author.

 This document is an update of the previous version which was named
 "draft-andrades-framing-ext-00.txt" and was revised as a result of
 discussions with Carsten Bormann, as well as the discussions at the
 September 30th meeting of the ISSLL working group.

https://datatracker.ietf.org/doc/html/draft-ietf-issll-framing-ext-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-issll-framing-ext-00.txt
https://datatracker.ietf.org/doc/html/draft-andrades-framing-ext-00.txt

Andrades, Burg [Page 1]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

Table of Contents

1. Introduction...3
2. Current Implementation3
2.1 QOSPPP Extensions to HDLC framing........................3
2.2 QOSPPP Extensions to PPP encapsulation...................7
2.3 QOSPPP Extensions to Link Establishment Protocol.........7
2.4 UDP header compression...................................8
2.5 Planned QOSPPP Features..................................8
3. Comparison with other proposals...........................10
4. Conclusions...20
5. Security Considerations...................................20
6. Acknowledgments...20
7. References..21
8. Author's Address..21

Andrades, Burg [Page 2]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

1. Introduction

 QOSPPP provides an architectural framework for providing multimedia
 and other advanced services, requiring QoS over the Internet. Our
 current work is aimed at the consumer market which usually uses
 comparatively low bandwidth analog modems for Internet access. The
 links from the consumer's residences to their Internet Service
 Providers usually run the PPP protocol [2] encapsulated in
 asynchronous HDLC frames [1], and so our goal was to add QoS to
 this framing scheme. The current document describes our attempt to
 extend the PPP encapsulation in asynchronous HDLC framing to
 support QoS over these links. One goal was to maintain as much
 compatibility as possible with current PPP implementations and to
 fall back to the standard PPP/HDLC framing scheme if we detect that
 the extensions are not available on the peer. The framework also
 included a signalling engine which is used to negotiate parameters
 for the QoS connections, and a packet scheduler which contains
 the actual scheduling algorithms. The signalling protocol could be
 Q.2931 or RSVP or a variant of one of these. The term QOSPPP is
 used to refer to the entire framework and not just the framing.
 The complete QOSPPP architecture will be described in more detail
 in a future document.

 Several Internet Services Providers still offer SLIP connections;
 however, we felt that this would very soon be obsolete and did not
 attempt to address it. At this stage we have not attempted to work
 out the framing extensions for synchronous HDLC, since it is not
 used in the market we are addressing; however, we feel that the
 current work can easily be adapted to that area.

Section 2 describes the current implementation and work in progress.
Section 3 compares this framing scheme with those [5,6] proposed by

 Carsten Bormann. Section 4 considers merging the features of QOSPPP
 with [6].

2. Current Implementation

2.1 QOSPPP Extensions to HDLC framing

 The aim of QOSPPP is to allow a customer to run a mix of
 applications with varying communications needs. Currently most PPP
 implementations offer a single class of service, best-effort, which
 is most suited for conventional data applications (e.g. Telnet, ftp,
 WWW, email). However, newer Internet applications such as packet
 telephony, video conferencing, etc. require a new class of service
 with bandwidth guarantees and upper bounds of the delay and jitter
 seen by their packets.

Andrades, Burg [Page 3]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 QOSPPP supports four classes of service, ABR, UBR, CBR and VBR. We
 use these terms in the same sense as defined by the ATM Forum [7].
 However, the basic concepts are the same for any other definition
 of class of service.

 ABR or Available Bit Rate supports traditional data applications,
 which do not need bandwidth guarantees, nor any strict bounds on
 their delay and jitter. They typically have variable sized packets.
 However, ABR applications ARE QoS aware and will specify their
 maximum datagram size, expected bandwidth usage, and maximum
 tolerable delays. The class of service is specified in the flowspec
 along with other parameters like bandwidth, delay and jitter.
 The application programming interface (API) MUST provide an
 interface by which the flowspec can be communicated by the
 application to the transport stack, but this is out of the scope of
 this document. While the network does not guarantee the latter
 two, it does use them to estimate buffer sizes and expected load.
 UBR or Unspecified Bit Rate is for legacy applications that are not
 QoS aware. ABR and UBR are equivalent to the framing layer and so
 are both referred to as ABR for the remainder of this document.

 CBR or Constant Bit Rate is for applications that transmit data at
 regular intervals. The datagrams are usually small and of fixed
 length (though the latter is not a requirement). An example is a
 packet phone which does not do silence detection. They do have
 strict upper bounds on the delay and jitter they can tolerate as
 well as strict bandwidth requirements. VBR or Variable Bit Rate is
 similar to CBR, except that the rate of packet transmission is not
 fixed. The transmission rate may vary upto a maximum rate, and it
 also defines a long term average rate. CBR and VBR are equivalent
 to the framing layer and so are both referred to as QoS streams
 for the remainder of this document.

 The framing layer then has to support two classes of datagrams,
 normal data applications and QoS. Most of this support is done by a
 packet scheduler and signalling engine at a layer higher than the
 framing layer, and so will not be discussed in this document.
 However, one aspect of QoS that is strongly influenced by the
 framing layer is the delay bounds of QoS streams. This is because
 the delay allowance of QoS streams tends to be in the range of tens
 of milliseconds. However, several popular data applications (e.g.
 WWW traffic) tend to use large size packets since they are more
 efficient. On a 28,800 link, a 1500 byte packet (which is the MTU
 used by most PPP implementations, and many data applications use
 the MTU) takes approximately half a second to transmit, making the
 link unavailable for that time. (In practice, the bandwidth
 available with a 28,800 modem is often less than 28,800, depending
 on the line conditions.) This clearly indicates that in order to

 support QoS streams on low bandwidth links, some change in the
 standard PPP framing is required. One possible way to handle it
 would be to use a much smaller MTU. However, in order to support

Andrades, Burg [Page 4]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 delay bounds of around 20 ms for QoS streams, it would be necessary
 to restrict the MTU of ABR traffic to around 36 bytes, which is
 clearly unacceptable.

 Another approach (which is what QOSPPP does) is to allow an ABR
 datagram that is currently being transmitted to be preempted by a
 QoS stream with stricter delay bounds. When the QoS packet is
 complete, the preempted ABR datagram will resume transmission. The
 difference between preemption and conventional fragmentation is
 that each resuming segment of the ABR datagram does NOT carry a
 header telling the receiving end how to put the pieces back
 together again. The preemption is indicated by stuffing a
 preemption flag byte which is defined as 0x7c. The end of
 preemption is indicated by transmitting a standard HDLC Flag byte.
 When preemption ends, the interrupted frame is automatically
 resumed at the point where it was suspended, with no extra header
 bytes. The current implementation supports a single level of
 preemption, however we are planning a new version with support for
 multiple levels of preemption, see section 2.5.

 In this document we use the terms priority and preemption class
 interchangeably although that may not be the common usage.

 The preemption is explained by the following diagram. Assume that
 there are two active streams, a TCP stream (maybe a Web browser)
 which is ABR, and a voice stream (the latter for a packet phone
 application) which is CBR (or VBR if silence detection is
 implemented). Initially, in the absence of any voice data, the
 framer begins transmission of a packet of the TCP stream. After
 some time, a voice packet is queued for transmission and the
 framer suspends transmission of the TCP stream to begin sending
 the voice packet. When transmission of the voice packet is
 complete, the framer resumes transmission of the suspended TCP
 packet. Note that one voice packet can not interrupt another
 voice packet. The payload size of the voice packet (16 bytes in
 the example), depend on the encoding algorithm used. Also note
 that each FCS in the following diagram protects only the frame
 it is a part of, (the one that is terminated by the HDLC Flag byte
 immediately after the FCS), and not any intermediate (preempting)
 frames, Each stream can negotiate the use of an FCS of a different
 strength (size). The new Suspend Flag byte needs to be added to the
 ACCM for transparency. Note that in the diagram, and elsewhere in
 this document, the term PID always refers to the PPP protocol ID.

Andrades, Burg [Page 5]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

Preempted packet - (starts earlier in time)
--------------------------- - - - -----------------------------
HDLC	IP PID	TCP data \ \ TCP data	FCS	HDLC
Flag	0x21	\ \ (contd.)	(2 bytes)	Flag
0x7e		\ \		0x7e
------------------------------ - - - --------------------------
 Suspend Resume
 / \
 / \
 / \
 / \
 / \
 / Preempting packet \
 / (Starts later in time - \
 / completes earlier) \
 --
 |Suspend |CBR |Voice data|FCS |HDLC |
 |Flag |PID | 16 bytes |(0 or 2|Flag |
 |0x7c | | | bytes)|0x7e |
 --

 As can be seen from the preceding diagram, the preempting packet's
 frame format is the same as the standard PPP frame except for the
 use of a new Suspend Flag (0x7c) instead of the HDLC Flag (0x7e).

 One other difference is that the length of the FCS field can be
 different for different PIDs. PPP currently defines three different
 FCS', 16-bit, 32-bit and NULL FCS. We use the 16-bit FCS for all
 data streams (it is the default anyway). The NULL FCS can be
 negotiated for CBR streams that have a small MTU by the signalling
 engine. However, this choice, if desired, must be made by the
 application. The interface by which the application may negotiate
 the choice of an FCS is out of the scope of this document. In
 any examples in this document, the length of the FCS shown is just
 for illustration.

 In the special case, when we have only a single active QoS stream,
 we omit sending the CBR PID in preempting frames, since it is
 implicit from the Suspend Flag, and reduces the Framing overhead
 by a byte.

Andrades, Burg [Page 6]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

2.2 QOSPPP Extensions to PPP encapsulation

 All CBR and VBR streams are each assigned a unique PPP protocol ID
 (PID) by the signalling engine. These PID values are taken from
 the unused values as specified in [8]. We plan to get a range of
 these unused PIDs allocated for this purpose. Unlike the PIDs
 currently assigned to protocols by the IETF, the PIDs used by
 QOSPPP are not necessarily the same in both directions, because
 of the way the signalling engine works. We try to pick the PIDs
 from the 1-byte PID space (and since we do not expect too many
 streams to be simultaneously active over these low bandwidth
 links, it isn't difficult to find enough 1-byte PIDs).

2.3 QOSPPP Extensions to Link Establishment Protocol

 PPP uses the Link Control Protocol (LCP) [2] to establish
 parameters for the link. Up-to-date values of the LCP Code field
 are specified in the most recent "Assigned Numbers" RFC [8].

 QOSPPP adds the following configuration option:

 --
 |Option | Length | version | Preemptive | Link Speed |
 |0x55 | = 8 | (4 bytes) | scheduling | Monitoring |
 | | | | (1 byte) | (1 byte) |
 --

 Option: This is a new LCP configuration option code value.

 Version: This field is currently set to 1. Future versions
 may set this field to other values to indicate other
 preemption schemes.

 Preemptive scheduling: This is set to 0 to indicate that QoS
 streams are not currently supported (even though the peer
 apparently is QOSPPP-enabled). The current QOSPPP framing uses a
 value of 1 in this field. In the future, we plan to use this field
 to indicate the number of levels of preemption supported
 (Currently it is one level).

 Link Speed Monitoring: This is currently set to 0 to indicate
 that Link Speed Monitoring is not required. The purpose of
 Link Speed Monitoring is to enable an implementation to track
 changes in the link bandwidth and adjust it's packet scheduling
 accordingly. No protocol has yet been defined for Link Speed
 Monitoring.

Andrades, Burg [Page 7]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 The node at one end sends a configuration message indicating that
 it supports preemption, and the maximum number of preemption levels
 it supports. If the other node responds with a reject (i.e. it is
 a non QoS-aware implementation and does not recognize the new LCP
 option code), then the sender will disable the preemption
 capability and send a new configuration message without the
 preemption option (and disable the preemption feature locally for
 the current session). If the other side responds with a NAK
 requesting a smaller number of levels of preemption, we will
 adjust our behavior accordingly and resend the configuration
 message reflecting the requested changes.

2.4 UDP header compression

 QOSPPP uses UDP header compression. This consists of not
 transmitting the UDP and IP headers of any packet that is
 associated with a specific PID. The receiver automatically prepends
 the UDP & IP headers to every incoming packet.The information needed
 for the headers is transmitted when the PID is negotiated by the
 signalling engine (the checksum can be generated by the receiver
 on the reconstructed received packet - or we can use the
 optimization of setting the checksum to 0). Carsten proposes prefix
 elision [6] which is basically associating each class or PID with a
 prefix of bytes that begin every packet belong to that class or PID
 and then not transmitting those bytes. The receiver automatically
 prepends the prefix to every packet it receives. UDP header
 compression gives better reduction in overhead than prefix elision
 for UDP streams. It does not handle non-UDP streams, but we assume
 Van Jacobson does a fairly good job at that. Are there other
 non-UDP, non-TCP streams that we have to consider? If so, we can do
 prefix elision for these streams. (This will have to be negotiated
 by the signalling protocol on a per-stream basis).

2.5 Planned QOSPPP Features

 We will try to choose the PID values so that their Hamming distance
 is at least two, allowing single bit errors in the PID field to be
 detected.

 In the QOSPPP Framing engine the FCS field can be turned off for
 individual CBR and VBR streams. We could also adopt Carsten's idea
 [6] of using an 8-bit CRC for CBR and VBR streams. Thus the
 effective Framing overhead can be reduced by a byte for CBR and
 VBR streams. We propose to use the 8-bit FCS described in the V.76
 specification [9], unless the IETF already has a standard for
 an 8-bit FCS.

Andrades, Burg [Page 8]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 Another planned extension to QOSPPP is multiple levels of
 preemption. In this we will put different streams into
 different preemption classes and allow a packet of a stream of a
 higher preemption class to preempt a currently transmitting packet
 of a stream of a lower preemption class. Currently, we do not
 plan to support dynamic priorities (where two streams' relative
 priorities can change dynamically). The QOSPPP frame format can
 support multiple preemption levels without any change.

 Multiple preemption levels are explained by the following diagram
 that shows two levels of preemption. Assume that there are three
 active streams, a TCP stream (maybe a Web browser), a video
 stream and a voice stream (the latter two for video conferencing).
 Assume that the video stream belongs to a higher preemption level
 than the TCP stream and the voice stream belongs to a higher
 preemption level than the video stream. Initially, in the absence
 of any voice or video data, the framer begins transmission of a
 packet of the TCP stream. After some time, a video packet is queued
 for transmission and the framer suspends transmission of the TCP
 stream to begin sending the video packet. Before transmission of
 the video packet is complete, a voice packet is queued for
 transmission. The framer suspends transmission of the video stream
 to begin sending the voice packet. When transmission of the voice
 packet is complete, the framer resumes transmission of the
 suspended video packet. When transmission of the video packet is
 complete, the framer resumes transmission of the suspended TCP
 packet. Note that a video packet can not interrupt a voice packet
 or another video packet, and one voice packet can not interrupt
 another voice packet.

Andrades, Burg [Page 9]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

Preempted packet - (starts earlier in time)
--------------------------- - - - -----------------------------
HDLC	IP PID	TCP data \ \ TCP data	FCS	HDLC
Flag	0x21	\ \ (contd.)	(2 bytes)	Flag
0x7e		\ \		0x7e
------------------------------ - - - --------------------------
 Suspend Resume
 / \
 / \
 / \
 / \
 / \
 / First level of Preemption \
 / (Starts later in time - \
 / completes earlier) \
 --------------- - - - - ----------------
 |Suspend |CBR |Video data|FCS |HDLC |
 |Flag |PID |'n' bytes |(1 or 2|Flag |
 |0x7c | | | bytes)|0x7e |
 --------------- - - - - ----------------
 Suspend Resume
 / \
 / \
 / \
 / \
 / \
 / Second level of Preemption \
 / (Starts still later in time - \
 / completes first) \
 --
 |Suspend |CBR |Voice data|FCS |HDLC |
 |Flag |PID |'m' bytes |(1 or 2|Flag |
 |0x7c | | | bytes)|0x7e |
 --

 Note that the suspended packets have to be resumed in the reverse
 (stack-like or LIFO) order; i.e. if streamA preempts streamB
 preempts streamC, then when streamC completes, streamB must
 resume (and complete) before streamA is resumed. Currently we do
 not expect to support resumption of suspended packets in a
 different order (which, by the way, would necessarily imply
 implementing dynamic priorities).

3. Comparison with other proposals

 In all the descriptions below we are assuming that the
 address-control field compression and protocol field compression

 options have been negotiated by the link control protocol, and that
 all PIDs used for the real-time streams are 1 byte.

Andrades, Burg [Page 10]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

Case 0. The QOSPPP fragmentation format

 {--------------------------------------}Preempted packet
 {HDLC Flag 0x7e }
 {--------------------------------------}
 {PID (1 byte) }
 {--------------------------------------}
 {Data packet }
 {-------|------------------------------|--------|Preempting packet
 |SUSPEND FLAG 0x7c |
 |---------------------------------------|
 |PID (1 byte - opt) |
 |---------------------------------------|
 |Real-time Data packet |
 |---------------------------------------|
 |FCS (0, 1, or 2 bytes - negotiable) |
 |---------------------------------------|
 |HDLC Flag 0x7e |
 {-------|------------------------------|--------|
 {Data packet (contd) }Preempted packet resumes
 {--------------------------------------}
 {FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {--------------------------------------}

 This frame has between 5 and 2 bytes of overhead per preemption;
 the minimum of two bytes is in the case when there is only a single
 active stream of a high preemption class, and it has been
 negotiated not to require the use of a CRC; the maximum of five
 bytes is when there are multiple active streams of high preemption
 classes (either in the same class, or in different preemption
 classes), and they require the use of a 2 byte CRC. We could also
 consider using a 1 byte CRC (as suggested by Carsten Bormann), for
 streams whose packets are rather short. Note that there is no
 overhead on the interrupted packet. Therefore every low priority
 packet carries 5 bytes of framing overhead (regardless of whether it
 is preempted or not), and every higher priority packet carries 2 to 5
 bytes of overhead.

 There is no limit on the number of preemption levels, except the
 number of bits in a PID (though not all combinations are valid).

 In the case of multiple levels of preemption, it assumes that
 suspended frames will be resumed in the reverse order, from that
 in which they were suspended.

 In the absence of preemption, the frame format is exactly the same

 as regular PPP.

Andrades, Burg [Page 11]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 We will consider the following proposals from Carsten Bormann and
 try to consider all the optimizations too.

Case 1. Using PPP Multi-Link as-is (short sequence number fragment
format)

 {--------------------------------------}Preempted packet
 {HDLC Flag 0x7e }
 {--------------------------------------}
 {MLPPP PID 0x3d (1 byte) }
 {--------------------------------------}
 { B | E | 0 | 0 | sequence number }
 {--------------------------------------}
 {PID (1 byte) }
 {--------------------------------------}
 {Fragment Data }
 {--------------------------------------}
 {FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {-------|------------------------------|--------|Preempting packet
 |PID (1 byte) |
 |---------------------------------------|
 |Real-time Data packet |
 |---------------------------------------|
 |FCS (2 bytes) |
 |---------------------------------------|
 |HDLC Flag 0x7e |
 {-------|------------------------------|--------|
 {MLPPP PID 0x3d (1 byte) }Preempted packet resumes
 {--------------------------------------}
 { B | E | 0 | 0 | sequence number }
 {--------------------------------------}
 {Fragment Data (contd) }
 {--------------------------------------}
 {FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {--------------------------------------}

 In this scheme, every lower priority packet needs to be sent in at
 least two MLPPP frames. (Since we do not know whether it is going
 to be interrupted or not, we must begin transmitting with the "E"
 bit set to "0". Therefore, even if it is not interrupted, we need
 to send a final (empty) fragment with the "E" bit set to "1" to
 terminate the packet). Now, the MLPPP frame has 6 bytes of framing
 overhead, therefore every lower priority packet has 6*2= 12 bytes

 of framing overhead. However, the MLPPP packet actually carries a
 PPP packet within it adding an additional 1 byte overhead (for the

Andrades, Burg [Page 12]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 PPP PID) making the total framing overhead 13 bytes. We can save
 one byte by not transmitting two consecutive Flag bytes making the
 total framing overhead 12 bytes as opposed to 5 bytes for a normal
 PPP frame. For every preemption, the lower priority packet needs to
 be terminated with an MLPPP trailer (3 bytes) and restarted with an
 MLPPP header (3 bytes) adding an additional 6 bytes overhead.
 Additionally, the preempting packet needs it's PPP header of 5
 bytes, giving a total framing overhead of 11 bytes per preemption.
 Dropping consecutive Flag bytes will save two bytes giving a total
 framing overhead of 9 bytes per preemption as opposed to 5 bytes
 for a normal PPP frame. In case the interrupted packet is resumed
 near it's end (e.g. it has fewer than say 7 bytes left to
 transmit), we can assume that it will not be interrupted again and
 can send the last fragment with the "E" bit set to "1", thus
 eliminating the 5 bytes of the empty MLPPP header at the end.

 It supports a single level of preemption.

 It can be used even if the other end does not support QoS. This
 however, assumes that the other end supports MLPPP; We are not sure
 how many implementations, and how many service providers support
 MLPPP for analog lines.

Andrades, Burg [Page 13]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

Case 2. Extending PPP Multi-Link to multiple class (short sequence
number fragment format)

 {--------------------------------------}Preempted packet
 {HDLC Flag 0x7e }
 {--------------------------------------}
 {MLPPP PID 0x3d (1 byte) }
 {--------------------------------------}
 { B | E | Class | sequence number }
 {--------------------------------------}
 {PID (1 byte) }
 {--------------------------------------}
 {Fragment Data }
 {--------------------------------------}
 {FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {-------|------------------------------|--------|Preempting packet
 |MLPPP PID 0x3d (1 byte) |
 |---------------------------------------|
 | B | E | Class | sequence number |
 |---------------------------------------|
 |PID (1 byte) |
 |---------------------------------------|
 |Real-time Data packet |
 |---------------------------------------|
 |FCS (2 bytes) |
 |---------------------------------------|
 |HDLC Flag 0x7e |
 {-------|------------------------------|--------|
 {MLPPP PID 0x3d (1 byte) }Preempted packet resumes
 {--------------------------------------}
 { B | E | Class | sequence number }
 {--------------------------------------}
 {Fragment Data (contd) }
 {--------------------------------------}
 {FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {--------------------------------------}

 The difference between this scheme and case 1 is that it supports
 4 levels of preemption. However, now preempting packets carry an
 MLPPP header (plus a PPP PID), instead of a normal PPP header
 (except for one of the preemption levels which uses normal PPP
 frames). Thus the preempting packets carry (6(MLPPP header) +
 1(PPP PID) =) 7 bytes of framing overhead per packet. So the total
 framing overhead per preemption is (6 (preempted) + 7 (preempting)

 =) 13 bytes. Again, dropping consecutive Flag bytes will save two
 bytes giving a total framing overhead of 11 bytes per preemption

Andrades, Burg [Page 14]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 as opposed to 5 bytes for a normal PPP frame.

 It is backward compatible to case 1; i.e. if the remote end does
 not support QoS, we can fall back to case 1, restricting ourselves
 to a single level of preemption.

 In the case of multiple levels of preemption, suspended frames can
 be resumed in any order, not necessarily the reverse order from
 that in which they were suspended.

Case 3. The Compact Fragment Format (Normal header)

 {--------------------------------------}Preempted packet
 {HDLC Flag 0x7e }
 {--------------------------------------}
 {R | Sequence | Class | 1 }(Normal header)
 {--------------------------------------}
 {Low priority class' fragment Data }
 {--------------------------------------}
 { SUSPEND FLAG }
 {--------------------------------------}
 { FCS (2 bytes) }
 {---|----------------------------------|---|Preempting packet
 |HDLC Flag 0x7e |
 |--------------------------------------|
 |R | Sequence | Class | 1 |(Normal header)
 |--------------------------------------|
 |High priority class' fragment Data |
 |--------------------------------------|
 |FCS (2 bytes) |
 |--------------------------------------|
 |HDLC Flag 0x7e |
 {---|----------------------------------|---|
 {R | Sequence | Class | 1 }Preempted packet resumes
 {--------------------------------------}
 {Low priority fragment Data (contd.) }
 {--------------------------------------}
 { FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {--------------------------------------}

 Note: In the diagram above, the PID bytes and the TERMINATE flag
 bytes have been dropped by optimizations.

 It supports 7 levels of preemption.

Andrades, Burg [Page 15]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 In the case of multiple levels of preemption, suspended frames can
 be resumed in any order, not necessarily the reverse order from
 that in which they were suspended.

 The preempting packet's header has 5 bytes of overhead which is the
 same as the normal PPP header. However the lower priority packet
 has terminated by an FCS and SUSPEND byte (3 bytes), and when it
 resumes, it will carry a 1 byte header, adding 4 bytes of overhead
 per preemption. Also the Higher priority packet will need 5 bytes
 of framing overhead, making the total framing overhead (5 + 4 =) 9
 bytes per preemption. (This is assuming that it is not necessary to
 send consecutive Flag bytes.) So this scheme has a total framing
 overhead of 9 bytes per preemption as opposed to 5 bytes for a
 normal PPP frame.

Case 4. The Compact Fragment Format (Insertion Header)

 {--------------------------------------}Preempted packet
 {HDLC Flag 0x7e }(Normal header)
 {--------------------------------------}
 {R | Sequence | Class | 1 }
 {--------------------------------------}
 {Low priority class' fragment Data }
 {--------------------------------------}
 { SUSPEND FLAG }
 {--------------------------------------}
 { FCS (2 bytes) }
 {---|----------------------------------|---|Preempting packet
 |HDLC Flag 0x7e |
 |--------------------------------------|
 |Length L | C | 0 |(Inversion header)
 |--------------------------------------|
 |Inserted Packet (of length L) |
 |--------------------------------------|
 |FCS (1 byte) |
 {---|----------------------------------|---|
 {R | Sequence | Class | 1 }Preempted packet resumes
 {--------------------------------------}
 {Low priority fragment Data (contd.) }
 {--------------------------------------}
 { FCS (2 bytes) }
 {--------------------------------------}
 {HDLC Flag 0x7e }
 {--------------------------------------}

 It supports 2 levels of preemption.

Andrades, Burg [Page 16]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 The preempting packet's header has 3 bytes of overhead which is
 less than the normal PPP header. However the lower priority packet
 has terminated by an FCS and SUSPEND byte (3 bytes), and when it
 resumes, it will carry a 1 byte header, adding 4 bytes of overhead
 per preemption. Also the Higher priority packet will need 3 bytes
 of framing overhead, making the total framing overhead (3 + 4 =) 7
 bytes per preemption. (This is assuming that it is not necessary to
 send consecutive Flag bytes.) So this scheme has a total framing
 overhead of 7 bytes per preemption as opposed to 5 bytes for a
 normal PPP frame.

 It does have the restriction that the higher priority packet be
 not more than 64 bytes in length.

Comparison of Overhead

 Cases 1 & 2 have more overhead than the rest. Case 1 is useful
 only if it is necessary to support (a single level of) preemption
 even for links where the peer does not support QoS. Even this is
 debatable for two reasons:

 (1) How many implementations actually support MLPPP for analog
 lines, and,

 (2) Preemption by itself is generally not sufficient to support
 QoS for analog lines, one also needs to do some form of header
 compression, especially considering the increased size of the
 MLPPP headers. Would the remote end which does not have support
 for QoS support the header compression scheme?

 Case 2 does not seem useful considering that it requires the remote
 end to support a non-standard extension to MLPPP. If the remote end
 has to be modified to support this extension, one should question
 why it can not be modified to support some other, more efficient,
 extension. It does have the advantage of being able to gracefully
 fallback to case 1, but as mentioned above, the value of this
 advantage seems to be rather dubious. (At the September 30th ISSLL
 meeting in Billerica, it was agreed to make case 2 the baseline
 case and work from there towards a more optimized scheme.)

 Compare cases 0, 3 & 4 in more detail.

 One of the optimizations in case 4 that caused a 1 byte reduction
 in overhead (the smaller FCS) can also be applied to cases 0 and 3.
 The second optimization (dropping the intermediate Flag byte) is
 achieved mainly by putting a length field in the header and
 shrinking the class number to 1 bit. The former restricts the

Andrades, Burg [Page 17]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 length of high priority packets to 64 bytes which may be O.K., the
 latter restricts the number of high priority streams to 2, which
 makes it O.K. as an optimization of case 3 rather than as a
 separate case (which anyway, is what Carsten presents it as).

 Let us examine cases 0 & 3. Consider the following scenarios for
 cases 0 & 3 (with case 4 as an optimization of case 3).

 1. normal case, case 0 has 5 bytes overhead, case 3 has 9 bytes
 2. 8-bit FCS, overhead reduces by 1 byte for both cases.
 3. No FCS, overhead reduces by 2 bytes for both cases.
 4. A single high priority stream, reduces case 0 overhead by 1
 byte by dropping the PID. If the length of the packet is less than
 64 bytes, case 3 reduces to case 4, saving 2 bytes.
 5. Upto 2 high priority streams whose packet lengths are less than
 64 bytes, and which use an 8-bit FCS can have their overhead reduced
 to 7 bytes for case 3 by using the case 4 optimizations. This
 compares with 4 bytes for case 0 under the same conditions, except
 that you can do it for a greater number of streams.
 6. Case 0 overhead can be reduced by 1 byte by dropping the
 intermediate Flag byte, however this can be done only for streams
 that have fixed size packets, and it carries the danger of two
 packets (the preempted and the preempting,) being corrupted if
 any byte of the preempting packet is dropped.

 As can be seen, there does not appear to be a clear advantage
 of one scheme over the other.

 Note that the frame formats of cases 1 & 2 actually indicate
 fragmentation rather than preemption, since each frame carries
 a header telling the receiver how to put it back together. The
 idea behind preemption is precisely to avoid the overhead of this
 kind of header. However, although the frame format makes it look
 like fragmentation, calling it preemption is justifiable
 from the point of view of the actual operation of the protocol;
 i.e., with conventional fragmentation, the stack will decide
 on how to fragment a packet either when it is given a packet from
 the higher layer, or, when it decides to begin transmission. In
 preemption, the decision of how, when, etc. to "fragment" is made
 at the time a higher priority "preempting" packet becomes eligible
 for transmission. This distinction can only be made at the sending
 side, for the receiver it does look like fragmentation.

Comparison of error detection capability

 Case 3 packets have a sequence number which will allow it to detect
 a lost fragment. Of course, even in case 0, lost fragments can be

 caught by the FCS, but the sequence number provides an additional
 check.

Andrades, Burg [Page 18]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 Case 0 has the disadvantage that if a deeply nested preempting
 frame (i.e., one that has caused several other frames to be
 recursively preempted), is corrupted, you run the risk of being
 forced to discard the stack of preempted frames. This will happen
 if transmission or overrun errors cause any FLAG bytes to be lost
 or corrupted, in this case the receiver, on precessing a FLAG
 byte, may not be able to correctly match it with the corresponding
 SUSPEND byte. However, we suspect that this topic is not as
 straightforward as it seems and needs further analysis.

Comparison of number of levels of preemption

 Consider cases 0 and 3 alone as case 4 is an optimization of case 3.

 Case 0 supports an arbitrary number of levels of preemption,
 limited only by the PID space. Case 3 supports 7 levels of
 preemption. There does not seem to be much to choose between them
 here as 7 levels of preemption are probably enough.

Comparison of support for dynamic priorities

 Case 3 appears to have slightly better support for dynamic
 priorities. However, let us see if this advantage is meaningful.

 There is one way in which the use of dynamic priorities can affect
 the framing format. Consider the case where there are three stream
 A, B and C, in the increasing order of priorities. Assume that the
 priorities are dynamic so the priority ordering may change over
 time. Now consider a scenario where stream B has preempted stream
 A and stream C has preempted stream B. Suppose stream A gets a
 priority boost making it temporarily of higher priority that stream
 B (but lower than stream C). Therefore when stream C completes
 transmission of it's packet, there is an issue of whether we should
 resume transmission of stream A or stream B. Carsten's proposals
 (cases 2 & 3) give the implementation the choice in this matter,
 QOSPPP does not.

 This does not mean that dynamic priorities are impossible with
 QOSPPP. Dynamic priorities can still be used in controlling the
 decision of preemption of one stream by another, they simply can
 not be used for making the resumption decision. Also, the scenario
 above could be considered farfetched by some. For that matter, the
 whole idea of dynamic priorities might be considered irrelevant
 for the applications we are considering; the alternative is to
 allow a slightly larger jitter, which might be perfectly
 acceptable.

Andrades, Burg [Page 19]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

 Case 0, being limited to a strict stack-like sequence of
 suspends-resumes might be slightly simpler to implement.

4. Conclusions

 Based on the discussion above, we suggest that any framing format
 adopted should attempt to borrow the best features of both the
 QOSPPP framing and Carsten's proposals. In particular, we suggest
 keeping the following features:

 UDP header compression. This gives gives a significant reduction
 in overhead for UDP streams.

 In the case of a single higher priority stream, keep the option of
 dropping the PID byte. This however, has to be negotiated by LCP.

 The signalling protocol will negotiate the size of the FCS for each
 stream.

 Use one of Carsten's values of 0xDE or 0xC3 for the Preemption flag.
 Maybe we should run tests over a PPP link (before the byte stuffing
 stage) rather than over an Ethernet as he did.

 We feel that the requirement that packets be resumed in the
 reverse order from that in which they were suspended (even for
 Carsten's proposals), would aid the receiver in error detection.

 The use or non-use of dynamic priorities is an independent decision
 which will not affect the frame format. Also, it may be possible
 to restrict the implementation of dynamic priorities to the sending
 side alone.

5. Security Considerations

 This document does not raise any new security issues.

6. Acknowledgments

 Much of the work in implementing the QOSPPP architecture and
 testing the concepts presented in this document was done by
 Murali Aravamudan and Kumar Vishwanathan of isochrone, Inc.
 Andreas Papanicolau and Khasha Mohammadi of AT&T also provided
 many helpful insights in the design of the architecture.

Andrades, Burg [Page 20]

INTERNET DRAFT QOSPPP Framing Extensions to PPP November 26, 1996

7. References

 [1] Simpson, W., Editor, "PPP in HDLC Framing", RFC 1662,
 STD 51, Daydreamer, July 1994.

 [2] Simpson, W., Editor, "The Point-to-Point Protocol (PPP)",
RFC 1661, STD 51, Daydreamer, July 1994.

 [3] Simpson, W., Editor, "PPP LCP Extensions", RFC 1570,
 Daydreamer, January 1994.

 [4] McGregor, G., "The PPP Internet Control Protocol", RFC 1332,
 Merit, May 1992.

 [5] Bormann, Carsten, "Providing integrated services over
 low-bitrate links", work in progress, Internet Draft
 (draft-ietf-issll-isslow-00.txt), Universitaet Bremen,
 June 1996.

 [6] Bormann, Carsten, "The Multi-Class Extensions to Multi-Link
 PPP", work in progress, Internet Draft,
 (draft-ietf-issll-isslow-mcml-00.txt), Universitaet Bremen,
 September 1996.

 [7] "ATM User-Network Interface (UNI) Specification Version 3.1",
 The ATM Forum, 1995.

 [8] Reynolds, J., and J. Postel, "Assigned Numbers", STD 2,
RFC 1700, USC/Information Sciences Institute, October 1994.

 [9] Burg, F., editor, "Recommendation V.76 - Generic Multiplexer
 using V.42 LAPM-based procedures", International
 Telecommunication Union, April 1996.

8. Author's Address

 Questions about this memo can be directed to:

 Richard Andrades
 isochrone, Inc. Phone: (908) 544 5508
 One Main Street Fax: (908) 544 2059
 Suite 511 Email: richard@isochrone.com
 Eatontown, NJ 07724

 Fred M. Burg
 AT&T
 307 Middletown-Lincroft Road Phone: (908) 576 4322

https://datatracker.ietf.org/doc/html/rfc1662
https://datatracker.ietf.org/doc/html/rfc1661
https://datatracker.ietf.org/doc/html/rfc1570
https://datatracker.ietf.org/doc/html/rfc1332
https://datatracker.ietf.org/doc/html/draft-ietf-issll-isslow-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-issll-isslow-mcml-00.txt
https://datatracker.ietf.org/doc/html/rfc1700

 Room 3L209 Fax: (908) 576 4689
 Lincroft, NJ 07738 Email: fred.burg@att.com

Andrades, Burg [Page 21]

