
INTERNET-DRAFT Carsten Bormann
Expires: October 1999 Universitaet Bremen TZI
 April 1999

Providing integrated services over low-bitrate links
draft-ietf-issll-isslow-05.txt

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Abstract

 This document describes an architecture for providing integrated
 services over low-bitrate links, such as modem lines, ISDN B-
 channels, and sub-T1 links. It covers only the lower parts of the
 Internet Multimedia Conferencing Architecture [1]; additional
 components required for application services such as Internet
 Telephony (e.g., a session initiation protocol) are outside the scope
 of this document. The main components of the architecture are: a
 real-time encapsulation format for asynchronous and synchronous low-
 bitrate links, a header compression architecture optimized for real-
 time flows, elements of negotiation protocols used between routers
 (or between hosts and routers), and announcement protocols used by
 applications to allow this negotiation to take place.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Bormann [Page 1]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

1. Introduction

 As an extension to the ``best-effort'' services the Internet is well-
 known for, additional types of services (``integrated services'')
 that support the transport of real-time multimedia information are
 being developed for, and deployed in the Internet. Important
 elements of this development are:

 - parameters for forwarding mechanisms that are appropriate for
 real-time information [11, 12],

 - a setup protocol that allows establishing special forwarding
 treatment for real-time information flows (RSVP [4]),

 - a transport protocol for real-time information (RTP/RTCP [6]).

 In addition to these elements at the network and transport levels of
 the Internet Multimedia Conferencing Architecture [1], further
 components are required to define application services such as
 Internet Telephony, e.g., protocols for session initiation and
 control. These components are outside the scope of this document.

 Up to now, the newly developed services could not (or only very
 inefficiently) be used over forwarding paths that include low-bitrate
 links such as 14.4, 33.6, and 56 kbit/s modems, 56 and 64 kbit/s ISDN
 B-channels, or even sub-T1 links. The encapsulation formats used on
 these links are not appropriate for the simultaneous transport of
 arbitrary data and real-time information that has to meet stringent
 delay requirements. Transmission of a 1500 byte packet on a 28.8
 kbit/s modem link makes this link unavailable for the transmission of
 real-time information for about 400 ms. This adds a worst-case delay
 that causes real-time applications to operate with round-trip delays
 on the order of at least a second -- unacceptable for real-time
 conversation. In addition, the header overhead associated with the
 protocol stacks used is prohibitive on low-bitrate links, where
 compression down to a few dozen bytes per real-time information
 packet is often desirable. E.g., the overhead of at least 44
 (4+20+8+12) bytes for HDLC/PPP, IP, UDP, and RTP completely
 overshadows typical audio payloads such as the 19.75 bytes needed for
 a G.723.1 ACELP audio frame -- a 14.4 kbit/s link is completely
 consumed by this header overhead alone at 40 real-time frames per
 second total (i.e., at 25 ms packetization delay for one stream or 50
 ms for two streams, with no space left for data, yet). While the
 header overhead can be reduced by combining several real-time
 information frames into one packet, this increases the delay incurred
 while filling that packet and further detracts from the goal of real-
 time transfer of multi-media information over the Internet.

 This document describes an approach for addressing these problems.

 The main components of the architecture are:

 - a real-time encapsulation format for asynchronous and
 synchronous low-bitrate links,

Bormann [Page 2]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 - a header compression architecture optimized for real-time flows,

 - elements of negotiation protocols used between routers (or
 between hosts and routers), and

 - announcement protocols used by applications to allow this
 negotiation to take place.

2. Design Considerations

 The main design goal for an architecture that addresses real-time
 multimedia flows over low-bitrate links is that of minimizing the
 end-to-end delay. More specifically, the worst case delay (after
 removing possible outliers, which are equivalent to packet losses
 from an application point of view) is what determines the playout
 points selected by the applications and thus the delay actually
 perceived by the user.

 In addition, any such architecture should obviously undertake every
 attempt to maximize the bandwidth actually available to media data;
 overheads must be minimized.

 An important component of the integrated services architecture is the
 provision of reservations for real-time flows. One of the problems
 that systems on low-bitrate links (routers or hosts) face when
 performing admission control for such reservations is that they must
 translate the bandwidth requested in the reservation to the one
 actually consumed on the link. Methods such as data compression
 and/or header compression can reduce the requirements on the link,
 but admission control can only make use of the reduced requirements
 in its calculations if it has enough information about the data
 stream to know how effective the compression will be. One goal of
 the architecture therefore is to provide the integrated services
 admission control with this information. A beneficial side effect
 may be to allow the systems to perform better compression than would
 be possible without this information. This may make it worthwhile to
 provide this information even when it is not intended to make a
 reservation for a real-time flow.

3. The Need for a Concerted Approach

 Many technical approaches come to mind for addressing these problems,
 in particular a new form of low-delay encapsulation to address delay
 and header compression methods to address overhead. This section
 shows that these techniques should be combined to solve the problem.

3.1. Real-Time Encapsulation

 The purpose of defining a real-time link-layer encapsulation protocol
 is to be able to introduce newly arrived real-time packets into the

 link-layer data stream without having to wait for the currently
 transmitted (possibly large) packet to end. Obviously, a real-time
 encapsulation must be part of any complete solution as the problem of

Bormann [Page 3]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 delays induced by large frames on the link can only be solved on this
 layer.

 To be able to switch to a real-time packet quickly in an interface
 driver, it is first necessary to identify packets that belong to
 real-time flows. This can be done using a heuristic approach (e.g.,
 favor the transmission of highly periodic flows of small packets
 transported in IP/UDP, or use the IP precedence fields in a specific
 way defined within an organization). Preferably, one also could make
 use of a protocol defined for identifying flows that require special
 treatment, i.e. RSVP. Of the two service types defined for use with
 RSVP now, the guaranteed service will only be available in certain
 environments; for this and various other reasons, the service type
 chosen for many adaptive audio/video applications will most likely be
 the controlled-load service. Controlled-load does not provide
 control parameters for target delay; thus it does not unambiguously
 identify those packet streams that would benefit most from being
 transported in a real-time encapsulation format. This calls for a
 way to provide additional parameters in integrated services flow
 setup protocols to control the real-time encapsulation.

 Real-time encapsulation is not sufficient on its own, however: Even
 if the relevant flows can be appropriately identified for real-time
 treatment, most applications simply cannot operate properly on low-
 bitrate links with the header overhead implied by the combination of
 HDLC/PPP, IP, UDP, and RTP, i.e. they absolutely require header
 compression.

3.2. Header Compression

 Header compression can be performed in a variety of elements and at a
 variety of levels in the protocol architecture. As many vendors of
 Internet Telephony products for PCs ship applications, the approach
 that is most obvious to them is to reduce overhead by performing
 header compression at the application level, i.e. above transport
 protocols such as UDP[1].

 Generally, header compression operates by installing state at both
 ends of a path that allows the receiving end to reconstruct
 information omitted at the sending end. Many good techniques for
 header compression (RFC 1144, [2]) operate on the assumption that the
 path will not reorder the frames generated. This assumption does not
 hold for end-to-end compression; therefore additional overhead is
 required for resequencing state changes and for compressed packets
 making use of these state changes.

 Assume that a very good application level header compression solution
 for RTP flows could be able to save 11 out of the 12 bytes of an RTP
 header [3]. Even this perfect solution only reduces the total header

https://datatracker.ietf.org/doc/html/rfc1144

 [1] or actually by using a non-standard, efficiently coded head-
er in the first place.

Bormann [Page 4]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 overhead by 1/4. It would have to be deployed in all applications,
 even those that operate on systems that are attached to higher-
 bitrate links.

 Because of this limited effectiveness, the AVT group that is
 responsible for RTP within the IETF has decided to not further pursue
 application level header compression.

 For router and IP stack vendors, the obvious approach is to define
 header compression that can be negotiated between peer routers.

 Advanced header compression techniques now being defined in the IETF
 [2] certainly can relieve the link from significant parts of the
 IP/UDP overhead (i.e., most of 28 of the 44 bytes mentioned above).

 One of the design principles of the new IP header compression
 developed in conjunction with IPv6 is that it stops at layers the
 semantics of which cannot be inferred from information in lower layer
 (outer) headers. Therefore, this header compression technique alone
 cannot compress the data that is contained within UDP packets.

 Any additional header compression technique runs into a problem: If
 it assumes specific application semantics (i.e., those of RTP and a
 payload data format) based on heuristics, it runs the risk of being
 triggered falsely and (e.g. in case of packet loss) reconstructing
 packets that are catastrophically incorrect for the application
 actually being used. A header compression technique that can be
 operated based on heuristics but does not cause incorrect
 decompression even if the heuristics failed is described in [7]; a
 companion document describes the mapping of this technique to PPP
 [10].

 With all of these techniques, the total IP/UDP/RTP header overhead
 for an audio stream can be reduced to two bytes per packet. This
 technology need only be deployed at bottleneck links; high-speed
 links can transfer the real-time streams without routers or switches
 expending CPU cycles to perform header compression.

4. Principles of Real-Time Encapsulation for Low-Bitrate Links

 The main design goal for a real-time encapsulation is to minimize the
 delay incurred by real-time packets that become available for sending
 while a long data packet is being sent. To achieve this, the
 encapsulation must be able to either abort or suspend the transfer of
 the long data packet. As an additional goal is to minimize the
 overhead required for the transmission of packets from periodic
 flows, this strongly argues for being able to suspend a packet, i.e.
 segment it into parts between which the real-time packets can be
 transferred.

4.1. Using existing IP fragmentation

 Transmitting only part of a packet, to allow higher-priority traffic

Bormann [Page 5]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 to intervene and then resuming its transmission later on, is a kind
 of fragmentation. Fragmentation is an existing functionality of the
 IP layer: An IPv4 header already contains fields that allow a large
 IP datagram to be fragmented into small parts. A sender's ``real-
 time PPP'' implementation might simply indicate a small MTU to its IP
 stack and thus cause all larger datagrams to be fragmented down to a
 size that allows the access delay goals to be met[2]. (Also, a PPP
 implementation can negotiate down the MTU of its peer, causing the
 peer to fragment to a small size, which might be considered a crude
 form of negotiating an access delay goal with the peer system -- if
 that system supports priority queueing at the fragment level.)

 Unfortunately, a full, 20 byte IP header is needed for each fragment
 (larger when IP options are used). This limits the minimum size of
 fragments that can be used without too much overhead. (Also, the
 size of non-final fragments must be a multiple of 8 bytes, further
 limiting the choice.) With path MTU discovery, IP level
 fragmentation causes TCP implementations to use small MSSs -- this
 further increases the per-packet overhead to 40 bytes per fragment.

 In any case, fragmentation at the IP level persists on the path
 further down to the datagram receiver, increasing the transmission
 overheads and router load throughout the network. With its high
 overhead and the adverse effect on the Internet, IP level
 fragmentation can only be a stop-gap mechanism when no other
 fragmentation protocol is available in the peer implementation.

4.2. Link-Layer Mechanisms

 Cell-oriented multiplexing techniques such as ATM that introduce
 regular points where cells from a different packet can be
 interpolated are too inefficient for low-bitrate links; also, they
 are not supported by chips used to support the link layer in low-
 bitrate routers and host interfaces.

 Instead, the real-time encapsulation should as far as possible make
 use of the capabilities of the chips that have been deployed. On
 synchronous lines, these chips support HDLC framing; on asynchronous
 lines, an asynchronous variant of HDLC that usually is implemented in
 software is being used. Both variants of HDLC provide a delimiting
 mechanism to indicate the end of a frame over the link. The obvious
 solution to the segmentation problem is to combine this mechanism
 with an indication of whether the delimiter terminates or suspends
 the current packet.

 This indication could be in an octet appended to each frame

 [2] This assumes that the IP stack is able to priority-tag frag-
ments, or that the PPP implementation is able to correlate the

fragments to the initial one that carries the information relevant
for prioritizing, or that only initial fragments can be high-
priority.

Bormann [Page 6]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 information field; however, seven out of eight bits of the octet
 would be wasted. Instead, the bit could be carried at the start of
 the next frame in conjunction with multiplexing information (PPP
 protocol identifier etc.) that will be required here anyway. Since
 the real-time flows will in general be periodic, this multiplexing
 information could convey (part of) the compressed form of the header
 for the packet. If packets from the real-time flow generally are of
 constant length (or have a defined maximum length that is often
 used), the continuation of the suspended packet could be immediately
 attached to it, without expending a further frame delimiter, i.e.,
 the interpolation of the real-time packet would then have zero
 overhead. Since packets from low-delay real-time flows generally
 will not require the ability to be further suspended, the
 continuation bit could be reserved for the non-real-time packet
 stream.

 One real-time encapsulation format with these (and other) functions
 is described in ITU-T H.223 [13], the multiplex used by the H.324
 modem-based videophone standard [14]. It was investigated whether
 compatibility could be achieved with this specification, which will
 be used in future videophone-enabled (H.324 capable) modems.
 However, since the multiplexing capabilities of H.223 are limited to
 15 schedules (definitions of sequences of packet types that can be
 identified in a multiplex header), for general Internet usage a
 superset or a more general encapsulation would have been required.
 Also, a PPP-style negotiation protocol was needed instead of using
 (and necessarily extending) ITU-T H.245 [15] for setting the
 parameters of the multiplex. In the PPP context, the interactions
 with the encapsulations for data compression and link layer
 encryption needed to be defined (including operation in the presence
 of padding). But most important, H.223 requires synchronous HDLC
 chips that can be configured to send frames without an attached CRC,
 which is not possible with all chips deployed in commercially
 available routers; so complete compatibility was unachievable.

 Instead of adopting H.223, it was decided to pursue an approach that
 is oriented towards compatibility both with existing hardware and
 existing software (in particular PPP) implementations. The next
 subsection groups these implementations according to their
 capabilities.

4.3. Implementation models

 This section introduces a number of terms for types of
 implementations that are likely to emerge. It is important to have
 these different implementation models in mind as there is no single
 approach that fits all models best.

4.3.1. Sender types

 There are two fundamental approaches to real-time transmission on
 low-bitrate links:

Bormann [Page 7]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 Sender type 1
 The PPP real-time framing implementation is able to control the
 transmission of each byte being transmitted with some known,
 bounded delay (e.g., due to FIFOs). For example, this is
 generally true of PC host implementations, which directly access
 serial interface chips byte by byte or by filling a very small
 FIFO. For type 1 senders, a suspend/resume type approach will
 be typically used: When a long frame is to be sent, the attempt
 is to send it undivided; only if higher priority packets come up
 during the transmission will the lower-priority long frame be
 suspended and later resumed. This approach allows the minimum
 variation in access delay for high-priority packets; also,
 fragmentation overhead is only incurred when actually needed.

 Sender type 2
 With type 2 senders, the interface between the PPP real-time
 framing implementation and the transmission hardware is not in
 terms of streams of bytes, but in terms of frames, e.g., in the
 form of multiple (prioritized) send queues directly supported by
 hardware. This is often true of router systems for synchronous
 links, in particular those that have to support a large number
 of low-bitrate links. As type 2 senders have no way to suspend
 a frame once it has been handed down for transmission, they
 typically will use a queues-of-fragments approach, where long
 packets are always split into units that are small enough to
 maintain the access delay goals for higher-priority traffic.
 There is a trade-off between the variation in access delay
 resulting from a large fragment size and the overhead that is
 incurred for every long packet by choosing a small fragment
 size.

4.3.2. Receiver types

 Although the actual work of formulating transmission streams for
 real-time applications is performed at the sender, the ability of the
 receiver to immediately make use of the information received depends
 on its characteristics:

 Receiver type 1
 Type 1 receivers have full control over the stream of bytes
 received within PPP frames, i.e., bytes received are available
 immediately to the PPP real-time framing implementation (with
 some known, bounded delay e.g. due to FIFOs etc.).

 Receiver type 2
 With type 2 receivers, the PPP real-time framing implementation
 only gets hold of a frame when it has been received completely,
 i.e., the final flag has been processed (typically by some HDLC
 chip that directly fills a memory buffer).

4.4. Conclusion

 As a result of the diversity in capabilities of current

Bormann [Page 8]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 implementations, there are now two specifications for real-time
 encapsulation: One, the multi-class extension to the PPP multi-link
 protocol, is providing the solution for the queues-of-fragments
 approach by extending the single-stream PPP multi-link protocol by
 multiple classes [8]. The other encapsulation, PPP in a real-time
 oriented HDLC-like framing, builds on this specification end extends
 it by a way to dynamically delimit multiple fragments within one HDLC
 frame [9], providing the solution for the suspend/resume type
 approach.

5. Principles of Header Compression for Real-Time Flows

 A good baseline for a discussion about header compression is in the
 new IP header compression specification that was designed in
 conjunction with the development of IPv6 [2]. The techniques used
 there can reduce the 28 bytes of IPv4/UDP header to about 6 bytes
 (depending on the number of concurrent streams); with the remaining 4
 bytes of HDLC/PPP overhead and 12 bytes for RTP the total header
 overhead can be about halved but still exceeds the size of a G.723.1
 ACELP frame. Note that, in contrast to IP header compression, the
 environment discussed here assumes the existence of a full-duplex PPP
 link and thus can rely on negotiation where IP header compression
 requires repeated transmission of the same information. (The use of
 the architecture of the present document with link layer multicasting
 has not yet been examined.)

 Additional design effort was required for RTP header compression.
 Applying the concepts of IP header compression, of the (at least) 12
 bytes in an RTP header, 7 bytes (timestamp, sequence, and marker bit)
 would qualify as RANDOM; DELTA encoding cannot generally be used
 without further information since the lower layer header does not
 unambiguously identify the semantics and there is no TCP checksum
 that can be relied on to detect incorrect decompression. Only a more
 semantics-oriented approach can provide better compression (just as

RFC 1144 can provide very good compression of TCP headers by making
 use of semantic knowledge of TCP and its checksumming method).

 For RTP packets, differential encoding of the sequence number and
 timestamps is an efficient approach for certain cases of payload data
 formats. E.g., speech flows generally have sequence numbers and
 timestamp fields that increase by 1 and by the frame size in
 timestamp units, resp.; the CRTP (compressed RTP) specification makes
 use of this relationship by encoding these fields only when the
 second order difference is non-zero [7].

6. Announcement Protocols Used by Applications

 As argued, the compressor can operate best if it can make use of
 information that clearly identifies real-time streams and provides

https://datatracker.ietf.org/doc/html/rfc1144

 information about the payload data format in use.

 If these systems are routers, this consent must be installed as
 router state; if these systems are hosts, it must be known to their

Bormann [Page 9]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 networking kernels. Sources of real-time information flows are
 already describing characteristics of these flows to their kernels
 and to the routers in the form of TSpecs in RSVP PATH messages [4].
 Since these messages make use of the router alert option, they are
 seen by all routers on the path; path state about the packet stream
 is normally installed at each of these routers that implement RSVP.
 Additional RSVP objects could be defined that are included in PATH
 messages by those applications that desire good performance over low-
 bitrate links; these objects would be coded to be ignored by routers
 that are not interested in them (class number 11bbbbbb).

 Note that the path state is available in the routers even when no
 reservation is made; this allows informed compression of best-effort
 traffic. It is not quite clear, though, how path state could be
 teared down quickly when a source ceases to transmit.

7. Elements of Hop-By-Hop Negotiation Protocols

 The IP header compression specification attempts to account for
 simplex and multicast links by providing information about the
 compressed streams only in the forward direction. E.g., a full
 IP/UDP header must be sent after F_MAX_TIME (currently 3 seconds),
 which is a negligible total overhead (e.g. one full header every 150
 G.723.1 packets), but must be considered carefully in scheduling the
 real-time transmissions. Both simplex and multicast links are not
 prevailing in the low-bitrate environment (although multicast
 functionality may become more important with wireless systems); in
 this document, we therefore assume full-duplex capability.

 As compression techniques will improve, a negotiation between the two
 peers on the link would provide the best flexibility in
 implementation complexity and potential for extensibility. The peer
 routers/hosts can decide which real-time packet streams are to be
 compressed, which header fields are not to be sent at all, which
 multiplexing information should be used on the link, and how the
 remaining header fields should be encoded. PPP, a well-tried suite
 of negotiation protocols, is already used on most of the low-bitrate
 links and seems to provide the obvious approach. Cooperation from
 PPP is also needed to negotiate the use of real-time encapsulations
 between systems that are not configured to automatically do so.
 Therefore, PPP options that can be negotiated at the link setup (LCP)
 phase are included in [8], [9], and [10].

8. Security Considerations

 Header compression protocols that make use of assumptions about
 application protocols need to be carefully analyzed whether it is
 possible to subvert other applications by maliciously or
 inadvertently enabling their use.

 It is generally not possible to do significant hop-by-hop header
 compression on encrypted streams. With certain security policies, it
 may be possible to run an encrypted tunnel to a network access server

Bormann [Page 10]

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 that does header compression on the decapsulated packets and sends
 them over an encrypted link encapsulation; see also the short mention
 of interactions between real-time encapsulation and encryption in

section 4 above. If the security requirements permit, a special RTP
 payload data format that encrypts only the data may preferably be
 used.

9. References

 [1] Mark Handley, Jon Crowcroft, Carsten Bormann, Joerg Ott. ``The
 Internet Multimedia Conferencing Architecture'', Work in
 Progress (draft-ietf-mmusic-confarch-00.txt), July 1997.

 [2] M. Degermark, B. Nordgren, S. Pink, ``IP Header Compression'',
RFC 2507, February 1999.

 [3] Scott Petrack, Ed Ellesson, ``Framework for C/RTP: Compressed
 RTP Using Adaptive Differential Header Compression'',
 contribution to the mailing list rem-conf@es.net, February 1996.

 [4] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin,
 ``Resource ReSerVation Protocol (RSVP) -- Version 1 Functional
 Specification'', RFC 2205, September 1997.

 [5] K. Sklower, B. Lloyd, G. McGregor, D. Carr, T. Coradetti, ``The
 PPP Multilink Protocol (MP)'', RFC 1990, August 1996 (obsoletes

RFC1717).

 [6] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, ``RTP: A
 Transport Protocol for Real-Time Applications'', RFC 1889,
 January 1996.

 [7] S. Casner, V. Jacobson, ``Compressing IP/UDP/RTP Headers for
 Low-Speed Serial Links'', RFC 2508, February 1999.

 [8] C. Bormann, ``The Multi-Class Extension to Multi-Link PPP'',
 Work in Progress (draft-ietf-issll-isslow-mcml-05.txt), August
 1998.

 [9] C. Bormann, ``PPP in a real-time oriented HDLC-like framing'',
 Work in Progress (draft-ietf-issll-isslow-rtf-04.txt), August
 1998.

 [10] M. Engan, S. Casner, C. Bormann, ``IP Header Compression over
 PPP'', RFC 2509, February 1999.

 [11] J. Wroclawski. ``Specification of the Controlled-Load Network
 Element Service'', RFC 2211, September 1997.

https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-confarch-00.txt
https://datatracker.ietf.org/doc/html/rfc2507
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc1990
https://datatracker.ietf.org/doc/html/rfc1717
https://datatracker.ietf.org/doc/html/rfc1889
https://datatracker.ietf.org/doc/html/rfc2508
https://datatracker.ietf.org/doc/html/draft-ietf-issll-isslow-mcml-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-issll-isslow-rtf-04.txt
https://datatracker.ietf.org/doc/html/rfc2509
https://datatracker.ietf.org/doc/html/rfc2211

 [12] S. Shenker, C. Partridge, R. Guerin. ``Specification of
 Guaranteed Quality of Service'', RFC 2212, September 1997.

Bormann [Page 11]

https://datatracker.ietf.org/doc/html/rfc2212

INTERNET-DRAFT Integrated services over low-bitrate links April 1999

 [13] ITU-T Recommendation H.223, ``Multiplexing protocol for low bit
 rate multimedia communication'', International Telecommunication
 Union, Telecommunication Standardization Sector (ITU-T), March
 1996.

 [14] ITU-T Recommendation H.324, ``Terminal for low bit rate
 multimedia communication'', International Telecommunication
 Union, Telecommunication Standardization Sector (ITU-T), March
 1996.

 [15] ITU-T Recommendation H.245, ``Control protocol for multimedia
 communication'', International Telecommunication Union,
 Telecommunication Standardization Sector (ITU-T), March 1996.

10. Author's Address

 Carsten Bormann
 Universitaet Bremen FB3 TZI
 Postfach 330440
 D-28334 Bremen, GERMANY
 cabo@tzi.org
 phone +49.421.218-7024
 fax +49.421.218-7000

Acknowledgements

 Much of the early discussion that led to this document was done with
 Scott Petrack and Cary Fitzgerald. Steve Casner, Mikael Degermark,
 Steve Jackowski, Dave Oran, the other members of the ISSLL subgroup
 on low bitrate links (ISSLOW), and in particular the ISSLL WG co-
 chairs Eric Crawley and John Wroclawski have helped in making this
 architecture a reality.

Bormann [Page 12]

