
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-blob-06

Updates: 8620 (if approved)

Published: 12 November 2021

Intended Status: Standards Track

Expires: 16 May 2022

Authors: B. Gondwana, Ed.

Fastmail

JMAP Blob management extension

Abstract

The JMAP base protocol (RFC8620) provides the ability to upload and

download arbitrary binary data via HTTP POST and GET on defined

endpoint. This binary data is called a "Blob".

This extension adds additional ways to create and access Blobs, by

making inline method calls within a standard JMAP request.

This extension also adds a reverse lookup mechanism to discover

where blobs are referenced within other data types.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 May 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8620
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions Used In This Document

3. Addition to the Capabilities Object

3.1. urn:ietf:params:jmap:blob

4. Blob Methods

4.1. Blob/set

4.1.1. create

4.1.2. update

4.1.3. destroy

4.2. Blob/set examples

4.3. Blob/get

4.4. Blob/lookup

5. Security considerations

6. IANA considerations

6.1. JMAP Capability registration for "blob"

6.2. JMAP Error Codes Registration for "unknownDataType"

6.3. Creation of "JMAP Data Types" Registry

7. Changes

8. Acknowledgements

9. Normative References

10. Informative References

Author's Address

1. Introduction

Sometimes JMAP ([RFC8620]) interactions require creating a Blob and

then referencing it. In the same way that IMAP Literals ([RFC7888])

were extended to reduce roundtrips for simple data, embedding simple

small blobs into the JMAP method stream can reduce roundtrips.

Likewise, when fetching an object, it can be useful to also fetch

the raw content of that object without a separate roundtrip.

Since raw blobs could contain arbitrary binary data, this document

allows the use of the base64 coding specified in [RFC4648].

Where JMAP is being proxied through a system which applies

additional access restrictions, it can be useful to know where a

blob is referenced in order to decide whether to allow it to be

downloaded, so this document defines a way to look up where a

particular blobId is referenced.

¶

¶

¶

¶

¶

2. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], Section 2.

This document defines an additional capability URI.

3.1. urn:ietf:params:jmap:blob

This represents support for additional API methods on the Blob

datatype.

The value of this property in the JMAP session "capabilities"

property is an empty object.

The value of this property in an account's "accountCapabilities"

property is an object that MAY contain the following information on

server capabilities and permissions for that account:

maxSizeBlobSet: UnsignedInt

if set, gives the maximum size of a blob in octets that the

server will allow you to create (size of the final output of

catenate or of encoded forms). This SHOULD be the same as the

RFC8620 value maxSizeUpload.

maxCatenateItems: UnsignedInt

if set, gives the maximum number of of CatenateSourceObjects

allowed per creation in a Blob/set. Servers SHOULD allow at least

64 items.

supportedTypeNames: [String]|null

an array of data type names that are supported for Blob/lookup.

May be null or not present if the account does not support

reverse lookups.

Example:

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

4. Blob Methods

A blob is a sequence of zero or more octets.

The JMAP base spec [RFC8620] defines the Blob/copy method, which is

unchanged by this specfication, and is selected by the

urn:ietf:params:jmap:core capability.

The following JMAP Methods are selected by the

urn:ietf:params:jmap:blob capability.

4.1. Blob/set

This is a standard JMAP set method.

4.1.1. create

Properties:

Exactly one of:

data:asText: String

data which can be represented as utf-8 encoded text

data:asBase64: String

{

 "capabilities": {

 ...,

 "urn:ietf:params:jmap:blob": {}

 },

 "accounts": {

 "A13842": {

 ...

 "accountCapabilities": {

 "urn:ietf:params:jmap:blob": {

 "maxSizeBlobSet": 50000000,

 "maxCatenateItems": 100,

 "supportedTypeNames" : [

 "Mailbox",

 "Thread",

 "Email"

]

 }

 }

 }

 }

}

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

binary data encoded as a ([RFC4648] Section 4) Base 64 string

catenate: [CatenateSourceObject]

list of one or more octet sources in order

Also optionally:

type: String|null (default: null)

hint for media type of the data

Result is:

id: Id

the blobId which was created

type: String|null

the media type as given in the creation (if any); or detected

from content; or null

size: UnsignedInt

as per RFC8620 - the size of the created blob in octets

Plus any other properties identical to those that would be returned

in the JSON response of the RFC8620 upload endpoint (which may be

extended in the future - this document anticipates that

implementations will extend both the upload endpoint and the Blob/

set responses in the same way)

CatenateSourceObject:

Exactly one of:

data:asText: String|null

data:asBase64: String|null

or a blobId source:

blobId: Id

offset: UnsignedInt|null (may be zero)

length: UnsignedInt|null (must not be zero)

If null then offset is assumed to be zero.

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

If null then length is the remaining octets in the blob.

If the range can not be fully satisfied (i.e. extends past the end

of the data in the blob) then the catenate itself is invalid and

results in a notCreated response for this creation id.

If the data properties or catenate properties have any invalid

references or invalid data contained in them, the server MUST NOT

guess as to the user's intent, and MUST reject the creation and

return a notCreated response for that creation id.

Likewise, invalid characters in the base64 of data:asBase64, or

invalid UTF-8 in data:asText MUST result in a nonCreated response.

It is legal to create a blob by calling catenate with a single

CatenateSourceObject. Please note that a catenate source can not

contain additional sub-catenates, only data or blob sources.

It is envisaged that catenate sources might be extended in future,

for example to fetch external content.

A server SHOULD accept at least 64 catenate items.

4.1.2. update

It is not possible to update a Blob, so any update will result in a

notUpdated response.

4.1.3. destroy

It is not possible to destroy a Blob, so any destroy will result in

a notDestroyed response.

4.2. Blob/set examples

The data:asBase64 field is set over multiple lines for ease of

publication here, however all data:asBase64 would be sent as a

continuous string with no whitespace on the wire.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Complex catenate example:

Method Call:

[

 "Blob/set",

 {

 "accountId": "account1",

 "create": {

 "1": {

 "data:asBase64": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABAQMAAAAl21bKA

 AAAA1BMVEX/AAAZ4gk3AAAAAXRSTlN/gFy0ywAAAApJRE

 FUeJxjYgAAAAYAAzY3fKgAAAAASUVORK5CYII=",

 "type": "image/png"

 },

 },

 },

 "R1"

]

Response:

[

 "Blob/set",

 {

 "accountId" : "account1",

 "created" : {

 "1": {

 "id" : "G4c6751edf9dd6903ff54b792e432fba781271beb",

 "type" : "image/png",

 "size" : 95

 },

 },

 },

 "R1"

]

¶

¶

Method Calls:

[

 [

 "Blob/set",

 {

 "create": {

 "b4": {

 "data:asText": "The quick brown fox jumped over the lazy dog."

 }

 }

 },

 "S4"

],

 [

 "Blob/set",

 {

 "create": {

 "cat": {

 "catenate": [

 {

 "data:asText": "How"

 },

 {

 "blobId": "#b4",

 "length": 7,

 "offset": 3

 },

 {

 "data:asText": "was t"

 },

 {

 "blobId": "#b4",

 "length": 1,

 "offset": 1

 },

 {

 "data:asBase64": "YXQ/"

 }

]

 }

 }

 },

 "CAT"

],

 [

 "Blob/get",

 {

 "properties": [

 "data:asText",

 "size"

],

 "ids": [

 "#cat"

]

 },

 "G4"

]

]

Responses:

[

 [

 "Blob/set",

 {

 "oldState": null,

 "created": {

 "b4": {

 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",

 "blobId": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",

 "size": 45,

 "type": "application/octet-stream"

 }

 },

 "updated": null,

 "destroyed": null,

 "notCreated": null,

 "notUpdated": null,

 "notDestroyed": null,

 "accountId": "cassandane"

 },

 "S4"

],

 [

 "Blob/set",

 {

 "oldState": null,

 "created": {

 "cat": {

 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",

 "blobId": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",

 "size": 19,

 "type": "application/octet-stream"

 }

 },

 "updated": null,

 "destroyed": null,

 "notCreated": null,

 "notUpdated": null,

 "notDestroyed": null,

 "accountId": "cassandane"

 },

 "CAT"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",

 "data:asText": "How quick was that?",

 "size": 19

 }

],

 "notFound": [],

 "accountId": "cassandane"

 },

 "G4"

]

]

¶

4.3. Blob/get

A standard JMAP get, with two additional optional parameters:

offset: UnsignedInt|null

start this many octets into the blob data

length: UnsignedInt|null

return at most this many octets of the blob data

Request Properties:

Any of

data:asText

data:asBase64

data (returns data:asText if the selected octets are valid UTF-8,

or data:asBase64)

size

If not given, properties defaults to data and size.

Result Properties:

data:asText: String|null

the raw octets of the selected range if they are valid UTF-8,

otherwise null

data:asBase64: String

the base64 encoding of the selected range

isEncodingProblem: Boolean (default: false)

isTruncated: Boolean (default: false)

size: UnsignedInt

the number of octets in the entire blob, regardless of offset/

length selectors

The size value is always the number of octets in the entire blob,

regardless of offset and length.

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

* ¶

*

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

The data fields contain a representation of the octets within the

selected range that are present in the blob. If the octets selected

are not valid UTF-8 (including truncating in the middle of a multi-

octet sequence) and data:asText is requested, then the key

isEncodingProblem is set to true and the data:asText value is null.

In the case where data was requested and the data is not valid

UTF-8, then data:asBase64 is returned.

If the selected range requests data outside the blob (i.e. the

offset+length is larger than the blob) then the result is either

just the octets from the offset to the end of the blob, or an empty

string if the offset is past the end of the blob. Either way, the

isTruncated property in the result is set to true to tell the client

that the requested range could not be fully satisfied.

Example (a blob containing the string "The quick brown fox jumped

over the lazy dog!")

¶

¶

¶

4.4. Blob/lookup

Given a list of blobIds, this method does a reverse lookup in each

of the provided type names to find the list of Ids within that data

type which reference the provided blob.

Method Call:

[

 "Blob/get",

 {

 "accountId" : "account1",

 "ids" : [

 "G6ec94756e3e046be78fcb33953b85b944e70673e",

 "not-a-blob"

],

 "properties" : [

 "data:asText",

 "data:asBase64",

 "size"

],

 "offset" : 4,

 "length" : 9

 },

 "R1"

]

Response:

[

 "Blob/get",

 {

 "accountId": "account1",

 "list": [

 {

 "id": "G6ec94756e3e046be78fcb33953b85b944e70673e",

 "data:asText": "quick bro",

 "data:asBase64": "cXVpY2sgYnJvCg==",

 "size": 46

 }

],

 "notFound": [

 "not-a-blob"

]

 },

 "R1"

]

¶

¶

The definition of reference is somewhat loosely defined, but roughly

means "you could discover this blobId by looking inside this

object", for example if a Mailbox contains an Email which references

the blobId, then it references that blobId. Likewise for a Thread.

Parameters

accountId: Id

The id of the account used for the call.

typeNames: [String]

A list of names from the "JMAP Data Types" registry. Only names

for which "Can Reference Blobs" is true may be specified, and the

capability which defines each type must also be used by the

overall JMAP request in which this method is called.

If a type name is not known by the server, or the associated

capability has not been requested, then the server returns an

"unknownDataType" error.

ids: [Id]

A list of blobId values to be looked for.

Response

list: [BlobInfo]

A list of BlobInfo objects.

BlobInfo Object

id: Id

The Blob Identifier.

matchedIds: String[Id List]

A map from type name to list of Ids of that data type (e.g. the

name "Email" maps to a list of emailIds)

If a blob is not visible to a user at all, then the server SHOULD

return that blobId in the notFound array, however it may also return

an empty list for each type name, as it may not be able to know if

other data types do reference that blob.

e.g.

¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

¶

¶

Response:

[

 "Blob/lookup",

 {

 "typeNames": [

 "Mailbox",

 "Thread",

 "Email"

],

 "ids": [

 "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",

 "not-a-blob"

]

 },

 "R1"

]

¶

¶

[

 "Blob/lookup",

 {

 "list": [

 {

 "id": "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",

 "matchedIds": {

 "Mailbox": [

 "M54e97373",

 "Mcbe6b662"

],

 "Thread": [

 "T1530616e"

],

 "Email": [

 "E16e70a73eb4",

 "E84b0930cf16"

]

 }

 }

],

 "notFound": [

 "not-a-blob"

]

 },

 "R1"

]

¶

5. Security considerations

JSON parsers are not all consistent in handling non-UTF-8 data. JMAP

requires that all JSON data be UTF-8 encoded, so servers MUST only

return a null value if data:asText is requested for a range of

octets which is not valid UTF-8, and set isEncodingProblem: true.

Servers MUST apply any access controls, such that if the

authenticated user would be unable to discover the blobId by making

queries, then this fact can't be discovered via a Blob/lookup. For

example, if an Email exists in a Mailbox which the authenticated

user does not have access to see, then that emailId MUST not be

returned in a lookup for a blob which is referenced by that email.

If a server might sometimes return all names empty rather than

putting a blobId in the notFound response to a Blob/get, then the

server SHOULD always return the same type of response, regardless of

whether a blob exists but the user can't access it, or doesn't exist

at all. This avoids leaking information about the existence of the

blob.

The server MUST NOT trust that the data given to a Blob/set is a

well formed instance of the specified media type, and if the server

attempts to parse the given blob, only hardened parsers designed to

deal with arbitrary untrusted data should be used. The server SHOULD

NOT reject data on the grounds that it is not a valid specimen of

the stated type.

Blob/set catenate can be used to recreate dangerous content on the

far side of security scanners (anti-virus or exfiltration scanners

for example) which may be watching the upload endpoint. Server

implementations SHOULD provide a hook to allow security scanners to

check the resulting blobId from a catenate in the same way that they

do for the upload endpoint.

6. IANA considerations

6.1. JMAP Capability registration for "blob"

IANA is requested to register the "blob" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:blob

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, Section XXX

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6.2. JMAP Error Codes Registration for "unknownDataType"

IANA is requested to register the "unknownDataType" JMAP Error Code

as follows:

JMAP Error Code: unknownDataType

Intended use: common

Change Controller: IETF

Reference: this document

Description: The server does not recognise this data type, or the

capability to enable it was not present.

6.3. Creation of "JMAP Data Types" Registry

IANA is requested to create a new registry "JMAP Data Types" with

the initial content:

Type Name

Can

Reference

Blobs

Can

use

for

State

Change

Capability Reference

Core No No urn:ietf:params:jmap:core [RFC8620]

PushSubscription No No urn:ietf:params:jmap:core [RFC8620]

Mailbox Yes Yes urn:ietf:params:jmap:mail [RFC8621]

Thread Yes Yes urn:ietf:params:jmap:mail [RFC8621]

Email Yes Yes urn:ietf:params:jmap:mail [RFC8621]

EmailDelivery No Yes urn:ietf:params:jmap:mail [RFC8621]

SearchSnippet No No urn:ietf:params:jmap:mail [RFC8621]

Identity No Yes urn:ietf:params:jmap:submission [RFC8621]

EmailSubmission No Yes urn:ietf:params:jmap:submission [RFC8621]

VacationResponse No Yes urn:ietf:params:jmap:vacationresponse [RFC8621]

MDN No No urn:ietf:params:jmap:mdn [RFC9007]

Table 1

7. Changes

EDITOR: please remove this section before publication.

The source of this document exists on github at: https://github.com/

brong/draft-gondwana-jmap-blob/

draft-ietf-jmap-blob-06:

removed asHex - we only need base64 and text

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

https://github.com/brong/draft-gondwana-jmap-blob/
https://github.com/brong/draft-gondwana-jmap-blob/

added reference to where base64 is defined

made 'destroy' not be allowed

expanded JSON examples for readability

removed 'expires' from examples

draft-ietf-jmap-blob-05:

discovered I hadn't actually included typeNames and matchedIds

anywhere except the updates section, oops!

added a catenate example

tightened up some text

draft-ieft-jmap-blob-04:

added security considerations for scanning catenate results

draft-ieft-jmap-blob-03:

added capabilities object

renamed types to typeNames and matchedIds

added details of how to handle non-UTF8 data and truncation in

Blob/get

added isTruncated and isEncodingProblem to Blob/get to tell the

client if the request wasn't entirely satisfied.

draft-ieft-jmap-blob-02:

fixed incorrect RFC number in reference and HTTP PUT -> POST,

thanks Ken.

added acknowledgements section

removed all 'datatype' text and changed to 'data type' or 'type

name' as appropriate (issue #1 proposal)

expanded security considerations section and moved optional Blob/

lookup empty case into Blob/lookup section

draft-ieft-jmap-blob-01:

renamed 'datatypes' to 'types' to align with PushSubscription

from RFC8620.

* ¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

* ¶

¶

* ¶

¶

* ¶

* ¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

*

¶

[RFC4648]

[RFC2119]

[RFC8174]

[RFC8620]

added example for Blob/get

specified offset and length precisely

draft-ieft-jmap-blob-00:

initial adoption as an IETF document, otherwise identical to

draft-gondwana-jmap-blob-02

draft-gondwana-jmap-blob-02

renamed 'objects' to 'datatypes'

specified Blob/lookup

added IANA registry for datatypes

draft-gondwana-jmap-blob-01

added an example

draft-gondwana-jmap-blob-00

initial proposal

8. Acknowledgements

Joris Baum, Neil Jenkiuns, Alexey Melnikov, Ken Murchison, Robert

Stepanek and the JMAP working group at the IETF.

9. Normative References

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10. Informative References

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

* ¶

* ¶

¶

*

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

¶

https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620

[RFC7888]

[RFC8621]

Melnikov, A., Ed., "IMAP4 Non-synchronizing Literals",

RFC 7888, DOI 10.17487/RFC7888, May 2016, <https://

www.rfc-editor.org/info/rfc7888>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP) for Mail", RFC 8621, DOI 10.17487/

RFC8621, August 2019, <https://www.rfc-editor.org/info/

rfc8621>.

Author's Address

Bron Gondwana (editor)

Fastmail

Level 2, 114 William St

Melbourne VIC 3000

Australia

Email: brong@fastmailteam.com

URI: https://www.fastmail.com

https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc8621
mailto:brong@fastmailteam.com
https://www.fastmail.com

	JMAP Blob management extension
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used In This Document
	3. Addition to the Capabilities Object
	3.1. urn:ietf:params:jmap:blob

	4. Blob Methods
	4.1. Blob/set
	4.1.1. create
	4.1.2. update
	4.1.3. destroy

	4.2. Blob/set examples
	4.3. Blob/get
	4.4. Blob/lookup

	5. Security considerations
	6. IANA considerations
	6.1. JMAP Capability registration for "blob"
	6.2. JMAP Error Codes Registration for "unknownDataType"
	6.3. Creation of "JMAP Data Types" Registry

	7. Changes
	8. Acknowledgements
	9. Normative References
	10. Informative References
	Author's Address

