
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-blob-13

Updates: 8620 (if approved)

Published: 14 September 2022

Intended Status: Standards Track

Expires: 18 March 2023

Authors: B. Gondwana, Ed.

Fastmail

JMAP Blob management extension

Abstract

The JMAP base protocol (RFC8620) provides the ability to upload and

download arbitrary binary data via HTTP POST and GET on defined

endpoint. This binary data is called a "blob".

This extension adds additional ways to create and access blobs, by

making inline method calls within a standard JMAP request.

This extension also adds a reverse lookup mechanism to discover

where blobs are referenced within other data types.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8620
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions Used In This Document

3. Addition to the Capabilities Object

3.1. urn:ietf:params:jmap:blob

3.1.1. Capability Example

4. Blob Methods

4.1. Blob/upload

4.1.1. Blob/upload simple example

4.1.2. Blob/upload complex example

4.2. Blob/get

4.2.1. Blob/get simple example

4.2.2. Blob/get example with range and encoding errors

4.3. Blob/lookup

4.3.1. Blob/lookup example

5. Security considerations

6. IANA considerations

6.1. JMAP Capability registration for "blob"

6.2. JMAP Error Codes Registration for "unknownDataType"

6.3. Creation of "JMAP Data Types" Registry

7. Changes

8. Acknowledgements

9. Normative References

10. Informative References

Author's Address

1. Introduction

Sometimes JMAP ([RFC8620]) interactions require creating a blob and

then referencing it. In the same way that IMAP Literals were

extended by [RFC7888], embedding small blobs directly into the JMAP

method calls array can be an option for reducing roundtrips.

Likewise, when fetching an object, it can be useful to also fetch

the raw content of that object without a separate roundtrip.

Since raw blobs may contain arbitrary binary data, this document

defines a use of the base64 coding specified in [RFC4648] for both

creating and fetching blob data.

Where JMAP is being proxied through a system which applies

additional access restrictions, it can be useful to know which

¶

¶

¶

¶

objects reference any particular blob, and this document defines a

way to discover those references.

2. Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The definitions of JSON keys and datatypes in the document follow

the conventions described in the core JMAP specification [RFC8620].

3. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], Section 2.

This document defines an additional capability URI.

3.1. urn:ietf:params:jmap:blob

The capability urn:ietf:params:jmap:blob being present in the

"accountCapabilities" property of an account represents support for

additional API methods on the Blob datatype. Servers that include

the capability in one or more "accountCapabilities" properties MUST

also include the property in the "capabilities" property.

The value of this property in the JMAP session "capabilities"

property MUST be an empty object.

The value of this property in an account's "accountCapabilities"

property is an object that MAY contain the following information on

server capabilities and permissions for that account:

maxSizeBlobSet: UnsignedInt|null

If present, this is the maximum size of blob (in octets) that the

server will allow to be created (including blobs created by

concatenating multiple data sources together).

Clients MUST NOT attempt to create blobs larger than this size.

If this value is not present or null, then clients are not

required to limit the size of blob they try to create, though

servers can always reject creation of blobs regardless of size;

e.g. due to lack of disk space, or per-user rate limits.

maxDataSources: UnsignedInt|null

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

¶

¶

¶

* ¶

If present, gives the maximum number of of DataSourceObjects

allowed per creation in a Blob/upload. Servers MUST allow at

least 64 items.

If this value is not present or null, then clients SHOULD assume

a limit of 64 items.

supportedTypeNames: String[]|null

An array of data type names that are supported for Blob/lookup.

If the server does not support lookups then this could be the

empty list, not present or null.

supportedDigestAlgorithms String[]|null

An array of supported digest algorithms that are supported for

Blob/get. If the server does not support calculating blob

digests, then this could be the empty list, not present, or null.

Algorithms on this list MUST be present in the HTTP Digest

Alogirthms registry defined by [RFC3230], and are always

lowercased.

¶

¶

* ¶

¶

* ¶

¶

3.1.1. Capability Example

4. Blob Methods

A blob is a sequence of zero or more octets.

The JMAP base spec [RFC8620] defines the Blob/copy method, which is

unchanged by this specfication, and is selected by the

urn:ietf:params:jmap:core capability.

The following JMAP Methods are selected by the

urn:ietf:params:jmap:blob capability.

4.1. Blob/upload

This is similar to a Foo/set from [RFC8620] in some ways, however

blobs can't be updated or deleted, so only create is allowed in the

method call, and blobs don't have state, so there is no state field

present in the method response.

Parameters

accountId: Id

{

 "capabilities": {

 ...,

 "urn:ietf:params:jmap:blob": {}

 },

 "accounts": {

 "A13842": {

 ...

 "accountCapabilities": {

 "urn:ietf:params:jmap:blob": {

 "maxSizeBlobSet": 50000000,

 "maxDataSources": 100,

 "supportedTypeNames" : [

 "Mailbox",

 "Thread",

 "Email"

],

 "supportedDigestAlgorithms" : [

 "sha",

 "sha-256"

]

 }

 }

 }

 }

}

¶

¶

¶

¶

¶

¶

* ¶

The id of the account in which the blobs will be created.

create: Id[UploadObject]

A map of creation id to UploadObjects.

Result

The result is the same as for Foo/set in RFC8620, with created and

notCreated objects mapping from the creationId.

The created objects contain:

id: Id

the blobId which was created

type: String|null

the media type as given in the creation (if any); or detected

from content; or null

size: UnsignedInt

as per RFC8620 - the size of the created blob in octets

Plus any other properties identical to those that would be returned

in the JSON response of the RFC8620 upload endpoint (which may be

extended in the future - this document anticipates that

implementations will extend both the upload endpoint and the Blob/

upload responses in the same way)

Or if there is a problem with a creation, then the server will

return a notCreated response with a map from the failed creationId

to a SetError object.

For each sucessful upload, servers MUST add an entry to the

creationIds map for the request. This allows the blob id to be used

via back-reference in subsequent method calls.

UploadObject

data: DataSourceObject[]

an array of zero or more octet sources in order (zero to create

an empty blob). The result of each of these sources is

concatenated together in order to create the blob.

type: String|null (default: null)

¶

* ¶

¶

¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

¶

¶

¶

¶

* ¶

¶

* ¶

hint for media type of the data

DataSourceObject

Exactly one of:

data:asText: String|null (raw octets, must be UTF-8)

data:asBase64: String|null (base64 representation of octets)

or a blobId source:

blobId: Id

offset: UnsignedInt|null (MAY be zero)

length: UnsignedInt|null (MAY be zero)

If null then offset is assumed to be zero.

If null then length is the remaining octets in the blob.

If the range can not be fully satisfied (i.e. begins or extends past

the end of the data in the blob) then the DataSourceObject is

invalid and results in a notCreated response for this creation id.

If the data properties have any invalid references or invalid data

contained in them, the server MUST NOT guess as to the user's

intent, and MUST reject the creation and return a notCreated

response for that creation id.

Likewise, invalid characters in the base64 of data:asBase64, or

invalid UTF-8 in data:asText MUST result in a nonCreated response.

It is envisaged that the definition for DataSourceObject might be

extended in future, for example to fetch external content.

A server MUST accept at least 64 DataSourceObjects per create, as

described in Section 3.1 of this document.

4.1.1. Blob/upload simple example

The data:asBase64 field is set over multiple lines for ease of

publication here, however all data:asBase64 would be sent as a

continuous string with no whitespace on the wire.

¶

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

Method Call:

[

 "Blob/upload",

 {

 "accountId": "account1",

 "create": {

 "1": {

 "data" : [

 {

 "data:asBase64": "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABAQMAAAAl21bKA

 AAAA1BMVEX/AAAZ4gk3AAAAAXRSTlN/gFy0ywAAAApJRE

 FUeJxjYgAAAAYAAzY3fKgAAAAASUVORK5CYII=",

 }

],

 "type": "image/png"

 },

 },

 },

 "R1"

]

Response:

[

 "Blob/upload",

 {

 "accountId" : "account1",

 "created" : {

 "1": {

 "id" : "G4c6751edf9dd6903ff54b792e432fba781271beb",

 "type" : "image/png",

 "size" : 95

 },

 },

 },

 "R1"

]

¶

4.1.2. Blob/upload complex example

Method Calls:

[

 [

 "Blob/upload",

 {

 "create": {

 "b4": {

 "data": [

 {

 "data:asText": "The quick brown fox jumped over the lazy dog."

 }

]

 }

 }

 },

 "S4"

],

 [

 "Blob/upload",

 {

 "create": {

 "cat": {

 "data": [

 {

 "data:asText": "How"

 },

 {

 "blobId": "#b4",

 "length": 7,

 "offset": 3

 },

 {

 "data:asText": "was t"

 },

 {

 "blobId": "#b4",

 "length": 1,

 "offset": 1

 },

 {

 "data:asBase64": "YXQ/"

 }

]

 }

 }

 },

 "CAT"

],

 [

 "Blob/get",

 {

 "properties": [

 "data:asText",

 "size"

],

 "ids": [

 "#cat"

]

 },

 "G4"

]

]

Responses:

[

 [

 "Blob/upload",

 {

 "oldState": null,

 "created": {

 "b4": {

 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",

 "size": 45,

 "type": "application/octet-stream"

 }

 },

 "notCreated": null,

 "accountId": "account1"

 },

 "S4"

],

 [

 "Blob/upload",

 {

 "oldState": null,

 "created": {

 "cat": {

 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",

 "size": 19,

 "type": "application/octet-stream"

 }

 },

 "notCreated": null,

 "accountId": "account1"

 },

 "CAT"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "Gcc60576f036321ae6e8037ffc56bdee589bd3e23",

 "data:asText": "How quick was that?",

 "size": 19

 }

],

 "notFound": [],

 "accountId": "account1"

 },

 "G4"

]

]

¶

4.2. Blob/get

A standard JMAP get, with two additional optional parameters:

offset: UnsignedInt|null

start this many octets into the blob data. If null or

unspecified, this defaults to zero.

length: UnsignedInt|null

return at most this many octets of the blob data. If null or

unspecified, then all remaining octets in the blob are returned.

This can be considered equivalent to an infinitely large length

value, except that the isTruncated warning is not given unless

the start offset is past the end of the blob.

Request Properties:

Any of

data:asText

data:asBase64

data (returns data:asText if the selected octets are valid UTF-8,

or data:asBase64)

digest:<algorithm> (where <algorithm> is one of the named

algorithms in the supportedDigestAlgorithms capability)

size

If not given, properties defaults to data and size.

Result Properties:

data:asText: String|null

the raw octets of the selected range if they are valid UTF-8,

otherwise null

data:asBase64: String

the base64 encoding of the octets in the selected range

digest:<algorithm> String

the base64 encoding of the digest of the octets in the selected

range, calculated using the named algorithm

isEncodingProblem: Boolean (default: false)

isTruncated: Boolean (default: false)

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

* ¶

*

¶

*

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

* ¶

¶

* ¶

* ¶

size: UnsignedInt

the number of octets in the entire blob

The size value MUST always be the number of octets in the underlying

blob, regardless of offset and length.

The data fields contain a representation of the octets within the

selected range that are present in the blob. If the octets selected

are not valid UTF-8 (including truncating in the middle of a multi-

octet sequence) and data or data:asText was requested, then the key

isEncodingProblem MUST be set to true and the data:asText response

value MUST be null. In the case where data was requested and the

data is not valid UTF-8, then data:asBase64 MUST be returned.

If the selected range requests data outside the blob (i.e. the

offset+length is larger than the blob) then the result is either

just the octets from the offset to the end of the blob, or an empty

string if the offset is past the end of the blob. Either way, the

isTruncated property in the result MUST be set to true to tell the

client that the requested range could not be fully satisfied. If

digest was requested, any digest is calculated on the octets that

would be returned for a data field.

Servers SHOULD store the size for blobs in a format which is

efficient to read, and clients SHOULD limit their request to just

the size parameter if that is all they need, as fetching blob

content could be significantly more expensive and slower for the

server.

4.2.1. Blob/get simple example

Where a blob containing the string "The quick brown fox jumped over

the lazy dog." has blobId Gc0854fb9fb03c41cce3802cb0d220529e6eef94e.

The first method call requests just the size for multiple blobs, and

the second requests both size and a short range of the data for one

of the blobs.

* ¶

¶

¶

¶

¶

¶

¶

¶

Method Calls:

[

 [

 "Blob/get",

 {

 "ids" : [

 "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e"

 "not-a-blob"

],

 "properties" : [

 "data:asText",

 "digest:sha",

 "size"

]

 },

 "R1"

],

 [

 "Blob/get",

 {

 "accountId" : "account1",

 "ids" : [

 "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e"

],

 "properties" : [

 "data:asText",

 "data:asBase64",

 "digest:sha",

 "digest:sha-256",

 "size"

],

 "offset" : 4,

 "length" : 9

 },

 "R2"

]

]

Responses:

[

 [

 "Blob/get",

 {

 "accountId": "account1",

 "list": [

 {

 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",

 "data:asText": "The quick brown fox jumped over the lazy dog.",

 "digest:sha": "wIVPufsDxBzOOALLDSIFKebu+U4=",

 "size": 45

 }

],

 "notFound": [

 "not-a-blob"

]

 },

 "R1"

],

 [

 "Blob/get",

 {

 "accountId": "account1",

 "list": [

 {

 "id": "Gc0854fb9fb03c41cce3802cb0d220529e6eef94e",

 "data:asText": "quick bro",

 "digest:sha": "QiRAPtfyX8K6tm1iOAtZ87Xj3Ww=",

 "digest:sha-256": "gdg9INW7lwHK6OQ9u0dwDz2ZY/gubi0En0xlFpKt0OA=",

 "size": 45

 }

]

 },

 "R2"

]

]

¶

4.2.2. Blob/get example with range and encoding errors

The b1 value is the text: "The quick brown fox jumped over the

\x81\x81 fox" which contains an invalid utf8 sequence.

The results have the following interesting properties:

G1: defaults to data and size - so b1 returns isEncodingProblem

and a base64 value.

G2: since data:asText was explicitly selected, does not attempt

to return a value for the data, just isEncodingProblem for b1.

G3: since only data:asBase64 was requested, there is no encoding

problem and both values are returned.

G4: since the requested range could be satisfied as text, both

blobs are returned as data:asText and there is no encoding

problem.

G5: both blobs cannot satisfy the requested range, so isTruncated

is true for both.

Note: some values have been wrapped for line length - there would be

no whitespace in the data:asBase64 values on the wire

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

Method calls:

[

 [

 "Blob/upload",

 {

 "create": {

 "b1": {

 "data": [

 {

 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW

 Qgb3ZlciB0aGUggYEgZG9nLg=="

 }

]

 },

 "b2": {

 "data": [

 {

 "data:asText": "hello world"

 }

],

 "type" : "text/plain"

 }

 }

 },

 "S1"

],

 [

 "Blob/get",

 {

 "ids": [

 "#b1",

 "#b2"

]

 },

 "G1"

],

 [

 "Blob/get",

 {

 "ids": [

 "#b1",

 "#b2"

],

 "properties": [

 "data:asText",

 "size"

]

 },

 "G2"

],

 [

 "Blob/get",

 {

 "ids": [

 "#b1",

 "#b2"

],

 "properties": [

 "data:asBase64",

 "size"

]

 },

 "G3"

],

 [

 "Blob/get",

 {

 "offset": 0,

 "length": 5,

 "ids": [

 "#b1",

 "#b2"

]

 },

 "G4"

],

 [

 "Blob/get",

 {

 "offset": 20,

 "length": 100,

 "ids": [

 "#b1",

 "#b2"

]

 },

 "G5"

]

]

Responses:

[

 [

 "Blob/upload",

 {

 "oldState": null,

 "created": {

 "b2": {

 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

 "size": 11,

 "type": "application/octet-stream"

 },

 "b1": {

 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

 "size": 43,

 "type": "text/plain"

 }

 },

 "updated": null,

 "destroyed": null,

 "notCreated": null,

 "notUpdated": null,

 "notDestroyed": null,

 "accountId": "account1"

 },

 "S1"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

 "isEncodingProblem": true,

 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW

 Qgb3ZlciB0aGUggYEgZG9nLg==",

 "size": 43

 },

 {

 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

 "data:asText": "hello world",

 "size": 11

 }

],

 "notFound": [],

 "accountId": "account1"

 },

 "G1"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

 "isEncodingProblem": true,

 "size": 43

 },

 {

 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

 "data:asText": "hello world",

 "size": 11

 }

],

 "notFound": [],

 "accountId": "account1"

 },

 "G2"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

 "data:asBase64": "VGhlIHF1aWNrIGJyb3duIGZveCBqdW1wZW

 Qgb3ZlciB0aGUggYEgZG9nLg==",

 "size": 43

 },

 {

 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

 "data:asBase64": "aGVsbG8gd29ybGQ=",

 "size": 11

 }

],

 "notFound": [],

 "accountId": "account1"

 },

 "G3"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

 "data:asText": "The q",

 "size": 43

 },

 {

 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

 "data:asText": "hello",

 "size": 11

 }

],

 "notFound": [],

 "accountId": "account1"

 },

 "G4"

],

 [

 "Blob/get",

 {

 "list": [

 {

 "id": "G72cfa4804194563685d9a4b695f7ba20e7739576",

 "isTruncated": true,

 "isEncodingProblem": true,

 "data:asBase64": "anVtcGVkIG92ZXIgdGhlIIGBIGRvZy4=",

 "size": 43

 },

 {

 "id": "G2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",

 "isTruncated": true,

 "data:asText": "",

 "size": 11

 }

],

 "notFound": [],

 "accountId": "account1"

 },

 "G5"

]

]

¶

4.3. Blob/lookup

Given a list of blobIds, this method does a reverse lookup in each

of the provided type names to find the list of Ids within that data

type which reference the provided blob.

The definition of reference is somewhat loosely defined, but roughly

means "you could discover this blobId by looking inside this

object", for example if a Mailbox contains an Email which references

the blobId, then it references that blobId. Likewise for a Thread.

Parameters

accountId: Id

The id of the account used for the call.

typeNames: String[]

A list of names from the "JMAP Data Types" registry. Only names

for which "Can reference blobs" is true may be specified, and the

capability which defines each type must also be used by the

overall JMAP request in which this method is called.

If a type name is not known by the server, or the associated

capability has not been requested, then the server returns an

"unknownDataType" error.

ids: Id[]

A list of blobId values to be looked for.

Response

list: BlobInfo[]

A list of BlobInfo objects.

BlobInfo Object

id: Id

The Blob Identifier.

matchedIds: String[Id[]]

A map from type name to list of Ids of that data type (e.g. the

name "Email" maps to a list of emailIds)

¶

¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

¶

* ¶

¶

* ¶

¶

If a blob is not visible to a user at all, then the server SHOULD

return that blobId in the notFound array, however it may also return

an empty list for each type name, as it may not be able to know if

other data types do reference that blob.¶

4.3.1. Blob/lookup example

Method call:

[

 "Blob/lookup",

 {

 "typeNames": [

 "Mailbox",

 "Thread",

 "Email"

],

 "ids": [

 "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",

 "not-a-blob"

]

 },

 "R1"

]

Response:

[

 "Blob/lookup",

 {

 "list": [

 {

 "id": "Gd2f81008cf07d2425418f7f02a3ca63a8bc82003",

 "matchedIds": {

 "Mailbox": [

 "M54e97373",

 "Mcbe6b662"

],

 "Thread": [

 "T1530616e"

],

 "Email": [

 "E16e70a73eb4",

 "E84b0930cf16"

]

 }

 }

],

 "notFound": [

 "not-a-blob"

]

 },

 "R1"

]

¶

5. Security considerations

JSON parsers are not all consistent in handling non-UTF-8 data. JMAP

requires that all JSON data be UTF-8 encoded, so servers MUST only

return a null value if data:asText is requested for a range of

octets which is not valid UTF-8, and set isEncodingProblem: true.

Servers MUST apply any access controls, such that if the

authenticated user would be unable to discover the blobId by making

queries, then this fact can't be discovered via a Blob/lookup. For

example, if an Email exists in a Mailbox which the authenticated

user does not have access to see, then that emailId MUST not be

returned in a lookup for a blob which is referenced by that email.

If a server might sometimes return all names empty rather than

putting a blobId in the notFound response to a Blob/get, then the

server SHOULD always return the same type of response, regardless of

whether a blob exists but the user can't access it, or doesn't exist

at all. This avoids leaking information about the existence of the

blob.

The server MUST NOT trust that the data given to a Blob/upload is a

well formed instance of the specified media type, and if the server

attempts to parse the given blob, only hardened parsers designed to

deal with arbitrary untrusted data should be used. The server SHOULD

NOT reject data on the grounds that it is not a valid specimen of

the stated type.

Blob/upload with carefully chosen data sources can be used to

recreate dangerous content on the far side of security scanners

(anti-virus or exfiltration scanners for example) which may be

watching the upload endpoint. Server implementations SHOULD provide

a hook to allow security scanners to check the resulting blob after

concatenating the data sources in the same way that they do for the

upload endpoint.

6. IANA considerations

6.1. JMAP Capability registration for "blob"

IANA is requested to register the "blob" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:blob

Specification document: this document

Intended use: common

Change Controller: IETF

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Security and privacy considerations: this document, Section XXX

6.2. JMAP Error Codes Registration for "unknownDataType"

IANA is requested to register the "unknownDataType" JMAP Error Code

as follows:

JMAP Error Code: unknownDataType

Intended use: common

Change Controller: IETF

Reference: this document

Description: The server does not recognise this data type, or the

capability to enable it was not present.

6.3. Creation of "JMAP Data Types" Registry

IANA is requested to create a new registry "JMAP Data Types" with

the initial content:

Type Name

Can

reference

blobs

Can

use

for

state

change

Capability Reference

Core No No urn:ietf:params:jmap:core [RFC8620]

PushSubscription No No urn:ietf:params:jmap:core [RFC8620]

Mailbox Yes Yes urn:ietf:params:jmap:mail [RFC8621]

Thread Yes Yes urn:ietf:params:jmap:mail [RFC8621]

Email Yes Yes urn:ietf:params:jmap:mail [RFC8621]

EmailDelivery No Yes urn:ietf:params:jmap:mail [RFC8621]

SearchSnippet No No urn:ietf:params:jmap:mail [RFC8621]

Identity No Yes urn:ietf:params:jmap:submission [RFC8621]

EmailSubmission No Yes urn:ietf:params:jmap:submission [RFC8621]

VacationResponse No Yes urn:ietf:params:jmap:vacationresponse [RFC8621]

MDN No No urn:ietf:params:jmap:mdn [RFC9007]

Table 1

This policy for this registry is "Specification required", either an

RFC or a simiarly stable reference document which defines a JMAP

Data Type and associated capability.

7. Changes

EDITOR: please remove this section before publication.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The source of this document exists on github at: https://github.com/

brong/draft-gondwana-jmap-blob/

draft-ietf-jmap-blob-13

added examples of digest responses

draft-ietf-jmap-blob-12

updates based on Neil Jenkins' feedback:

fixed [] positions for type specs

documented delta between /upload and /set better

allowed zero-length blobId sources

fixed examples with /set leftovers

documented datatypes registry policy

added optional "digest" support

draft-ietf-jmap-blob-11:

updates based on IETF113 feedback:

added wording to suggest the a Blob/get of just size might be

faster

added an example with just the size field being selected

draft-ietf-jmap-blob-10:

removed remaining references to catenate.

draft-ietf-jmap-blob-09:

tidied up introduction text

replaced Blob/set with Blob/upload

made all upload creates take an array of sources to normalise

behaviour at the cost of a slightly more complex default case.

draft-ietf-jmap-blob-08:

Fixed spelling of Neil's name in acknowledgements

Last call review (thanks Jim Fenton)

fixed mmark sillyness causing RFC8620 to be non-normative in

the references

clarified the capability object and accountCapability object

requirements

made capability keys much more tightly defined, with mandatory

minimum catenate limit and default values.

increased use of normative language generally

lowercased 'blob' anywhere it wasn't explicitly the object

¶

¶

* ¶

¶

* ¶

- ¶

- ¶

- ¶

- ¶

- ¶

* ¶

¶

* ¶

-

¶

- ¶

¶

* ¶

¶

* ¶

* ¶

*

¶

¶

* ¶

* ¶

-

¶

-

¶

-

¶

- ¶

- ¶

https://github.com/brong/draft-gondwana-jmap-blob/
https://github.com/brong/draft-gondwana-jmap-blob/

lowercased titles of the columns in the registry

draft-ietf-jmap-blob-07:

more examples to cover the interactions of offset, length and

encoding checks.

draft-ietf-jmap-blob-06:

removed asHex - we only need base64 and text

added reference to where base64 is defined

made 'destroy' not be allowed

expanded JSON examples for readability

removed 'expires' from examples

draft-ietf-jmap-blob-05:

discovered I hadn't actually included typeNames and matchedIds

anywhere except the updates section, oops!

added a catenate example

tightened up some text

draft-ieft-jmap-blob-04:

added security considerations for scanning catenate results

draft-ieft-jmap-blob-03:

added capabilities object

renamed types to typeNames and matchedIds

added details of how to handle non-UTF8 data and truncation in

Blob/get

added isTruncated and isEncodingProblem to Blob/get to tell the

client if the request wasn't entirely satisfied.

draft-ieft-jmap-blob-02:

fixed incorrect RFC number in reference and HTTP PUT -> POST,

thanks Ken.

added acknowledgements section

removed all 'datatype' text and changed to 'data type' or 'type

name' as appropriate (issue #1 proposal)

expanded security considerations section and moved optional Blob/

lookup empty case into Blob/lookup section

draft-ieft-jmap-blob-01:

renamed 'datatypes' to 'types' to align with PushSubscription

from RFC8620.

added example for Blob/get

- ¶

¶

*

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

*

¶

* ¶

* ¶

¶

* ¶

¶

* ¶

* ¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

*

¶

¶

*

¶

* ¶

[RFC2119]

[RFC3230]

[RFC4648]

[RFC8174]

[RFC8620]

specified offset and length precisely

draft-ieft-jmap-blob-00:

initial adoption as an IETF document, otherwise identical to

draft-gondwana-jmap-blob-02

draft-gondwana-jmap-blob-02

renamed 'objects' to 'datatypes'

specified Blob/lookup

added IANA registry for datatypes

draft-gondwana-jmap-blob-01

added an example

draft-gondwana-jmap-blob-00

initial proposal

8. Acknowledgements

Joris Baum, Jim Fenton, Neil Jenkins, Alexey Melnikov, Ken

Murchison, Robert Stepanek and the JMAP working group at the IETF.

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Mogul, J. and A. Van Hoff, "Instance Digests in HTTP",

RFC 3230, DOI 10.17487/RFC3230, January 2002, <https://

www.rfc-editor.org/info/rfc3230>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

10. Informative References

* ¶

¶

*

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

¶

* ¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc3230
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620

[RFC7888]

[RFC8621]

Melnikov, A., Ed., "IMAP4 Non-synchronizing Literals",

RFC 7888, DOI 10.17487/RFC7888, May 2016, <https://

www.rfc-editor.org/info/rfc7888>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP) for Mail", RFC 8621, DOI 10.17487/

RFC8621, August 2019, <https://www.rfc-editor.org/info/

rfc8621>.

Author's Address

Bron Gondwana (editor)

Fastmail

Level 2, 114 William St

Melbourne VIC 3000

Australia

Email: brong@fastmailteam.com

URI: https://www.fastmail.com

https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc7888
https://www.rfc-editor.org/info/rfc8621
https://www.rfc-editor.org/info/rfc8621
mailto:brong@fastmailteam.com
https://www.fastmail.com

	JMAP Blob management extension
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used In This Document
	3. Addition to the Capabilities Object
	3.1. urn:ietf:params:jmap:blob
	3.1.1. Capability Example

	4. Blob Methods
	4.1. Blob/upload
	4.1.1. Blob/upload simple example
	4.1.2. Blob/upload complex example

	4.2. Blob/get
	4.2.1. Blob/get simple example
	4.2.2. Blob/get example with range and encoding errors

	4.3. Blob/lookup
	4.3.1. Blob/lookup example

	5. Security considerations
	6. IANA considerations
	6.1. JMAP Capability registration for "blob"
	6.2. JMAP Error Codes Registration for "unknownDataType"
	6.3. Creation of "JMAP Data Types" Registry

	7. Changes
	8. Acknowledgements
	9. Normative References
	10. Informative References
	Author's Address

