
JMAP N. Jenkins
Internet-Draft Fastmail
Intended status: Standards Track M. Douglass
Expires: April 30, 2020 Spherical Cow Group
 October 28, 2019

JMAP for Calendars
draft-ietf-jmap-calendars-01

Abstract

 This document specifies a data model for synchronizing calendar data
 with a server using JMAP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 30, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jenkins & Douglass Expires April 30, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JMAP Calendars October 2019

Table of Contents

1. Introduction . 3
1.1. Data Model Overview 3
1.2. Accounts, Push, and the Session Object 4
1.2.1. UIDs and CalendarEvent Ids 5

1.3. Notational Conventions 5
1.4. The LocalDate Data Type 6
1.5. Terminology . 6
1.6. Addition to the Capabilities Object 6
1.6.1. urn:ietf:params:jmap:calendars 6
1.6.2. urn:ietf:params:jmap:calendarprincipals 7

2. Calendar Principals . 8
2.1. CalendarPrincipal/get 9
2.2. CalendarPrincipal/changes 9
2.3. CalendarPrincipal/set 9
2.4. CalendarPrincipal/query 9
2.4.1. Filtering . 9

2.5. CalendarPrincipal/queryChanges 10
2.6. CalendarPrincipal/getAvailability 10

3. Calendars . 13
3.1. Calendar/get . 17
3.2. Calendar/changes . 17
3.3. Calendar/set . 17

4. Calendar Share Notifications 18
4.1. Auto-deletion of Notifications 19
4.2. Object Properties . 19
4.3. CalendarShareNotification/get 20
4.4. CalendarShareNotification/changes 20
4.5. CalendarShareNotification/set 20
4.6. CalendarShareNotification/query 20
4.6.1. Filtering . 20
4.6.2. Sorting . 20

4.7. CalendarShareNotification/queryChanges 20
5. Calendar Events . 20
5.1. Attachments . 21
5.2. Per-user properties 22
5.3. Recurring events . 22
5.4. CalendarEvent/get . 23
5.5. CalendarEvent/changes 24
5.6. CalendarEvent/set . 24
5.6.1. Sending invitations and responses 25

5.7. CalendarEvent/copy 28
5.8. CalendarEvent/query 28
5.8.1. Filtering . 29
5.8.2. Sorting . 30

5.9. CalendarEvent/queryChanges 31
5.10. Examples . 31

Jenkins & Douglass Expires April 30, 2020 [Page 2]

Internet-Draft JMAP Calendars October 2019

6. Alerts . 31
6.1. Push events . 31
6.2. Acknowledging an alert 32
6.3. Snoozing an alert . 32

7. Calendar Event Notifications 33
7.1. Auto-deletion of Notifications 33
7.2. Object Properties . 33
7.3. CalendarEventNotification/get 34
7.4. CalendarEventNotification/changes 34
7.5. CalendarEventNotification/set 34
7.6. CalendarEventNotification/query 35
7.6.1. Filtering . 35
7.6.2. Sorting . 35

7.7. CalendarEventNotification/queryChanges 35
8. Security Considerations 35
8.1. Denial-of-service Expanding Recurrences 35
8.2. Privacy . 36

9. IANA Considerations . 36
9.1. JMAP Capability Registration for "calendars" 36

 9.2. Reservation of JMAP attributes in JSCalendar Property
 registry . 36

10. References . 36
10.1. Normative References 36
10.2. Informative References 37

 Authors' Addresses . 37

1. Introduction

 JMAP ([RFC8620] - JSON Meta Application Protocol) is a generic
 protocol for synchronizing data, such as mail, calendars or contacts,
 between a client and a server. It is optimized for mobile and web
 environments, and aims to provide a consistent interface to different
 data types.

 This specification defines a data model for synchronizing calendar
 data between a client and a server using JMAP. The data model is
 designed to allow a server to provide consistent access to the same
 data via CalDAV [RFC4791] as well as JMAP, however the functionality
 offered over the two protocols may differ. Unlike CalDAV, this
 specification does not define access to tasks or journal entries
 (VTODO or VJOURNAL iCalendar components in CalDAV).

1.1. Data Model Overview

 A CalendarPrincipal (see Section XXX) represents an individual, team
 or resource (e.g. a room or projector). The object contains
 information about the entity being represented, such as a name,
 description and time zone. A CalendarPrincipal has a 1:1

https://datatracker.ietf.org/doc/html/rfc8620
https://datatracker.ietf.org/doc/html/rfc4791

Jenkins & Douglass Expires April 30, 2020 [Page 3]

Internet-Draft JMAP Calendars October 2019

 correspondence with an Account (see [RFC8620], Section 1.6.2) that
 supports the "urn:ietf:params:jmap:calendars" capability.

 Each such Account contains zero or more Calendar objects, which is a
 named collection of CalendarEvents belonging to the
 CalendarPrincipal. Sharing permissions are managed per calendar.
 For example, an individual may have separate calendars for personal
 and work activities, with both contributing to their free-busy
 availability, but only the work calendar shared in its entirety with
 colleagues. Calendars can also provide defaults, such as alerts and
 a color to apply to events in the calendar. Clients commonly let
 users toggle visibility of events belonging to a particular calendar
 on/off.

 A CalendarEvent is a representation of an event or recurring series
 of events in JSEvent [I-D.ietf-calext-jscalendar] format. Simple
 clients may ask the server to expand recurrences for them within a
 specific time period, and optionally convert times into UTC so they
 do not have to handle time zone conversion. More full-featured
 clients will want to access the full event information and handle
 recurrence expansion and time zone conversion locally.

 CalendarEventNotification objects keep track of the history of
 changes made to a calendar by other users, allowing calendar clients
 to notify the user of changes to their schedule. Similarly, the
 CalendarShareNotification type notifies the user when their access to
 another user's calendar is granted or revoked.

1.2. Accounts, Push, and the Session Object

 The JMAP Session object (see [RFC8620], Section 2) typically includes
 an object in the "accounts" property for every account that the user
 has access to. Calendaring systems may share data between a
 (potentially very) large number of CalendarPrincipals, most of which
 the user does not care about day-to-day but may occasionally need to
 query when scheduling events.

 Users can normally subscribe to any calendar to which they have
 access (see Section XXX). This indicates the user wants this
 calendar to appear in their regular list of calendars. The separate
 "isVisible" property stores whether the user would currently like to
 view the events in a subscribed calendar.

 The Session object MUST only include Accounts where the user is
 subscribed to at least one Calendar or they have access to some other
 data type in the account. StateChange events for changes to
 CalendarEvent data SHOULD only be sent for events in calendars the

https://datatracker.ietf.org/doc/html/rfc8620#section-1.6.2
https://datatracker.ietf.org/doc/html/rfc8620#section-2

Jenkins & Douglass Expires April 30, 2020 [Page 4]

Internet-Draft JMAP Calendars October 2019

 user has subscribed to and MUST NOT be sent for any Account where the
 user is not subscribed to at least one calendar.

 The server MAY reject the user's attempt to subscribe to some
 calendars, e.g. those representing resources.

 A user may query the set of CalendarPrincipals they have access to
 with "CalendarPrincipal/query" (see Section XXX). The
 CalendarPrincipal object may have an "accountId" property that can be
 used to then fetch calendars and events associated with that
 principal, subject to appropriate permissions.

1.2.1. UIDs and CalendarEvent Ids

 Each CalendarEvent has a "uid" property
 ([I-D.ietf-calext-jscalendar], Section 4.1.2), which is a globally
 unique identifier that identifies the same event in different
 Accounts, or different instances of the same recurring event within
 an Account.

 An Account MUST NOT contain more than one CalendarEvent with the same
 uid unless all of the CalendarEvent objects have distinct, non-null
 values for their "recurrenceId" property. (This situation occurs if
 the principal is added to one or more specific instances of a
 recurring event without being invited to the whole series.)

 Each CalendarEvent also has an id, which is scoped to the JMAP
 Account and used for referencing it in JMAP methods. There is no
 necessary link between the uid property and the CalendarEvent's id.
 CalendarEvents with the same uid in different Accounts MAY have
 different ids.

1.3. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Type signatures, examples, and property descriptions in this document
 follow the conventions established in Section 1.1 of [RFC8620]. Data
 types defined in the core specification are also used in this
 document.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc8620#section-1.1

Jenkins & Douglass Expires April 30, 2020 [Page 5]

Internet-Draft JMAP Calendars October 2019

1.4. The LocalDate Data Type

 Where "LocalDate" is given as a type, it means a string in the same
 format as "Date" (see [RFC8620], Section 1.4), but with the "time-
 offset" omitted from the end. The interpretation in absolute time
 depends upon the time zone for the event, which may not be a fixed
 offset (for example when daylight saving time occurs). For example,
 "2014-10-30T14:12:00".

1.5. Terminology

 The same terminology is used in this document as in the core JMAP
 specification, see [RFC8620], Section 1.6.

 The terms CalendarPrincipal, Calendar, CalendarEvent,
 CalendarEventNotification, and CalendarShareNotification (with these
 specific capitalizations) are used to refer to the data types defined
 in this document and instances of those data types.

1.6. Addition to the Capabilities Object

 The capabilities object is returned as part of the JMAP Session
 object; see [RFC8620], Section 2. This document defines two
 additional capability URIs.

1.6.1. urn:ietf:params:jmap:calendars

 This represents support for the Calendar, CalendarEvent, and
 CalendarEventNotification data types and associated API methods. The
 value of this property in the JMAP Session capabilities property is
 an empty object.

 The value of this property in an account's accountCapabilities
 property is an object that MUST contain the following information on
 server capabilities and permissions for that account:

 o *accountIdForCalendarPrincipal*: "String|null" The id of an
 account with the "urn:ietf:params:jmap:calendarprincipals"
 capability that contains the corresponding CalendarPrincipal
 object. This may be the same account id. This is null for
 single-user systems that do not support the CalendarPrincipal data
 type.

 o *maxSizeCalendarEvent*: "UnsignedInt" The maximum size in octets
 of the largest CalendarEvent the server is willing to store.
 TODO: How can you relate this to what the client knows?

https://datatracker.ietf.org/doc/html/rfc8620#section-1.4
https://datatracker.ietf.org/doc/html/rfc8620#section-1.6
https://datatracker.ietf.org/doc/html/rfc8620#section-2

Jenkins & Douglass Expires April 30, 2020 [Page 6]

Internet-Draft JMAP Calendars October 2019

 o *minDateTime*: "LocalDate" The earliest date-time the server is
 willing to accept for any date stored in a CalendarEvent.

 o *maxDateTime*: "LocalDate" The latest date-time the server is
 willing to accept for any date stored in a CalendarEvent.

 o *maxExpandedQueryDuration*: "Duration" The maximum duration the
 user may query over when asking the server to expand recurrences.

 o *maxParticipantsPerEvent*: "Number|null" The maximum number of
 participants a single event may have, or null for no limit.

 o *maxNumberEventNotifications*: "UnsignedInt" The maximum number of
 CalendarEventNotification objects the server will store for this
 account. If new notifications are added in excess of this number,
 older notifications will be automatically deleted by the server.

 o *mayCreateCalendar*: "Boolean" If true, the user may create a
 calendar in this account.

1.6.2. urn:ietf:params:jmap:calendarprincipals

 Represents support for the CalendarPrincipal and
 CalendarShareNotification data types and associated API methods.
 Single user systems do not need this and MAY choose not to support
 it.

 The value of this property in the JMAP Session capabilities property
 is an empty object.

 The value of this property in an account's accountCapabilities
 property is an object that MUST contain the following information on
 server capabilities and permissions for that account:

 o *currentUserPrincipalId*: "String|null" The id of the principal in
 this account that corresponds to the user fetching this object, if
 any.

 o *maxAvailabilityDuration*: The maximum duration over which the
 server is prepared to calculate availability in a single call (see
 Section XXX).

 o *maxNumberShareNotifications*: "UnsignedInt" The maximum number of
 CalendarShareNotification objects the server will store for a
 principal in this account. If new notifications are added in
 excess of this number, older notifications will be automatically
 deleted by the server.

Jenkins & Douglass Expires April 30, 2020 [Page 7]

Internet-Draft JMAP Calendars October 2019

2. Calendar Principals

 A CalendarPrincipal represents an individual, group, schedulable
 location (e.g. a room), bookable resource (e.g. a projector) or other
 entity in the calendar system. In a shared calendar environment such
 as a workplace, a user may have access to a large number of
 principals.

 In most systems the user will have access to a single Account
 containing CalendarPrincipal objects, but they may have access to
 multiple if, for example, aggregating calendar data from different
 places.

 A *CalendarPrincipal* object has the following properties:

 o *id*: "Id" The id of the principal.

 o *name*: "String" The name of the principal, e.g. "Jane Doe", or
 "Room 4B".

 o *description*: "String|null" A longer description of the
 principal, for example details about the facilities of a resource,
 or null if no description available.

 o *email*: "String|null" An email address for the principal, or null
 if no email is available.

 o *type*: "String" This MUST be one of the following values:

 * "individual": This represents a single person.

 * "group": This represents a group of people.

 * "resource": This represents some resource, e.g. a projector.

 * "location": This represents a location.

 * "other": This represents some other undefined principal.

 o *timeZone*: "String" The time zone for this principal. The value
 MUST be a time zone id from the IANA Time Zone Database.

 o *mayGetAvailability*: "Boolean" May the user call the
 "CalendarPrincipal/getAvailability" method with this
 CalendarPrincipal?

 o *accountId*: "Id|null" Id of Account with the
 "urn:ietf:params:jmap:calendars" capability that contains the data

Jenkins & Douglass Expires April 30, 2020 [Page 8]

Internet-Draft JMAP Calendars October 2019

 for this principal, or null if none (e.g. the CalendarPrincipal is
 a group just used for permissions management), or the user does
 not have access to any data in the account (with the exception of
 free/busy, which is governed by the mayGetAvailability property).

 o *account*: "Account|null" The JMAP Account object corresponding to
 the accountId, null if none.

 o *sendTo*: "String[String]|null" If this principal may be added as
 a participant to an event, this is the map of methods for adding
 it, in the same format as Participant#sendTo in JSEvent (see
 [I-D.ietf-calext-jscalendar], Section 4.4.5).

2.1. CalendarPrincipal/get

 This is a standard "/get" method as described in [RFC8620],
 Section 5.1.

2.2. CalendarPrincipal/changes

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.2.

2.3. CalendarPrincipal/set

 This is a standard "/set" method as described in [RFC8620],
 Section 5.3. However, the user may only update the "timeZone"
 property of the CalendarPrincipal with the same id as the
 "currentUserPrincipalId" in the Account capabilities. Any other
 change MUST be rejected with a "forbidden" SetError.

 Managing calendar principals is likely tied to a directory service or
 some other vendor-specific solution, and occurs out-of-band, or via
 an additional capability defined elsewhere.

2.4. CalendarPrincipal/query

 This is a standard "/query" method as described in [RFC8620],
 Section 5.5

2.4.1. Filtering

 A *FilterCondition* object has the following properties:

 o *accountIds*: "String[]" A list of account ids. The
 CalendarPrincipal matches if the value for its accountId property
 is in this list.

https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5

Jenkins & Douglass Expires April 30, 2020 [Page 9]

Internet-Draft JMAP Calendars October 2019

 o *email*: "String" Looks for the text in the email property.

 o *name*: "String" Looks for the text in the name property.

 o *text* "String" Looks for the text in the name, email, and
 description properties.

 o *type*: "String" The type must be exactly as given to match the
 condition.

 o *timeZone*: "String" The timeZone must be exactly as given to
 match the condition.

 All conditions in the FilterCondition object must match for the
 CalendarPrincipal to match.

2.5. CalendarPrincipal/queryChanges

 This is a standard "/queryChanges" method as described in [RFC8620],
 Section 5.6.

2.6. CalendarPrincipal/getAvailability

 Calculates the availability of the principal for scheduling within a
 requested time period. It takes the following arguments:

 o *accountId*: "Id" The id of the account to use.

 o *id*: "Id" The id of the CalendarPrincipal to calculate
 availability for.

 o *utcStart*: "UTCDate" The start time (inclusive) of the period for
 which to return availability.

 o *utcEnd*: "UTCDate" The end time (exclusive) of the period for
 which to return availability.

 o *showDetails*: "Boolean" If true, event details will be returned
 if the user has permission to view them.

 The server will first find all relevant events, expanding any
 recurring events. Relevant events are ones where all of the
 following is true:

 o The principal is subscribed to the calendar.

 o Either the calendar belongs to the principal or the "shareesActAs"
 property of the calendar is "self".

https://datatracker.ietf.org/doc/html/rfc8620#section-5.6
https://datatracker.ietf.org/doc/html/rfc8620#section-5.6

Jenkins & Douglass Expires April 30, 2020 [Page 10]

Internet-Draft JMAP Calendars October 2019

 o The "includeInAvailability" property of the calendar for the
 principal is "all" or "attending".

 o The user has the "mayReadFreeBusy" permission for the calendar.

 o The event finishes after the "utcStart" argument and starts before
 the "utcEnd" argument.

 o The event's "privacy" property is not "secret".

 o The "freeBusyStatus" property of the event is "busy" (or omitted,
 as this is the default).

 o The "status" property of the event is not "cancelled".

 o If the "includeInAvailability" property of the calendar is
 "attending", then the principal is a participant of the event, and
 has a "participationStatus" of "accepted" or "tentative".

 The server then generates a BusyPeriod object for each of these
 events. A *BusyPeriod* object has the following properties:

 o *utcStart*: "UTCDate" The start time (inclusive) of the period
 this represents.

 o *utcEnd*: "UTCDate" The end time (exclusive) of the period this
 represents.

 o *busyStatus*: "String" (optional, default "unavailable") This MUST
 be one of

 * "confirmed": The event status is "confirmed".

 * "tentative": The event status is "tentative".

 * "unavailable": The principal is not available for scheduling at
 this time for any other reason.

 o *event*: "JSEvent|null" The JSEvent representation of the event,
 or null if any of the following are true:

 * The "showDetails" argument is false.

 * The "privacy" property of the event is "private".

 * The user does not have the "mayReadItems" permission for the
 calendar.

Jenkins & Douglass Expires April 30, 2020 [Page 11]

Internet-Draft JMAP Calendars October 2019

 The server MAY also generate BusyPeriod objects based on other
 information it has about the principal's availability, such as office
 hours.

 Finally, the server MUST merge and split BusyPeriod objects where the
 "event" property is null, such that none of them overlap and either
 there is a gap in time between any two objects (the utcEnd of one
 does not equal the utcStart of another) or those objects have a
 different busyStatus property. If there are overlapping BusyPeriod
 time ranges with different "busyStatus" properties the server MUST
 choose the value in the following order: confirmed > unavailable >
 tentative.

 The response has the following arguments:

 o *accountId*: "Id" The id of the account used for the call.

 o *id*: "Id" The id of the CalendarPrincipal availability is being
 returned for.

 o *utcStart*: "UTCDate" The start time (inclusive) of the period for
 which availability is being returned.

 o *utcEnd*: "UTCDate" The end time (exclusive) of the period for
 which availability is being returned.

 o *list*: "BusyPeriod[]" The list of BusyPeriod objects calculated
 as described above.

 The following additional errors may be returned instead of the
 "CalendarPrincipal/getAvailability" response:

 "notFound": No principal with this id exists, or the user does not
 have permission to see that this principal exists.

 "forbidden": The user does not have permission to query this
 principal's availability.

 "tooLarge": The duration between utcStart an utcEnd is longer than
 the server is willing to calculate availability for.

 "rateLimit": Too many availability requests have been made recently
 and the user is being rate limited. It may work to try again later.

Jenkins & Douglass Expires April 30, 2020 [Page 12]

Internet-Draft JMAP Calendars October 2019

3. Calendars

 A Calendar is a named collection of events. All events are
 associated with one, and only one, calendar.

 A *Calendar* object has the following properties:

 o *id*: "Id" (immutable; server-set) The id of the calendar.

 o *role*: "String|null" Denotes the calendar has a special purpose.
 This MUST be one of the following:

 * "inbox": This is the principal's default calendar; when the
 principal is invited to an event, this is the calendar to which
 it will be added by the server. There MUST NOT be more than
 one calendar with this role in an account.

 * "templates": This calendar holds templates for creating new
 events. All events in this calendar MUST have the "isDraft"
 property set to true. Clients should not show this as a
 regular calendar to users, but may offer users to create new
 events by copying one of the events in here.

 o *name*: "String" The user-visible name of the calendar. This may
 be any UTF-8 string of at least 1 character in length and maximum
 255 octets in size.

 o *description*: "String|null" An optional longer-form description
 of the calendar, to provide context in shared environments where
 users need more than just the name.

 o *color*: "String" The color to be used when displaying events
 associated with the calendar. The value MUST be a case-
 insensitive color name taken from the CSS3 set of names, defined
 in Section 4.3 of W3C.REC-css3-color-20110607, or a CSS3 RGB color
 hex value. The color SHOULD have sufficient contrast to be used
 as text on a white background.

 o *sortOrder*: "UnsignedInt" (default: 0) Defines the sort order of
 calendars when presented in the client's UI, so it is consistent
 between devices. The number MUST be an integer in the range 0 <=
 sortOrder < 2^31. A calendar with a lower order should be
 displayed before a calendar with a higher order in any list of
 calendars in the client's UI. Calendars with equal order SHOULD
 be sorted in alphabetical order by name. The sorting should take
 into account locale-specific character order convention.

Jenkins & Douglass Expires April 30, 2020 [Page 13]

Internet-Draft JMAP Calendars October 2019

 o *isSubscribed*: "Boolean" Has the user indicated they wish to see
 this Calendar in their client? This SHOULD default to false for
 Calendars in shared accounts the user has access to and true for
 any new Calendars created by the user themself. If false, the
 calendar should only be displayed when the user explicitly
 requests it or to offer it for the user to subscribe to.

 o *isVisible*: "Boolean" (default: true) Should the calendar's
 events be displayed to the user at the moment? Clients MUST
 ignore this property if isSubscribed is false.

 o *includeInAvailability*: "String" (default: all) Should the
 calendar's events be used as part of availability calculation?
 This MUST be one of:

 * "all": all events are considered.

 * "attending": events the user is a confirmed or tentative
 participant of are considered.

 * "none": all events are ignored.

 o *defaultAlertsWithTime*: "Alert[]" The alerts to apply for events
 where showWithoutTime is false that have "useDefaultAlerts" set.
 See [I-D.ietf-calext-jscalendar], Section 4.5.2 for the definition
 of an Alert object.

 o *defaultAlertsWithoutTime*: "Alert[]" The alerts to apply for
 events where showWithoutTime is true that have "useDefaultAlerts"
 set. See [I-D.ietf-calext-jscalendar], Section 4.5.2 for the
 definition of an Alert object.

 o *timeZone*: "String|null" The time zone to use for events without
 a time zone when the server needs to resolve them into absolute
 time, e.g., for reminders, queries, or availability calculation.
 The value MUST be a time zone id from the IANA Time Zone Database.
 If "null", the timeZone of the account's associated
 CalendarPrincipal will be used. Clients SHOULD use this as the
 default for new events in this calendar if set.

 o *participantIdentities*: "ParticipantIdentity[]|null" (server-set)
 The identities that represent the user in this calendar. The
 first item in the array is the default. A *ParticipantIdentity*
 object has the following properties:

 * *name*: "String" The display name of the participant to use
 when adding this participant to an event, e.g. "Joe Bloggs".

Jenkins & Douglass Expires April 30, 2020 [Page 14]

Internet-Draft JMAP Calendars October 2019

 * *type*: "String" The method for sending scheduling messages to
 this identity, e.g. "imip"

 * *uri*: "String" The URI for sending scheduling messages to this
 identity, e.g. "mailto:foo@example.com"

 The user is an *owner* for an event if the CalendarEvent object
 has a "participants" property, and one of the Participant objects
 has both: a) The "owner" role. b) A "sendTo" property that has
 "type" and "uri" equal to one of the ParticipantIdentity objects
 returned with the calendar.

 o *shareWith*: "Id[CalendarRights]|null" A map of CalendarPrincipal
 id to rights for principals this calendar is shared with. The
 pricincipal to which this calendar belongs MUST NOT be in this
 set. This is null if the user requesting the object does not have
 the mayAdmin right, or if the calendar is not shared with anyone.
 May be modified only if the user has the mayAdmin right.

 o *shareesActAs*: "String" (immutable; default server-dependent)
 This MUST be one of:

 * "owner"

 * "self"

 If "self", sharees act as themselves when using this calendar. If
 "owner", they act as the pricincipal to which this calendar
 belongs (secretary mode). If omitted, the default is server
 dependent. For example, it may be "self" if creating a calendar
 in a CalendarPrincipal representing a group, and "owner" if
 creating a calendar for an individual. Users may attempt to set
 this on creation, but the server may reject with an
 "invalidProperties" error if the value is not permissible.

 o *myRights*: "CalendarRights" (server-set) The set of access rights
 the user has in relation to this Calendar.

 A *CalendarRights* object has the following properties:

 o *mayReadFreeBusy*: "Boolean" The user may read the free-busy
 information for this calendar as part of a call to
 CalendarPrincipal/getAvailability (see Section XXX).

 o *mayReadItems*: "Boolean" The user may fetch the events in this
 calendar.

Jenkins & Douglass Expires April 30, 2020 [Page 15]

Internet-Draft JMAP Calendars October 2019

 o *mayAddItems*: "Boolean" The user may create new events on this
 calendar or move events to this calendar. For recurring events,
 they may add an override to add an occurrence, or remove an
 existing override that is excluding an occurrence.

 o *mayUpdatePrivate*: "Boolean" The user may modify the following
 properties on all events in the calendar. If shareesActAs is
 "self", these properties MUST all be stored per-user, and changes
 do not affect any other user of the calendar. If shareesActAs is
 "owner", the values are shared between all users.

 * keywords

 * color

 * freeBusyStatus

 * useDefaultAlerts

 * alerts

 The user may also modify the above on a per-occurrence basis for
 recurring events.

 o *mayRSVP*: "Boolean" The user may modify the
 "participationStatus", "participationComment", "expectReply" and
 "scheduleAgent" properties of any Participant object that is
 represented in the "participantIdentities" property of the
 calendar. The user may also modify the above on a per-occurrence
 basis for recurring events.

 o *mayUpdateOwn*: "Boolean" The user may modify an existing event on
 this calendar if either they are the owner of the event or the
 event has no owner.

 o *mayUpdateAll*: "Boolean" The user may modify all existing events
 on this calendar.

 o *mayRemoveOwn*: "Boolean" The user may delete an event or move it
 to a different calendar if either they are the owner of the event
 or the event has no owner. For recurring events, they may add an
 override to remove an occurrence.

 o *mayRemoveAll*: "Boolean" The user may delete any event or move it
 to a different calendar. For recurring events, they may add an
 override to remove an occurrence.

Jenkins & Douglass Expires April 30, 2020 [Page 16]

Internet-Draft JMAP Calendars October 2019

 o *mayAdmin*: "Boolean" The user may modify sharing for this
 calendar.

 o *mayDelete*: "Boolean" (server-set) The user may delete the
 calendar itself. This property MUST be false if the account to
 which this calendar belongs has the _isReadOnly_ property set to
 true.

3.1. Calendar/get

 This is a standard "/get" method as described in [RFC8620],
 Section 5.1. The _ids_ argument may be "null" to fetch all at once.

 If mayReadFreeBusy is the only permission the user has, the calendar
 MUST NOT be returned in Calendar/get and Calendar/query; it must
 behave as though it did not exist. The data is just used as part of
 CalendarPrincipal/getAvailability.

3.2. Calendar/changes

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.2.

3.3. Calendar/set

 This is a standard "/set" method as described in [RFC8620],
 Section 5.3 but with the following additional request argument:

 o *onDestroyRemoveEvents*: "Boolean" (default: false)

 If false, any attempt to destroy a Calendar that still has
 CalendarEvents in it will be rejected with a "calendarHasEvents"
 SetError. If true, any CalendarEvents that were in the Calendar will
 be destroyed. This SHOULD NOT send scheduling messages to
 participants or create CalendarEventNotification objects.

 The role and shareWith properties may only be set by users that have
 the mayAdmin right. The value is shared across all users, although
 users without the mayAdmin right cannot see the value.

 Users can subscribe or unsubscribe to a calendar by setting the
 isSubscribed property. The server MAY forbid users from subscribing
 to certain calendars even though they haver permission to see them,
 rejecting the update with a "forbidden" SetError.

 The timeZone, includeInAvailability, defaultAlertsWithoutTime and
 defaultAlertsWithTime properties are stored per-user if the calendar
 shareesActAs is "self" and may be set by any user who is subscribed

https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3

Jenkins & Douglass Expires April 30, 2020 [Page 17]

Internet-Draft JMAP Calendars October 2019

 to the calendar. Otherwise, these properties are shared, and may
 only be set by users that have the mayAdmin right.

 The following properties may be set by anyone who is subscribed to
 the calendar and are all stored per-user:

 o name

 o description

 o color

 o sortOrder

 o isVisible

 These properties are initially inherited from the owner's copy of the
 calendar, but if set by a sharee that user gets their own copy of the
 property; it does not change for any other principals. If the value
 of the property in the owner's calendar changes after this, it does
 not overwrite the sharee's value.

 The following extra SetError types are defined:

 For "destroy":

 o *calendarHasEvent*: The Calendar has at least one CalendarEvent
 assigned to it, and the "onDestroyRemoveEvents" argument was
 false.

4. Calendar Share Notifications

 The CalendarShareNotification data type records when the user's
 permissions to access a shared calendar changes.
 CalendarShareNotification are only created by the server; users
 cannot create them explicitly. Notifications are stored in the same
 Account as the CalendarPrincipals.

 Clients SHOULD present the list of notifications to the user and
 allow them to dismiss them. To dismiss a notification you use a
 standard "/set" call to destroy it.

 The server SHOULD create a CalendarShareNotification whenever the
 user's permissions change on a calendar. It SHOULD NOT create a
 notification for permission changes to a group principal, even if the
 user is in the group.

Jenkins & Douglass Expires April 30, 2020 [Page 18]

Internet-Draft JMAP Calendars October 2019

4.1. Auto-deletion of Notifications

 The server MAY limit the maximum number of notifications it will
 store for a user. When the limit is reached, any new notification
 will cause the previously oldest notification to be automatically
 deleted.

 The server MAY coalesce events if appropriate, or remove events that
 it deems are no longer relevant or after a certain period of time.
 The server SHOULD automatically destroy a notification about a
 calendar if the user subscribes to that calendar.

4.2. Object Properties

 The *CalendarShareNotification* object has the following properties:

 o *id*: "String" The id of the CalendarShareNotification.

 o *created*: "UTCDate" The time this notification was created.

 o *changedBy*: "Person" Who made the change.

 * *name*: "String" The name of the person who made the change.

 * *email*: "String" The email of the person who made the change.

 * *calendarPrincipalId*: "String|null" The id of the calendar
 principal corresponding to the person who made the change.

 o *calendarAccountId*: "String" The id of the account where this
 calendar exists.

 o *calendarId*: "String" The id of the CalendarEvent that this
 notification is about.

 o *calendarName*: "String" The name of the calendar at the time the
 notification was made.

 o *oldRights*: "CalendarRights|null" The rights the user had before
 the change.

 o *newRights*: "CalendarRights|null" The rights the user has after
 the change.

Jenkins & Douglass Expires April 30, 2020 [Page 19]

Internet-Draft JMAP Calendars October 2019

4.3. CalendarShareNotification/get

 This is a standard "/get" method as described in [RFC8620],
 Section 5.1.

4.4. CalendarShareNotification/changes

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.2.

4.5. CalendarShareNotification/set

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.3.

 Only destroy is supported; any attempt to create/update MUST be
 rejected with a "forbidden" SetError.

4.6. CalendarShareNotification/query

 This is a standard "/query" method as described in [RFC8620],
 Section 5.5.

4.6.1. Filtering

 A *FilterCondition* object has the following properties:

 o *after*: "UTCDate|null" The creation date must be on or after this
 date to match the condition.

 o *before*: "UTCDate|null" The creation date must be before this
 date to match the condition.

4.6.2. Sorting

 The "created" property MUST be supported for sorting.

4.7. CalendarShareNotification/queryChanges

 This is a standard "/queryChanges" method as described in [RFC8620],
 Section 5.6.

5. Calendar Events

 A *CalendarEvent* object contains information about an event, or
 recurring series of events, that takes place at a particular time.
 It is a JSEvent object, as defined in [I-D.ietf-calext-jscalendar],
 with the following additional properties:

https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5
https://datatracker.ietf.org/doc/html/rfc8620#section-5.6
https://datatracker.ietf.org/doc/html/rfc8620#section-5.6

Jenkins & Douglass Expires April 30, 2020 [Page 20]

Internet-Draft JMAP Calendars October 2019

 o *id*: "Id" The id of the CalendarEvent. This property is
 immutable. The id uniquely identifies a JSEvent with a particular
 "uid" and "recurrenceId" within a particular account.

 o *calendarId*: "Id" The id of the Calendar this event belongs to.

 o *isDraft*: "Boolean" If true, this event is to be considered a
 draft; the server will not send any scheduling messages to
 participants while this is true. To use, this must be set on
 creation. Once set to false, the value cannot be updated to true.

 o *utcStart*: "UTCDate" For simple clients that do not or cannot
 implement time zone support. Clients should only use this if also
 asking the server to expand recurrences, as you cannot accurately
 expand a recurrence without the original time zone. This property
 is calculated at fetch time by the server. Time zones are
 political and they can and do change at any time. Fetching
 exactly the same property again may return a different results if
 the time zone data has been updated on the server. Time zone data
 changes are not considered "updates" to the event. If set, server
 will convert to the event's current time zone using its current
 time zone data and store the local time. This is not included by
 default and must be requested explicitly. Floating events will be
 interpreted as per calendar's time zone property; or if not set,
 the the principal's time zone property.

 o *utcEnd*: "UTCDate" The server calculates the end time in UTC from
 the start/timeZone/duration properties of the event. This is not
 included by default and must be requested explicitly. Like
 utcStart, this is calculated at fetch time if requested and may
 change due to time zone data changes.

 CalendarEvent objects MUST NOT have a "method" property as this is
 only used when representing iTIP [RFC5546] scheduling messages, not
 events in a data store.

5.1. Attachments

 The Link object, as defined in [I-D.ietf-calext-jscalendar]
Section 4.2.7, with a "rel" property equal to "enclosure" is used to

 represent attachments. Instead of mandating an "href" property,
 clients may set a "blobId" property instead to reference a blob of
 binary data in the account, as per [RFC8620] Section 6.

 The server MUST translate this to an embedded "data:" URL [RFC2397]
 when sending the event to a system that cannot access the blob.
 Servers that support CalDAV access to the same data are recommended
 to expose these files as managed attachments [?@RFC8607].

https://datatracker.ietf.org/doc/html/rfc5546
https://datatracker.ietf.org/doc/html/rfc8620#section-6
https://datatracker.ietf.org/doc/html/rfc2397
https://datatracker.ietf.org/doc/html/rfc8607

Jenkins & Douglass Expires April 30, 2020 [Page 21]

Internet-Draft JMAP Calendars October 2019

5.2. Per-user properties

 In shared calendars where "shareesActAs" is "self", the following
 properties MUST be stored per-user:

 o keywords

 o color

 o freeBusyStatus

 o useDefaultAlerts

 o alerts

 The user may also modify the above on a per-occurrence basis for
 recurring events; again, these MUST be stored per-user.

 When writing per-user properties, the "updated" property MUST also be
 stored just for that user. When fetching the "updated" property, the
 value to return is whichever is later of the per-user updated time or
 the updated time of the master event.

5.3. Recurring events

 Events may recur, in which case they represent multiple occurrences
 or instances. The data store will either contain a single master
 event, containing a recurrence rule and/or recurrence overrides; or,
 a set of individual instances (when invited to specific occurrences
 only).

 The client may ask the server to expand recurrences within a specific
 time range in "CalendarEvent/query". This will generate synthetic
 ids representing individual instances in the requested time range.
 The client can fetch and update the objects using these ids and the
 server will make the appropriate changes to the master event.
 Synthetic ids do not appear in "CalendarEvent/changes" responses;
 only the ids of events as actually stored on the server.

 If the user is invited to specific instances then later added to the
 master event, "CalendarEvent/changes" will show the ids of all the
 individual instances being destroyed and the id for the master event
 being created.

Jenkins & Douglass Expires April 30, 2020 [Page 22]

Internet-Draft JMAP Calendars October 2019

5.4. CalendarEvent/get

 This is a standard "/get" method as described in [RFC8620],
 Section 5.1, with three extra arguments:

 o *recurrenceOverridesBefore*: "UTCDate|null" If given, only
 recurrence overrides with a recurrence id on or after this date
 (when translated into UTC) will be returned.

 o *recurrenceOverridesAfter*: "UTCDate|null" If given, only
 recurrence overrides with a recurrence id before this date (when
 translated into UTC) will be returned.

 o *reduceParticipants*: "Boolean" (default: false) If true, only
 participants with the "owner" role or corresponding to the user's
 participant identities will be returned in the "participants"
 property of the master event and any recurrence overrides. If
 false, all participants will be returned.

 A CalendarEvent object is a JSEvent object so may have arbitrary
 properties. If the client makes a "CalendarEvent/get" call with a
 null or omitted "properties" argument, all properties defined on the
 JSEvent object in the store are returned, along with the "id",
 "calendarId", and "isDraft" properties. The "utcStart" and "utcEnd"
 computed properties are only returned if explicitly requested.

 If specific properties are requested from the JSEvent and the
 property is not present on the object in the server's store, the
 server SHOULD return the default value if known for that property.

 An id requested by the server may represent a single instance of a
 recurring event if the client asked the server to expand recurrences
 in "CalendarEvent/query". In such a case, the server will resolve
 any overrides and set the appropriate "start" and "recurrenceId"
 properties on the CalendarEvent object returned to the client. The
 "recurrenceRule" and "recurrenceOverrides" properties MUST be
 returned as null if requested for such an event.

 An event with the same uid/recurrenceId may appear in different
 accounts. Clients may coalesce the view of such events, but must be
 aware that the data may be different in the different accounts due to
 per-user properties, difference in permissions etc.

 The "privacy" property of a JSEvent object allows the owner to
 override how sharees of the calendar see the event. If this is set
 to "private", when a sharee fetches the event the server MUST only
 return the basic time and metadata properties of the JSEvent object
 as specified in [I-D.ietf-calext-jscalendar], Section 4.4.3. If set

https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.1

Jenkins & Douglass Expires April 30, 2020 [Page 23]

Internet-Draft JMAP Calendars October 2019

 to "secret", the server MUST behave as though the event does not
 exist for all users other than the owner.

5.5. CalendarEvent/changes

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.2.

5.6. CalendarEvent/set

 This is a standard "/set" method as described in [RFC8620],
 Section 5.3, with the following extra argument:

 o *sendSchedulingMessages*: "Boolean" (default: true) If true then
 any changes to scheduled events will be sent to all the
 participants (if the user is an owner of the event) or back to the
 owners (otherwise). If false, the changes only affect this
 calendar and no scheduling messages will be sent.

 For recurring events, an id may represent the master event or a
 specific instance. When the id for a specific instance is given, the
 server MUST process an update as an update to the recurrence override
 for that instance on the master event, and a destroy as removing just
 that instance.

 Clients MUST NOT send an update/destroy to both the master event and
 a specific instance in a single "/set" request; the result of this is
 undefined.

 Servers MUST enforce the user's permissions as returned in the
 "myRights" property of the Calendar object and reject changes with a
 "forbidden" SetError if not allowed.

 The "privacy" property MUST NOT be set to anything other than
 "public" (the default) for events in a calendar that does not belong
 to the user (e.g. a shared team calendar). The server MUST reject
 this with an _invalidProperties_ SetError.

 The server MUST reject attempts to add events with a "participants"
 property where none of the participants correspond to one of the
 calendar's participant identities with a "forbidden" SetError.

 If omitted on create, the server MUST set the following properties to
 an appropriate value:

 o @type

 o uid

https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3

Jenkins & Douglass Expires April 30, 2020 [Page 24]

Internet-Draft JMAP Calendars October 2019

 o created

 o updated

 When modifying the event, the server MUST set the following
 properties if not explicitly set in the update:

 o updated: set to the current time.

 o sequence: increment by one, unless only per-user properties (see
 Section XXX) were changed.

 The "created" property MUST NOT be updated after creation. The
 "sequence" property MUST NOT be set to a lower number than its
 current value. The "method" property MUST NOT be set. Any attempt
 to do these is rejected with a standard "invalidProperties" SetError.

 The server does not automatically reset the "partipationStatus" or
 "expectReply" properties of a Participant if the event details
 change. Clients should either be intelligent about whether the
 change necessitates resending RSVP requests, or ask the user whether
 to send them.

 The server MAY enforce that all events have an owner, for example in
 team calendars. If the user tries to create an event without
 participants in such a calendar, the server MUST automatically add a
 participant with the "owner" role corresponding to one of the user's
 "participantIdentities" for the calendar.

 When creating an event with participants, or adding participants to
 an event that previously did not have participants, the server MUST
 set the "replyTo" property of the event if not present. Clients
 SHOULD NOT set the replyTo property for events when the user adds
 participants; the server is better positioned to add all the methods
 it supports to receive replies.

5.6.1. Sending invitations and responses

 Unless "sendSchedulingMessages" is false, the server MUST send
 appropriate iTIP [RFC5546] scheduling messages after successfuly
 creating, updating or destroying a calendar event.

 When determining which scheduling messages to send, the server must
 first establish whether it is the _source_ of the event. The server
 is the source if it will receive messages sent to any of the methods
 specified in the "replyTo" property of the event.

https://datatracker.ietf.org/doc/html/rfc5546

Jenkins & Douglass Expires April 30, 2020 [Page 25]

Internet-Draft JMAP Calendars October 2019

 Messages are only sent to participants with a "scheduleAgent"
 property set to "server" or omitted. If the effective
 "scheduleAgent" property is changed:

 o to "server" from something else: send messages to this participant
 as though the event had just been created.

 o from "server" to something else: send messages to this participant
 as though the event had just been destroyed.

 o any other change: do not send any messages to this participant.

 The server may send the scheduling message via any of the methods
 defined on the sendTo property of a participant (if the server is the
 source) or the replyTo property of the event (otherwise) that it
 supports. If no supported methods are available, the server MUST
 reject the change with a "noSupportedScheduleMethods" SetError.

 If the server is the source of the event it MUST NOT send messages to
 any participant corresponding to the participantIdentities of the
 calendar it is in.

 If sending via iMIP [RFC6047], the server MAY choose to only send
 updates it deems "essential" to avoid flooding the recipient's email
 with changes they do not care about. For example, changes to the
 participationStatus of another participant, or changes to events
 solely in the past may be omitted.

5.6.1.1. REQUEST

 When the server is the source for the event, a REQUEST message
 ([RFC5546], Section 3.2.2) is sent to all current participants if:

 o The event is being created.

 o Any non per-user property (see Section XXX) is updated on the
 event (including adding/removing participants), except if just
 modifying the recurrenceOverrides such that CANCEL messages are
 generated (see the next section).

 Note, if the only change is adding an additional instance (not
 generated by the event's recurrence rule) to the recurrenceOverrides,
 this could be handled via sending an ADD message ([RFC5546],
 Section 3.2.4) for the single instance rather than a REQUEST message
 for the master. However, for interoperability reasons this is not
 recommended due to poor support in the wild for this type of message.

https://datatracker.ietf.org/doc/html/rfc6047
https://datatracker.ietf.org/doc/html/rfc5546#section-3.2.2
https://datatracker.ietf.org/doc/html/rfc5546#section-3.2.4
https://datatracker.ietf.org/doc/html/rfc5546#section-3.2.4

Jenkins & Douglass Expires April 30, 2020 [Page 26]

Internet-Draft JMAP Calendars October 2019

 The server MUST ensure participants are only sent information about
 recurrence instances they are added to when sending scheduling
 messages for recurring events. If the participant is not invited to
 the master recurring event but only individual instances, scheduling
 messages MUST be sent for just those expanded occurrences
 individually. If a participant is invited to a recurring event, but
 removed via a recurrence override from a particular instance, any
 scheduling messages to this participant MUST return the instance as
 "excluded" (if it matches a recurrence rule for the event) or omit
 the instance entirely (otherwise).

5.6.1.2. CANCEL

 When the server is the source for the event, a CANCEL message
 ([RFC5546], Section 3.2.5) is sent if:

 o A participant is removed from either the master event or a single
 instance (the message is only sent to this participant; remaining
 participants will get a REQUEST, as described above).

 o The event is destroyed.

 o An exclusion is added to recurrenceOverrides to remove an instance
 generated by the event's recurrence rule.

 o An additional instance (not generated by the event's recurrence
 rule) is removed from the recurrenceOverrides.

 In each of the latter 3 cases, the message is sent to all
 participants.

5.6.1.3. REPLY

 When the server is _not_ the source for the event, a REPLY message
 ([RFC5546], Section 3.2.3) is sent for any participant corresponding
 to the participantIdentities of the calendar it is in if:

 o The "participationStatus" property of the participant is changed.

 o The event is destroyed and the participationStatus was not "needs-
 action".

 o The event is created and the participationStatus is not "needs-
 action".

 o An exclusion is added to recurrenceOverrides to remove an instance
 generated by the event's recurrence rule.

https://datatracker.ietf.org/doc/html/rfc5546#section-3.2.5
https://datatracker.ietf.org/doc/html/rfc5546#section-3.2.3

Jenkins & Douglass Expires April 30, 2020 [Page 27]

Internet-Draft JMAP Calendars October 2019

 o An exclusion is removed from recurrenceOverrides (this is presumed
 to be the client undoing the deletion of a single instance).

 o An instance not generated by the event's recurrence rule is
 removed from the recurrenceOverrides.

 o An instance not generated by the event's recurrence rule is added
 to the recurrenceOverrides (this is presumed to be the client
 undoing the deletion of a single instance).

 A reply is not sent when deleting an event where the current status
 is "needs-action" as if a junk calendar event gets added by an
 automated system, the user MUST be able to delete the event without
 sending a reply.

5.7. CalendarEvent/copy

 This is a standard "/copy" method as described in [RFC8620],
 Section 5.4.

5.8. CalendarEvent/query

 This is a standard "/query" method as described in [RFC8620],
 Section 5.5, with two extra arguments:

 o *expandRecurrences*: "Boolean" (default: false) If true, the
 server will expand any recurring event. If true, the filter MUST
 be just a FilterCondition (not a FilterOperator) and MUST include
 both a before and after property. This ensures the server is not
 asked to return an infinite number of results.

 o *timeZone*: "String" The time zone for before/after filter
 conditions (default: "Etc/UTC")

 If expandRecurrences is true, a separate id will be returned for each
 instance of a recurring event that matches the query. Otherwise, a
 single id will be returned for matching recurring events that
 represents the entire event.

 There is no necessary correspondence between the ids of different
 instances of the same expanded event.

 The following additional error may be returned instead of the
 "CalendarEvent/query" response:

 "cannotCalculateOccurrences": the server cannot expand a recurrence
 required to return the results for this query.

https://datatracker.ietf.org/doc/html/rfc8620#section-5.4
https://datatracker.ietf.org/doc/html/rfc8620#section-5.4
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5

Jenkins & Douglass Expires April 30, 2020 [Page 28]

Internet-Draft JMAP Calendars October 2019

5.8.1. Filtering

 A *FilterCondition* object has the following properties:

 o *inCalendars*: "Id[]|null" A list of calendar ids. An event must
 be in ANY of these calendars to match the condition.

 o *after*: "LocalDate|null" The end of the event, or any recurrence
 of the event, in the time zone given as the timeZone argument,
 must be after this date to match the condition.

 o *before*: "LocalDate|null" The start of the event, or any
 recurrence of the event, in the time zone given as the timeZone
 argument, must be before this date to match the condition.

 o *text*: "String|null" Looks for the text in the _title_,
 description, _locations_ (matching name/description),
 participants (matching name/email) and any other textual
 properties of the event or any recurrence of the event.

 o *title*: "String|null" Looks for the text in the _title_ property
 of the event, or the overridden _title_ property of a recurrence.

 o *description*: "String|null" Looks for the text in the
 description property of the event, or the overridden
 description property of a recurrence.

 o *location*: "String|null" Looks for the text in the _locations_
 property of the event (matching name/description of a location),
 or the overridden _locations_ property of a recurrence.

 o *owner*: "String|null" Looks for the text in the name or email
 fields of a participant in the _participants_ property of the
 event, or the overridden _participants_ property of a recurrence,
 where the participant has a role of "owner".

 o *attendee*: "String|null" Looks for the text in the name or email
 fields of a participant in the _participants_ property of the
 event, or the overridden _participants_ property of a recurrence,
 where the participant has a role of "attendee".

 o *participationStatus*: Must match. If owner/attendee condition,
 status must be of that participant. Otherwise any.

 o *uid*: "String" The uid of the event is exactly the given string.

 If expandRecurrences is true, all conditions must match against the
 same instance of a recurring event for the instance to match. If

Jenkins & Douglass Expires April 30, 2020 [Page 29]

Internet-Draft JMAP Calendars October 2019

 expandRecurrences is false, all conditions must match, but they may
 each match any instance of the event.

 If zero properties are specified on the FilterCondition, the
 condition MUST always evaluate to "true". If multiple properties are
 specified, ALL must apply for the condition to be "true" (it is
 equivalent to splitting the object into one-property conditions and
 making them all the child of an AND filter operator).

 The exact semantics for matching "String" fields is *deliberately not
 defined* to allow for flexibility in indexing implementation, subject
 to the following:

 o Text SHOULD be matched in a case-insensitive manner.

 o Text contained in either (but matched) single or double quotes
 SHOULD be treated as a *phrase search*, that is a match is
 required for that exact sequence of words, excluding the
 surrounding quotation marks. Use "\"", "\'" and "\\" to match a
 literal """, "'" and "\" respectively in a phrase.

 o Outside of a phrase, white-space SHOULD be treated as dividing
 separate tokens that may be searched for separately in the event,
 but MUST all be present for the event to match the filter.

 o Tokens MAY be matched on a whole-word basis using stemming (so for
 example a text search for "bus" would match "buses" but not
 "business").

5.8.2. Sorting

 The following properties MUST be supported for sorting:

 o start

 o uid

 o recurrenceId

 The following properties SHOULD be supported for sorting:

 o created

 o updated

Jenkins & Douglass Expires April 30, 2020 [Page 30]

Internet-Draft JMAP Calendars October 2019

5.9. CalendarEvent/queryChanges

 This is a standard "/queryChanges" method as described in [RFC8620],
 Section 5.6.

5.10. Examples

 TODO: Add example of how to get event by uid: query uid=foo and
 backref. Return multiple with recurrenceId set (user invited to
 specific instances of recurring event).

6. Alerts

 Alerts may be specified on events as described in
 [I-D.ietf-calext-jscalendar], Section 4.5. If the "useDefaultAlerts"
 property is true, the alerts are taken from the Calendar
 "defaultAlertsWithTime" or "defaultAlertsWithoutTime" property, as
 described in Section XXX. Otherwise, the alerts are taken from the
 "alerts" property of the CalendarEvent.

 Alerts MUST only be triggered for events in calendars where the user
 is subscribed and either the user owns the calendar or the calendar's
 "shareesActAs" property is "self".

 When an alert with an "email" action is triggered, the server MUST
 send an email to the user to notify them of the event. The contents
 of the email is implementation specific. Clients MUST NOT perform an
 action for these alerts.

 When an alert with a "display" action is triggered, clients SHOULD
 display an alert in a platform-appropriate manner to the user to
 remind them of the event. Clients with a full offline cache of
 events may choose to calculate when alerts should trigger locally.
 Alternatively, they can subscribe to push events from the server.

6.1. Push events

 Servers that support the "urn:ietf:params:jmap:calendars" capability
 MUST support registering for the pseudo-type "CalendarAlert" in push
 subscriptions and event source connections, as described in
 [RFC8620], Sections 7.2 and 7.3.

 If requested, a CalendarAlert notification will be pushed whenever an
 alert is triggered for the user. For Event Source connections, this
 notification is pushed as an event called "calendaralert".

 A *CalendarAlert* object has the following properties:

https://datatracker.ietf.org/doc/html/rfc8620#section-5.6
https://datatracker.ietf.org/doc/html/rfc8620#section-5.6
https://datatracker.ietf.org/doc/html/rfc8620

Jenkins & Douglass Expires April 30, 2020 [Page 31]

Internet-Draft JMAP Calendars October 2019

 o *@type*: "String" This MUST be the string "CalendarAlert".

 o *accountId*: "String" The account id for the calendar in which the
 alert triggered.

 o *calendarEventId*: "String" The CalendarEvent id for the alert
 that triggered.

 o *uid*: "String" The uid property of the CalendarEvent for the
 alert that triggered.

 o *recurrenceId*: "String|null" The recurrenceId for the instance of
 the event for which this alert is being triggered, or "null" if
 the event is not recurring.

 o *alertId*: "String" The id for the alert that triggered.

6.2. Acknowledging an alert

 To dismiss an alert, clients set the "acknowledged" property of the
 Alert object to the current date-time. When other clients fetch the
 CalendarEvent with the updated Alert they SHOULD automatically
 dismiss or suppress duplicate alerts (alerts with the same alert id
 that triggered on or before this date-time).

 Setting the "acknowledged" property MUST NOT create a new recurrence
 override. For a recurring calendar object, the "acknowledged"
 property of the parent object MUST be updated, unless the alert is
 already overridden in the "recurrenceOverrides" property.

6.3. Snoozing an alert

 Users may wish to dismiss an alert temporarily and have it come back
 after a specific period of time. To do this, clients MUST:

 1. Acknowledge the alert as described in Section XXX.

 2. Add a new alert with an "AbsoluteTrigger" for the date-time the
 alert has been snoozed until. Add a "relatedTo" property to the
 new alert, setting the "parent" relation to point to the original
 alert. This MUST NOT create a new recurrence override; it is
 added to the same "alerts" property that contains the alert being
 snoozed.

 When acknowledging a snoozed alert (i.e. one with a parent relatedTo
 pointing to the original alert), the client SHOULD delete the alert
 rather than setting the "acknowledged" property.

Jenkins & Douglass Expires April 30, 2020 [Page 32]

Internet-Draft JMAP Calendars October 2019

7. Calendar Event Notifications

 The CalendarEventNotification data type records changes made by
 external entities to events in calendars the user is subscribed to.
 Notifications are stored in the same Account as the CalendarEvent
 that was changed.

 Notifications are only created by the server; users cannot create
 them directly. Clients SHOULD present the list of notifications to
 the user and allow them to dismiss them. To dismiss a notification
 you use a standard "/set" call to destroy it.

 The server SHOULD create a CalendarEventNotification whenever an
 event is added, updated or destroyed by another user or due to
 receiving an iTIP [RFC5546] or other scheduling message in a calendar
 this user is subscribed to. The server SHOULD NOT create
 notifications for events implicitly deleted due to the containing
 calendar being deleted.

7.1. Auto-deletion of Notifications

 The server MAY limit the maximum number of notifications it will
 store for a user. When the limit is reached, any new notification
 will cause the previously oldest notification to be automatically
 deleted.

 The server MAY coalesce events if appropriate, or remove events that
 it deems are no longer relevant or after a certain period of time.
 The server SHOULD automatically destroy a notification about an event
 if the user updates or destroys that event (e.g. if the user sends an
 RSVP for the event).

7.2. Object Properties

 The *CalendarEventNotification* object has the following properties:

 o *id*: "String" The id of the CalendarEventNotification.

 o *created*: "UTCDate" The time this notification was created.

 o *changedBy*: "Person" Who made the change.

 * *name*: "String" The name of the person who made the change.

 * *email*: "String" The email of the person who made the change.

 * *calendarPrincipalId*: "String|null" The id of the calendar
 principal corresponding to the person who made the change, if

https://datatracker.ietf.org/doc/html/rfc5546

Jenkins & Douglass Expires April 30, 2020 [Page 33]

Internet-Draft JMAP Calendars October 2019

 any. This will be null if the change was due to receving an
 iTIP message.

 o *comment*: "String|null" Comment sent along with the change by the
 user that made it. (e.g. COMMENT property in an iTIP message).

 o *type*: "String" This MUST be one of

 * created

 * updated

 * destroyed

 o *calendarEventId*: "String" The id of the CalendarEvent that this
 notification is about.

 o *isDraft*: "Boolean" (created/updated only) Is this event a draft?

 o *event*: "JSEvent" The data before the change (if updated or
 destroyed), or the data after creation (if created).

 o *eventPatch*: "PatchObject" (updated only) A patch encoding the
 change between the data in the event property, and the data after
 the update.

 To reduce data, if the change only affects a single instance of a
 recurring event, the server MAY set the event and eventPatch
 properties for the instance; the calendarEventId MUST still be for
 the master event.

7.3. CalendarEventNotification/get

 This is a standard "/get" method as described in [RFC8620],
 Section 5.1.

7.4. CalendarEventNotification/changes

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.2.

7.5. CalendarEventNotification/set

 This is a standard "/changes" method as described in [RFC8620],
 Section 5.3.

 Only destroy is supported; any attempt to create/update MUST be
 rejected with a "forbidden" SetError.

https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.1
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.2
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3
https://datatracker.ietf.org/doc/html/rfc8620#section-5.3

Jenkins & Douglass Expires April 30, 2020 [Page 34]

Internet-Draft JMAP Calendars October 2019

7.6. CalendarEventNotification/query

 This is a standard "/query" method as described in [RFC8620],
 Section 5.5.

7.6.1. Filtering

 A *FilterCondition* object has the following properties:

 o *after*: "UTCDate|null" The creation date must be on or after this
 date to match the condition.

 o *before*: "UTCDate|null" The creation date must be before this
 date to match the condition.

 o *type*: "String" The type property must be the same to match the
 condition.

 o *calendarEventIds*: "Id[]|null" A list of event ids. The
 calendarEventId property of the notification must be in this list
 to match the condition.

7.6.2. Sorting

 The "created" property MUST be supported for sorting.

7.7. CalendarEventNotification/queryChanges

 This is a standard "/queryChanges" method as described in [RFC8620],
 Section 5.6.

8. Security Considerations

 All security considerations of JMAP [RFC8620] and JSCalendar
 [I-D.ietf-calext-jscalendar] apply to this specification. Additional
 considerations specific to the data types and functionality
 introduced by this document are described in the following
 subsections.

8.1. Denial-of-service Expanding Recurrences

 Recurrence rules can be crafted to occur as frequently as every
 second. Servers MUST be careful to not allow resources to be
 exhausted when expanding. Equally, rules can be generated that never
 create any occurrences at all. Servers MUST be careful to limit the
 work spent iterating in search of the next occurrence.

https://datatracker.ietf.org/doc/html/rfc8620#section-5.5
https://datatracker.ietf.org/doc/html/rfc8620#section-5.5
https://datatracker.ietf.org/doc/html/rfc8620#section-5.6
https://datatracker.ietf.org/doc/html/rfc8620#section-5.6
https://datatracker.ietf.org/doc/html/rfc8620

Jenkins & Douglass Expires April 30, 2020 [Page 35]

Internet-Draft JMAP Calendars October 2019

8.2. Privacy

 TODO.

9. IANA Considerations

9.1. JMAP Capability Registration for "calendars"

 IANA will register the "calendars" JMAP Capability as follows:

 Capability Name: "urn:ietf:params:jmap:calendars"

 Specification document: this document

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, Section XXX

9.2. Reservation of JMAP attributes in JSCalendar Property registry

 TODO.

10. References

10.1. Normative References

 [I-D.ietf-calext-jscalendar]
 Jenkins, N. and R. Stepanek, "JSCalendar: A JSON
 representation of calendar data", draft-ietf-calext-

jscalendar-20 (work in progress), October 2019.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2397] Masinter, L., "The "data" URL scheme", RFC 2397,
 DOI 10.17487/RFC2397, August 1998,
 <https://www.rfc-editor.org/info/rfc2397>.

 [RFC5546] Daboo, C., Ed., "iCalendar Transport-Independent
 Interoperability Protocol (iTIP)", RFC 5546,
 DOI 10.17487/RFC5546, December 2009,
 <https://www.rfc-editor.org/info/rfc5546>.

https://datatracker.ietf.org/doc/html/draft-ietf-calext-jscalendar-20
https://datatracker.ietf.org/doc/html/draft-ietf-calext-jscalendar-20
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2397
https://www.rfc-editor.org/info/rfc2397
https://datatracker.ietf.org/doc/html/rfc5546
https://www.rfc-editor.org/info/rfc5546

Jenkins & Douglass Expires April 30, 2020 [Page 36]

Internet-Draft JMAP Calendars October 2019

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8620] Jenkins, N. and C. Newman, "The JSON Meta Application
 Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July
 2019, <https://www.rfc-editor.org/info/rfc8620>.

10.2. Informative References

 [RFC4791] Daboo, C., Desruisseaux, B., and L. Dusseault,
 "Calendaring Extensions to WebDAV (CalDAV)", RFC 4791,
 DOI 10.17487/RFC4791, March 2007,
 <https://www.rfc-editor.org/info/rfc4791>.

 [RFC6047] Melnikov, A., Ed., "iCalendar Message-Based
 Interoperability Protocol (iMIP)", RFC 6047,
 DOI 10.17487/RFC6047, December 2010,
 <https://www.rfc-editor.org/info/rfc6047>.

Authors' Addresses

 Neil Jenkins
 Fastmail
 PO Box 234, Collins St West
 Melbourne VIC 8007
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

 Michael Douglass
 Spherical Cow Group
 226 3rd Street
 Troy NY 12180
 United States of America

 Email: mdouglass@sphericalcowgroup.com
 URI: http://sphericalcowgroup.com

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8620
https://www.rfc-editor.org/info/rfc8620
https://datatracker.ietf.org/doc/html/rfc4791
https://www.rfc-editor.org/info/rfc4791
https://datatracker.ietf.org/doc/html/rfc6047
https://www.rfc-editor.org/info/rfc6047
https://www.fastmail.com
http://sphericalcowgroup.com

Jenkins & Douglass Expires April 30, 2020 [Page 37]

