
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-contacts-00

Published: 17 October 2022

Intended Status: Standards Track

Expires: 20 April 2023

Authors: N.M. Jenkins, Ed.

Fastmail

JMAP for Contacts

Abstract

This document specifies a data model for synchronising contacts data

with a server using JMAP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. Notational conventions

1.2. Terminology

1.3. Data Model Overview

1.4. Addition to the Capabilities Object

1.4.1. urn:ietf:params:jmap:contacts

2. AddressBooks

2.1. AddressBook/get

2.2. AddressBook/changes

2.3. AddressBook/set

3. Cards

3.1. Card/get

3.2. Card/changes

3.3. Card/query

3.3.1. Filtering

3.3.2. Sorting

3.4. Card/queryChanges

3.5. Card/set

3.6. Card/copy

4. Card Groups

4.1. CardGroup/get

4.2. CardGroup/changes

4.3. CardGroup/set

5. Security considerations

6. IANA Considerations

6.1. JMAP capability registration for "contacts"

7. Normative References

Author's Address

1. Introduction

JMAP ([RFC8620] JSON Meta Application Protocol) is a generic

protocol for synchronising data, such as mail, calendars or

contacts, between a client and a server. It is optimised for mobile

and web environments, and aims to provide a consistent interface to

different data types.

This specification defines a data model for synchronising contacts

between a client and a server using JMAP.

1.1. Notational conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

¶

Type signatures, examples and property descriptions in this document

follow the conventions established in Section 1.1 of [RFC8620]. Data

types defined in the core specification are also used in this

document.

1.2. Terminology

The same terminology is used in this document as in the core JMAP

specification, see [RFC8620], Section 1.6.

The terms AddressBook, CardGroup, and Card (with these specific

capitalizations) are used to refer to the data types defined in this

document and instances of those data types.

1.3. Data Model Overview

An Account (see [RFC8620], Section 1.6.2) with support for the

contacts data model contains zero or more AddressBook objects, which

is a named collection of Cards and CardGroups. A Card is a

representation of a person, company, or other entity in RFCXXXX

JSContact Card format. A CardGroup is a named set of zero or more

UIDs, used to represent a group of Cards, in RFCXXXX JSContact

CardGroup format. Each Card or CardGroup belongs to exactly one

AddressBook.

In servers with support for JMAP Sharing [RFC XXX], data may be

shared with other users. Sharing permissions are managed per

AddressBook.

1.4. Addition to the Capabilities Object

The capabilities object is returned as part of the JMAP Session

object; see [RFC8620], Section 2. This document defines two

additional capability URIs.

1.4.1. urn:ietf:params:jmap:contacts

This represents support for the AddressBook, CardGroup, and Card

data types and associated API methods. The value of this property in

the JMAP Session capabilities property is an empty object.

The value of this property in an account’ (U+2019)s

accountCapabilities property is an object that MUST contain the

following information on server capabilities and permissions for

that account:

mayCreateAddressBook: Boolean If true, the user may create an

AddressBook in this account.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

2. AddressBooks

An AddressBook is a named collection of Cards and CardGroups. All

Cards and CardGroups are associated with exactly one AddressBook.

A AddressBook object has the following properties:

id: Id (immutable; server-set) The id of the AddressBook.

name: String The user-visible name of the AddressBook. This may

be any UTF-8 string of at least 1 character in length and maximum

255 octets in size.

isSubscribed: Boolean Has the user indicated they wish to see

this AddressBook in their client? This SHOULD default to false

for AddressBooks in shared accounts the user has access to and

true for any new AddressBooks created by the user themself.

If false, the AddressBook and its contents should only be

displayed when the user explicitly requests it or to offer it for

the user to subscribe to.

shareWith: Id[AddressBookRights]|null (default: null) A map of

Principal id to rights for principals this AddressBook is shared

with. The principal to which this AddressBook belongs MUST NOT be

in this set. This is null if the AddressBook is not shared with

anyone. May be modified only if the user has the mayAdmin right.

The account id for the principals may be found in the

urn:ietf:params:jmap:principals:owner capability of the Account

to which the AddressBook belongs.

myRights: AddressBookRights (server-set) The set of access rights

the user has in relation to this AddressBook.

An AddressBookRights object has the following properties:

mayRead: Boolean The user may fetch the Cards and CardGroups in

this AddressBook.

mayWrite: Boolean The user may create, modify or destroy all

Cards and CardGroups in this AddressBook, or move them to or from

this AddressBook.

mayAdmin: Boolean The user may modify sharing for this

AddressBook.

mayDelete: Boolean (server-set) The user may delete the

AddressBook itself. This property MUST be false if the account to

which this AddressBook belongs has the isReadOnly property set to

true.

¶

¶

* ¶

*

¶

*

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

2.1. AddressBook/get

This is a standard "/get" method as described in [RFC8620], Section

5.1. The ids argument may be null to fetch all at once.

2.2. AddressBook/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

2.3. AddressBook/set

This is a standard "/set" method as described in [RFC8620], Section

5.3 but with the following additional request argument:

onDestroyRemoveContents: Boolean (default: false) If false, any

attempt to destroy an AddressBook that still has a Card or

CardGroup in it will be rejected with a addressBookHasContents

SetError. If true, any Cards or CardGroups that were in the

AddressBook will be destroyed.

The "shareWith" property may only be set by users that have the

mayAdmin right. When modifying the shareWith property, the user

cannot give a right to a principal if the principal did not already

have that right and the user making the change also does not have

that right. Any attempt to do so must be rejected with a forbidden

SetError.

Users can subscribe or unsubscribe to an AddressBook by setting the

"isSubscribed" property. The server MAY forbid users from

subscribing to certain AddressBooks even though they have permission

to see them, rejecting the update with a forbidden SetError.

The following extra SetError types are defined:

For "destroy":

addressBookHasContents: The AddressBook has at least one Card or

CardGroup assigned to it, and the "onDestroyRemoveContents"

argument was false.

3. Cards

A Card object contains information about a person, company, or other

entity. It is a JSContact Card object, as defined in RFCXXXX, with

the following additional properties:

id: Id (immutable; server-set) The id of the Card. The id

uniquely identifies a JSCard with a particular "uid" within a

particular account.

¶

¶

¶

*

¶

¶

¶

¶

¶

*

¶

¶

*

¶

addressBookId: Id The id of the AddressBook this card belongs to.

A card MUST belong to exactly one AddressBook at all times (until

it is destroyed).

TODO:photos as blobs.

3.1. Card/get

This is a standard "/get" method as described in [RFC8620], Section

5.1. The ids argument may be null to fetch all at once.

3.2. Card/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

3.3. Card/query

This is a standard "/query" method as described in [RFC8620],

Section 5.5.

3.3.1. Filtering

A FilterCondition object has the following properties:

inAddressBook: Id An AddressBook id. A card must be in this

address book to match the condition.

text: String|null A card matches this condition if the text

matches with text in the card.

If zero properties are specified on the FilterCondition, the

condition MUST always evaluate to true. If multiple properties are

specified, ALL must apply for the condition to be true (it is

equivalent to splitting the object into one-property conditions and

making them all the child of an AND filter operator).

The exact semantics for matching String fields is deliberately not

defined to allow for flexibility in indexing implementation, subject

to the following:

Text SHOULD be matched in a case-insensitive manner.

Text contained in either (but matched) single or double quotes

SHOULD be treated as a phrase search, that is a match is required

for that exact sequence of words, excluding the surrounding

quotation marks. Use \", \' and \\ to match a literal ", ' and \

respectively in a phrase.

Outside of a phrase, white-space SHOULD be treated as dividing

separate tokens that may be searched for separately in the

contact, but MUST all be present for the contact to match the

filter.

*

¶

¶

¶

¶

¶

¶

*

¶

*

¶

¶

¶

* ¶

*

¶

*

¶

Tokens MAY be matched on a whole-word basis using stemming (so

for example a text search for bus would match "buses" but not

"business").

3.3.2. Sorting

The following properties MUST be supported for sorting:

TODO

3.4. Card/queryChanges

This is a standard "/queryChanges" method as described in [RFC8620],

Section 5.6.

3.5. Card/set

This is a standard "/set" method as described in [RFC8620], Section

5.3.

To set a new photo, the file must first be uploaded using the upload

mechanism as described in [RFC8620], Section 6.1. This will give the

client a valid blobId/size/type to use. The server SHOULD reject

attempts to set a file that is not a recognised image type as the

photo for a card.

3.6. Card/copy

This is a standard "/copy" method as described in [RFC8620], Section

5.4.

4. Card Groups

A CardGroup object represents a group of cards. It is a JSContact

CardGroup object, as defined in RFCXXXX, with the following

additional properties:

id: Id (immutable; server-set) The id of the CardGroup. The id

uniquely identifies a JSCard with a particular "uid" within a

particular account.

addressBookId: Id The id of the AddressBook this CardGroup

belongs to. A CardGroup MUST belong to exactly one AddressBook at

all times (until it is destroyed).

Clients should consider the set to contain any Card with a matching

UID, from any account they have access to with support for the

urn:ietf:params:jmap:contacts capability. UIDs that cannot be found

SHOULD be ignored but preserved. For example, suppose a user adds

contacts from a shared address book to their private set, then

temporarily lose access to this address book. The UIDs cannot be

*

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

[RFC2119]

resolved so the contacts will disappear from the group. However, if

they are given permission to access the data again the UIDs will be

found and the contacts will reappear.

4.1. CardGroup/get

This is a standard "/get" method as described in [RFC8620], Section

5.1. The ids argument may be null to fetch all at once.

4.2. CardGroup/changes

This is a standard "/changes" method as described in [RFC8620],

Section 5.2.

4.3. CardGroup/set

This is a standard "/set" method as described in [RFC8620], Section

5.3.

5. Security considerations

All security considerations of JMAP ([RFC8620]) apply to this

specification. Additional considerations specific to the data types

and functionality introduced by this document are described in the

following subsections.

TODO

6. IANA Considerations

6.1. JMAP capability registration for "contacts"

IANA will register the "contacts" JMAP Capability as follows:

Capability Name: urn:ietf:params:jmap:contacts

Specification document: this document

Intended use: common

Change Controller: IETF

Security and privacy considerations: this document, section TODO

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC8174]

[RFC8620]

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Jenkins, N. and C. Newman, "The JSON Meta Application

Protocol (JMAP)", RFC 8620, DOI 10.17487/RFC8620, July

2019, <https://www.rfc-editor.org/info/rfc8620>.

Author's Address

Neil Jenkins (editor)

Fastmail

PO Box 234, Collins St West

Melbourne VIC 8007

Australia

Email: neilj@fastmailteam.com

URI: https://www.fastmail.com

https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8620
mailto:neilj@fastmailteam.com
https://www.fastmail.com

	JMAP for Contacts
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational conventions
	1.2. Terminology
	1.3. Data Model Overview
	1.4. Addition to the Capabilities Object
	1.4.1. urn:ietf:params:jmap:contacts

	2. AddressBooks
	2.1. AddressBook/get
	2.2. AddressBook/changes
	2.3. AddressBook/set

	3. Cards
	3.1. Card/get
	3.2. Card/changes
	3.3. Card/query
	3.3.1. Filtering
	3.3.2. Sorting

	3.4. Card/queryChanges
	3.5. Card/set
	3.6. Card/copy

	4. Card Groups
	4.1. CardGroup/get
	4.2. CardGroup/changes
	4.3. CardGroup/set

	5. Security considerations
	6. IANA Considerations
	6.1. JMAP capability registration for "contacts"

	7. Normative References
	Author's Address

