
JMAP N. Jenkins
Internet-Draft FastMail
Intended status: Standards Track March 5, 2018
Expires: September 6, 2018

JSON Meta Application Protocol
draft-ietf-jmap-core-04

Abstract

 This document specifies a protocol for synchronising JSON-based data
 objects efficiently, with support for push and out-of-band binary
 data upload/download.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 6, 2018.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jenkins Expires September 6, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JMAP March 2018

Table of Contents

1. Introduction . 3
1.1. Notational conventions 3
1.2. The Number datatype 4
1.3. The Date datatypes 4
1.4. JSON as the data encoding format 4
1.5. Terminology . 5
1.5.1. User . 5
1.5.2. Accounts . 5
1.5.3. Data types and records 5

1.6. Ids . 5
1.7. The JMAP API model 6

2. The JMAP Session resource 6
2.1. Service Autodiscovery 9

3. Structured data exchange 9
3.1. Making an API request 10
3.2. The Request object 10
3.2.1. Example request 10

3.3. Vendor-specific extensions 11
3.4. The Response object 11
3.4.1. Example response: 11

3.5. Omitting arguments 12
3.6. Errors . 12
3.6.1. Request-level errors 12
3.6.2. Method-level errors 12

3.7. References to previous method results 14
3.8. Security . 18
3.9. Concurrency . 18

4. Standard methods and naming convention 18
4.1. /get . 19
4.2. /changes . 20
4.3. /set . 21
4.4. /query . 26
4.5. /queryChanges . 30
4.6. Examples . 33

5. Binary data . 36
5.1. Uploading binary data 37
5.2. Downloading binary data 38
5.3. Blob/copy . 39

6. Push . 40
6.1. The StateChange object 40
6.2. PushSubscription . 41
6.2.1. PushSubscription/set 42
6.2.2. PushSubscription/get 42

6.3. Event Source . 42
7. Security considerations 44
7.1. Transport confidentiality 44

Jenkins Expires September 6, 2018 [Page 2]

Internet-Draft JMAP March 2018

7.2. Authentication scheme 44
7.3. Service autodiscovery 44
7.4. JSON parsing . 44
7.5. Denial of service . 45
7.6. Push encryption . 45

8. References . 45
8.1. Normative References 45
8.2. URIs . 47

 Author's Address . 47

1. Introduction

 JMAP is a generic protocol for synchronising data, such as mail,
 calendars or contacts, between a client and a server. It is
 optimised for mobile and web environments, and aims to provide a
 consistent interface to different data types.

 This specification is for the generic mechanism of data
 synchronisation. Further specifications define the data models for
 different data types that may be synchronised via JMAP.

 JMAP is designed to make efficient use of limited network resources.
 Multiple API calls may be batched in a single request to the server,
 reducing round trips and improving battery life on mobile devices.
 Push connections remove the need for polling, and an efficient delta
 update mechanism ensures a minimum of data is transferred.

 JMAP is designed to be horizontally scalable to a very large number
 of users. This is facilitated by the separate end points for users
 after login, the separation of binary and structured data, and a
 shared data model that does not allow data dependencies between
 accounts.

1.1. Notational conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The underlying format used for this specification is JSON.
 Consequently, the terms "object" and "array" as well as the four
 primitive types (strings, numbers, booleans, and null) are to be
 interpreted as described in Section 1 of [RFC7159]. Unless otherwise
 noted, all the property names and values are case sensitive.

 Some examples in this document contain "partial" JSON documents used
 for illustrative purposes. In these examples, three periods "..."

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159#section-1

Jenkins Expires September 6, 2018 [Page 3]

Internet-Draft JMAP March 2018

 are used to indicate a portion of the document that has been removed
 for compactness.

 Types signatures are given for all JSON objects in this document.
 The following conventions are used:

 o "Boolean|String" - The value is either a JSON "Boolean" value, or
 a JSON "String" value.

 o "Foo" - Any name that is not a native JSON type means an object
 for which the properties (and their types) are defined elsewhere
 within this document.

 o "Foo[]" - An array of objects of type "Foo".

 o "String[Foo]" - A JSON "Object" being used as a map (associative
 array), where all the values are of type "Foo".

1.2. The Number datatype

 The JSON datatypes are limited to those found in JavaScript. A
 "Number" in JavaScript is represented as a signed double (64-bit
 floating point). However, except where explicitly specified, all
 numbers used in this API are unsigned integers <= 2^53 (the maximum
 integer that may be reliably stored in a double).

1.3. The Date datatypes

 Where "Date" is given as a type, it means a string in [RFC3339]
 date-time format. To ensure a normalised form, the _time-secfrac_
 MUST always be omitted and any letters in the string (e.g. "T" and
 "Z") MUST be upper-case. For example, ""2014-10-30T14:12:00+08:00"".

 Where "UTCDate" is given as a type, it means a "Date" where the
 time-offset component MUST be "Z" (i.e. it must be in UTC time).
 For example, ""2014-10-30T06:12:00Z"".

1.4. JSON as the data encoding format

 JSON is a text-based data interchange format as specified in
 [RFC7159]. The I-JSON format defined in [RFC7493] is a strict subset
 of this, adding restrictions to avoid potentially confusing scenarios
 (for example, it mandates that an object MUST NOT have two properties
 with the same key).

 All data sent from the client to the server or from the server to the
 client (except binary file upload/download) MUST be valid I-JSON

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7493

Jenkins Expires September 6, 2018 [Page 4]

Internet-Draft JMAP March 2018

 according to the RFC, and is therefore case-sensitive and encoded in
 UTF-8 ([RFC3629]).

1.5. Terminology

1.5.1. User

 A user represents a set of permissions relating to what data can be
 seen.

1.5.2. Accounts

 An account is a collection of data. A single account may contain an
 arbitrary set of data types, for example a collection of mail,
 contacts and calendars. Most operations in JMAP are isolated to a
 single account; there are a few explicit operations to copy data
 between them. Certain properties are guaranteed for data within the
 same account, for example uniqueness of ids within a type in that
 account.

 An account is not the same as a user, although it is common for the
 primary account to directly belong to the user. For example, you may
 have an account that contains data for a group or business, to which
 multiple users have access. Users may also have access to accounts
 belonging to another user if that user is sharing some of their data.
 A single set of credentials may provide access to data in multiple
 accounts.

1.5.3. Data types and records

 JMAP provides a uniform interface for creating, retrieving, updating
 and deleting various types of objects. A *data type* is a collection
 of named, typed properties, just like the schema for a database
 table. Each instance of a data type is called a *record*.

1.6. Ids

 All record ids are assigned by the server, and are immutable. They
 MUST be unique among all records of the *same type* within the *same
 account*. Ids may clash across accounts, or for two records of
 different types within the same account.

 Ids are always "String"s. An id MUST be a valid UTF-8 string of at
 least 1 character in length and maximum 256 octets in size, but MUST
 NOT start with the "#" character, as this is reserved for doing back
 references during object creation (see the _/set_ description).

https://datatracker.ietf.org/doc/html/rfc3629

Jenkins Expires September 6, 2018 [Page 5]

Internet-Draft JMAP March 2018

1.7. The JMAP API model

 JMAP uses HTTP [RFC7230] to expose API, Push, Upload and Download
 resources. Implementations MUST support HTTP/1.1, and MAY support
 later versions. Support for common HTTP mechanisms such as
 redirection and caching are assumed.

 All HTTP requests MUST be authenticated. Servers MUST conform with
 the [RFC7235] HTTP Authentication framework to reject requests that
 fail authentication and inform the client of available authentication
 schemes.

 Clients SHOULD understand and be able to handle standard HTTP status
 codes appropriately.

 An authenticated client can fetch the JMAP Session object with
 details about the data and capabilities the server can provide as
 shown in section 2. The client may then exchange data with the
 server in the following ways:

 1. The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then
 returns an ordered series of responses. This is described in
 sections 3 and 4.

 2. The client may download or upload binary files from/to the
 server. This is detailed in section 5.

 3. The client may connect to a push channel on the server, to be
 notified when data has changed. This is explained in section 6.

2. The JMAP Session resource

 To communicate with a JMAP server you need two things to start:

 1. The URL for the JMAP Session resource. This may be requested
 directly from the user, or discovered automatically based on a
 username domain (see Service Autodiscovery section below).

 2. Credentials to authenticate with. How to obtain credentials is
 out of scope for this specification.

 An authenticated GET request to the JMAP Session resource MUST return
 the details about the data and capabilities the server can provide to
 the client given those credentials.

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235

Jenkins Expires September 6, 2018 [Page 6]

Internet-Draft JMAP March 2018

 The response to a successful request is a JSON-encoded *JMAP Session*
 object. It has the following properties:

 o *username*: "String" The username associated with the given
 credentials.

 o *accounts*: "String[Account]" A map of *account id* to Account
 object for each account the user has access to. A single set of
 credentials may provide access to multiple accounts, for example
 if another user is sharing their mail with the logged in user, or
 if there is an account that contains data for a group or business.
 All data belongs to a single account. With the exception of a few
 explicit operations to copy data between accounts, all JMAP
 methods take an _accountId_ argument that specifies on which
 account the operations are to take place. This argument is always
 optional; if not specified, the primary account is used. All ids
 (other than account ids of course) are only unique within their
 account. In the event of a severe internal error, a server may
 have to reallocate ids or do something else that violates standard
 JMAP data constraints. In this situation, the data on the server
 is no longer compatible with cached data the client may have from
 before. The server MUST treat this as though the account has been
 deleted and then recreated with a new account id. Clients will
 then be forced to throw away any data with the old account id and
 refetch all data from scratch. An *Account* object has the
 following properties:

 * *name*: "String" A user-friendly string to show when presenting
 content from this account, e.g. the email address representing
 the owner of the account.

 * *isPrimary*: "Boolean" This MUST be true for *at most* one of
 the accounts returned. This is to be considered the user's
 main or default account by the client. If no account being
 returned belongs to the user, or in any other way there is no
 appropriate way to determine a default account, then this MAY
 be "false" for all accounts.

 * *isReadOnly*: "Boolean" This is "true" if the entire account is
 read-only.

 * *hasDataFor*: "String[]" A list of the data profiles available
 in this account. Each future JMAP data types specification
 will define a profile name to encompass that set of types.

 o *capabilities*: "String[Object]" An object specifying the
 capabilities of this server. Each key is a URI for a
 specification supported by the server. The value for each of

Jenkins Expires September 6, 2018 [Page 7]

Internet-Draft JMAP March 2018

 these keys is an object with further information about the
 server's capabilities in relation to that specification. The
 client MUST ignore any properties it does not understand. The
 capabilities object MUST include a property called "ietf:jmap".
 The value of this property is an object which MUST contain the
 following information on server capabilities:

 * *maxSizeUpload*: "Number" The maximum file size, in octets,
 that the server will accept for a single file upload (for any
 purpose).

 * *maxConcurrentUpload*: "Number" The maximum number of
 concurrent requests the server will accept to the upload
 endpoint.

 * *maxSizeRequest*: "Number" The maximum size, in octets, that
 the server will accept for a single request to the API
 endpoint.

 * *maxConcurrentRequests*: "Number" The maximum number of
 concurrent requests the server will accept to the API endpoint.

 * *maxCallsInRequest*: "Number" The maximum number of method
 calls the server will accept in a single request to the API
 endpoint. This MUST be greater than or equal to "32" to ensure
 clients can rely on the ability to make efficient network use.

 * *maxObjectsInGet*: "Number" The maximum number of objects that
 the client may request in a single "/get" type method call.

 * *maxObjectsInSet*: "Number" The maximum number of objects the
 client may send to create, update or destroy in a single "/set"
 type method call.

 * *collationAlgorithms*: "String[]" A list of identifiers for
 algorithms registered in the collation registry defined in
 [RFC4790] that the server supports for sorting when querying
 records.

 Future specifications will define their own properties on the
 capabilities object. Servers MAY advertise vendor-specific JMAP
 extensions. To avoid conflict, the identifiers for these MUST be
 a URI beginning with a domain owned by the vendor. Clients MUST
 opt in to any specifications it wishes to use (see "Making an API
 request").

 o *apiUrl*: "String" The URL to use for JMAP API requests.

https://datatracker.ietf.org/doc/html/rfc4790

Jenkins Expires September 6, 2018 [Page 8]

Internet-Draft JMAP March 2018

 o *downloadUrl*: "String" The URL endpoint to use when downloading
 files (see the Download section of this spec), in [RFC6570] URI
 Template (level 1) format. The URL MUST contain variables called
 "blobId", MAY contain a variables called "accountId" and SHOULD
 contain a variable called "name".

 o *uploadUrl*: "String" The URL endpoint to use when uploading files
 (see the Upload section of this spec), in [RFC6570] URI Template
 (level 1) format. The URL MAY contain a variable called
 "accountId".

 o *eventSourceUrl*: "String" The URL to connect to for push events
 (see the Push section of this spec).

 To ensure future compatibility, other properties MAY be included on
 the JMAP Session object. Clients MUST ignore any properties they are
 not expecting.

2.1. Service Autodiscovery

 There are two standardised autodiscovery methods in use for internet
 protocols:

 o *DNS srv* ([RFC6186] and [RFC6764])

 o *.well-known/servicename* ([RFC5785])

 A JMAP-supporting host for the domain "example.com" SHOULD publish a
 SRV record "_jmaps._tcp.example.com" which gives a _hostname_ and
 port (usually port "443"). The JMAP Session resource is then
 "https://${hostname}[:${port}]/.well-known/jmap" (following any
 redirects).

 If the client has a username in the form of an email address, it MAY
 use the domain portion of this to attempt autodiscovery of the JMAP
 server.

3. Structured data exchange

 The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then returns
 an ordered series of responses.

https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6186
https://datatracker.ietf.org/doc/html/rfc6764
https://datatracker.ietf.org/doc/html/rfc5785

Jenkins Expires September 6, 2018 [Page 9]

Internet-Draft JMAP March 2018

3.1. Making an API request

 To make an API request, the client makes an authenticated POST
 request to the API resource, the location of which may be found on
 the JMAP Session object.

 The request MUST consist of a single JSON *Request* object. If
 successful, the response MUST also be of type "application/json" and
 consist of a single *Response* object.

3.2. The Request object

 A *Request* object has the following properties:

 o *using*: "String[]" The set of capabilities the client wishes to
 use. The client MAY include capability identifiers even if the
 method calls it makes do not utilise those capabilities. The
 server advertises the set of specifications it supports in the
 JMAP Session object, as keys on the _capabilities_ property.

 o *methodCalls*: "Array[]" An array of method calls to process on
 the server. The method calls MUST be processed sequentially, in
 order. A *method call* is represented by an array containing
 three elements:

 1. A "String" *name* of the method to call.

 2. An "Object" containing _named_ *arguments* for that method.

 3. A *client id*: an arbitrary "String" to be echoed back with
 the responses emitted by that method call (a method may return
 1 or more responses, as it may make implicit calls to other
 methods; all responses initiated by this method call get the
 same client id in the response).

 Future specifications MAY add further properties to the Request
 object to extend the semantics. To ensure forwards compatability, a
 server MUST ignore any other properties it does not understand on the
 JMAP request object.

3.2.1. Example request

Jenkins Expires September 6, 2018 [Page 10]

Internet-Draft JMAP March 2018

 {
 "using": ["ietf.org/rfc/jmap-core", "ietf.org/rfc/jmap-mail"],
 "methodCalls": [
 ["method1", {"arg1": "arg1data", "arg2": "arg2data"}, "#1"],
 ["method2", {"arg1": "arg1data"}, "#2"],
 ["method3", {}, "#3"]
]
 }

3.3. Vendor-specific extensions

 Individual services will have custom features they wish to expose
 over JMAP. This may take the form of extra datatypes and/or methods
 not in the spec, or extra arguments to JMAP methods, or extra
 properties on existing data types (which may also appear in arguments
 to methods that take property names).

 The server can advertise custom extensions it supports by including
 the identifiers in the capabilities object. Identifiers for vendor
 extensions MUST be a URL belonging to a domain owned by the vendor,
 to avoid conflict. The URL SHOULD resolve to documentation for the
 changes the extension makes.

 To ensure compatibility with clients that don't know about a specific
 custom extension, and for compatibility with future versions of JMAP,
 to use an extension the client MUST opt in by passing the appropriate
 capability identifier in the _using_ array of the Request object.
 The server MUST only follow the specifications that are opted-into
 and behave as though it does not implement anything else when
 processing a request.

3.4. The Response object

 A *Response* object has the following properties:

 o *methodResponses*: "Array[]" An array of responses, in the same
 format as the _methodCalls_ on the request object. The output of
 the methods MUST be added to the _methodResponses_ array in the
 same order as the methods are processed.

 Unless otherwise specified, if the method call completed successfully
 its response name is the same as the method name in the request.

3.4.1. Example response:

Jenkins Expires September 6, 2018 [Page 11]

Internet-Draft JMAP March 2018

 {
 "methodResponses": [
 ["method1", {"arg1": 3, "arg2": "foo"}, "#1"],
 ["method2", {"isBlah": true}, "#2"],
 ["anotherResponseFromMethod2", {
 "data": 10,
 "yetmoredata": "Hello"
 }, "#2"],
 ["error", {"type":"unknownMethod"}, "#3"]
]
 }

3.5. Omitting arguments

 An argument to a method may be specified to have a default value. If
 omitted by the client, the server MUST treat the method call the same
 as if the default value had been specified. Similarly, the server
 MAY omit any argument in a response which has the default value.

 Unless otherwise specified in a method description, "null" is the
 default value for any argument in a request or response where this is
 allowed by the type signature. Other arguments may only be omitted
 if an explicit default value is defined in the method description.

3.6. Errors

3.6.1. Request-level errors

 If the data sent as an API request is not valid JSON or does not
 match the structure above, or includes a capability that the server
 does not support in the "using" property of the request, a "400 Bad
 Request" error will be returned at the HTTP level. The body of the
 response SHOULD include a short description of the problem to help
 client developers debug the issue.

3.6.2. Method-level errors

 If a method encounters an error, the appropriate "error" response
 MUST be inserted at the current point in the _methodResponses_ array
 and, unless otherwise specified, further processing MUST NOT happen
 within that method call.

 Any further method calls in the request MUST then be processed as
 normal.

 An "error" response looks like this:

Jenkins Expires September 6, 2018 [Page 12]

Internet-Draft JMAP March 2018

 ["error", {
 type: "unknownMethod"
 }, "client-id"]

 The response name is "error", and it MUST have a type property.
 Other properties may be present with further information; these are
 detailed in the error type descriptions where appropriate.

 With the exception of "serverError", the externally-visible state of
 the server MUST NOT have changed if an error is returned at the
 method level.

 The following error types are defined which may be returned for any
 method call where appropriate:

 "serverError": An unexpected or unknown error occured during the
 processing of the call. The state of the server after such an error
 is undefined.

 "unknownMethod": The server does not recognise this method name.

 "invalidArguments": One of the arguments is of the wrong type or
 otherwise invalid, or a required argument is missing. A
 "description" property MAY be present to help debug with an
 explanation of what the problem was. This is a non-localised string,
 and is not intended to be shown directly to end users.

 "forbidden": The method and arguments are valid, but executing the
 method would violate an ACL or other permissions policy.

 "timedOut": The method failed to execute because it timed out waiting
 for a lock, or was taking too much compute time.

 "accountNotFound": An _accountId_ was included with the method call
 that does not correspond to a valid account.

 "accountNotSupportedByMethod": An _accountId_ given corresponds to a
 valid account, but the account does not support this data type.

 "accountReadOnly": This method call would modify state in an account
 that has "isReadOnly == true".

 Further possible errors for a particular method are specified in the
 method descriptions.

 Further general errors MAY be defined in future RFCs. Should a
 client receive an error type it does not understand, it MUST treat it
 the same as the "serverError" type.

Jenkins Expires September 6, 2018 [Page 13]

Internet-Draft JMAP March 2018

3.7. References to previous method results

 To allow clients to make more efficient use of the network and avoid
 round trips, an argument to one method can be taken from the result
 of a previous method call.

 To do this, the client prefixes the argument name with "#". The
 value is a _ResultReference_ object as described below. When
 processing a method call, the server MUST first check the arguments
 object for any names beginning with "#". If found, the back
 reference should be resolved and the value used as the "real"
 argument. The method is then processed as normal. If any back
 reference fails to resolve, the whole method MUST be rejected with a
 "resultReference" error. If an argument object contains the same
 argument name in normal and referenced form (e.g. "foo" and "#foo"),
 the method MUST return an "invalidArguments" error.

 A *ResultReference* object has the following properties:

 o *resultOf*: "String" The client id of the method call to get the
 result from (the string given as the third item in the array for a
 method call).

 o *name*: "String" The expected name of the response.

 o *path*: "String" A pointer into the arguments. This is an RFC6901
 JSON Pointer, except it also allows the use of "*" to map through
 an array (see description below).

 To resolve:

 1. Find the first response with a client id identical to the
 resultOf property of the _ResultReference_ in the
 methodResponses array from previously processed method calls in
 the same request. If none, evaluation fails.

 2. If the response name is not identical to the _name_ property of
 the _ResultReference_, evaluation fails.

 3. Apply the _path_ to the arguments object of the response (the
 second item in the response array) following the [RFC6901] JSON
 pointer algorithm, except with the following addition in

Section 4 (Evaluation):

 If the currently referenced value is a JSON array, the reference
 token may be exactly the single character "*", making the new
 referenced value the result of applying the rest of the JSON pointer
 tokens to every item in the array and returning the results in the

https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6901

Jenkins Expires September 6, 2018 [Page 14]

Internet-Draft JMAP March 2018

 same order in a new array. If the result of applying the rest of the
 pointer tokens to a value was itself an array, its items should be
 included individually in the output rather than including the array
 itself (i.e. the result is flattened from an array of arrays to a
 single array).

 As a simple example, suppose we have the following API request
 methodCalls:

 [["Foo/changes", {
 "sinceState": "abcdef"
 }, "t0"],
 ["Foo/get", {
 "#ids": {
 "resultOf": "t0",
 "name": "Foo/changes",
 "path": "/changed"
 }
 }, "t1"]]

 After executing the first method call the _methodResponses_ array is:

 [["Foo/changes", {
 "accountId": "1",
 "oldState": "abcdef",
 "newState": "123456",
 "hasMoreChanges": false,
 "changed": ["f1", "f4"],
 "destroyed": []
 }, "t0"]]

 So to execute the Foo/get call, we look through the arguments and
 find there is one with a "#" prefix. To resolve this, we apply the
 algorithm above:

 1. Find the first response with client id "t0". The Foo/changes
 response fulfils this criterion.

 2. Check the response name is the same as in the result reference.
 It is, so this is fine.

 3. Apply the _path_ as a JSON pointer to the arguments object. This
 simply selects the "changed" property, so the result of
 evaluating is: "["f1", "f4"]"

 The JMAP server now continues to process the Foo/get call as though
 the arguments were:

Jenkins Expires September 6, 2018 [Page 15]

Internet-Draft JMAP March 2018

 {
 "ids": ["f1", "f4"]
 }

 Now a more complicated example using the JMAP Mail data model: fetch
 the "from"/"date"/"subject" for every email in the first 10 threads
 in the Inbox (sorted newest first):

 [["Email/query", {
 "filter": { inMailbox: "id_of_inbox" },
 "sort": [{ property: "receivedAt", isAscending: false }],
 "collapseThreads": true,
 "position": 0,
 "limit": 10
 }, "t0"],
 ["Email/get", {
 "#ids": {
 "resultOf": "t0",
 "name": "Email/query",
 "path": "/ids"
 },
 "properties": ["threadId"]
 }, "t1"],
 ["Thread/get", {
 "#ids": {
 "resultOf": "t1",
 "name": "Email/get",
 "path": "/list/*/threadId"
 }
 }, "t2"],
 ["Email/get", {
 "#ids": {
 "resultOf": "t2",
 "name": "Thread/get",
 "path": "/list/*/emailIds"
 },
 "properties": ["from", "receivedAt", "subject"]
 }, "t3"]]

 After executing the first 3 method calls the _methodResponses_ array
 might be:

Jenkins Expires September 6, 2018 [Page 16]

Internet-Draft JMAP March 2018

[["Email/query", {
 "accountId": "1",
 "filter": { inMailbox: "id_of_inbox" },
 "sort": [{ property: "receivedAt", isAscending: false }],
 "collapseThreads": true,
 "state": "abcdefg",
 "canCalculateChanges": true,
 "position": 0,
 "total": 101,
 "ids": ["msg1023", "msg223", "msg110", "msg93", "msg91", "msg38", "msg36",
"msg33", "msg11", "msg1"]
}, "t0"],
["Email/get", {
 "accountId": "1",
 "state": "123456",
 "list": [{
 "id": "msg1023",
 "threadId": "trd194",
 }, {
 "id": "msg223",
 "threadId": "trd114"
 },
 ...
],
 "notFound": null
}, "t1"],
["Thread/get", {
 "accountId": "1",
 "state": "123456",
 "list": [{
 "id: "trd194",
 "emailIds": ["msg1020", "msg1021", "msg1023"]
 }, {
 "id: "trd114",
 "emailIds": ["msg201", "msg223"]
 },
 ...
],
 "notFound": null
}, "t2"]]

 So to execute the final Email/get call, we look through the arguments
 and find there is one with a "#" prefix. To resolve this, we apply
 the algorithm:

 1. Find the first response with client id "t2". The "Thread/get"
 response fulfils this criterion.

Jenkins Expires September 6, 2018 [Page 17]

Internet-Draft JMAP March 2018

 2. "Thread/get" is the name specified in the result reference, so
 this is fine.

 3. Apply the _path_ as a JSON pointer to the arguments object.
 Token-by-token: a) "list": get the array of thread objects b)
 "*": for each of the items in the array:

 i) `emailIds`: get the array of email ids
 ii) Concatenate these into a single array of all the ids in the result.

 The JMAP server now continues to process the Email/get call as though
 the arguments were:

{
 "ids": ["msg1020", "msg1021", "msg1023", "msg201", "msg223", etc...],
 "properties": ["from", "receivedAt", "subject"]
}

3.8. Security

 As always, the server must be strict about data received from the
 client. Arguments need to be checked for validity; a malicious user
 could attempt to find an exploit through the API. In case of invalid
 arguments (unknown/insufficient/wrong type for data etc.) the method
 MUST return an "invalidArguments" error and terminate.

3.9. Concurrency

 Each individual method call within a request MUST be serializable;
 concurrent execution of methods MUST produce the same effect as
 running them one at a time in some order.

 This means that the observable ordering may interleave method calls
 from different concurrent API requests, such that the data on the
 server may change between two method calls within a single API
 request.

4. Standard methods and naming convention

 JMAP provides a uniform interface for creating, retrieving, updating
 and deleting objects of a particular type. For a "Foo" data type,
 records of that type would be fetched via a Foo/get call and modified
 via a Foo/set call. Delta updates may be fetched via a Foo/changes
 call. These methods all follow a standard format as described below.

Jenkins Expires September 6, 2018 [Page 18]

Internet-Draft JMAP March 2018

4.1. /get

 Objects of type *Foo* are fetched via a call to _Foo/get_.

 It takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *ids*: "String[]|null" The ids of the Foo objects to return. If
 "null" then *all* records of the data type are returned, if this
 is supported for that data type.

 o *properties*: "String[]|null" If supplied, only the properties
 listed in the array are returned for each Foo object. If "null",
 all properties of the object are returned. The id of the object
 is *always* returned, even if not explicitly requested. If an
 invalid property is requested, the call MUST be rejected with an
 "invalidArguments" error.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *state*: "String" A string representing the state on the server
 for *all* the data of this type in the account (not just the
 objects returned in this call). If the data changes, this string
 MUST change. If the Foo data is unchanged, servers SHOULD return
 the same state string on subsequent requests for this data type.
 When a client receives a response with a different state string to
 a previous call, it MUST either throw away all currently cached
 objects for the type, or call _Foo/changes_ to get the exact
 changes.

 o *list*: "Foo[]" An array of the Foo objects requested. This is
 the *empty array* if no objects were found, or if the _ids_
 argument passed in was also the empty array. The results MAY be
 in a different order to the _ids_ in the request arguments. If an
 identical id is included more than once in the request, the server
 MUST only include it once in either the _list_ or _notFound_
 argument of the response.

 o *notFound*: "String[]|null" This array contains the ids passed to
 the method for records that do not exist. This property is "null"
 if all requested ids were found, or if the _ids_ argument passed
 in was either "null" or the empty array.

Jenkins Expires September 6, 2018 [Page 19]

Internet-Draft JMAP March 2018

 The following additional error may be returned instead of the _Foo/
 get_ response:

 "requestTooLarge": The number of _ids_ requested by the client
 exceeds the maximum number the server is willing to process in a
 single method call.

4.2. /changes

 When the state of the set of Foo records changes on the server
 (whether due to creation, updates or deletion), the _state_ property
 of the _Foo/get_ response will change. The _Foo/changes_ method
 allows a client to efficiently update the state of its Foo cache to
 match the new state on the server. It takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *sinceState*: "String" The current state of the client. This is
 the string that was returned as the _state_ argument in the _Foo/
 get_ response. The server will return the changes that have
 occurred since this state.

 o *maxChanges*: "Number|null" The maximum number of ids to return in
 the response. The server MAY choose to return fewer than this
 value, but MUST NOT return more. If not given by the client, the
 server may choose how many to return. If supplied by the client,
 the value MUST be a positive integer greater than 0. If a value
 outside of this range is given, the server MUST reject the call
 with an "invalidArguments" error.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *oldState*: "String" This is the _sinceState_ argument echoed
 back; the state from which the server is returning changes.

 o *newState*: "String" This is the state the client will be in after
 applying the set of changes to the old state.

 o *hasMoreChanges*: "Boolean" If "true", the client may call _Foo/
 changes_ again with the _newState_ returned to get further
 updates. If "false", _newState_ is the current server state.

 o *changed*: "String[]|null" An array of ids for records which have
 been created or modified but not destroyed since the oldState, or
 "null" if none.

Jenkins Expires September 6, 2018 [Page 20]

Internet-Draft JMAP March 2018

 o *destroyed*: "String[]|null" An array of ids for records which
 have been destroyed since the old state, or "null" if none.

 If a _maxChanges_ is supplied, or set automatically by the server,
 the server MUST ensure the number of ids returned across _changed_
 and _destroyed_ does not exceed this limit. If there are more
 changes than this between the client's state and the current server
 state, the update returned SHOULD generate an update to take the
 client to an intermediate state, from which the client can continue
 to call _Foo/changes_ until it is fully up to date. If it is unable
 to calculate an intermediate state, it MUST return a
 "cannotCalculateChanges" error response instead.

 If a Foo record has been modified AND destroyed since the oldState,
 the server SHOULD just return the id in the _destroyed_ list, but MAY
 return it in the _changed_ list as well. If a Foo record has been
 created AND destroyed since the oldState, the server SHOULD remove
 the id from the response entirely, but MAY include it in the
 destroyed list.

 The following additional errors may be returned instead of the _Foo/
 changes_ response:

 "cannotCalculateChanges": The server cannot calculate the changes
 from the state string given by the client. Usually due to the
 client's state being too old, or the server being unable to produce
 an update to an intermediate state when there are too many updates.
 The client MUST invalidate its Foo cache.

 Maintaining state to allow calculation of _Foo/changes_ can be
 expensive for the server, but always returning
 cannotCalculateChanges severely increases network traffic and
 resource usage for the client. To allow efficient sync, servers
 SHOULD be able to calculate changes from any state string that was
 given to a client within the last 30 days (but of course may support
 calculating updates from states older than this).

4.3. /set

 Modifying the state of Foo objects on the server is done via the
 Foo/set method. This encompasses creating, updating and destroying
 Foo records. This allows the server to sort out ordering and
 dependencies that may exist if doing multiple operations at once (for
 example to ensure there is always a minimum number of a certain
 record type).

 The _Foo/set_ method takes the following arguments:

Jenkins Expires September 6, 2018 [Page 21]

Internet-Draft JMAP March 2018

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

 o *ifInState*: "String|null" This is a state string as returned by
 the _Foo/get_ method. If supplied, the string must match the
 current state, otherwise the method will be aborted and a
 "stateMismatch" error returned. If "null", any changes will be
 applied to the current state.

 o *create*: "String[Foo]|null" A map of _creation id_ (an arbitrary
 string set by the client) to Foo objects, or "null" if no objects
 are to be created. The Foo object type definition MAY define
 default values for properties. Any such property MAY be omitted
 by the client. The client MUST omit any properties that may only
 be set by the server (for example, the _id_ property on most
 object types).

 o *update*: "String[PatchObject]|null" A map of id to a Patch object
 to apply to the current Foo object with that id, or "null" if no
 objects are to be updated. A _PatchObject_ is of type
 "String[*]", and represents an unordered set of patches. The keys
 are a path in [RFC6901] JSON pointer format, with an implicit
 leading "/" (i.e. prefix each key with "/" before applying the
 JSON pointer evaluation algorithm). All paths MUST also conform
 to the following restrictions; if there is any violation, the
 update MUST be rejected with an "invalidPatch" error:

 * The pointer MUST NOT reference inside an array (i.e. you MUST
 NOT insert/delete from an array; the array MUST be replaced in
 its entirety instead).

 * All parts prior to the last (i.e. the value after the final
 slash) MUST already exist on the object being patched.

 * There MUST NOT be two patches in the PatchObject where the
 pointer of one is the prefix of the pointer of the other, e.g.
 "alerts/1/offset" and "alerts".

 The value associated with each pointer determines how to apply
 that patch:

 * If "null", set to the default value if specified for this
 property, otherwise remove the property from the patched
 object. If the key is not present in the parent, this a no-op.

 * Anything else: The value to set for this property (this may be
 a replacement or addition to the object being patched).

https://datatracker.ietf.org/doc/html/rfc6901

Jenkins Expires September 6, 2018 [Page 22]

Internet-Draft JMAP March 2018

 Any server-set properties MAY be included in the patch if their
 value is identical to the current server value (before applying
 the patches to the object). Otherwise, the update MUST be
 rejected with an _invalidProperties_ SetError. This patch
 definition is designed such that an entire Foo object is also a
 valid PatchObject. The client MAY choose to optimise network
 usage by just sending the diff, or MAY just send the whole object;
 the server processes it the same either way.

 o *destroy*: "String[]|null" A list of ids for Foo objects to
 permanently delete, or "null" if no objects are to be destroyed.

 Each creation, modification or destruction of an object is considered
 an atomic unit. It is permissible for the server to commit changes
 to some objects but not others, however it is not permissible to only
 commit part of an update to a single record (e.g. update a _name_
 property but not a _count_ property, if both are supplied in the
 update object).

 The final state MUST be valid after the Foo/set is finished, however
 the server may have to transition through invalid intermediate states
 (not exposed to the client) while processing the individual
 create/update/destroy requests. For example, suppose there is a
 "name" property that must be unique. A single method call could
 rename an object A => B, and simultaneously rename another object B
 => A. If the final state is valid, this is allowed. Otherwise, each
 creation, modification or destruction of an object should be
 processed sequentially and accepted/rejected based on the current
 server state.

 If a create, update or destroy is rejected, the appropriate error
 MUST be added to the notCreated/notUpdated/notDestroyed property of
 the response and the server MUST continue to the next create/update/
 destroy. It does not terminate the method.

 If an id given cannot be found, the update or destroy MUST be
 rejected with a "notFound" set error.

 The server MAY skip an update (rejecting it with a "willDestroy"
 SetError) if that object is destroyed in the same /set request.

 Some record objects may hold references to others (foreign keys).
 When records are created or modified, they may reference other
 records being created _in the same API request_ by using the creation
 id prefixed with a "#". The order of the method calls in the request
 by the client MUST be such that the record being referenced is
 created in the same or an earlier call. The server thus never has to
 look ahead. Instead, while processing a request (a series of method

Jenkins Expires September 6, 2018 [Page 23]

Internet-Draft JMAP March 2018

 calls), the server MUST keep a simple map for the duration of the
 request of creation id to record id for each newly created record, so
 it can substitute in the correct value if necessary in later method
 calls.

 Creation ids are scoped by type; a separate "creation id -> id" map
 MUST be kept for each type for the duration of the request. Foreign
 key references are always for a particular record type, so use of the
 same creation key in two different types cannot cause any ambiguity.
 Creation ids sent by the client SHOULD be unique within the single
 API request for a particular data type. If a creation id is reused
 for the same type, the server MUST map the creation id to the most
 recently created item with that id.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *oldState*: "String|null" The state string that would have been
 returned by _Foo/get_ before making the requested changes, or
 "null" if the server doesn't know what the previous state string
 was.

 o *newState*: "String" The state string that will now be returned by
 Foo/get.

 o *created*: "String[Foo]|null" A map of the creation id to an
 object containing any properties of the created Foo object that
 were not sent by the client. This includes all server-set
 properties (such as the _id_ in most object types) and any
 properties that were omitted by the client and so set to a default
 by the server. This argument is "null" if no Foo objects were
 successfully created.

 o *updated*: "String[Foo|null]|null" The _keys_ in this map are the
 ids of all Foos that were successfully updated, or "null" if none
 successful. The _value_ for each id is a Foo object containing
 any property that changed in a way _not_ explicitly requested by
 the _PatchObject_ sent to the server, or "null" if none. This
 lets the client know of any changes to server-set or computed
 properties.

 o *destroyed*: "String[]|null" A list of Foo ids for records that
 were successfully destroyed, or "null" if none successful.

 o *notCreated*: "String[SetError]|null" A map of creation id to a
 SetError object for each record that failed to be created, or
 "null" if all successful.

Jenkins Expires September 6, 2018 [Page 24]

Internet-Draft JMAP March 2018

 o *notUpdated*: "String[SetError]|null" A map of Foo id to a
 SetError object for each record that failed to be updated, or
 "null" if all successful.

 o *notDestroyed*: "String[SetError]|null" A map of Foo id to a
 SetError object for each record that failed to be destroyed, or
 "null" if all successful.

 A *SetError* object has the following properties:

 o *type*: "String" The type of error.

 o *description*: "String|null" A description of the error to display
 to the user.

 The following SetError types are defined and may be returned for set
 operations on any record type where appropriate:

 o "forbidden": (create; update; destroy) The create/update/destroy
 would violate an ACL or other permissions policy.

 o "overQuota": (create) The create would exceed a server-defined
 limit on the number or total size of objects of this type.

 o "rateLimit": (create) Too many objects of this type have been
 created recently, and a server-defined rate limit has been
 reached. It may work if tried again later.

 o "notFound": (update; destroy) The id given cannot be found.

 o "invalidPatch": (update) The PatchObject given to update the
 record was not a valid patch (see the patch description).

 o "willDestroy" (update) The client requested an object be both
 updated and destroyed in the same /set request, and the server has
 decided to therefore ignore the update.

 o "invalidProperties": (create; update) The record given is invalid
 in some way. For example:

 * It contains properties which are invalid according to the type
 specification of this record type.

 * It contains a property that may only be set by the server (e.g.
 "id") and are different to the current value. Note, to allow
 clients to pass whole objects back, it is not an error to
 include a server-set property so long as the value is identical

Jenkins Expires September 6, 2018 [Page 25]

Internet-Draft JMAP March 2018

 to the current value on the server (or the value that will be
 set by the server if a create).

 * There is a reference to another record (foreign key) and the
 given id does not correspond to a valid record.

 The SetError object SHOULD also have a property called
 properties of type "String[]" that lists *all* the properties
 that were invalid. Individual methods MAY specify more specific
 errors for certain conditions that would otherwise result in an
 invalidProperties error. If the condition of one of these is met,
 it MUST be returned instead of the invalidProperties error.

 o "singleton": (create; destroy) This is a singleton type, so you
 cannot create another one or destroy the existing one.

 Other possible SetError types MAY be given in specific method
 descriptions. Other properties MAY also be present on the _SetError_
 object, as described in the relevant methods.

 The following additional errors may be returned instead of the _Foo/
 set_ response:

 "requestTooLarge": The total number of objects to create, update or
 destroy exceeds the maximum number the server is willing to process
 in a single method call.

 "stateMismatch": An "ifInState" argument was supplied and it does not
 match the current state.

4.4. /query

 For data sets where the total amount of data is expected to be very
 small, clients can just fetch the complete set of data and then do
 any sorting/filtering locally. However, for large data sets (e.g.
 multi-gigabyte mailboxes), the client needs to be able to
 search/sort/window the data type on the server.

 A query on the set of Foos in an account is made by calling _Foo/
 query_. This takes a number of arguments to determine which records
 to include, how they should be sorted, and which part of the result
 should be returned (the full list may be _very_ long). The result is
 returned as a list of Foo ids.

 A call to _Foo/query_ takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account is used.

Jenkins Expires September 6, 2018 [Page 26]

Internet-Draft JMAP March 2018

 o *filter*: "FilterOperator|FilterCondition|null" Determines the set
 of Foos returned in the results. If "null", all objects in the
 account of this type are included in the results. A
 FilterOperator object has the following properties:

 * *operator*: "String" This MUST be one of the following strings:
 "AND"/"OR"/"NOT":

 + *AND*: all of the conditions must match for the filter to
 match.

 + *OR*: at least one of the conditions must match for the
 filter to match.

 + *NOT*: none of the conditions must match for the filter to
 match.

 * *conditions*: "(FilterOperator|FilterCondition)[]" The
 conditions to evaluate against each email.

 A *FilterCondition* is an "object", whose allowed properties and
 semantics depend on the data type and is defined in the _/query_
 method specification for that type.

 o *sort*: "Comparator[]|null" Lists the names of properties to
 compare between two Foo records, and how to compare them, to
 determine which comes first in the sort. If two Foo records have
 an identical value for the first comparator, the next comparator
 will be considered and so on. If all comparators are the same
 (this includes the case where an empty array or "null" is given as
 the _sort_ argument), the sort order is server-dependent, but MUST
 be stable between calls to Foo/query. A *Comparator* has the
 following properties:

 * *property*: "String" The name of the property on the Foo
 objects to compare.

 * *isAscending*: "Boolean" (optional; default: "true") If true,
 sort in ascending order. If false, reverse the comparator's
 results to sort in descending order.

 * *collation*: "String" (optional; default is server-dependent)
 The identifier, as registered in the collation registry defined
 in [RFC4790], for the algorithm to use when comparing the order
 of strings. The algorithms the server supports are advertised
 in the capabilities object returned with the JMAP Session
 object. If omitted, the default algorithm is server-dependent,
 but:

https://datatracker.ietf.org/doc/html/rfc4790

Jenkins Expires September 6, 2018 [Page 27]

Internet-Draft JMAP March 2018

 1. It MUST be unicode-aware.

 2. It SHOULD have reasonable default behavior for many
 languages when the user's language is unknown.

 3. It MAY be selected based on out-of-band information about
 the user's language/locale.

 4. It SHOULD be case-insensitive where such a concept makes
 sense for a language/locale.

 The "i;unicode-casemap" collation ([RFC5051]) and the Unicode
 Collation Algorithm (<http://www.unicode.org/reports/tr10/>)
 are two examples that fulfil these criterion. When the
 property being compared is not a string, the _collation_
 property is ignored and the following comparison rules apply
 based on the type. In ascending order:

 + "Boolean": "false" comes before "true".

 + "Number": A lower number comes before a higher number.

 + "Date"/"UTCDate": The earlier date comes first.

 o *position*: "Number" (default: "0") The 0-based index of the first
 id in the full list of results to return. If a negative value is
 given, it is an offset from the end of the list. Specifically,
 the negative value MUST be added to the total number of results
 given the filter, and if still negative clamped to "0". This is
 now the 0-based index of the first id to return. If the index is
 greater than or equal to the total number of objects in the
 results list then the _ids_ array in the response will be empty,
 but this is not an error.

 o *anchor*: "String|null" A Foo id. If supplied the _position_
 argument is ignored. The index of this id in the results will be
 used in combination with the "anchorOffset" argument to determine
 the index of the first result to return (see below for more
 details).

 o *anchorOffset*: "Number|null" The index of the anchor object
 relative to the index of the first result to return. This MAY be
 negative. For example, "-1" means the first Foo after the anchor
 Foo should be the first result in the results returned (see below
 for more details).

 o *limit*: "Number|null" The maximum number of results to return.
 If "null", no limit presumed. The server MAY choose to enforce a

https://datatracker.ietf.org/doc/html/rfc5051
http://www.unicode.org/reports/tr10/

Jenkins Expires September 6, 2018 [Page 28]

Internet-Draft JMAP March 2018

 maximum "limit" argument. In this case, if a greater value is
 given (or if it is "null"), the limit should be clamped to the
 maximum; since the total number of results in the search is
 returned, the client can determine if it has received all the
 results. If a negative value is given, the call MUST be rejected
 with an "invalidArguments" error.

 If an *anchor* argument is given, then after filtering and sorting
 the anchor is looked for in the results. If found, the *anchor
 offset* is then subtracted from its index. If the resulting index is
 now negative, it is clamped to 0. This index is now used exactly as
 though it were supplied as the "position" argument. If the anchor is
 not found, the call is rejected with an "anchorNotFound" error.

 If an _anchor_ is specified, any position argument supplied by the
 client MUST be ignored. If _anchorOffset_ is "null", it defaults to
 "0". If no _anchor_ is supplied, any anchor offset argument MUST be
 ignored.

 A client can use _anchor_ instead of _position_ to find the index of
 an id within a large set of results.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *filter*: "FilterOperator|FilterCondition|null" The filter to
 apply to the search. Echoed back from the call.

 o *sort*: "Comparator[]|null" The sort options used. Echoed back
 from the call.

 o *state*: "String" A string encoding the current state on the
 server. This string MUST change if the results of the search
 may have changed (for example, there has been a change to the
 state of the set of Foos; it does not _guarantee_ that anything in
 the search has changed). It may be passed to _Foo/queryChanges_
 to efficiently get the set of changes from the client's current
 state. Should a client receive back a response with a different
 state string to a previous call, it MUST either throw away the
 currently cached search and fetch it again (note, this does not
 require fetching the records again, just the list of ids) or, call
 Foo/queryChanges to get the delta difference.

 o *canCalculateChanges*: "Boolean" This is "true" if the server
 supports calling _Foo/queryChanges_ with these "filter"/"sort"
 parameters. Note, this does not guarantee that the _Foo/
 queryChanges_ call will succeed, as it may only be possible for a

Jenkins Expires September 6, 2018 [Page 29]

Internet-Draft JMAP March 2018

 limited time afterwards due to server internal implementation
 details.

 o *position*: "Number" The 0-based index of the first result in the
 "ids" array within the complete list of search results.

 o *total*: "Number" The total number of foos in the results (given
 the _filter_).

 o *ids*: "String[]" The list of ids for each foo in the search
 results, starting at the index given by the _position_ argument of
 this response, and continuing until it hits the end of the results
 or reaches the "limit" number of ids. If _position_ is >=
 total, this MUST be the empty list.

 The following additional errors may be returned instead of the _Foo/
 query_ response:

 "anchorNotFound": An anchor argument was supplied, but it cannot be
 found in the results of the search.

 "unsupportedSort": The _sort_ is syntactically valid, but includes a
 property the server does not support sorting on, or a collation
 method it does not recognise.

 "unsupportedFilter": The _filter_ is syntactically valid, but the
 server cannot process it.

4.5. /queryChanges

 The "Foo/queryChanges" call allows a client to efficiently update the
 state of any cached foo search to match the new state on the server.
 It takes the following arguments:

 o *accountId*: "String|null" The id of the account to use for this
 call. If "null", the primary account will be used.

 o *filter*: "FilterOperator|FilterCondition|null" The filter
 argument that was used with _Foo/query_.

 o *sort*: "Comparator[]|null" The sort argument that was used with
 Foo/query.

 o *sinceState*: "String" The current state of the client. This is
 the string that was returned as the _state_ argument in the _Foo/
 query_ response. The server will return the changes made since
 this state.

Jenkins Expires September 6, 2018 [Page 30]

Internet-Draft JMAP March 2018

 o *maxChanges*: "Number|null" The maximum number of changes to
 return in the response. See error descriptions below for more
 details.

 o *uptoId*: "String|null" The last (highest-index) id the client
 currently has cached from the search results. When there are a
 large number of results, in a common case the client may have only
 downloaded and cached a small subset from the beginning of the
 results. If the sort and filter are both only on immutable
 properties, this allows the server to omit changes after this
 point in the results, which can significantly increase efficiency.
 If they are not immutable, this argument is ignored.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *filter*: "FilterOperator|FilterCondition|null" The filter to
 apply to the search. Echoed back from the call.

 o *sort*: "Comparator[]|null" The sort options used. Echoed back
 from the call.

 o *oldState*: "String" This is the "sinceState" argument echoed
 back; the state from which the server is returning changes.

 o *newState*: "String" This is the state the client will be in after
 applying the set of changes to the old state.

 o *uptoId*: "String|null" Echoed back from the call.

 o *total*: "Number" The total number of foos in the results (given
 the _filter_).

 o *removed*: "String[]" The _id_ for every foo that was in the
 results in the old state and is not in the results in the new
 state. If the sort and filter are both only on immutable
 properties and an _uptoId_ is supplied and exists in the results,
 any ids that were removed but have a higher index than _uptoId_
 SHOULD be omitted. If the server cannot calculate this exactly,
 the server MAY return extra foos in addition that may have been in
 the old results but are not in the new results. If the _filter_
 or _sort_ includes a mutable property, the server MUST include all
 foos in the current results for which this property MAY have
 changed.

 o *added*: "AddedItem[]" The id and index in the search results (in
 the new state) for every foo that has been added to the results

Jenkins Expires September 6, 2018 [Page 31]

Internet-Draft JMAP March 2018

 since the old state AND every foo in the current results that was
 included in the _removed_ array (due to a filter or sort based
 upon a mutable property). If the sort and filter are both only on
 immutable properties and an _uptoId_ is supplied and exists in the
 results, any ids that were added but have a higher index than
 uptoId SHOULD be omitted. The array MUST be sorted in order of
 index, lowest index first. An *AddedItem* object has the
 following properties:

 * *id*: "String"

 * *index*: "Number"

 The result of this is that if the client has a cached sparse array of
 foo ids in the results in the old state:

 fooIds = ["id1", "id2", null, null, "id3", "id4", null, null, null]

 then if it *splices out* all foos in the removed array:

 removed = ["id2", ...];
 fooIds => ["id1", null, null, "id3", "id4", null, null, null]

 and *splices in* (in order) all of the foos in the added array:

 added = [{ id: "id5", index: 0, ... }];
 fooIds => ["id5", "id1", null, null, "id3", "id4", null, null, null]

 and *truncates* or *extends* to the new total length, then the
 results will now be in the new state.

 The following additional errors may be returned instead of the _Foo/
 queryChanges_ response:

 "tooManyChanges": There are more changes the the client's
 maxChanges argument. Each item in the removed or added array is
 considered as one change. The client may retry with a higher max
 changes or invalidate its cache of the search results.

 "cannotCalculateChanges": The server cannot calculate the changes
 from the state string given by the client. Usually due to the
 client's state being too old. The client MUST invalidate its cache
 of the search results.

Jenkins Expires September 6, 2018 [Page 32]

Internet-Draft JMAP March 2018

4.6. Examples

 Suppose we have a type _Todo_ with the following properties:

 o *id*: "String" (immutable; server-set) The id of the object.

 o *title*: "String" A brief summary of what is to be done.

 o *keywords*: "String[Boolean]" (mutable; default: "{}") A set of
 keywords that apply to the todo. The set is represented as an
 object, with the keys being the _keywords_. The value for each key
 in the object MUST be "true".

 o *neuralNetworkTimeEstimation*: "Number" (server-set) The title and
 keywords are fed into the server's state-of-the-art neural network
 to get an estimation of how long this todo will take, in seconds.

 and the server supports querying by keyword using the syntax "{
 hasKeyword: "foo" }" in the _filter_ argument to _/query_.

 Now, a client might want to display the list of todos with a
 particular query, so it makes the following method call:

 [["Todo/query", {
 "filter": { "hasKeyword": "music" },
 "sort": [{ "property": "title" }],
 "position": 0,
 "limit": 10
 }, "0"],
 ["Todo/get", {
 "#ids": {
 "resultOf": "0",
 "name": "Todo/query",
 "path": "/ids"
 },
 }, "1"]]

 This would query the server for the set of todos with a keyword of
 "music", sorted by title, and limited to the first 10 results. It
 fetches the full object for each of these Todos using backreferences
 to reference the result of the query. The response might look
 something like:

Jenkins Expires September 6, 2018 [Page 33]

Internet-Draft JMAP March 2018

 [["Todo/query", {
 "accountId": "x",
 "filter": { "hasKeyword": "music" },
 "sort": [{ "property": "title" }],
 "state": "y13213",
 "canCalculateChanges": true,
 "position": 0,
 "total": 26,
 "ids": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
 }, "0"],
 ["Todo/get", {
 "accountId": "x",
 "state": "10324",
 "list": [{
 "id": "a",
 "title": "Practise Piano",
 "keywords": {
 "music": true,
 "beethoven": true,
 "mozart": true,
 "liszt": true,
 "rachmaninov": true
 },
 "neuralNetworkTimeEstimation": 3600
 }, {
 "id": "b",
 "title": "Listen to Daft Punk",
 "keywords": {
 "music": true,
 "trance": true
 },
 "neuralNetworkTimeEstimation": 18000
 },
 ...
]
 }, "1"]]

 Now suppose the user adds a keyword "chopin" and removes the keyword
 "mozart" from the "Practise Piano" task. The client may send the
 whole object to the server, as this is a valid PatchObject:

Jenkins Expires September 6, 2018 [Page 34]

Internet-Draft JMAP March 2018

 [["Todo/set", {
 "ifInState": "10324",
 "update": {
 "a": {
 "id": "a",
 "title": "Practise Piano",
 "keywords": {
 "music": true,
 "beethoven": true,
 "chopin": true,
 "liszt": true,
 "rachmaninov": true,
 }
 "neuralNetworkTimeEstimation": 360
 }
 }
 }, "0"]]

 or it may send a minimal patch:

 [["Todo/set", {
 "ifInState": "10324",
 "update": {
 "a": {
 "keywords/chopin": true,
 "keywords/mozart": null
 }
 }
 }, "0"]]

 The effect is exactly the same on the server in either case, and
 presuming the server is still in state "10324" it will probably
 return success:

 [["Todo/set", {
 "accountId": "x",
 "oldState": "10324",
 "newState": "10329",
 "updated": {
 "a": {
 "neuralNetworkTimeEstimation": 5400
 }
 }
 }, "0"]]

 The server changed the "neuralNetworkTimeEstimation" property on the
 object as part of this change; as this changed in a way _not_

Jenkins Expires September 6, 2018 [Page 35]

Internet-Draft JMAP March 2018

 explicitly requested by the PatchObject sent to the server, it is
 returned with the "updated" confirmation.

 Now, suppose another user deleted the "Listen to Daft Punk" todo.
 The first user will receive a push notification (see later in the
 spec) with the changed state string for the "Todo" type. Since the
 new string does not match its current state, it knows it needs to
 check for updates. It may make a request like:

 [["Todo/changes", {
 "accountId": "x",
 "sinceState": "10324",
 "maxChanges": 50,
 }, "0"],
 ["Todo/queryChanges", {
 "filter": { "hasKeyword": "music" },
 "sort": [{ "property": "title" }],
 "sinceState": "y13213"
 "maxChanges": 50,
 }, "1"]]

 and receive in response:

 [["Todo/changes", {
 "accountId": "x",
 "oldState": "10324",
 "newState": "871903",
 "hasMoreChanges": false,
 "changed": null,
 "destroyed": ["b"]
 }, "0"],
 ["Todo/queryChanges", {
 "filter": { "hasKeyword": "music" },
 "sort": [{ "property": "title" }],
 "oldState": "y13213"
 "newState": "y13218"
 "total": 25,
 "removed": ["b"],
 "added": null
 }, "1"]]

5. Binary data

 Binary data is referenced by a _blobId_ in JMAP, and uploaded/
 downloaded separately to the core API. A blobId does not have a name
 inherent to it, but this is normally given in the same object that
 contains the blobId. The data represented by a blobId is immutable.

Jenkins Expires September 6, 2018 [Page 36]

Internet-Draft JMAP March 2018

 Any blobId that exists within an account may be used when creating/
 updating another object in that account. For example, an Email type
 may have a blobId that represents the RFC5322 representation of the
 message. A client could create a new Email object with an attachment
 and use this blobId, in effect attaching the old message to the new
 one. Similarly it could attach any existing existing attachment of
 an old message without having to download and upload it again.

 When the client uses a blobId in a create/update, the server MAY
 assign a new blobId to refer to the same binary data from the new/
 updated object. If it does so, it MUST return any properties that
 contain a changed blobId in the created/updated response so the
 client gets the new ids.

 A blob that is not referenced by a JMAP object (e.g. as a message
 attachment), MAY be deleted by the server to free up resources.
 Uploads (see below) are initially unreferenced blobs. To ensure
 interoperability:

 o The server SHOULD use a separate quota for unreferenced blobs to
 the user's usual quota.

 o This quota SHOULD be at least the maximum total size that a single
 object can reference on this server. For example, if supporting
 JMAP Mail, this should be at least the maximum total attachments
 size for a message.

 o When an upload would take the user over quota, the server MUST
 delete unreferenced blobs in date order, oldest first, until there
 is room for the new blob.

 o Except where quota restrictions force early deletion, an
 unreferenced blob SHOULD NOT be deleted for at least 24h from the
 time of upload; if reuploaded, the same blobId MAY be returned,
 but this SHOULD reset the expiry time.

 o A blob MUST NOT be deleted during the method call which removed
 the last reference, so that a client can issue a create and a
 destroy that both reference the blob within the same method call.

5.1. Uploading binary data

 There is a single endpoint which handles all file uploads for an
 account, regardless of what they are to be used for. The JMAP
 Session object has an _uploadUrl_ property in [RFC6570] URI Template
 (level 1) format, which MAY contain a variable called "accountId".
 The client may use this template in combination with an _accountId_

https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6570

Jenkins Expires September 6, 2018 [Page 37]

Internet-Draft JMAP March 2018

 (if required in the template) to get the URL of the file upload
 resource.

 To upload a file, the client submits an authenticated POST request to
 the file upload resource.

 A successful request MUST return a single JSON object with the
 following properties as the response:

 o *accountId*: "String" The id of the account used for the call.

 o *blobId*: "String", The id representing the binary data uploaded.
 The data for this id is immutable. The id _only_ refers to the
 binary data, not any metadata.

 o *type*: "String" The media type of the file (as specified in
[RFC6838], section 4.2) as set in the Content-Type header of the

 upload HTTP request, with CFWS collapsed to SP and
 [RFC2231]/[RFC2047] encoding removed.

 o *size*: "Number" The size of the file in octets.

 If identical binary content to an existing blob in the account is
 uploaded, the existing blobId MAY be returned.

5.2. Downloading binary data

 The JMAP Session object has a _downloadUrl_ property, which is in
 [RFC6570] URI Template (level 1) format. The URL MUST contain a
 variable called "blobId", MAY contain a variable called "accountId",
 and SHOULD contain a variable called "name".

 The client may use this template in combination with an _accountId_
 (if required in the URL template) and _blobId_ to download any binary
 data (files) referenced by other objects. Since a blob is not
 associated with a particular name, the template SHOULD allow a name
 to be substituted in as well; the server will return this as the
 filename if it sets a "Content-Disposition" header.

 To download the data the client makes an authenticated GET request to
 the download URL with the appropriate variables substituted in. The
 client SHOULD send an "Accept" header with the content type they
 would like the server to return for the file. The "Content-Type"
 header of a successful response SHOULD be set to the type as
 requested in the "Accept" header by the client, or "application/
 octet-stream" if unknown and no "Accept" header given.

https://datatracker.ietf.org/doc/html/rfc6838#section-4.2
https://datatracker.ietf.org/doc/html/rfc2231
https://datatracker.ietf.org/doc/html/rfc2047
https://datatracker.ietf.org/doc/html/rfc6570

Jenkins Expires September 6, 2018 [Page 38]

Internet-Draft JMAP March 2018

5.3. Blob/copy

 Binary data may be copied *between* two different accounts using the
 Blob/copy method, rather than having to download then reupload on
 the client.

 The _Blob/copy_ method takes the following arguments:

 o *fromAccountId*: "String|null" The id of the account to copy blobs
 from. If "null", defaults to the primary account.

 o *toAccountId*: "String|null" The id of the account to copy blobs
 to. If "null", defaults to the primary account.

 o *blobIds*: "String[]" A list of ids of blobs to copy to the other
 account.

 The response has the following arguments:

 o *fromAccountId*: "String" The id of the account emails were copied
 from.

 o *toAccountId*: "String" The id of the account emails were copied
 to.

 o *copied*: "String[String]|null" A map of the blob id in the
 fromAccount to the id for the blob in the _toAccount_, or "null"
 if none were successfully copied.

 o *notCopied*: "String[SetError]|null" A map of blob id to a
 SetError object for each blob that failed to be copied, "null" if
 none.

 The *SetError* may be any of the standard set errors that may be
 returned for a _create_.

 The following additional errors may be returned instead of the _Blob/
 copy_ response:

 "fromAccountNotFound": A _fromAccountId_ was explicitly included with
 the request, but it does not correspond to a valid account.

 "toAccountNotFound": A _toAccountId_ was explicitly included with the
 request, but it does not correspond to a valid account.

Jenkins Expires September 6, 2018 [Page 39]

Internet-Draft JMAP March 2018

6. Push

 Push notifications allow clients to efficiently update (almost)
 instantly to stay in sync with data changes on the server. In JMAP,
 push notifications occur out-of-band (i.e. not over the same
 connection as API exchanges), so that they can make use of efficient
 native push mechanisms on different platforms.

 The general model for push is simple and sends minimal data over the
 push channel. The format allows multiple changes to be coalesced
 into a single push update, and the frequency of pushes to be rate
 limited by the server. It doesn't matter if some push events are
 dropped before they reach the client; it will still get all changes
 next time it syncs.

6.1. The StateChange object

 When something changes on the server, the server pushes a
 StateChange object to the client. A *StateChange* object has the
 following properties:

 o *changed*: "String[TypeState]" A map of _account id_ to an object
 encoding the state of data types that have changed for that
 account since the last push event, for each of the accounts to
 which the user has access and for which something has changed. A
 TypeState object is a map. The keys are the type name "Foo"
 (e.g. "Mailbox" or "Email"), and the value is the _state_
 property that would currently be returned by a call to _Foo/get_.
 The client can compare the new state strings with its current
 values to see whether it has the current data for these types. If
 not, the changes can then be efficiently fetched in a single
 standard API request (using the _/changes_ type methods).

 o *trigger*: "String" What caused this change. The following causes
 are defined:

 * "delivery": The arrival of a new message caused the change.

 * "user": An action by the user caused the change.

 * "unknown": The cause of the change is unknown.

 Future specifications may define further values. Clients MUST
 treat an unrecognised value the same as "unknown". Clients in
 battery constrained environments may use this information to
 decide whether to immediately fetch the changes.

Jenkins Expires September 6, 2018 [Page 40]

Internet-Draft JMAP March 2018

6.2. PushSubscription

 A push subscription is a message delivery context established between
 the client and a push service. A *PushSubscription* object has the
 following properties:

 o *url*: "String" An absolute URL where the JMAP server will POST
 the data for the push message. This MUST begin with "https://".

 o *expires*: "UTCDate|null" The time this push subscription expires.
 If specified, the JMAP server MUST NOT make further requests to
 this resource after this time. It MAY automatically remove the
 push subscription at or after this time.

 o *keys*: "Object|null" Client-generated encryption keys. If
 supplied the server MUST use them as specified in [RFC8291] to
 encrypt all data sent to the push subscription. The object MUST
 have the following properties:

 * *p256dh*: the P-256 ECDH Diffie-Hellman public key as described
 in [RFC8291], encoded in URL-safe base64 representation as
 defined in [RFC4648].

 * *auth*: the authentication secret as described in [RFC8291],
 encoded in URL-safe base64 representation as defined in
 [RFC4648].

 Clients may register the push subscription with the JMAP server,
 which will then make a POST request to the associated push endpoint
 whenever an event occurs.

 The POST request MUST have a content type of "application/json" and
 contain the utf-8 JSON encoded _StateChange_ object as the body. The
 request MUST have a "TTL" header, and MAY have "Urgency" and/or
 "Topic" headers, as specified in section 5 of [RFC8030].

 If the response code is "503" (Service Unavailable), the JMAP server
 MAY try again later, but may also just drop the event. If the
 response code is "429" (Too Many Requests) the JMAP server SHOULD
 attempt to reduce the frequency of pushes to that URL. Any other
 "4xx" or "5xx" response code MUST be considered a *permanent failure*
 and the push subscription should be deregistered (not tried again
 even for future events unless explicitly re-registered by the
 client).

 The use of this push endpoint conforms with the use of a push
 endpoint by an Application Server as defined in [RFC8030]. A client
 MAY use the rest of [RFC8030] in combination with its own Push Server

https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc8030#section-5
https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8030

Jenkins Expires September 6, 2018 [Page 41]

Internet-Draft JMAP March 2018

 to form a complete end-to-end solution, or MAY rely on alternative
 mechanisms to ensure the delivery of the pushed data after it leaves
 the JMAP server.

6.2.1. PushSubscription/set

 Each session may only have a single push subscription registered.
 The push subscription is tied to the access token used to create it.
 Should the access token expire or be revoked, the push subscription
 MUST be removed by the JMAP server. The client MUST re-register the
 push subscription after reauthenticating to resume callbacks.

 To set the push subscription, make a call to _PushSubscription/set_.
 It takes the following argument:

 o *pushSubscription*: "PushSubscription|null" The PushSubscription
 object representing the endpoint the JMAP server will POST events
 to. This will replace any previously set subscription. Set to
 "null" to remove any previously registered subscription.

 The response has no arguments.

 The following additional errors may be returned instead of the
 PushSubscription/set response:

 "invalidUrl": Returned if the URL does not begin with "https://", or
 is otherwise syntactically invalid or does not resolve.

 "forbidden": Returned if the URL is valid, but for policy reasons the
 server is not willing to connect to it.

6.2.2. PushSubscription/get

 To check the currently set push subscription (if any), make a call to
 PushSubscription/set. It does not take any arguments. The response
 has a single argument:

 o *pushSubscription*: "PushSubscription|null" The PushSubscription
 object the JMAP server is currently posting push events to, or
 "null" if none.

6.3. Event Source

 Clients that can hold open TCP connections can connect directly to
 the JMAP server to receive push notifications via a "text/event-
 stream" resource, as described in <http://www.w3.org/TR/

eventsource/>. This is a long running HTTP request down which the
 server can push data.

http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/eventsource/

Jenkins Expires September 6, 2018 [Page 42]

Internet-Draft JMAP March 2018

 When a change occurs in the data on the server, it pushes an event
 called *state* to any connected clients, with the _StateChange_
 object as the data.

 The server SHOULD also send a new event id that encodes the entire
 server state visible to the user immediately after sending a _state_
 event. When a new connection is made to the event-source endpoint, a
 client following the server-sent events specification [1] will send a
 Last-Event-ID HTTP header with the last id it saw, which the server
 can use to work out whether the client has missed some changes. If
 so, it SHOULD send these changes immediately on connection.

 The client MAY add a query parameter called "closeafter" with value
 "state" to the event-source resource URL when requesting the event-
 source resource. If set, the server MUST end the HTTP response after
 pushing a _state_ event. This can be used by clients in environments
 where buffering proxies prevent the pushed data from arriving
 immediately, or indeed at all, when operating in the usual mode.

 The client MAY add a query parameter called "ping", with a positive
 integer value representing a length of time in seconds, e.g.
 "ping=300". If set, the server MUST send an event called *ping*
 whenever this time elapses since the previous event was sent. This
 MUST NOT set a new event id.

 The server MAY modify the interval given as a query parameter to be
 subject to a minimum and/or maximum value. For interoperability,
 servers MUST NOT have a minimum allowed value higher than 30 or a
 maximum allowed value less than 300.

 The data for the ping event MUST be a JSON object containing an
 interval property, the value (type "Number") being the interval in
 seconds the server is using to send pings (this may be different to
 the requested value if the server clamped it to be within a min/max
 value).

 Clients can monitor for the _ping_ event to help determine when the
 closeafter mode may be required.

 Refer to the JMAP Session resource section of this spec for details
 on how to get the URL for the event-source resource. Requests to the
 resource MUST be authenticated.

 A client MAY hold open multiple connections to the event-source
 resource, although it SHOULD try to use a single connection for
 efficiency.

Jenkins Expires September 6, 2018 [Page 43]

Internet-Draft JMAP March 2018

7. Security considerations

7.1. Transport confidentiality

 All HTTP requests MUST use [RFC5246] TLS (https) transport to ensure
 the confidentiality of data sent and received via JMAP. Clients MUST
 validate TLS certificate chains to protect against man-in-the-middle
 attacks.

7.2. Authentication scheme

 A number of HTTP authentication schemes have been standardised
 (<https://www.iana.org/assignments/http-authschemes/http-

authschemes.xhtml>). Servers should take care to assess the security
 characteristics of different schemes in relation to their needs when
 deciding what to implement.

 If offering the Basic authentication scheme, services are strongly
 recommended to not allow a user's regular password but require
 generation of a unique "app password" via some external mechanism for
 each client they wish to connect. This allows connections from
 different devices to be differentiated by the server, and access to
 be individually revoked.

7.3. Service autodiscovery

 Unless secured by something like DNSSEC, autodiscovery of server
 details is vulnerable to a DNS poisoning attack leading to the client
 talking to an attacker's server instead of the real JMAP server. The
 attacker may then man-in-the-middle requests and depending on the
 authentication scheme, steal credentials to generate its own
 requests.

 Clients that do not support SRV lookups are likely to try just using
 the "/.well-known/jmap" path directly against the domain of the
 username over HTTPS. Servers SHOULD ensure this path resolves or
 redirects to the correct JMAP Session resource to allow this to work.
 If this is not feasible, servers MUST ensure this path cannot be
 controlled by an attacker, as again it may be used to steal
 credentials.

7.4. JSON parsing

 The security considerations of [RFC7159] apply to the use of JSON as
 the data interchange format.

https://datatracker.ietf.org/doc/html/rfc5246
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://datatracker.ietf.org/doc/html/rfc7159

Jenkins Expires September 6, 2018 [Page 44]

Internet-Draft JMAP March 2018

7.5. Denial of service

 A small request may result in a very large response, and require
 considerable work on the server if resource limits are not enforced.
 JMAP provides mechanisms for advertising and enforcing a wide variety
 of limits for mitigating this threat, including limits on number of
 objects fetched in a single method call, number of methods in a
 single request, number of concurrent requests, etc.

 JMAP servers MUST implement sensible limits to mitigate against
 resource exhaustion attacks.

7.6. Push encryption

 When data changes, a small object is pushed with the new state
 strings for the types that have changed. While the data here is
 minimal, a passive man-in-the-middle attacker may be able to gain
 useful information. To ensure confidentiality, if the push is sent
 via a third party outside of the control of the client and JMAP
 server the client MUST specify encryption keys when establishing the
 PushSubscription.

 The privacy and security considerations of [RFC8030] and [RFC8291]
 also all apply to the use of the PushSubscription mechanism.

8. References

8.1. Normative References

 [RFC2047] Moore, K., "MIME (Multipurpose Internet Mail Extensions)
 Part Three: Message Header Extensions for Non-ASCII Text",

RFC 2047, DOI 10.17487/RFC2047, November 1996,
 <https://www.rfc-editor.org/info/rfc2047>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2231] Freed, N. and K. Moore, "MIME Parameter Value and Encoded
 Word Extensions: Character Sets, Languages, and
 Continuations", RFC 2231, DOI 10.17487/RFC2231, November
 1997, <https://www.rfc-editor.org/info/rfc2231>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc2047
https://www.rfc-editor.org/info/rfc2047
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2231
https://www.rfc-editor.org/info/rfc2231
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339

Jenkins Expires September 6, 2018 [Page 45]

Internet-Draft JMAP March 2018

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
 Application Protocol Collation Registry", RFC 4790,
 DOI 10.17487/RFC4790, March 2007,
 <https://www.rfc-editor.org/info/rfc4790>.

 [RFC5051] Crispin, M., "i;unicode-casemap - Simple Unicode Collation
 Algorithm", RFC 5051, DOI 10.17487/RFC5051, October 2007,
 <https://www.rfc-editor.org/info/rfc5051>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6186] Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <https://www.rfc-editor.org/info/rfc6186>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

 [RFC6764] Daboo, C., "Locating Services for Calendaring Extensions
 to WebDAV (CalDAV) and vCard Extensions to WebDAV
 (CardDAV)", RFC 6764, DOI 10.17487/RFC6764, February 2013,
 <https://www.rfc-editor.org/info/rfc6764>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc4790
https://www.rfc-editor.org/info/rfc4790
https://datatracker.ietf.org/doc/html/rfc5051
https://www.rfc-editor.org/info/rfc5051
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6186
https://www.rfc-editor.org/info/rfc6186
https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6764
https://www.rfc-editor.org/info/rfc6764
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838

Jenkins Expires September 6, 2018 [Page 46]

Internet-Draft JMAP March 2018

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC8030] Thomson, M., Damaggio, E., and B. Raymor, Ed., "Generic
 Event Delivery Using HTTP Push", RFC 8030,
 DOI 10.17487/RFC8030, December 2016,
 <https://www.rfc-editor.org/info/rfc8030>.

 [RFC8291] Thomson, M., "Message Encryption for Web Push", RFC 8291,
 DOI 10.17487/RFC8291, November 2017,
 <https://www.rfc-editor.org/info/rfc8291>.

8.2. URIs

 [1] https://html.spec.whatwg.org/multipage/server-sent-events.html

Author's Address

 Neil Jenkins
 FastMail
 Level 2, 114 William St
 Melbourne VIC 3000
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/rfc8030
https://www.rfc-editor.org/info/rfc8030
https://datatracker.ietf.org/doc/html/rfc8291
https://www.rfc-editor.org/info/rfc8291
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://www.fastmail.com

Jenkins Expires September 6, 2018 [Page 47]

