
JMAP N. Jenkins
Internet-Draft FastMail
Intended status: Standards Track C. Newman
Expires: February 8, 2019 Oracle
 August 7, 2018

JSON Meta Application Protocol
draft-ietf-jmap-core-07

Abstract

 This document specifies a protocol for clients to access JSON-based
 data objects efficiently, with support for push and out-of-band
 binary data upload/download.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 8, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Jenkins & Newman Expires February 8, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft JMAP August 2018

Table of Contents

1. Introduction . 3
1.1. Notational conventions 4
1.2. The Int and PositiveInt data types 5
1.3. The Date and UTCDate data types 5
1.4. JSON as the data encoding format 5
1.5. Terminology . 5
1.5.1. User . 5
1.5.2. Accounts . 6
1.5.3. Data types and records 6

1.6. Ids . 6
1.7. The JMAP API model 7
1.8. Vendor-specific extensions 7

2. The JMAP Session resource 8
2.1. Example . 11
2.2. Service Autodiscovery 13

3. Structured data exchange 13
3.1. Making an API request 13
3.2. The Request object 13
3.2.1. Example request 15

3.3. The Response object 15
3.3.1. Example response: 15

3.4. Omitting arguments 16
3.5. Errors . 16
3.5.1. Request-level errors 17
3.5.2. Method-level errors 17

3.6. References to previous method results 19
3.7. Security . 24
3.8. Concurrency . 24

4. The Core/echo method . 24
4.1. Example . 24

5. Standard methods and naming convention 25
5.1. /get . 25
5.2. /changes . 26
5.3. /set . 29
5.4. /copy . 34
5.5. /query . 36
5.6. /queryChanges . 40
5.7. Examples . 43

6. Binary data . 48
6.1. Uploading binary data 49
6.2. Downloading binary data 50
6.3. Blob/copy . 50

7. Push . 51
7.1. The StateChange object 51
7.1.1. Example . 52

7.2. PushSubscription . 52

Jenkins & Newman Expires February 8, 2019 [Page 2]

Internet-Draft JMAP August 2018

7.2.1. PushSubscription/get 54
7.2.2. PushSubscription/set 55
7.2.3. Example . 55

7.3. Event Source . 57
8. Security considerations 58
8.1. Transport confidentiality 58
8.2. Authentication scheme 58
8.3. Service autodiscovery 58
8.4. JSON parsing . 59
8.5. Denial of service . 59
8.6. Push encryption . 59

9. IANA considerations . 59
9.1. Assignment of jmap service name 59
9.2. Registration of well-known URI suffix for JMAP 60
9.3. Registration of the jmap URN sub-namespace 60
9.4. Creation of "JMAP Capabilities" registry 60
9.4.1. Preliminary community review 61
9.4.2. Submit request to IANA 61
9.4.3. Designated expert review 61
9.4.4. Change procedures 62
9.4.5. JMAP Capabilities registry template: 62
9.4.6. Initial registration for JMAP core 62

 9.4.7. Registration for JMAP error placeholder in JMAP
 capabilities registry 63

9.5. Creation of "JMAP Error Codes" registry 63
9.5.1. Designated expert review 63
9.5.2. JMAP Error Codes registry template: 64
9.5.3. Initial JMAP Error Codes registry 64

10. References . 66
10.1. Normative References 66
10.2. URIs . 69

 Authors' Addresses . 69

1. Introduction

 JMAP is a generic protocol for synchronising data, such as mail,
 calendars or contacts, between a client and a server. It is
 optimised for mobile and web environments, and aims to provide a
 consistent interface to different data types.

 This specification is for the generic mechanism of data
 synchronisation. Further specifications define the data models for
 different data types that may be synchronised via JMAP.

 JMAP is designed to make efficient use of limited network resources.
 Multiple API calls may be batched in a single request to the server,
 reducing round trips and improving battery life on mobile devices.

Jenkins & Newman Expires February 8, 2019 [Page 3]

Internet-Draft JMAP August 2018

 Push connections remove the need for polling, and an efficient delta
 update mechanism ensures a minimum of data is transferred.

 JMAP is designed to be horizontally scalable to a very large number
 of users. This is facilitated by the separate end points for users
 after login, the separation of binary and structured data, and a
 shared data model that does not allow data dependencies between
 accounts.

1.1. Notational conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 The underlying format used for this specification is JSON.
 Consequently, the terms "object" and "array" as well as the four
 primitive types (strings, numbers, booleans, and null) are to be
 interpreted as described in Section 1 of [RFC7159]. Unless otherwise
 noted, all the property names and values are case sensitive.

 Some examples in this document contain "partial" JSON documents used
 for illustrative purposes. In these examples, three periods "..."
 are used to indicate a portion of the document that has been removed
 for compactness.

 Unless otherwise specified, examples of API exchanges only show the
 methodCalls array of the Request object or the _methodResponses_
 array of the Response object. For compactness, the rest of the
 Request/Response object is omitted.

 Type signatures are given for all JSON values in this document. The
 following conventions are used:

 o "*" - The type is undefined (the value could be any type, although
 permitted values may be constrained by the context of this value).

 o "String" - The JSON string type.

 o "Number" - The JSON number type.

 o "Boolean" - The JSON boolean type.

 o "String[A]" - A JSON object where the keys are all "String"s, and
 the values are of type "A".

 o "A[]" - An array of values of type "A".

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7159#section-1

Jenkins & Newman Expires February 8, 2019 [Page 4]

Internet-Draft JMAP August 2018

 o "A|B" - The value is either of type "A" or of type "B".

 Other types may also be given, with their representation defined
 elsewhere in this document.

1.2. The Int and PositiveInt data types

 Where "Int" is given as a data type, it means an integer in the range
 -2^53 <= value <= 2^53 (the maximum integer that may be reliably
 stored in a floating-point double), represented as a JSON "Number".

 Where "PositiveInt" is given as a data type, it means an "Int" where
 the value MUST be in the range 0 <= value <= 2^53.

1.3. The Date and UTCDate data types

 Where "Date" is given as a type, it means a string in [RFC3339]
 date-time format. To ensure a normalised form, the _time-secfrac_
 MUST always be omitted and any letters in the string (e.g. "T" and
 "Z") MUST be upper-case. For example, ""2014-10-30T14:12:00+08:00"".

 Where "UTCDate" is given as a type, it means a "Date" where the
 time-offset component MUST be "Z" (i.e. it must be in UTC time).
 For example, ""2014-10-30T06:12:00Z"".

1.4. JSON as the data encoding format

 JSON is a text-based data interchange format as specified in
 [RFC7159]. The I-JSON format defined in [RFC7493] is a strict subset
 of this, adding restrictions to avoid potentially confusing scenarios
 (for example, it mandates that an object MUST NOT have two properties
 with the same key).

 All data sent from the client to the server or from the server to the
 client (except binary file upload/download) MUST be valid I-JSON
 according to the RFC, and is therefore case-sensitive and encoded in
 UTF-8 ([RFC3629]).

1.5. Terminology

1.5.1. User

 A user represents a set of permissions relating to what data can be
 seen.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7493
https://datatracker.ietf.org/doc/html/rfc3629

Jenkins & Newman Expires February 8, 2019 [Page 5]

Internet-Draft JMAP August 2018

1.5.2. Accounts

 An account is a collection of data. A single account may contain an
 arbitrary set of data types, for example a collection of mail,
 contacts and calendars.

 All data belongs to a single account. With the exception of a few
 explicit operations to copy data between accounts, all JMAP methods
 take an _accountId_ argument that specifies on which account the
 operations are to take place. This argument is always optional; if
 not specified, the primary account for the capability that defines
 the data type is used. (Though if there is no primary account for
 that capability, an "accountNotFound" error will be returned.)

 An account is not the same as a user, although it is common for a
 primary account to directly belong to the user. For example, you may
 have an account that contains data for a group or business, to which
 multiple users have access.

 A single set of credentials may provide access to multiple accounts,
 for example if another user is sharing their mail with the logged in
 user, or if there is a group account.

 In the event of a severe internal error, a server may have to
 reallocate ids or do something else that violates standard JMAP data
 constraints for an account. In this situation, the data on the
 server is no longer compatible with cached data the client may have
 from before. The server MUST treat this as though the account has
 been deleted and then recreated with a new account id. Clients will
 then be forced to throw away any data with the old account id and
 refetch all data from scratch.

1.5.3. Data types and records

 JMAP provides a uniform interface for creating, retrieving, updating
 and deleting various types of objects. A *data type* is a collection
 of named, typed properties, just like the schema for a database
 table. Each instance of a data type is called a *record*.

1.6. Ids

 All record ids are assigned by the server, and are immutable. They
 MUST be unique among all records of the *same type* within the *same
 account*. Ids may clash across accounts, or for two records of
 different types within the same account.

 Ids are always "String"s. An id MUST be at least 1 character in
 length and maximum 255 octets in size, and MUST only contain

Jenkins & Newman Expires February 8, 2019 [Page 6]

Internet-Draft JMAP August 2018

 characters from the "URL and Filename safe" Base 64 Alphabet, as
 defined in section 5 of [RFC4648]. This is the ASCII alphanumeric
 characters ("A-Za-z0-9"), hyphen ("-"), and underscore ("_").

1.7. The JMAP API model

 JMAP uses HTTP [RFC7230] to expose API, Push, Upload and Download
 resources. Implementations MUST support HTTP/1.1, and MAY support
 later versions. All HTTP requests MUST use [RFC5246] TLS (HTTPS)
 transport. Support for common HTTP mechanisms such as redirection
 and caching are assumed.

 All HTTP requests MUST be authenticated. Servers MUST conform with
 the [RFC7235] HTTP Authentication framework to reject requests that
 fail authentication and inform the client of available authentication
 schemes.

 Clients SHOULD understand and be able to handle standard HTTP status
 codes appropriately.

 An authenticated client can fetch the JMAP Session object with
 details about the data and capabilities the server can provide as
 shown in section 2. The client may then exchange data with the
 server in the following ways:

 1. The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then
 returns an ordered series of responses. This is described in
 sections 3 and 4.

 2. The client may download or upload binary files from/to the
 server. This is detailed in section 5.

 3. The client may connect to a push channel on the server, to be
 notified when data has changed. This is explained in section 6.

1.8. Vendor-specific extensions

 Individual services will have custom features they wish to expose
 over JMAP. This may take the form of extra data types and/or methods
 not in the spec, or extra arguments to JMAP methods, or extra
 properties on existing data types (which may also appear in arguments
 to methods that take property names).

 The server can advertise custom extensions it supports by including
 the identifiers in the capabilities object. Identifiers for vendor
 extensions MUST be a URL belonging to a domain owned by the vendor,

https://datatracker.ietf.org/doc/html/rfc4648#section-5
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc7235

Jenkins & Newman Expires February 8, 2019 [Page 7]

Internet-Draft JMAP August 2018

 to avoid conflict. The URL SHOULD resolve to documentation for the
 changes the extension makes.

 To ensure compatibility with clients that don't know about a specific
 custom extension, and for compatibility with future versions of JMAP,
 to use an extension the client MUST opt in by passing the appropriate
 capability identifier in the _using_ array of the Request object, as
 described in section 3.2. The server MUST only follow the
 specifications that are opted-into and behave as though it does not
 implement anything else when processing a request.

2. The JMAP Session resource

 You need two things to connect to a JMAP server:

 1. The URL for the JMAP Session resource. This may be requested
 directly from the user, or discovered automatically based on a
 username domain (see Service Autodiscovery section below).

 2. Credentials to authenticate with. How to obtain credentials is
 out of scope for this specification.

 An authenticated GET request to the JMAP Session resource MUST return
 the details about the data and capabilities the server can provide to
 the client given those credentials.

 The response to a successful request is a JSON-encoded *JMAP Session*
 object. It has the following properties:

 o *username*: "String" The username associated with the given
 credentials.

 o *accounts*: "String[Account]" A map of *account id* to Account
 object for each account (see section 1.5.2) the user has access
 to. An *Account* object has the following properties:

 * *name*: "String" A user-friendly string to show when presenting
 content from this account, e.g. the email address representing
 the owner of the account.

 * *isReadOnly*: "Boolean" This is "true" if the entire account is
 read-only.

 * *hasDataFor*: "String[]" A list of specification URIs for the
 object types supported in this account. The server advertises
 the list of specifications it supports in general in the
 capabilities object, as defined below. If the specification
 includes new object type definitions, the server MUST include

Jenkins & Newman Expires February 8, 2019 [Page 8]

Internet-Draft JMAP August 2018

 it the _hasDataFor_ array if, and only if, the user may use
 those data types with this account. For example, you may have
 access to your own account with mail, calendars and contacts
 data, and also a shared account that only has contacts data (a
 business address book for example). In this case the
 hasDataFor property on the first account would include
 something like "urn:ietf:params:jmap:mail",
 "urn:ietf:params:jmap:calendars",
 "urn:ietf:params:jmap:contacts", while the second account would
 just have the last of these. Attempts to use the methods
 defined in a specification with one of the accounts that does
 not contain those data types are rejected with an
 accountNotSupportedByMethod error (see the Method-level
 errors section below).

 o *primaryAccounts*: "String[String]" A map of capability URIs (as
 found in _hasDataFor_) to the account id to be considered the
 user's main or default account for data pertaining to that
 capability. If no account being returned belongs to the user, or
 in any other way there is no appropriate way to determine a
 default account, there MAY be no entry for a particular data
 profile name. "urn:ietf:params:jmap:core" SHOULD NOT be present.

 o *capabilities*: "String[Object]" An object specifying the
 capabilities of this server. Each key is a URI for a
 specification supported by the server. The value for each of
 these keys is an object with further information about the
 server's capabilities in relation to that specification. The
 client MUST ignore any properties it does not understand. The
 capabilities object MUST include a property called
 "urn:ietf:params:jmap:core". The value of this property is an
 object which MUST contain the following information on server
 capabilities:

 * *maxSizeUpload*: "PositiveInt" The maximum file size, in
 octets, that the server will accept for a single file upload
 (for any purpose).

 * *maxConcurrentUpload*: "PositiveInt" The maximum number of
 concurrent requests the server will accept to the upload
 endpoint.

 * *maxSizeRequest*: "PositiveInt" The maximum size, in octets,
 that the server will accept for a single request to the API
 endpoint.

 * *maxConcurrentRequests*: "PositiveInt" The maximum number of
 concurrent requests the server will accept to the API endpoint.

Jenkins & Newman Expires February 8, 2019 [Page 9]

Internet-Draft JMAP August 2018

 * *maxCallsInRequest*: "PositiveInt" The maximum number of method
 calls the server will accept in a single request to the API
 endpoint. This MUST be greater than or equal to "32" to ensure
 clients can rely on the ability to make efficient network use.

 * *maxObjectsInGet*: "PositiveInt" The maximum number of objects
 that the client may request in a single "/get" type method
 call.

 * *maxObjectsInSet*: "PositiveInt" The maximum number of objects
 the client may send to create, update or destroy in a single
 "/set" type method call.

 * *collationAlgorithms*: "String[]" A list of identifiers for
 algorithms registered in the collation registry defined in
 [RFC4790] that the server supports for sorting when querying
 records.

 Future specifications will define their own properties on the
 capabilities object. Servers MAY advertise vendor-specific JMAP
 extensions, as described in section 1.8. To avoid conflict, the
 identifiers for these MUST be a URL with a domain owned by the
 vendor. Clients MUST opt in to any specifications it wishes to
 use (see section 3.1).

 o *apiUrl*: "String" The URL to use for JMAP API requests.

 o *downloadUrl*: "String" The URL endpoint to use when downloading
 files in [RFC6570] URI Template (level 1) format. The URL MUST
 contain variables called "accountId", "blobId", "type" and "name".
 The use of these variables is described in section 5.2. Due to
 potential encoding issues with slashes in content types, it is
 recommended to put the "type" variable in the query section of the
 URL.

 o *uploadUrl*: "String" The URL endpoint to use when uploading files
 in [RFC6570] URI Template (level 1) format. The URL MUST contain
 a variable called "accountId". The use of this variable is
 described in section 5.1.

 o *eventSourceUrl*: "String" The URL to connect to for push events,
 as described in section 6.3.

 To ensure future compatibility, other properties MAY be included on
 the JMAP Session object. Clients MUST ignore any properties they are
 not expecting.

https://datatracker.ietf.org/doc/html/rfc4790
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6570

Jenkins & Newman Expires February 8, 2019 [Page 10]

Internet-Draft JMAP August 2018

2.1. Example

 In the following example JMAP Session object, the user has access to
 his own mail and contacts via JMAP, as well as read-only access to
 shared mail from another user. The server is advertising a custom
 "https://example.com/apis/foobar" capability.

Jenkins & Newman Expires February 8, 2019 [Page 11]

Internet-Draft JMAP August 2018

{
 "username": "john@example.com",
 "accounts": {
 "13824": {
 "name": "john@example.com",
 "isReadOnly": false,
 "hasDataFor": [
 "urn:ietf:params:jmap:mail",
 "urn:ietf:params:jmap:contacts"
]
 },
 "97813": {
 "name": "jane@example.com",
 "isReadOnly": true,
 "hasDataFor": ["urn:ietf:params:jmap:mail"]
 }
 },
 "primaryAccounts": {
 "urn:ietf:params:jmap:mail": "13824",
 "urn:ietf:params:jmap:contacts": "13824"
 },
 "capabilities": {
 "urn:ietf:params:jmap:core": {
 "maxSizeUpload": 50000000,
 "maxConcurrentUpload": 8,
 "maxSizeRequest": 10000000,
 "maxConcurrentRequest": 8,
 "maxCallsInRequest": 32,
 "maxObjectsInGet": 256,
 "maxObjectsInSet": 128,
 "collationAlgorithms": [
 "i;ascii-numeric",
 "i;ascii-casemap",
 "i;unicode-casemap"
]
 },
 "https://example.com/apis/foobar": {
 "maxFoosFinangled": 42
 },
 ...
 },
 "apiUrl": "https://jmap.example.com/api/",
 "downloadUrl": "https://jmap.example.com/download/{accountId}/{blobId}/
{name}?accept={type}",
 "uploadUrl": "https://jmap.example.com/upload/{accountId}/",
 "eventSourceUrl": "https://jmap.example.com/eventsource/"
}

Jenkins & Newman Expires February 8, 2019 [Page 12]

Internet-Draft JMAP August 2018

2.2. Service Autodiscovery

 There are two standardised autodiscovery methods in use for internet
 protocols:

 o *DNS SRV* ([RFC2782], [RFC6186] and [RFC6764])

 o *.well-known/servicename* ([RFC5785])

 A JMAP-supporting host for the domain "example.com" SHOULD publish a
 SRV record "_jmap._tcp.example.com" which gives a _hostname_ and
 port (usually port "443"). The JMAP Session resource is then
 "https://${hostname}[:${port}]/.well-known/jmap" (following any
 redirects).

 If the client has a username in the form of an email address, it MAY
 use the domain portion of this to attempt autodiscovery of the JMAP
 server.

3. Structured data exchange

 The client may make an API request to the server to get or set
 structured data. This request consists of an ordered series of
 method calls. These are processed by the server, which then returns
 an ordered series of responses.

3.1. Making an API request

 To make an API request, the client makes an authenticated POST
 request to the API resource, which is defined by the _apiUrl_
 property in the JMAP Session object.

 The request MUST be of type "application/json" and consist of a
 single JSON *Request* object. If successful, the response MUST also
 be of type "application/json" and consist of a single *Response*
 object.

3.2. The Request object

 A *Request* object has the following properties:

 o *using*: "String[]" The set of capabilities the client wishes to
 use. The client MAY include capability identifiers even if the
 method calls it makes do not utilise those capabilities. The
 server advertises the set of specifications it supports in the
 JMAP Session object, as keys on the _capabilities_ property.

https://datatracker.ietf.org/doc/html/rfc2782
https://datatracker.ietf.org/doc/html/rfc6186
https://datatracker.ietf.org/doc/html/rfc6764
https://datatracker.ietf.org/doc/html/rfc5785

Jenkins & Newman Expires February 8, 2019 [Page 13]

Internet-Draft JMAP August 2018

 o *methodCalls*: "Array[]" An array of method calls to process on
 the server. The method calls MUST be processed sequentially, in
 order. A *method call* is represented by an array containing
 three elements:

 1. A "String" *name* of the method to call.

 2. An "String[*]" object containing _named_ *arguments* for that
 method.

 3. A *client id*: an arbitrary "String" to be echoed back with
 the responses emitted by that method call (a method may return
 1 or more responses, as it may make implicit calls to other
 methods; all responses initiated by this method call get the
 same client id in the response).

 o *createdIds*: "String[String]" (optional) A map of (client-
 specified) creation id to the id the server assigned when a record
 was successfully created. As described later in this
 specification, some records may have a property that contains the
 id of another record. To allow more efficient network usage, you
 can set this property to reference a record created earlier in the
 same API request. Since the real id is unknown when the request
 is created, the client can instead specify the creation id it
 assigned, prefixed with a "#". As the server processes API
 requests, any time it successfully creates a new record it adds to
 this map the creation id, with the server-assigned real id as the
 value. If it comes across a reference to a creation id in a
 create/update, it looks it up in the map and replaces the
 reference with the real id, if found. The client can pass an
 initial value for this map as the _createdIds_ property of the
 Request. This may be an empty object. If given in the request,
 the response will also include a createdIds property, with any
 additionally created ids added. This allows proxy servers to
 easily split a JMAP request into multiple JMAP requests to send to
 different servers. For example it could send the first two method
 calls to server A, then the third to server B, before sending the
 fourth to server A again. By passing the createdIds of the
 previous response to the next request, it can ensure all of these
 still resolve.

 Future specifications MAY add further properties to the Request
 object to extend the semantics. To ensure forwards compatibility, a
 server MUST ignore any other properties it does not understand on the
 JMAP request object.

Jenkins & Newman Expires February 8, 2019 [Page 14]

Internet-Draft JMAP August 2018

3.2.1. Example request

{
 "using": ["urn:ietf:params:jmap:core", "urn:ietf:params:jmap:mail"],
 "methodCalls": [
 ["method1", {
 "arg1": "arg1data",
 "arg2": "arg2data"
 }, "c1"],
 ["method2", {
 "arg1": "arg1data"
 }, "c2"],
 ["method3", {}, "c3"]
]
}

3.3. The Response object

 A *Response* object has the following properties:

 o *methodResponses*: "Array[]" An array of responses, in the same
 format as the _methodCalls_ on the request object. The output of
 the methods MUST be added to the _methodResponses_ array in the
 same order as the methods are processed.

 o *createdIds*: "String[String]" (optional; only returned if given
 in request) A map of (client-specified) creation id to the id the
 server assigned when a record was successfully created. This
 includes all values passed in the request, as well as any
 additional ones added for newly created records.

 Unless otherwise specified, if the method call completed successfully
 its response name is the same as the method name in the request.

3.3.1. Example response:

Jenkins & Newman Expires February 8, 2019 [Page 15]

Internet-Draft JMAP August 2018

 {
 "methodResponses": [
 ["method1", {
 "arg1": 3,
 "arg2": "foo"
 }, "c1"],
 ["method2", {
 "isBlah": true
 }, "c2"],
 ["anotherResponseFromMethod2", {
 "data": 10,
 "yetmoredata": "Hello"
 }, "c2"],
 ["error", {
 "type":"unknownMethod"
 }, "c3"]
]
 }

3.4. Omitting arguments

 An argument to a method may be specified to have a default value. If
 omitted by the client, the server MUST treat the method call the same
 as if the default value had been specified. Similarly, the server
 MAY omit any argument in a response which has the default value.

 Unless otherwise specified in a method description, "null" is the
 default value for any argument in a request or response where this is
 allowed by the type signature. Other arguments may only be omitted
 if an explicit default value is defined in the method description.

3.5. Errors

 There are three different levels of granularity at which an error may
 be returned in JMAP.

 When an API request is made, the request as a whole may be rejected
 due to rate limiting, malformed JSON, request for an unknown
 capability etc. In this case the entire request is rejected with an
 appropriate HTTP error response code, and an additional JSON body
 with more detail for the client.

 Provided the request itself is syntactically valid, the methods
 within it are executed sequentially by the server. Each method may
 individually fail, for example if invalid arguments are given, or an
 unknown method name is called.

Jenkins & Newman Expires February 8, 2019 [Page 16]

Internet-Draft JMAP August 2018

 Finally, methods that make changes to the server state often act upon
 a number of different records within a single call. Each record
 change may be separately rejected with a SetError, as described in

section 5.3.

3.5.1. Request-level errors

 When an HTTP error response is returned to the client, the server
 SHOULD return a JSON "problem details" object as the response body,
 as per [RFC7807].

 The following problem types are defined:

 o "urn:ietf:params:jmap:error:unknownCapability" The client included
 a capability in the "using" property of the request that the
 server does not support.

 o "urn:ietf:params:jmap:error:notJSON" The content type of the
 request was not "application/json" or the request did not parse as
 I-JSON.

 o "urn:ietf:params:jmap:error:notRequest" The request parsed as JSON
 but did not match the structure of the Request object.

 o "urn:ietf:params:jmap:error:limit" The request was not processed
 as it would have exceeded one of the *request* limits defined on
 the capability object, such as maxSizeRequest, maxCallsInRequest
 or maxConcurrentRequests. A "limit" property MUST also be present
 on the "problem details" object, containing the name of the limit
 being applied.

3.5.1.1. Example

{
 "type": "urn:ietf:params:jmap:error:unknownCapability",
 "status": 400,
 "detail": "The request object used capability 'https://example.com/apis/
foobar', which is not supported by this server."
}

3.5.2. Method-level errors

 If a method encounters an error, the appropriate "error" response
 MUST be inserted at the current point in the _methodResponses_ array
 and, unless otherwise specified, further processing MUST NOT happen
 within that method call.

https://datatracker.ietf.org/doc/html/rfc7807

Jenkins & Newman Expires February 8, 2019 [Page 17]

Internet-Draft JMAP August 2018

 Any further method calls in the request MUST then be processed as
 normal. Errors at the method level MUST NOT generate an HTTP-level
 error.

 An "error" response looks like this:

 ["error", {
 "type": "unknownMethod"
 }, "client-id"]

 The response name is "error", and it MUST have a type property.
 Other properties may be present with further information; these are
 detailed in the error type descriptions where appropriate.

 With the exception of "serverPartialFail", the externally-visible
 state of the server MUST NOT have changed if an error is returned at
 the method level.

 The following error types are defined which may be returned for any
 method call where appropriate:

 "serverUnavailable": Some internal server resource was temporarily
 unavailable. Attempting the same operation later (perhaps after a
 backoff with a random factor) may succeed.

 "serverFail": An unexpected or unknown error occurred during the
 processing of the call. A _description_ property should provide more
 details about the error. The method call made no changes to the
 server's state. Attempting the same operation again is expected to
 fail again. Contacting the service administrator is likely necessary
 to resolve this problem if it is persistent.

 "serverPartialFail": Some, but not all expected changes described by
 the method occurred. The client MUST re-synchronise impacted data to
 determine server state. Use of this error is strongly discouraged.

 "unknownMethod": The server does not recognise this method name.

 "invalidArguments": One of the arguments is of the wrong type or
 otherwise invalid, or a required argument is missing. A
 "description" property MAY be present to help debug with an
 explanation of what the problem was. This is a non-localised string,
 and is not intended to be shown directly to end users.

 "invalidResultReference": The method used a back reference for one of
 its arguments (see the next section), but this failed to resolve.

Jenkins & Newman Expires February 8, 2019 [Page 18]

Internet-Draft JMAP August 2018

 "forbidden": The method and arguments are valid, but executing the
 method would violate an ACL or other permissions policy.

 "accountNotFound": An _accountId_ was included with the method call
 that does not correspond to a valid account, or _accountId_ was null
 but there is no primary account for the capability that defines the
 data type.

 "accountNotSupportedByMethod": An _accountId_ given corresponds to a
 valid account, but the account does not support this data type.

 "accountReadOnly": This method call would modify state in an account
 that has "isReadOnly == true".

 Further possible errors for a particular method are specified in the
 method descriptions.

 Further general errors MAY be defined in future RFCs. Should a
 client receive an error type it does not understand, it MUST treat it
 the same as the "serverFail" type.

3.6. References to previous method results

 To allow clients to make more efficient use of the network and avoid
 round trips, an argument to one method can be taken from the result
 of a previous method call.

 To do this, the client prefixes the argument name with "#". The
 value is a _ResultReference_ object as described below. When
 processing a method call, the server MUST first check the arguments
 object for any names beginning with "#". If found, the back
 reference should be resolved and the value used as the "real"
 argument. The method is then processed as normal. If any back
 reference fails to resolve, the whole method MUST be rejected with an
 "invalidResultReference" error. If an argument object contains the
 same argument name in normal and referenced form (e.g. "foo" and
 "#foo"), the method MUST return an "invalidArguments" error.

 A *ResultReference* object has the following properties:

 o *resultOf*: "String" The client id of the method call to get the
 result from (the string given as the third item in the array for a
 method call).

 o *name*: "String" The expected name of the response.

Jenkins & Newman Expires February 8, 2019 [Page 19]

Internet-Draft JMAP August 2018

 o *path*: "String" A pointer into the arguments. This is an
 [RFC6901] JSON Pointer, except it also allows the use of "*" to
 map through an array (see description below).

 To resolve:

 1. Find the first response with a client id identical to the
 resultOf property of the _ResultReference_ in the
 methodResponses array from previously processed method calls in
 the same request. If none, evaluation fails.

 2. If the response name is not identical to the _name_ property of
 the _ResultReference_, evaluation fails.

 3. Apply the _path_ to the arguments object of the response (the
 second item in the response array) following the [RFC6901] JSON
 Pointer algorithm, except with the following addition in

Section 4 (Evaluation):

 If the currently referenced value is a JSON array, the reference
 token may be exactly the single character "*", making the new
 referenced value the result of applying the rest of the JSON pointer
 tokens to every item in the array and returning the results in the
 same order in a new array. If the result of applying the rest of the
 pointer tokens to a value was itself an array, its items should be
 included individually in the output rather than including the array
 itself (i.e. the result is flattened from an array of arrays to a
 single array).

 As a simple example, suppose we have the following API request
 methodCalls:

 [["Foo/changes", {
 "sinceState": "abcdef"
 }, "t0"],
 ["Foo/get", {
 "#ids": {
 "resultOf": "t0",
 "name": "Foo/changes",
 "path": "/created"
 }
 }, "t1"]]

 After executing the first method call the _methodResponses_ array is:

https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6901

Jenkins & Newman Expires February 8, 2019 [Page 20]

Internet-Draft JMAP August 2018

 [["Foo/changes", {
 "accountId": "1",
 "oldState": "abcdef",
 "newState": "123456",
 "hasMoreChanges": false,
 "created": ["f1", "f4"],
 "updated": [],
 "destroyed": []
 }, "t0"]]

 So to execute the Foo/get call, we look through the arguments and
 find there is one with a "#" prefix. To resolve this, we apply the
 algorithm above:

 1. Find the first response with client id "t0". The Foo/changes
 response fulfils this criterion.

 2. Check the response name is the same as in the result reference.
 It is, so this is fine.

 3. Apply the _path_ as a JSON pointer to the arguments object. This
 simply selects the "created" property, so the result of
 evaluating is: "["f1", "f4"]"

 The JMAP server now continues to process the Foo/get call as though
 the arguments were:

 {
 "ids": ["f1", "f4"]
 }

 Now a more complicated example using the JMAP Mail data model: fetch
 the "from"/"date"/"subject" for every email in the first 10 threads
 in the Inbox (sorted newest first):

Jenkins & Newman Expires February 8, 2019 [Page 21]

Internet-Draft JMAP August 2018

 [["Email/query", {
 "filter": { "inMailbox": "id_of_inbox" },
 "sort": [{ "property": "receivedAt", "isAscending": false }],
 "collapseThreads": true,
 "position": 0,
 "limit": 10,
 "calculateTotal": true
 }, "t0"],
 ["Email/get", {
 "#ids": {
 "resultOf": "t0",
 "name": "Email/query",
 "path": "/ids"
 },
 "properties": ["threadId"]
 }, "t1"],
 ["Thread/get", {
 "#ids": {
 "resultOf": "t1",
 "name": "Email/get",
 "path": "/list/*/threadId"
 }
 }, "t2"],
 ["Email/get", {
 "#ids": {
 "resultOf": "t2",
 "name": "Thread/get",
 "path": "/list/*/emailIds"
 },
 "properties": ["from", "receivedAt", "subject"]
 }, "t3"]]

 After executing the first 3 method calls the _methodResponses_ array
 might be:

Jenkins & Newman Expires February 8, 2019 [Page 22]

Internet-Draft JMAP August 2018

[["Email/query", {
 "accountId": "1",
 "filter": { "inMailbox": "id_of_inbox" },
 "sort": [{ "property": "receivedAt", "isAscending": false }],
 "collapseThreads": true,
 "queryState": "abcdefg",
 "canCalculateChanges": true,
 "position": 0,
 "total": 101,
 "ids": ["msg1023", "msg223", "msg110", "msg93", "msg91", "msg38", "msg36",
"msg33", "msg11", "msg1"]
}, "t0"],
["Email/get", {
 "accountId": "1",
 "state": "123456",
 "list": [{
 "id": "msg1023",
 "threadId": "trd194",
 }, {
 "id": "msg223",
 "threadId": "trd114"
 },
 ...
],
 "notFound": []
}, "t1"],
["Thread/get", {
 "accountId": "1",
 "state": "123456",
 "list": [{
 "id: "trd194",
 "emailIds": ["msg1020", "msg1021", "msg1023"]
 }, {
 "id: "trd114",
 "emailIds": ["msg201", "msg223"]
 },
 ...
],
 "notFound": []
}, "t2"]]

 So to execute the final Email/get call, we look through the arguments
 and find there is one with a "#" prefix. To resolve this, we apply
 the algorithm:

 1. Find the first response with client id "t2". The "Thread/get"
 response fulfils this criterion.

Jenkins & Newman Expires February 8, 2019 [Page 23]

Internet-Draft JMAP August 2018

 2. "Thread/get" is the name specified in the result reference, so
 this is fine.

 3. Apply the _path_ as a JSON pointer to the arguments object.
 Token-by-token: a) "list": get the array of thread objects b)
 "*": for each of the items in the array:

 i) `emailIds`: get the array of email ids
 ii) Concatenate these into a single array of all the ids in the result.

 The JMAP server now continues to process the Email/get call as though
 the arguments were:

{
 "ids": ["msg1020", "msg1021", "msg1023", "msg201", "msg223", ...],
 "properties": ["from", "receivedAt", "subject"]
}

3.7. Security

 As always, the server must be strict about data received from the
 client. Arguments need to be checked for validity; a malicious user
 could attempt to find an exploit through the API. In case of invalid
 arguments (unknown/insufficient/wrong type for data etc.) the method
 MUST return an "invalidArguments" error and terminate.

3.8. Concurrency

 Method calls within a single request MUST be executed in order.
 However, method calls from different concurrent API requests may be
 interleaved. This means that the data on the server may change
 between two method calls within a single API request.

4. The Core/echo method

 The _Core/echo_ method returns exactly the same arguments as it is
 given. It is useful for testing you have a valid authenticated
 connection to a JMAP API endpoint.

4.1. Example

 Request:

 [["Core/echo", {
 "hello": true,
 "high": 5
 }, "b3ff"]]

Jenkins & Newman Expires February 8, 2019 [Page 24]

Internet-Draft JMAP August 2018

 Response:

 [["Core/echo", {
 "hello": true,
 "high": 5
 }, "b3ff"]]

5. Standard methods and naming convention

 JMAP provides a uniform interface for creating, retrieving, updating
 and deleting objects of a particular type. For a "Foo" data type,
 records of that type would be fetched via a Foo/get call and modified
 via a Foo/set call. Delta updates may be fetched via a Foo/changes
 call. These methods all follow a standard format as described below.

 Not all types may have all methods. Specifications defining types
 MUST specify which methods are available for the type.

5.1. /get

 Objects of type *Foo* are fetched via a call to _Foo/get_.

 It takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account for the capability that defines the
 data type is used.

 o *ids*: "String[]|null" The ids of the Foo objects to return. If
 "null" then *all* records of the data type are returned, if this
 is supported for that data type.

 o *properties*: "String[]|null" If supplied, only the properties
 listed in the array are returned for each Foo object. If "null",
 all properties of the object are returned. The id of the object
 is *always* returned, even if not explicitly requested. If an
 invalid property is requested, the call MUST be rejected with an
 "invalidArguments" error.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *state*: "String" A string representing the state on the server
 for *all* the data of this type in the account (not just the
 objects returned in this call). If the data changes, this string
 MUST change. If the Foo data is unchanged, servers SHOULD return
 the same state string on subsequent requests for this data type.

Jenkins & Newman Expires February 8, 2019 [Page 25]

Internet-Draft JMAP August 2018

 When a client receives a response with a different state string to
 a previous call, it MUST either throw away all currently cached
 objects for the type, or call _Foo/changes_ to get the exact
 changes.

 o *list*: "Foo[]" An array of the Foo objects requested. This is
 the *empty array* if no objects were found, or if the _ids_
 argument passed in was also the empty array. The results MAY be
 in a different order to the _ids_ in the request arguments. If an
 identical id is included more than once in the request, the server
 MUST only include it once in either the _list_ or _notFound_
 argument of the response.

 o *notFound*: "String[]" This array contains the ids passed to the
 method for records that do not exist. The array is empty if all
 requested ids were found, or if the _ids_ argument passed in was
 either "null" or the empty array.

 The following additional error may be returned instead of the _Foo/
 get_ response:

 "requestTooLarge": The number of _ids_ requested by the client
 exceeds the maximum number the server is willing to process in a
 single method call.

5.2. /changes

 When the state of the set of Foo records changes on the server
 (whether due to creation, updates or deletion), the _state_ property
 of the _Foo/get_ response will change. The _Foo/changes_ method
 allows a client to efficiently update the state of its Foo cache to
 match the new state on the server. It takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account for the capability that defines the
 data type is used.

 o *sinceState*: "String" The current state of the client. This is
 the string that was returned as the _state_ argument in the _Foo/
 get_ response. The server will return the changes that have
 occurred since this state.

 o *maxChanges*: "PositiveInt|null" The maximum number of ids to
 return in the response. The server MAY choose to return fewer
 than this value, but MUST NOT return more. If not given by the
 client, the server may choose how many to return. If supplied by
 the client, the value MUST be a positive integer greater than 0.

Jenkins & Newman Expires February 8, 2019 [Page 26]

Internet-Draft JMAP August 2018

 If a value outside of this range is given, the server MUST reject
 the call with an "invalidArguments" error.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *oldState*: "String" This is the _sinceState_ argument echoed
 back; the state from which the server is returning changes.

 o *newState*: "String" This is the state the client will be in after
 applying the set of changes to the old state.

 o *hasMoreChanges*: "Boolean" If "true", the client may call _Foo/
 changes_ again with the _newState_ returned to get further
 updates. If "false", _newState_ is the current server state.

 o *created*: "String[]" An array of ids for records which have been
 created since the old state.

 o *updated*: "String[]" An array of ids for records which have been
 updated since the old state.

 o *destroyed*: "String[]" An array of ids for records which have
 been destroyed since the old state.

 If a record has been created AND updated since the old state, the
 server SHOULD just return the id in the _created_ list, but MAY
 return it in the _updated_ list as well.

 If a record has been updated AND destroyed since the old state, the
 server SHOULD just return the id in the _destroyed_ list, but MAY
 return it in the _updated_ list as well.

 If a record has been created AND destroyed since the old state, the
 server SHOULD remove the id from the response entirely, but MAY
 include it in the _destroyed_ list, and if so MAY also include it in
 the _created_ list.

 If a _maxChanges_ is supplied, or set automatically by the server,
 the server MUST ensure the number of ids returned across _created_,
 updated and _destroyed_ does not exceed this limit. If there are
 more changes than this between the client's state and the current
 server state, the server SHOULD generate an update to take the client
 to an intermediate state, from which the client can continue to call
 Foo/changes until it is fully up to date. If it is unable to
 calculate an intermediate state, it MUST return a
 "cannotCalculateChanges" error response instead.

Jenkins & Newman Expires February 8, 2019 [Page 27]

Internet-Draft JMAP August 2018

 When generating intermediate states, the server may choose how to
 divide up the changes. For many types it will provide a better user
 experience to return the more recent changes first, as this is more
 likely to be what the user is most interested in. The client can
 then continue to page in the older changes while the user is viewing
 the newer data. For example, suppose a server went through the
 following states:

 A -> B -> C -> D -> E

 And a client asks for changes from state "B". The server might first
 get the ids of records created, updated or destroyed between states D
 and E, returning them with:

 state: "B-D-E"
 hasMoreChanges: true

 The client will then ask for the change from state "B-D-E", and the
 server can return the changes between states C and D, returning:

 state: "B-C-E"
 hasMoreChanges: true

 Finally the client will request the changes from "B-C-E" and the
 server can return the changes between states B and C, returning:

 state: "E"
 hasMoreChanges: false

 Should the state on the server be modified in the middle of all this
 (to "F"), the server still does the same but now when the update to
 state "E" is returned, it would indicate that it still has more
 changes for the client to fetch.

 Where multiple changes to a record are split across different
 intermediate states, the server MUST NOT return a record as created
 in a later response than one which gives it as updated or destroyed,
 and MUST NOT return a record as destroyed before a response that
 gives it as created or updated. The server may have to coalesce
 multiple changes to a record to satisfy this requirement.

 The following additional errors may be returned instead of the _Foo/
 changes_ response:

 "cannotCalculateChanges": The server cannot calculate the changes
 from the state string given by the client. Usually due to the
 client's state being too old, or the server being unable to produce

Jenkins & Newman Expires February 8, 2019 [Page 28]

Internet-Draft JMAP August 2018

 an update to an intermediate state when there are too many updates.
 The client MUST invalidate its Foo cache.

 Maintaining state to allow calculation of _Foo/changes_ can be
 expensive for the server, but always returning
 cannotCalculateChanges severely increases network traffic and
 resource usage for the client. To allow efficient sync, servers
 SHOULD be able to calculate changes from any state string that was
 given to a client within the last 30 days (but of course may support
 calculating updates from states older than this).

5.3. /set

 Modifying the state of Foo objects on the server is done via the
 Foo/set method. This encompasses creating, updating and destroying
 Foo records. This allows the server to sort out ordering and
 dependencies that may exist if doing multiple operations at once (for
 example to ensure there is always a minimum number of a certain
 record type).

 The _Foo/set_ method takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account for the capability that defines the
 data type is used.

 o *ifInState*: "String|null" This is a state string as returned by
 the _Foo/get_ method. If supplied, the string must match the
 current state, otherwise the method will be aborted and a
 "stateMismatch" error returned. If "null", any changes will be
 applied to the current state.

 o *create*: "String[Foo]|null" A map of _creation id_ (an arbitrary
 string set by the client) to Foo objects, or "null" if no objects
 are to be created. The Foo object type definition MAY define
 default values for properties. Any such property MAY be omitted
 by the client. The client MUST omit any properties that may only
 be set by the server (for example, the _id_ property on most
 object types).

 o *update*: "String[PatchObject]|null" A map of id to a Patch object
 to apply to the current Foo object with that id, or "null" if no
 objects are to be updated. A _PatchObject_ is of type
 "String[*]", and represents an unordered set of patches. The keys
 are a path in [RFC6901] JSON pointer format, with an implicit
 leading "/" (i.e. prefix each key with "/" before applying the
 JSON pointer evaluation algorithm). All paths MUST also conform

https://datatracker.ietf.org/doc/html/rfc6901

Jenkins & Newman Expires February 8, 2019 [Page 29]

Internet-Draft JMAP August 2018

 to the following restrictions; if there is any violation, the
 update MUST be rejected with an "invalidPatch" error:

 * The pointer MUST NOT reference inside an array (i.e. you MUST
 NOT insert/delete from an array; the array MUST be replaced in
 its entirety instead).

 * All parts prior to the last (i.e. the value after the final
 slash) MUST already exist on the object being patched.

 * There MUST NOT be two patches in the PatchObject where the
 pointer of one is the prefix of the pointer of the other, e.g.
 "alerts/1/offset" and "alerts".

 The value associated with each pointer determines how to apply
 that patch:

 * If "null", set to the default value if specified for this
 property, otherwise remove the property from the patched
 object. If the key is not present in the parent, this a no-op.

 * Anything else: The value to set for this property (this may be
 a replacement or addition to the object being patched).

 Any server-set properties MAY be included in the patch if their
 value is identical to the current server value (before applying
 the patches to the object). Otherwise, the update MUST be
 rejected with an _invalidProperties_ SetError. This patch
 definition is designed such that an entire Foo object is also a
 valid PatchObject. The client MAY choose to optimise network
 usage by just sending the diff, or MAY just send the whole object;
 the server processes it the same either way.

 o *destroy*: "String[]|null" A list of ids for Foo objects to
 permanently delete, or "null" if no objects are to be destroyed.

 Each creation, modification or destruction of an object is considered
 an atomic unit. It is permissible for the server to commit changes
 to some objects but not others, however it is not permissible to only
 commit part of an update to a single record (e.g. update a _name_
 property but not a _count_ property, if both are supplied in the
 update object).

 The final state MUST be valid after the Foo/set is finished, however
 the server may have to transition through invalid intermediate states
 (not exposed to the client) while processing the individual
 create/update/destroy requests. For example, suppose there is a
 "name" property that must be unique. A single method call could

Jenkins & Newman Expires February 8, 2019 [Page 30]

Internet-Draft JMAP August 2018

 rename an object A => B, and simultaneously rename another object B
 => A. If the final state is valid, this is allowed. Otherwise, each
 creation, modification or destruction of an object should be
 processed sequentially and accepted/rejected based on the current
 server state.

 If a create, update or destroy is rejected, the appropriate error
 MUST be added to the notCreated/notUpdated/notDestroyed property of
 the response and the server MUST continue to the next create/update/
 destroy. It does not terminate the method.

 If an id given cannot be found, the update or destroy MUST be
 rejected with a "notFound" set error.

 The server MAY skip an update (rejecting it with a "willDestroy"
 SetError) if that object is destroyed in the same /set request.

 Some record objects may hold references to others (foreign keys).
 When records are created or modified, they may reference other
 records being created _in the same API request_ by using the creation
 id prefixed with a "#". The order of the method calls in the request
 by the client MUST be such that the record being referenced is
 created in the same or an earlier call. The server thus never has to
 look ahead. Instead, while processing a request (a series of method
 calls), the server MUST keep a simple map for the duration of the
 request of creation id to record id for each newly created record, so
 it can substitute in the correct value if necessary in later method
 calls.

 Creation ids are not scoped by type but are a single map for all
 types. A client SHOULD NOT reuse a creation id anywhere in the same
 API request. If a creation id is reused, the server MUST map the
 creation id to the most recently created item with that id. To allow
 easy proxying of API requests, an initial set of creation id to real
 id values may be passed with a request (see The Request object
 specification above).

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *oldState*: "String|null" The state string that would have been
 returned by _Foo/get_ before making the requested changes, or
 "null" if the server doesn't know what the previous state string
 was.

 o *newState*: "String" The state string that will now be returned by
 Foo/get.

Jenkins & Newman Expires February 8, 2019 [Page 31]

Internet-Draft JMAP August 2018

 o *created*: "String[Foo]|null" A map of the creation id to an
 object containing any properties of the created Foo object that
 were not sent by the client. This includes all server-set
 properties (such as the _id_ in most object types) and any
 properties that were omitted by the client and so set to a default
 by the server. This argument is "null" if no Foo objects were
 successfully created.

 o *updated*: "String[Foo|null]|null" The _keys_ in this map are the
 ids of all Foos that were successfully updated, or "null" if none
 successful. The _value_ for each id is a Foo object containing
 any property that changed in a way _not_ explicitly requested by
 the _PatchObject_ sent to the server, or "null" if none. This
 lets the client know of any changes to server-set or computed
 properties.

 o *destroyed*: "String[]|null" A list of Foo ids for records that
 were successfully destroyed, or "null" if none successful.

 o *notCreated*: "String[SetError]|null" A map of creation id to a
 SetError object for each record that failed to be created, or
 "null" if all successful.

 o *notUpdated*: "String[SetError]|null" A map of Foo id to a
 SetError object for each record that failed to be updated, or
 "null" if all successful.

 o *notDestroyed*: "String[SetError]|null" A map of Foo id to a
 SetError object for each record that failed to be destroyed, or
 "null" if all successful.

 A *SetError* object has the following properties:

 o *type*: "String" The type of error.

 o *description*: "String|null" A description of the error to help
 debug with an explanation of what the problem was. This is a non-
 localised string, and is not intended to be shown directly to end
 users.

 The following SetError types are defined and may be returned for set
 operations on any record type where appropriate:

 o "forbidden": (create; update; destroy) The create/update/destroy
 would violate an ACL or other permissions policy.

 o "overQuota": (create) The create would exceed a server-defined
 limit on the number or total size of objects of this type.

Jenkins & Newman Expires February 8, 2019 [Page 32]

Internet-Draft JMAP August 2018

 o "tooLarge": (create; update) The create/update would result in an
 object that exceeds a server-defined limit for the maximum size of
 a single object of this type.

 o "rateLimit": (create) Too many objects of this type have been
 created recently, and a server-defined rate limit has been
 reached. It may work if tried again later.

 o "notFound": (update; destroy) The id given cannot be found.

 o "invalidPatch": (update) The PatchObject given to update the
 record was not a valid patch (see the patch description).

 o "willDestroy" (update) The client requested an object be both
 updated and destroyed in the same /set request, and the server has
 decided to therefore ignore the update.

 o "invalidProperties": (create; update) The record given is invalid
 in some way. For example:

 * It contains properties which are invalid according to the type
 specification of this record type.

 * It contains a property that may only be set by the server (e.g.
 "id") and are different to the current value. Note, to allow
 clients to pass whole objects back, it is not an error to
 include a server-set property so long as the value is identical
 to the current value on the server (or the value that will be
 set by the server if a create).

 * There is a reference to another record (foreign key) and the
 given id does not correspond to a valid record.

 The SetError object SHOULD also have a property called
 properties of type "String[]" that lists *all* the properties
 that were invalid. Individual methods MAY specify more specific
 errors for certain conditions that would otherwise result in an
 invalidProperties error. If the condition of one of these is met,
 it MUST be returned instead of the invalidProperties error.

 o "singleton": (create; destroy) This is a singleton type, so you
 cannot create another one or destroy the existing one.

 Other possible SetError types MAY be given in specific method
 descriptions. Other properties MAY also be present on the _SetError_
 object, as described in the relevant methods.

Jenkins & Newman Expires February 8, 2019 [Page 33]

Internet-Draft JMAP August 2018

 The following additional errors may be returned instead of the _Foo/
 set_ response:

 "requestTooLarge": The total number of objects to create, update or
 destroy exceeds the maximum number the server is willing to process
 in a single method call.

 "stateMismatch": An "ifInState" argument was supplied and it does not
 match the current state.

5.4. /copy

 The only way to move Foo records *between* two different accounts is
 to copy them using the _Foo/copy_ method, then once the copy has
 succeeded, delete the original. The _onSuccessDestroyOriginal_
 argument allows you to try to do this in one method call, however
 note that the two different actions are not atomic, and so it is
 possible for the copy to succeed but the original not to be destroyed
 for some reason.

 The _Foo/copy_ method takes the following arguments:

 o *fromAccountId*: "String|null" The id of the account to copy
 records from. If "null", the primary account for the capability
 that defines the data type is used.

 o *toAccountId*: "String|null" The id of the account to copy records
 to. If "null", the primary account for the capability that
 defines the data type is used.

 o *create*: "String[Foo]" A map of _creation id_ to a Foo object.
 The object MUST contain an id property: the id of the record to be
 copied. Any other properties included are used instead of the
 current value for that property on the original when creating the
 copy.

 o *onSuccessDestroyOriginal*: "Boolean" (default: false) If "true",
 an attempt will be made to destroy the original records that were
 successfully copied: after emitting the _Foo/copy_ response, but
 before processing the next method, the server MUST make a single
 call to _Foo/set_ to destroy the original of each successfully
 copied record; the output of this is added to the responses as
 normal to be returned to the client.

 Each record copy is considered an atomic unit which may succeed or
 fail individually. Copying successfully MUST create a new record
 object, with separate ids and mutable properties to the original,
 even if copied within a single account.

Jenkins & Newman Expires February 8, 2019 [Page 34]

Internet-Draft JMAP August 2018

 The response has the following arguments:

 o *fromAccountId*: "String" The id of the account records were
 copied from.

 o *toAccountId*: "String" The id of the account records were copied
 to.

 o *created*: "String[Foo]|null" A map of the creation id to an
 object containing any properties of the copied Foo object that are
 set by the server (such as the _id_ in most object types). This
 argument is "null" if no Foo objects were successfully copied.

 o *notCreated*: "String[SetError]|null" A map of creation id to a
 SetError object for each record that failed to be copied, "null"
 if none.

 The *SetError* may be any of the standard set errors that may be
 returned for a _create_ or _update_. In addition, the following
 SetError is defined:

 "alreadyExists": The server forbids duplicates and the record already
 exists in the target account. An _existingId_ property of type
 "String" MUST be included on the error object with the id of the
 existing record.

 The following additional errors may be returned instead of the _Foo/
 copy_ response:

 "fromAccountNotFound": A _fromAccountId_ was explicitly included with
 the request, but it does not correspond to a valid account; or,
 fromAccountId was null but there is no primary account for the
 capability that defines the data type.

 "toAccountNotFound": A _toAccountId_ was explicitly included with the
 request, but it does not correspond to a valid account; or,
 toAccountId was null but there is no primary account for the
 capability that defines the data type.

 "fromAccountNotSupportedByMethod": The _fromAccountId_ given
 corresponds to a valid account, but the account does not support this
 data type.

 "toAccountNotSupportedByMethod": The _toAccountId_ given corresponds
 to a valid account, but the account does not support this data type.

Jenkins & Newman Expires February 8, 2019 [Page 35]

Internet-Draft JMAP August 2018

5.5. /query

 For data sets where the total amount of data is expected to be very
 small, clients can just fetch the complete set of data and then do
 any sorting/filtering locally. However, for large data sets (e.g.
 multi-gigabyte mailboxes), the client needs to be able to
 search/sort/window the data type on the server.

 A query on the set of Foos in an account is made by calling _Foo/
 query_. This takes a number of arguments to determine which records
 to include, how they should be sorted, and which part of the result
 should be returned (the full list may be _very_ long). The result is
 returned as a list of Foo ids.

 A call to _Foo/query_ takes the following arguments:

 o *accountId*: "String|null" The id of the Account to use. If
 "null", the primary account for the capability that defines the
 data type is used.

 o *filter*: "FilterOperator|FilterCondition|null" Determines the set
 of Foos returned in the results. If "null", all objects in the
 account of this type are included in the results. A
 FilterOperator object has the following properties:

 * *operator*: "String" This MUST be one of the following strings:
 "AND"/"OR"/"NOT":

 + *AND*: all of the conditions must match for the filter to
 match.

 + *OR*: at least one of the conditions must match for the
 filter to match.

 + *NOT*: none of the conditions must match for the filter to
 match.

 * *conditions*: "(FilterOperator|FilterCondition)[]" The
 conditions to evaluate against each record.

 A *FilterCondition* is an "object", whose allowed properties and
 semantics depend on the data type and is defined in the _/query_
 method specification for that type. It MUST NOT have an
 operator property.

 o *sort*: "Comparator[]|null" Lists the names of properties to
 compare between two Foo records, and how to compare them, to
 determine which comes first in the sort. If two Foo records have

Jenkins & Newman Expires February 8, 2019 [Page 36]

Internet-Draft JMAP August 2018

 an identical value for the first comparator, the next comparator
 will be considered and so on. If all comparators are the same
 (this includes the case where an empty array or "null" is given as
 the _sort_ argument), the sort order is server-dependent, but MUST
 be stable between calls to Foo/query. A *Comparator* has the
 following properties:

 * *property*: "String" The name of the property on the Foo
 objects to compare.

 * *isAscending*: "Boolean" (optional; default: true) If true,
 sort in ascending order. If false, reverse the comparator's
 results to sort in descending order.

 * *collation*: "String" (optional; default is server-dependent)
 The identifier, as registered in the collation registry defined
 in [RFC4790], for the algorithm to use when comparing the order
 of strings. The algorithms the server supports are advertised
 in the capabilities object returned with the JMAP Session
 object. If omitted, the default algorithm is server-dependent,
 but:

 1. It MUST be unicode-aware.

 2. It SHOULD have reasonable default behavior for many
 languages when the user's language is unknown.

 3. It MAY be selected based on out-of-band information about
 the user's language/locale.

 4. It SHOULD be case-insensitive where such a concept makes
 sense for a language/locale.

 The "i;unicode-casemap" collation ([RFC5051]) and the Unicode
 Collation Algorithm (<http://www.unicode.org/reports/tr10/>)
 are two examples that fulfil these criterion. When the
 property being compared is not a string, the _collation_
 property is ignored and the following comparison rules apply
 based on the type. In ascending order:

 + "Boolean": "false" comes before "true".

 + "Number": A lower number comes before a higher number.

 + "Date"/"UTCDate": The earlier date comes first.

 The object may also have additional properties as required for
 specific sort operations defined in a type's /query method.

https://datatracker.ietf.org/doc/html/rfc4790
https://datatracker.ietf.org/doc/html/rfc5051
http://www.unicode.org/reports/tr10/

Jenkins & Newman Expires February 8, 2019 [Page 37]

Internet-Draft JMAP August 2018

 o *position*: "Int" (default: 0) The 0-based index of the first id
 in the full list of results to return. If a negative value is
 given, it is an offset from the end of the list. Specifically,
 the negative value MUST be added to the total number of results
 given the filter, and if still negative clamped to "0". This is
 now the 0-based index of the first id to return. If the index is
 greater than or equal to the total number of objects in the
 results list then the _ids_ array in the response will be empty,
 but this is not an error.

 o *anchor*: "String|null" A Foo id. If supplied the _position_
 argument is ignored. The index of this id in the results will be
 used in combination with the "anchorOffset" argument to determine
 the index of the first result to return (see below for more
 details).

 o *anchorOffset*: "Int|null" The index of the first result to return
 relative to the index of the anchor. This MAY be negative. For
 example, "-1" means the first Foo before the anchor Foo should be
 the first result in the results returned (see below for more
 details).

 o *limit*: "PositiveInt|null" The maximum number of results to
 return. If "null", no limit presumed. The server MAY choose to
 enforce a maximum "limit" argument. In this case, if a greater
 value is given (or if it is "null"), the limit should be clamped
 to the maximum; since the total number of results in the query is
 returned, the client can determine if it has received all the
 results. If a negative value is given, the call MUST be rejected
 with an "invalidArguments" error.

 o *calculateTotal*: "Boolean" (default: false) Does the client wish
 to know the total number of results in the query? This may be
 slow and expensive for servers to calculate, particularly with
 complex filters, so clients should take care to only request the
 total when needed.

 If an *anchor* argument is given, then after filtering and sorting
 the anchor is looked for in the results. If found, the *anchor
 offset* is then added to its index. If the resulting index is now
 negative, it is clamped to 0. This index is now used exactly as
 though it were supplied as the "position" argument. If the anchor is
 not found, the call is rejected with an "anchorNotFound" error.

 If an _anchor_ is specified, any position argument supplied by the
 client MUST be ignored. If _anchorOffset_ is "null", it defaults to
 "0". If no _anchor_ is supplied, any anchor offset argument MUST be
 ignored.

Jenkins & Newman Expires February 8, 2019 [Page 38]

Internet-Draft JMAP August 2018

 A client can use _anchor_ instead of _position_ to find the index of
 an id within a large set of results.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *filter*: "FilterOperator|FilterCondition|null" The filter used.
 Echoed back from the call.

 o *sort*: "Comparator[]|null" The sort options used. Echoed back
 from the call.

 o *queryState*: "String" A string encoding the current state of the
 query on the server. This string MUST change if the results of
 the query (i.e. the matching ids and their sort order) have
 changed. The queryState string MAY change if something has
 changed on the server which means the results may have changed but
 the server doesn't know for sure. The queryState string only
 represents the ordered list of ids that match the particular query
 (including its sort/filter). There is no requirement for it to
 change if a property on an object matching the query changes but
 the query results are unaffected (indeed, it is more efficient if
 the queryState string does not change in this case). The
 queryState string only has meaning when compared to future
 responses to a query with the same type/sort/filter, or when used
 with /queryChanges to fetch changes. Should a client receive back
 a response with a different queryState string to a previous call,
 it MUST either throw away the currently cached query and fetch it
 again (note, this does not require fetching the records again,
 just the list of ids) or, call _Foo/queryChanges_ to get the
 difference.

 o *canCalculateChanges*: "Boolean" This is "true" if the server
 supports calling _Foo/queryChanges_ with these "filter"/"sort"
 parameters. Note, this does not guarantee that the _Foo/
 queryChanges_ call will succeed, as it may only be possible for a
 limited time afterwards due to server internal implementation
 details.

 o *position*: "PositiveInt" The 0-based index of the first result in
 the "ids" array within the complete list of query results.

 o *total*: "PositiveInt" (only if requested) The total number of
 foos in the results (given the _filter_). This argument MUST be
 omitted if the _calculateTotal_ request argument is not "true".

Jenkins & Newman Expires February 8, 2019 [Page 39]

Internet-Draft JMAP August 2018

 o *ids*: "String[]" The list of ids for each foo in the query
 results, starting at the index given by the _position_ argument of
 this response, and continuing until it hits the end of the results
 or reaches the "limit" number of ids. If _position_ is >=
 total, this MUST be the empty list.

 The following additional errors may be returned instead of the _Foo/
 query_ response:

 "anchorNotFound": An anchor argument was supplied, but it cannot be
 found in the results of the query.

 "unsupportedSort": The _sort_ is syntactically valid, but includes a
 property the server does not support sorting on, or a collation
 method it does not recognise.

 "unsupportedFilter": The _filter_ is syntactically valid, but the
 server cannot process it.

5.6. /queryChanges

 The "Foo/queryChanges" call allows a client to efficiently update the
 state of any cached foo query to match the new state on the server.
 It takes the following arguments:

 o *accountId*: "String|null" The id of the account to use. If
 "null", the primary account for the capability that defines the
 data type will be used.

 o *filter*: "FilterOperator|FilterCondition|null" The filter
 argument that was used with _Foo/query_.

 o *sort*: "Comparator[]|null" The sort argument that was used with
 Foo/query.

 o *sinceQueryState*: "String" The current state of the query in the
 client. This is the string that was returned as the _queryState_
 argument in the _Foo/query_ response with the same sort/filter.
 The server will return the changes made to the query since this
 state.

 o *maxChanges*: "PositiveInt|null" The maximum number of changes to
 return in the response. See error descriptions below for more
 details.

 o *upToId*: "String|null" The last (highest-index) id the client
 currently has cached from the query results. When there are a
 large number of results, in a common case the client may have only

Jenkins & Newman Expires February 8, 2019 [Page 40]

Internet-Draft JMAP August 2018

 downloaded and cached a small subset from the beginning of the
 results. If the sort and filter are both only on immutable
 properties, this allows the server to omit changes after this
 point in the results, which can significantly increase efficiency.
 If they are not immutable, this argument is ignored.

 o *calculateTotal*: "Boolean" (default: false) Does the client wish
 to know the total number of results now in the query? This may be
 slow and expensive for servers to calculate, particularly with
 complex filters, so clients should take care to only request the
 total when needed.

 The response has the following arguments:

 o *accountId*: "String" The id of the account used for the call.

 o *filter*: "FilterOperator|FilterCondition|null" The filter used.
 Echoed back from the call.

 o *sort*: "Comparator[]|null" The sort options used. Echoed back
 from the call.

 o *oldQueryState*: "String" This is the "sinceQueryState" argument
 echoed back; the state from which the server is returning changes.

 o *newQueryState*: "String" This is the state the query will be in
 after applying the set of changes to the old state.

 o *upToId*: "String|null" Echoed back from the call.

 o *total*: "PositiveInt" (only if requested) The total number of
 foos in the results (given the _filter_). This argument MUST be
 omitted if the _calculateTotal_ request argument is not "true".

 o *removed*: "String[]" The _id_ for every foo that was in the query
 results in the old state and is not in the results in the new
 state. If the sort and filter are both only on immutable
 properties and an _upToId_ is supplied and exists in the results,
 any ids that were removed but have a higher index than _upToId_
 SHOULD be omitted. If the server cannot calculate this exactly,
 the server MAY return extra foos in addition that may have been in
 the old results but are not in the new results. If the _filter_
 or _sort_ includes a mutable property, the server MUST include all
 foos in the current results for which this property MAY have
 changed.

 o *added*: "AddedItem[]" The id and index in the query results (in
 the new state) for every foo that has been added to the results

Jenkins & Newman Expires February 8, 2019 [Page 41]

Internet-Draft JMAP August 2018

 since the old state AND every foo in the current results that was
 included in the _removed_ array (due to a filter or sort based
 upon a mutable property). If the sort and filter are both only on
 immutable properties and an _upToId_ is supplied and exists in the
 results, any ids that were added but have a higher index than
 upToId SHOULD be omitted. The array MUST be sorted in order of
 index, lowest index first. An *AddedItem* object has the
 following properties:

 * *id*: "String"

 * *index*: "PositiveInt"

 The result of this is that if the client has a cached sparse array of
 foo ids in the results in the old state:

 fooIds = ["id1", "id2", null, null, "id3", "id4", null, null, null]

 then if it *splices out* all foos in the removed array:

 removed = ["id2", ...];
 fooIds => ["id1", null, null, "id3", "id4", null, null, null]

 and *splices in* (in order) all of the foos in the added array:

 added = [{ id: "id5", index: 0, ... }];
 fooIds => ["id5", "id1", null, null, "id3", "id4", null, null, null]

 and *truncates* or *extends* to the new total length, then the
 results will now be in the new state.

 The following additional errors may be returned instead of the _Foo/
 queryChanges_ response:

 "tooManyChanges": There are more changes than the client's
 maxChanges argument. Each item in the removed or added array is
 considered as one change. The client may retry with a higher max
 changes or invalidate its cache of the query results.

 "cannotCalculateChanges": The server cannot calculate the changes
 from the queryState string given by the client. Usually due to the
 client's state being too old. The client MUST invalidate its cache
 of the query results.

Jenkins & Newman Expires February 8, 2019 [Page 42]

Internet-Draft JMAP August 2018

5.7. Examples

 Suppose we have a type _Todo_ with the following properties:

 o *id*: "String" (immutable; server-set) The id of the object.

 o *title*: "String" A brief summary of what is to be done.

 o *keywords*: "String[Boolean]" (default:) A set of keywords that
 apply to the todo. The set is represented as an object, with the
 keys being the _keywords_. The value for each key in the object
 MUST be "true".

 o *neuralNetworkTimeEstimation*: "Number" (server-set) The title and
 keywords are fed into the server's state-of-the-art neural network
 to get an estimation of how long this todo will take, in seconds.

 and the server supports all the standard methods for the type,
 including querying by keyword using the syntax "{ hasKeyword: "foo"
 }" in the _filter_ argument to _/query_.

 Now, a client might want to display the list of todos with either a
 "music" keyword or a "video" keyword, so it makes the following
 method call:

 [["Todo/query", {
 "filter": {
 "operator": "OR",
 "conditions": [
 { "hasKeyword": "music" },
 { "hasKeyword": "video" }
]
 },
 "sort": [{ "property": "title" }],
 "position": 0,
 "limit": 10
 }, "0"],
 ["Todo/get", {
 "#ids": {
 "resultOf": "0",
 "name": "Todo/query",
 "path": "/ids"
 },
 }, "1"]]

 This would query the server for the set of todos with a keyword of
 "music", sorted by title, and limited to the first 10 results. It
 fetches the full object for each of these Todos using backreferences

Jenkins & Newman Expires February 8, 2019 [Page 43]

Internet-Draft JMAP August 2018

 to reference the result of the query. The response might look
 something like:

 [["Todo/query", {
 "accountId": "x",
 "filter": {
 "operator": "OR",
 "conditions": [
 { "hasKeyword": "music" },
 { "hasKeyword": "video" }
]
 },
 "sort": [{ "property": "title" }],
 "queryState": "y13213",
 "canCalculateChanges": true,
 "position": 0,
 "ids": ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j"]
 }, "0"],
 ["Todo/get", {
 "accountId": "x",
 "state": "10324",
 "list": [{
 "id": "a",
 "title": "Practise Piano",
 "keywords": {
 "music": true,
 "beethoven": true,
 "mozart": true,
 "liszt": true,
 "rachmaninov": true
 },
 "neuralNetworkTimeEstimation": 3600
 }, {
 "id": "b",
 "title": "Listen to Daft Punk",
 "keywords": {
 "music": true,
 "trance": true
 },
 "neuralNetworkTimeEstimation": 18000
 },
 ...
]
 }, "1"]]

 Now suppose the user adds a keyword "chopin" and removes the keyword
 "mozart" from the "Practise Piano" task. The client may send the
 whole object to the server, as this is a valid PatchObject:

Jenkins & Newman Expires February 8, 2019 [Page 44]

Internet-Draft JMAP August 2018

 [["Todo/set", {
 "ifInState": "10324",
 "update": {
 "a": {
 "id": "a",
 "title": "Practise Piano",
 "keywords": {
 "music": true,
 "beethoven": true,
 "chopin": true,
 "liszt": true,
 "rachmaninov": true,
 }
 "neuralNetworkTimeEstimation": 360
 }
 }
 }, "0"]]

 or it may send a minimal patch:

 [["Todo/set", {
 "ifInState": "10324",
 "update": {
 "a": {
 "keywords/chopin": true,
 "keywords/mozart": null
 }
 }
 }, "0"]]

 The effect is exactly the same on the server in either case, and
 presuming the server is still in state "10324" it will probably
 return success:

 [["Todo/set", {
 "accountId": "x",
 "oldState": "10324",
 "newState": "10329",
 "updated": {
 "a": {
 "neuralNetworkTimeEstimation": 5400
 }
 }
 }, "0"]]

 The server changed the "neuralNetworkTimeEstimation" property on the
 object as part of this change; as this changed in a way _not_

Jenkins & Newman Expires February 8, 2019 [Page 45]

Internet-Draft JMAP August 2018

 explicitly requested by the PatchObject sent to the server, it is
 returned with the "updated" confirmation.

 Now, suppose another user deleted the "Listen to Daft Punk" todo.
 The first user will receive a push notification (see later in the
 spec) with the changed state string for the "Todo" type. Since the
 new string does not match its current state, it knows it needs to
 check for updates. It may make a request like:

 [["Todo/changes", {
 "accountId": "x",
 "sinceState": "10324",
 "maxChanges": 50,
 }, "0"],
 ["Todo/queryChanges", {
 "filter": {
 "operator": "OR",
 "conditions": [
 { "hasKeyword": "music" },
 { "hasKeyword": "video" }
]
 },
 "sort": [{ "property": "title" }],
 "sinceQueryState": "y13213"
 "maxChanges": 50,
 }, "1"]]

 and receive in response:

Jenkins & Newman Expires February 8, 2019 [Page 46]

Internet-Draft JMAP August 2018

 [["Todo/changes", {
 "accountId": "x",
 "oldState": "10324",
 "newState": "871903",
 "hasMoreChanges": false,
 "created": [],
 "updated": [],
 "destroyed": ["b"]
 }, "0"],
 ["Todo/queryChanges", {
 "filter": {
 "operator": "OR",
 "conditions": [
 { "hasKeyword": "music" },
 { "hasKeyword": "video" }
]
 },
 "sort": [{ "property": "title" }],
 "oldQueryState": "y13213"
 "newQueryState": "y13218"
 "removed": ["b"],
 "added": null
 }, "1"]]

 Suppose the user has access to another account "y", for example a
 team account shared between multiple users. To move an existing Todo
 from account "x", the client would call:

 [["Todo/copy", {
 "fromAccountId": "x",
 "toAccountId": "y",
 "create": {
 "k5122": {
 "id": "a"
 }
 },
 "onSuccessDestroyOriginal": true,
 }, "0"]]

 The server successfully copies the Todo to a new account (where it
 receives a new id) and deletes the original. Due to the implicit
 call to "Todo/set", there are two responses to the single method
 call, both with the same client id:

Jenkins & Newman Expires February 8, 2019 [Page 47]

Internet-Draft JMAP August 2018

 [["Todo/copy", {
 "fromAccountId": "x",
 "toAccountId": "y",
 "created": {
 "k5122": {
 "id": "97"
 }
 },
 "notCreated": null
 }, "0"],
 ["Todo/set", {
 "accountId": "x",
 "oldState": "871903"
 "newState": "871909",
 "destroyed": ["a"],
 ...
 }, "0"]]

6. Binary data

 Binary data is referenced by a _blobId_ in JMAP, and uploaded/
 downloaded separately to the core API. The blobId solely represents
 the raw bytes of data, not any associated metadata such as a file
 name or content type. Such metadata is stored alongside the blobId
 in the object referencing it. The data represented by a blobId is
 immutable.

 Any blobId that exists within an account may be used when creating/
 updating another object in that account. For example, an Email type
 may have a blobId that represents the [RFC5322] representation of the
 message. A client could create a new Email object with an attachment
 and use this blobId, in effect attaching the old message to the new
 one. Similarly it could attach any existing attachment of an old
 message without having to download and upload it again.

 When the client uses a blobId in a create/update, the server MAY
 assign a new blobId to refer to the same binary data within the new/
 updated object. If it does so, it MUST return any properties that
 contain a changed blobId in the created/updated response so the
 client gets the new ids.

 A blob that is not referenced by a JMAP object (e.g. as a message
 attachment) MAY be deleted by the server to free up resources.
 Uploads (see below) are initially unreferenced blobs. To ensure
 interoperability:

 o The server SHOULD use a separate quota for unreferenced blobs to
 the user's usual quota.

https://datatracker.ietf.org/doc/html/rfc5322

Jenkins & Newman Expires February 8, 2019 [Page 48]

Internet-Draft JMAP August 2018

 o This quota SHOULD be at least the maximum total size that a single
 object can reference on this server. For example, if supporting
 JMAP Mail, this should be at least the maximum total attachments
 size for a message.

 o When an upload would take the user over quota, the server MUST
 delete unreferenced blobs in date order, oldest first, until there
 is room for the new blob.

 o Except where quota restrictions force early deletion, an
 unreferenced blob MUST NOT be deleted for at least 1 hour from the
 time of upload; if reuploaded, the same blobId MAY be returned,
 but this SHOULD reset the expiry time.

 o A blob MUST NOT be deleted during the method call which removed
 the last reference, so that a client can issue a create and a
 destroy that both reference the blob within the same method call.

6.1. Uploading binary data

 There is a single endpoint which handles all file uploads for an
 account, regardless of what they are to be used for. The JMAP
 Session object has an _uploadUrl_ property in [RFC6570] URI Template
 (level 1) format, which MUST contain a variable called "accountId".
 The client may use this template in combination with an _accountId_
 to get the URL of the file upload resource.

 To upload a file, the client submits an authenticated POST request to
 the file upload resource.

 A successful request MUST return a single JSON object with the
 following properties as the response:

 o *accountId*: "String" The id of the account used for the call.

 o *blobId*: "String", The id representing the binary data uploaded.
 The data for this id is immutable. The id _only_ refers to the
 binary data, not any metadata.

 o *type*: "String" The media type of the file (as specified in
[RFC6838], section 4.2) as set in the Content-Type header of the

 upload HTTP request.

 o *size*: "PositiveInt" The size of the file in octets.

 If identical binary content to an existing blob in the account is
 uploaded, the existing blobId MAY be returned.

https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6838#section-4.2

Jenkins & Newman Expires February 8, 2019 [Page 49]

Internet-Draft JMAP August 2018

6.2. Downloading binary data

 The JMAP Session object has a _downloadUrl_ property, which is in
 [RFC6570] URI Template (level 1) format. The URL MUST contain
 variables called "accountId", "blobId", "type" and "name".

 To download a file, the client makes an authenticated GET request to
 the download URL with the appropriate variables substituted in:

 o "accountId": The id of the account to which the record with the
 blobId belongs.

 o "blobId": The blobId representing the data of the file to
 download.

 o "type": The type for the server to set in the "Content-Type"
 header of the response; the blobId only represents the binary data
 and does not have a content-type inately associated with it.

 o "name": The name for the file; the server MUST return this as the
 filename if it sets a "Content-Disposition" header.

6.3. Blob/copy

 Binary data may be copied *between* two different accounts using the
 Blob/copy method, rather than having to download then reupload on
 the client.

 The _Blob/copy_ method takes the following arguments:

 o *fromAccountId*: "String" The id of the account to copy blobs
 from.

 o *toAccountId*: "String" The id of the account to copy blobs to.

 o *blobIds*: "String[]" A list of ids of blobs to copy to the other
 account.

 The response has the following arguments:

 o *fromAccountId*: "String" The id of the account emails were copied
 from.

 o *toAccountId*: "String" The id of the account emails were copied
 to.

https://datatracker.ietf.org/doc/html/rfc6570

Jenkins & Newman Expires February 8, 2019 [Page 50]

Internet-Draft JMAP August 2018

 o *copied*: "String[String]|null" A map of the blobId in the
 fromAccount to the id for the blob in the _toAccount_, or "null"
 if none were successfully copied.

 o *notCopied*: "String[SetError]|null" A map of blobId to a SetError
 object for each blob that failed to be copied, "null" if none.

 The *SetError* may be any of the standard set errors that may be
 returned for a _create_. In addition, the "notFound" SetError error
 may be returned if the blobId to be copied cannot be found.

 The following additional errors may be returned instead of the _Blob/
 copy_ response:

 "fromAccountNotFound": A _fromAccountId_ was explicitly included with
 the request, but it does not correspond to a valid account.

 "toAccountNotFound": A _toAccountId_ was explicitly included with the
 request, but it does not correspond to a valid account.

7. Push

 Push notifications allow clients to efficiently update (almost)
 instantly to stay in sync with data changes on the server. In JMAP,
 push notifications occur out-of-band (i.e. not over the same
 connection as API exchanges), so that they can make use of efficient
 native push mechanisms on different platforms.

 The general model for push is simple and sends minimal data over the
 push channel. The format allows multiple changes to be coalesced
 into a single push update, and the frequency of pushes to be rate
 limited by the server. It doesn't matter if some push events are
 dropped before they reach the client; it will still get all changes
 next time it syncs.

7.1. The StateChange object

 When something changes on the server, the server pushes a
 StateChange object to the client. A *StateChange* object has the
 following properties:

 o *changed*: "String[TypeState]" A map of _account id_ to an object
 encoding the state of data types that have changed for that
 account since the last push event, for each of the accounts to
 which the user has access and for which something has changed. A
 TypeState object is a map. The keys are the type name "Foo"
 (e.g. "Mailbox" or "Email"), and the value is the _state_
 property that would currently be returned by a call to _Foo/get_.

Jenkins & Newman Expires February 8, 2019 [Page 51]

Internet-Draft JMAP August 2018

 The client can compare the new state strings with its current
 values to see whether it has the current data for these types. If
 not, the changes can then be efficiently fetched in a single
 standard API request (using the _/changes_ type methods).

7.1.1. Example

 In this example, the server has almalgamated a few changes together
 across two different accounts the user has access to, before pushing
 the following StateChange object to the client:

 {
 "changed": {
 "a3123": {
 "Email": "d35ecb040aab",
 "EmailDelivery": "428d565f2440",
 "CalendarEvent": "87accfac587a"
 },
 "a43461d": {
 "Mailbox": "0af7a512ce70",
 "CalendarEvent": "7a4297cecd76"
 },
 }
 }

 The client can compare the state strings with its current state for
 the Email, CalendarEvent etc. object types in the appropriate
 accounts to see if it needs to fetch changes. If the client is
 itself making changes, it may receive a StateChange object while the
 /set API call is in flight. It can wait until the call completes and
 then compare if the new state string after the /set is the same as
 was pushed in the StateChange object; if so, it does not need to
 waste a request asking for changes it already knows.

7.2. PushSubscription

 A push subscription is a message delivery context established between
 the client and a push service. A *PushSubscription* object has the
 following properties:

 o *id*: "String" (immutable; server-set) The id of the push
 subscription.

 o *deviceClientId*: "String" (immutable) An id that uniquely
 identifies the client + device it is running on. The purpose of
 this is to allow clients to identify which PushSubscription
 objects they created even if they lose their local state, so they
 can revoke or update them. This string MUST be different on

Jenkins & Newman Expires February 8, 2019 [Page 52]

Internet-Draft JMAP August 2018

 different devices, and be different from other vendors. It SHOULD
 be easy to re-generate, not depend on persisted state. A secure
 hash that includes both a device id and vendor id is one way this
 could be achieved.

 o *url*: "String" (immutable) An absolute URL where the JMAP server
 will POST the data for the push message. This MUST begin with
 "https://".

 o *keys*: "Object|null" (immutable) Client-generated encryption
 keys. If supplied the server MUST use them as specified in
 [RFC8291] to encrypt all data sent to the push subscription. The
 object MUST have the following properties:

 * *p256dh*: the P-256 ECDH Diffie-Hellman public key as described
 in [RFC8291], encoded in URL-safe Base64 representation as
 defined in [RFC4648].

 * *auth*: the authentication secret as described in [RFC8291],
 encoded in URL-safe base64 representation as defined in
 [RFC4648].

 o *expires*: "UTCDate|null" The time this push subscription expires.
 If specified, the JMAP server MUST NOT make further requests to
 this resource after this time. It MAY automatically destroy the
 push subscription at or after this time. The server MAY choose to
 set an expiry if none is given by the client, or modify the expiry
 time given by the client to a shorter duration.

 o *types*: "String[]|null" A list of types the client is interested
 in (using the same names as the keys in the _TypeState_ object).
 Push events will only be sent if the data for one of these types
 changes. Other types are omitted from the TypeState object. If
 "null", changes will be pushed for all types.

 Clients may create a push subscription on the JMAP server, which will
 then make a POST request to the associated push endpoint whenever an
 event occurs.

 The POST request MUST have a content type of "application/json" and
 contain the UTF-8 JSON encoded _StateChange_ object as the body. The
 request MUST have a "TTL" header, and MAY have "Urgency" and/or
 "Topic" headers, as specified in section 5 of [RFC8030].

 If the response code is "503" (Service Unavailable), the JMAP server
 MAY try again later, but may also just drop the event. If the
 response code is "429" (Too Many Requests) the JMAP server SHOULD
 attempt to reduce the frequency of pushes to that URL. Any other

https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc8030#section-5

Jenkins & Newman Expires February 8, 2019 [Page 53]

Internet-Draft JMAP August 2018

 "4xx" or "5xx" response code MUST be considered a *permanent failure*
 and the push subscription SHOULD be destroyed.

 The use of this push endpoint conforms with the use of a push
 endpoint by an Application Server as defined in [RFC8030]. A client
 MAY use the rest of [RFC8030] in combination with its own Push Server
 to form a complete end-to-end solution, or MAY rely on alternative
 mechanisms to ensure the delivery of the pushed data after it leaves
 the JMAP server.

 The push subscription is tied to the credentials used to authenticate
 the API request that created it. Should these credentials expire or
 be revoked, the push subscription MUST be destroyed by the JMAP
 server.

 When these credentials have their own expiry (i.e. it is a session
 with a timeout), the server SHOULD NOT set or bound the expiry time
 for the push subscription given by the client, but MUST expire it
 when the session expires.

 When these credentials are not time bounded (e.g. [RFC7617] Basic
 Authentication), the server SHOULD set an expiry time for the push
 subscription if none given, and limit the expiry time if set too far
 in the future. This maximum expiry time MUST be at least 48 hours in
 the future and SHOULD be at least 7 days in the future.

 In the case of separate access and refresh credentials, as in
 [RFC6749] Oauth 2.0, the server SHOULD tie the push subscription to
 the validity of the refresh token rather than the access token, and
 behave according to whether this is time-limited or not.

7.2.1. PushSubscription/get

 Standard _/get_ method, except it does *not* take or return an
 accountId argument, as push subscriptions are not tied to specific
 accounts. It also does *not* return a _state_ argument. The _ids_
 argument may be "null" to fetch all at once.

 As the _url_ and _keys_ properties may contain data that is private
 to a particular device, the values for these properties MUST NOT be
 returned. If the _properties_ argument is "null" or omitted, the
 server MUST default to all properties excluding these two. If one of
 them is explicitly requested, the method call MUST be rejected with a
 "forbidden" error.

https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc7617
https://datatracker.ietf.org/doc/html/rfc6749

Jenkins & Newman Expires February 8, 2019 [Page 54]

Internet-Draft JMAP August 2018

7.2.2. PushSubscription/set

 Standard _/set_ method except it does *not* take or return an
 accountId argument, as push subscriptions are not tied to specific
 accounts. It also does *not* take an _ifInState_ argument or return
 oldState or _newState_ arguments.

 The _url_ and _keys_ properties are immutable; if the client wishes
 to change these, it must destroy the current push subscription and
 create a new one.

 The client may update the _expires_ property to extend (or, less
 commonly, shorten) the lifetime of a push subscription. The server
 MAY modify the proposed new expiry time to enforce server-defined
 limits.

 Clients SHOULD NOT update or destroy a push subscription that they
 did not create (i.e. has a _deviceClientId_ that they do not
 recognise).

7.2.3. Example

 A client with deviceClientId "a889-ffea-910" fetches the set of push
 subscriptions currently on the server, making an API request with:

 [["PushSubscription/get", {
 "ids": null,
 }, "0"]]

 Which returns:

 [["PushSubscription/get", {
 "list": [{
 "id": "e50b2c1d-9553-41a3-b0a7-a7d26b599ee1",
 "deviceClientId": "b37ff8001ca0",
 "expires": "2018-01-31T00:13:21Z",
 "types": ["Todo"]
 }, {
 "id": "f2d0aab5-e976-4e8b-ad4b-b380a5b987e4",
 "deviceClientId": "8980f37f6c71",
 "expires": "2018-02-12T05:55:00Z",
 "types": ["Mailbox", "Email", "EmailDelivery"]
 }],
 "notFound": []
 }, "0"]]

 Since neither of the returned push subscription objects have the
 client's deviceClientId, it knows it does not have a current push

Jenkins & Newman Expires February 8, 2019 [Page 55]

Internet-Draft JMAP August 2018

 subscription active on the server. So it creates one, sending this
 request:

[["PushSubscription/set", {
 "create": {
 "4f29": {
 "deviceClientId": "a889-ffea-910",
 "url": "https://example.com/push/?device=8980f37f6c&client=12c6d086",
 "types": null
 }
 }
}, "0"]]

 The server creates the push subscription but limits the expiry time
 to 7 days in the future, returning this response:

 [["PushSubscription/set", {
 "created": {
 "4f29": {
 "id": "043dcfa4-1dd4-41ef-9156-2c89b3b19c60",
 "keys": null,
 "expires": "2018-07-13T02:14:29Z"
 }
 }
 }, "0"]]

 Two days later, the client updates the subscription to extend its
 lifetime, sending this request:

 [["PushSubscription/set", {
 "update": {
 "043dcfa4-1dd4-41ef-9156-2c89b3b19c60": {
 "expires": "2018-08-13T00:00:00Z"
 }
 }
 }, "0"]]

 The server extends the expiry time, but only again to its maximum
 limit of 7 days in the future, returning this response:

 [["PushSubscription/set", {
 "updated": {
 "043dcfa4-1dd4-41ef-9156-2c89b3b19c60": {
 "expires": "2018-07-16T02:22:50Z"
 }
 }
 }, "0"]]

Jenkins & Newman Expires February 8, 2019 [Page 56]

Internet-Draft JMAP August 2018

7.3. Event Source

 Clients that can hold open TCP connections can connect directly to
 the JMAP server to receive push notifications via a "text/event-
 stream" resource, as described in <http://www.w3.org/TR/

eventsource/>. This is a long running HTTP request down which the
 server can push data.

 When a change occurs in the data on the server, it pushes an event
 called *state* to any connected clients, with the _StateChange_
 object as the data.

 The server SHOULD also send a new event id that encodes the entire
 server state visible to the user immediately after sending a _state_
 event. When a new connection is made to the event-source endpoint, a
 client following the server-sent events specification [1] will send a
 Last-Event-ID HTTP header with the last id it saw, which the server
 can use to work out whether the client has missed some changes. If
 so, it SHOULD send these changes immediately on connection.

 The client MAY add a query parameter called "types", with the value
 being a comma-separated list of type names. If present, the server
 MUST only push changes for the types in this list. If omitted,
 changes to all types are pushed.

 The client MAY add a query parameter called "closeafter" with value
 "state" to the event-source resource URL when requesting the event-
 source resource. If set, the server MUST end the HTTP response after
 pushing a _state_ event. This can be used by clients in environments
 where buffering proxies prevent the pushed data from arriving
 immediately, or indeed at all, when operating in the usual mode.

 The client MAY add a query parameter called "ping", with a positive
 integer value representing a length of time in seconds, e.g.
 "ping=300". If set, the server MUST send an event called *ping*
 whenever this time elapses since the previous event was sent. This
 MUST NOT set a new event id.

 The server MAY modify the interval given as a query parameter to be
 subject to a minimum and/or maximum value. For interoperability,
 servers MUST NOT have a minimum allowed value higher than 30 or a
 maximum allowed value less than 300.

 The data for the ping event MUST be a JSON object containing an
 interval property, the value (type "PositiveInt") being the
 interval in seconds the server is using to send pings (this may be
 different to the requested value if the server clamped it to be
 within a min/max value).

http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/eventsource/

Jenkins & Newman Expires February 8, 2019 [Page 57]

Internet-Draft JMAP August 2018

 Clients can monitor for the _ping_ event to help determine when the
 closeafter mode may be required.

 Refer to the JMAP Session resource section of this spec for details
 on how to get the URL for the event-source resource. Requests to the
 resource MUST be authenticated.

 A client MAY hold open multiple connections to the event-source
 resource, although it SHOULD try to use a single connection for
 efficiency.

8. Security considerations

8.1. Transport confidentiality

 All HTTP requests MUST use [RFC5246] TLS (https) transport to ensure
 the confidentiality of data sent and received via JMAP. Clients MUST
 validate TLS certificate chains to protect against man-in-the-middle
 attacks.

8.2. Authentication scheme

 A number of HTTP authentication schemes have been standardised
 (<https://www.iana.org/assignments/http-authschemes/http-

authschemes.xhtml>). Servers should take care to assess the security
 characteristics of different schemes in relation to their needs when
 deciding what to implement.

 If offering the Basic authentication scheme, services are strongly
 recommended to not allow a user's regular password but require
 generation of a unique "app password" via some external mechanism for
 each client they wish to connect. This allows connections from
 different devices to be differentiated by the server, and access to
 be individually revoked.

8.3. Service autodiscovery

 Unless secured by something like DNSSEC, autodiscovery of server
 details is vulnerable to a DNS poisoning attack leading to the client
 talking to an attacker's server instead of the real JMAP server. The
 attacker may then man-in-the-middle requests and depending on the
 authentication scheme, steal credentials to generate its own
 requests.

 Clients that do not support SRV lookups are likely to try just using
 the "/.well-known/jmap" path directly against the domain of the
 username over HTTPS. Servers SHOULD ensure this path resolves or
 redirects to the correct JMAP Session resource to allow this to work.

https://datatracker.ietf.org/doc/html/rfc5246
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml
https://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml

Jenkins & Newman Expires February 8, 2019 [Page 58]

Internet-Draft JMAP August 2018

 If this is not feasible, servers MUST ensure this path cannot be
 controlled by an attacker, as again it may be used to steal
 credentials.

8.4. JSON parsing

 The security considerations of [RFC7159] apply to the use of JSON as
 the data interchange format.

8.5. Denial of service

 A small request may result in a very large response, and require
 considerable work on the server if resource limits are not enforced.
 JMAP provides mechanisms for advertising and enforcing a wide variety
 of limits for mitigating this threat, including limits on number of
 objects fetched in a single method call, number of methods in a
 single request, number of concurrent requests, etc.

 JMAP servers MUST implement sensible limits to mitigate against
 resource exhaustion attacks.

8.6. Push encryption

 When data changes, a small object is pushed with the new state
 strings for the types that have changed. While the data here is
 minimal, a passive man-in-the-middle attacker may be able to gain
 useful information. To ensure confidentiality, if the push is sent
 via a third party outside of the control of the client and JMAP
 server the client MUST specify encryption keys when establishing the
 PushSubscription.

 The privacy and security considerations of [RFC8030] and [RFC8291]
 also all apply to the use of the PushSubscription mechanism.

9. IANA considerations

9.1. Assignment of jmap service name

 IANA will assign the 'jmap' service name in the 'Service Name and
 Transport Protocol Port Number Registry' [RFC6335].

 Service Name: jmap

 Transport Protocol(s): tcp

 Assignee: IESG

 Contact: IETF Chair

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc8030
https://datatracker.ietf.org/doc/html/rfc8291
https://datatracker.ietf.org/doc/html/rfc6335

Jenkins & Newman Expires February 8, 2019 [Page 59]

Internet-Draft JMAP August 2018

 Description: JSON Meta Application Protocol

 Reference: this document

 Assignment Notes: this service name was previously assigned under the
 name _JSON Mail Access Protocol_. This will be de-assigned and re-
 assigned with the approval of the previous assignee.

9.2. Registration of well-known URI suffix for JMAP

 IANA will register the following well-known URI suffix for JMAP as
 described in [RFC5785]:

 URI Suffix: jmap

 Change Controller: IETF

 Specification Document: this document, section 2.2.

9.3. Registration of the jmap URN sub-namespace

 IANA will register the following URN sub-namespace in the "IETF URN
 Sub-namespace for Registered Protocol Parameter Identifiers" registry
 as described in [RFC3553].

 Registered Parameter Identifier: jmap

 Reference: this document, next section

 IANA Registry Reference: {insert IANA registry URL for registry in
 next section, upon approval}

9.4. Creation of "JMAP Capabilities" registry

 IANA will create a registry for JMAP capabilities as described in
section 2. JMAP capabilities are advertised in the _capabilities_

 property of the _JMAP Session_ resource. They are used to extend the
 functionality of a JMAP server. A capability is referenced by a URI.
 The JMAP capability URI can be a URN starting with
 "urn:ietf:params:jmap:" plus a unique suffix which is the index value
 in the jmap URN sub-namespace. Registration of a JMAP capability
 with another form of URI has no impact on the jmap URN sub-namespace.

 This registry follows the expert review process unless the "intended
 use" field is _common_ or _placeholder_ in which case registration
 follows the specification required process.

https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc3553

Jenkins & Newman Expires February 8, 2019 [Page 60]

Internet-Draft JMAP August 2018

 A JMAP capability registration can have an intended use of _common_,
 placeholder, _limited_, or _obsolete_. IANA will list common use
 registrations prominently and separately from those with other
 intended use values.

 The JMAP capability registration procedure is not a formal standards
 process, but rather an administrative procedure intended to allow
 community comment and sanity checking without excessive time delay.

 A _placeholder_ registration reserves part of the jmap urn namespace
 for another purpose but is typically not included in the
 capabilities property of the _JMAP Session_ resource.

9.4.1. Preliminary community review

 Notice of a potential JMAP common use registration SHOULD be sent to
 the jmap@ietf.org mailing list for review. This mailing list is
 appropriate to solicit community feedback on a proposed JMAP
 capability. Registrations that are not intended for common use MAY
 be sent to the list for review as well; doing so is entirely
 OPTIONAL, but is encouraged.

 The intent of the public posting to this list is to solicit comments
 and feedback on the choice of capability name, the unambiguity of the
 specification document, and a review of any interoperability or
 security considerations. The submitter may submit a revised
 registration proposal or abandon the registration completely and at
 any time.

9.4.2. Submit request to IANA

 Registration requests can be sent to iana@iana.org.

9.4.3. Designated expert review

 For a limited use registration, the designated expert's (DE) primary
 concern is preventing name collisions and encouraging the submitter
 to document security and privacy considerations; a published
 specification is not required. For a common use registration, the DE
 is expected to confirm that suitable documentation as described in

[RFC8126], Section 4.6, is available. The DE should also verify the
 capability does not conflict with work that is active or already
 published within the IETF.

 Before a period of 30 days has passed, the DE will either approve or
 deny the registration request and publish a notice of the decision to
 the JMAP WG mailing list or its successor, as well as informing IANA.
 A denial notice must be justified by an explanation, and in the cases

https://datatracker.ietf.org/doc/html/rfc8126#section-4.6

Jenkins & Newman Expires February 8, 2019 [Page 61]

Internet-Draft JMAP August 2018

 where it is possible, concrete suggestions on how the request can be
 modified so as to become acceptable should be provided.

9.4.4. Change procedures

 Once a JMAP capability has been published by the IANA, the change
 controller may request a change to its definition. The same
 procedure that would be appropriate for the original registration
 request is used to process a change request.

 JMAP capability registrations may not be deleted; capabilities that
 are no longer believed appropriate for use can be declared obsolete
 by a change to their "intended use" field; such capabilities will be
 clearly marked in the lists published by the IANA.

 Significant changes to a capability's definition should be requested
 only when there are serious omissions or errors in the published
 specification. When review is required, a change request may be
 denied if it renders entities that were valid under the previous
 definition invalid under the new definition.

 The owner of a JMAP capability may pass responsibility to another
 person or agency by informing the IANA; this can be done without
 discussion or review.

 The IESG may reassign responsibility for a JMAP capability. The most
 common case of this will be to enable changes to be made to
 capabilities where the author of the registration has died, moved out
 of contact, or is otherwise unable to make changes that are important
 to the community.

9.4.5. JMAP Capabilities registry template:

 Capability name: (see capability property in section 2)

 Specification document:

 Intended use: (one of common, limited, or obsolete)

 Change controller: (_IETF_ for standards-track/BCP RFCs)

 Security and privacy considerations:

9.4.6. Initial registration for JMAP core

 Capability Name: "urn:ietf:params:jmap:core"

 Specification document: this document, section 2

Jenkins & Newman Expires February 8, 2019 [Page 62]

Internet-Draft JMAP August 2018

 Intended use: common

 Change Controller: IETF

 Security and privacy considerations: this document, section 8.

9.4.7. Registration for JMAP error placeholder in JMAP capabilities
 registry

 Capability Name: `urn:ietf:params:jmap:error:'

 Specification document: this document, next section.

 Intended use: placeholder

 Change Controller: IETF

 Security and privacy considerations: this document, section 8.

9.5. Creation of "JMAP Error Codes" registry

 IANA will create a registry for JMAP error codes. JMAP error codes
 appear in the "type" member of a JSON problem details object (as
 described in section 3.5.1), in the "type" member in a JMAP error
 object (as described in section 3.5.2), or the "type" member of a
 JMAP method-specific error object (such as SetError in section 5.3).
 When used in a problem details object, the prefix
 'urn:ietf:params:jmap:error:' is always included, and when used in
 JMAP objects, the prefix is always omitted.

 This registry follows the expert review process. Preliminary
 community review for this registry follows the same procedures as the
 JMAP capabilities registry but is optional. The change procedures
 for this registry are the same as the change procedures for the JMAP
 capabilities registry.

9.5.1. Designated expert review

 The designated expert should review the following aspects of the
 registration:

 1. Verify the error code does not conflict with existing names.

 2. Verify the error code follows the syntax limitations (does not
 require URI encoding).

 3. Encourage the error code to follow the naming convention of
 previously registered errors.

Jenkins & Newman Expires February 8, 2019 [Page 63]

Internet-Draft JMAP August 2018

 4. Encourage description of client behaviors that are recommended in
 response to the error code. These may distinguish the error code
 from other error codes.

 5. Encourage description of when the server should issue the error
 as opposed to some other error code.

 6. Encourage the submitter to note any security considerations
 associated with the error, if any. For example, an error code
 that might disclose existence of data the authenticated user does
 not have permission to know about.

 Steps 3-6 are meant to promote a higher-quality registry. However,
 the expert is encouraged to approve any registration that would not
 actively harm JMAP interoperability to make this a relatively light-
 weight process.

9.5.2. JMAP Error Codes registry template:

 JMAP Error Code:

 Intended use: (one of _common_, _limited_, _obsolete_)

 Change Controller: (_IETF_ for standards-track/BCP RFCs)

 Description or Reference:

9.5.3. Initial JMAP Error Codes registry

 +------------------------------+---------+------------+-------------+
JMAP Error Code	Intende	Change	Description
	d Use	Controller	or
			Reference
+------------------------------+---------+------------+-------------+			
accountNotFound	common	IETF	RFC XXXX
			section
			3.5.2
accountNotSupportedByMethod	common	IETF	RFC XXXX
			section
			3.5.2
accountReadOnly	common	IETF	RFC XXXX
			section
			3.5.2
anchorNotFound	common	IETF	RFC XXXX
			section 5.5
alreadyExists	common	IETF	RFC XXXX
			section 5.4
cannotCalculateChanges	common	IETF	RFC XXXX

Jenkins & Newman Expires February 8, 2019 [Page 64]

Internet-Draft JMAP August 2018

			sections
			5.2 and 5.6
forbidden	common	IETF	RFC XXXX
			sections
			3.5.2, 5.3,
			and 7.2.1
fromAccountNotFound	common	IETF	RFC XXXX
			sections
			5.4 and 6.3
fromAccountNotSupportedByMet	common	IETF	RFC XXXX
hod			section 5.4
invalidArguments	common	IETF	RFC XXXX
			section
			3.5.2
invalidPatch	common	IETF	RFC XXXX
			section 5.3
invalidProperties	common	IETF	RFC XXXX
			section 5.3
notFound	common	IETF	RFC XXXX
			section 5.3
notJSON	common	IETF	RFC XXXX
			section
			3.5.1
notRequest	common	IETF	RFC XXXX
			section
			3.5.1
overQuota	common	IETF	RFC XXXX
			section 5.3
rateLimit	common	IETF	RFC XXXX
			section 5.3
requestTooLarge	common	IETF	RFC XXXX
			sections
			5.1 and 5.3
invalidResultReference	common	IETF	RFC XXXX
			section
			3.5.2
serverFail	common	IETF	RFC XXXX
			section
			3.5.2
serverPartialFail	limited	IETF	RFC XXXX
			section
			3.5.2
serverUnavailable	common	IETF	RFC XXXX
			section
			3.5.2
singleton	common	IETF	RFC XXXX
			section 5.3
stateMismatch	common	IETF	RFC XXXX

Jenkins & Newman Expires February 8, 2019 [Page 65]

Internet-Draft JMAP August 2018

			section 5.3
toAccountNotFound	common	IETF	RFC XXXX
			sections
			5.4 and 6.3
toAccountNotSupportedByMetho	common	IETF	RFC XXXX
d			section 5.4
tooLarge	common	IETF	RFC XXXX
			section 5.3
tooManyChanges	common	IETF	RFC XXXX
			section 5.6
unknownCapability	common	IETF	RFC XXXX
			section
			3.5.1
unknownMethod	common	IETF	RFC XXXX
			section
			3.5.2
unsupportedFilter	common	IETF	RFC XXXX
			section 5.5
unsupportedSort	common	IETF	RFC XXXX
			section 5.5
willDestroy	common	IETF	RFC XXXX
			section 5.3
 +------------------------------+---------+------------+-------------+

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for
 specifying the location of services (DNS SRV)", RFC 2782,
 DOI 10.17487/RFC2782, February 2000,
 <https://www.rfc-editor.org/info/rfc2782>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3553] Mealling, M., Masinter, L., Hardie, T., and G. Klyne, "An
 IETF URN Sub-namespace for Registered Protocol
 Parameters", BCP 73, RFC 3553, DOI 10.17487/RFC3553, June
 2003, <https://www.rfc-editor.org/info/rfc3553>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2782
https://www.rfc-editor.org/info/rfc2782
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/bcp73
https://datatracker.ietf.org/doc/html/rfc3553
https://www.rfc-editor.org/info/rfc3553

Jenkins & Newman Expires February 8, 2019 [Page 66]

Internet-Draft JMAP August 2018

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet
 Application Protocol Collation Registry", RFC 4790,
 DOI 10.17487/RFC4790, March 2007,
 <https://www.rfc-editor.org/info/rfc4790>.

 [RFC5051] Crispin, M., "i;unicode-casemap - Simple Unicode Collation
 Algorithm", RFC 5051, DOI 10.17487/RFC5051, October 2007,
 <https://www.rfc-editor.org/info/rfc5051>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

 [RFC6186] Daboo, C., "Use of SRV Records for Locating Email
 Submission/Access Services", RFC 6186,
 DOI 10.17487/RFC6186, March 2011,
 <https://www.rfc-editor.org/info/rfc6186>.

 [RFC6335] Cotton, M., Eggert, L., Touch, J., Westerlund, M., and S.
 Cheshire, "Internet Assigned Numbers Authority (IANA)
 Procedures for the Management of the Service Name and
 Transport Protocol Port Number Registry", BCP 165,

RFC 6335, DOI 10.17487/RFC6335, August 2011,
 <https://www.rfc-editor.org/info/rfc6335>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc4790
https://www.rfc-editor.org/info/rfc4790
https://datatracker.ietf.org/doc/html/rfc5051
https://www.rfc-editor.org/info/rfc5051
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc5785
https://www.rfc-editor.org/info/rfc5785
https://datatracker.ietf.org/doc/html/rfc6186
https://www.rfc-editor.org/info/rfc6186
https://datatracker.ietf.org/doc/html/bcp165
https://datatracker.ietf.org/doc/html/rfc6335
https://www.rfc-editor.org/info/rfc6335
https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570

Jenkins & Newman Expires February 8, 2019 [Page 67]

Internet-Draft JMAP August 2018

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC6764] Daboo, C., "Locating Services for Calendaring Extensions
 to WebDAV (CalDAV) and vCard Extensions to WebDAV
 (CardDAV)", RFC 6764, DOI 10.17487/RFC6764, February 2013,
 <https://www.rfc-editor.org/info/rfc6764>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <https://www.rfc-editor.org/info/rfc7159>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

 [RFC7617] Reschke, J., "The 'Basic' HTTP Authentication Scheme",
RFC 7617, DOI 10.17487/RFC7617, September 2015,

 <https://www.rfc-editor.org/info/rfc7617>.

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/info/rfc7807>.

https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc6764
https://www.rfc-editor.org/info/rfc6764
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://datatracker.ietf.org/doc/html/rfc7617
https://www.rfc-editor.org/info/rfc7617
https://datatracker.ietf.org/doc/html/rfc7807
https://www.rfc-editor.org/info/rfc7807

Jenkins & Newman Expires February 8, 2019 [Page 68]

Internet-Draft JMAP August 2018

 [RFC8030] Thomson, M., Damaggio, E., and B. Raymor, Ed., "Generic
 Event Delivery Using HTTP Push", RFC 8030,
 DOI 10.17487/RFC8030, December 2016,
 <https://www.rfc-editor.org/info/rfc8030>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,

RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8291] Thomson, M., "Message Encryption for Web Push", RFC 8291,
 DOI 10.17487/RFC8291, November 2017,
 <https://www.rfc-editor.org/info/rfc8291>.

10.2. URIs

 [1] https://html.spec.whatwg.org/multipage/server-sent-events.html

Authors' Addresses

 Neil Jenkins
 FastMail
 PO Box 234, Collins St West
 Melbourne VIC 8007
 Australia

 Email: neilj@fastmailteam.com
 URI: https://www.fastmail.com

 Chris Newman
 Oracle
 440 E. Huntington Dr., Suite 400
 Arcadia CA 91006
 United States of America

 Email: chris.newman@oracle.com

https://datatracker.ietf.org/doc/html/rfc8030
https://www.rfc-editor.org/info/rfc8030
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://www.rfc-editor.org/info/rfc8126
https://datatracker.ietf.org/doc/html/rfc8291
https://www.rfc-editor.org/info/rfc8291
https://html.spec.whatwg.org/multipage/server-sent-events.html
https://www.fastmail.com

Jenkins & Newman Expires February 8, 2019 [Page 69]

