
Workgroup: JMAP

Internet-Draft: draft-ietf-jmap-jscontact-06

Published: 28 May 2021

Intended Status: Standards Track

Expires: 29 November 2021

Authors: R. Stepanek

FastMail

M. Loffredo

IIT-CNR

JSContact: A JSON representation of contact data

Abstract

This specification defines a data model and JSON representation of

contact card information that can be used for data storage and

exchange in address book or directory applications. It aims to be an

alternative to the vCard data format and to be unambiguous,

extendable and simple to process. In contrast to the JSON-based

jCard format, it is not a direct mapping from the vCard data model

and expands semantics where appropriate.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 November 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Relation to the xCard and jCard formats

1.2. Terminology

1.3. Vendor-specific Property Extensions and Values

1.4. Type Signatures

1.5. Data types

1.5.1. Context

1.5.2. Id

1.5.3. LocalizedString

1.5.4. Preference

1.5.5. UTCDateTime

2. Card

2.1. Metadata properties

2.1.1. uid

2.1.2. prodId

2.1.3. created

2.1.4. updated

2.1.5. kind

2.1.6. relatedTo

2.2. Name and Organization properties

2.2.1. name

2.2.2. fullName

2.2.3. nickNames

2.2.4. organizations

2.2.5. titles

2.3. Contact and Resource properties

2.3.1. emails

2.3.2. phones

2.3.3. online

2.3.4. photos

2.3.5. preferredContactMethod

2.3.6. preferredContactLanguages

2.4. Address and Location properties

2.4.1. addresses

2.5. Additional properties

2.5.1. anniversaries

2.5.2. personalInfo

2.5.3. notes

2.5.4. categories

2.5.5. timeZones

3. CardGroup

3.1. Group properties

3.1.1. uid

3.1.2. members

¶

3.1.3. name

3.1.4. card

4. Implementation Status

4.1. IIT-CNR/Registro.it

5. IANA Considerations

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

This document defines a data model for contact card data normally

used in address book or directory applications and services. It aims

to be an alternative to the vCard data format [RFC6350] and to

provide a JSON-based standard representation of contact card data.

The key design considerations for this data model are as follows:

Most of the initial set of attributes should be taken from the

vCard data format [RFC6350] and extensions ([RFC6473], [RFC6474],

[RFC6715], [RFC6869], [RFC8605]). The specification should add

new attributes or value types, or not support existing ones,

where appropriate. Conversion between the data formats need not

fully preserve semantic meaning.

The attributes of the cards data represented must be described as

a simple key-value pair, reducing complexity of its

representation.

The data model should avoid all ambiguities and make it difficult

to make mistakes during implementation.

Extensions, such as new properties and components, MUST NOT lead

to requiring an update to this document.

The representation of this data model is defined in the I-JSON

format [RFC7493], which is a strict subset of the JavaScript Object

Notation (JSON) Data Interchange Format [RFC8259]. Using JSON is

mostly a pragmatic choice: its widespread use makes Card easier to

adopt, and the availability of production-ready JSON implementations

eliminates a whole category of parser-related interoperability

issues.

1.1. Relation to the xCard and jCard formats

The xCard [RFC6351] and jCard [RFC7095] specifications define

alternative representations for vCard data, in XML and JSON format

respectively. Both explicitly aim to not change the underlying data

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

model. Accordingly, they are regarded as equal to vCard in the

context of this document.

1.2. Terminology

The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, NOT RECOMMENDED, MAY, and OPTIONAL in this

document are to be interpreted as described in BCP 14 [RFC2119]

[RFC8174] when, and only when, they appear in all capitals, as shown

here.

1.3. Vendor-specific Property Extensions and Values

Vendors MAY add additional properties to JSContact objects to

support their custom features. The names of these properties MUST be

prefixed with a domain name controlled by the vendor to avoid

conflict, e.g. "example.com/customprop".

Some JSContact properties allow vendor-specific value extensions. If

so, vendor-specific values MUST be prefixed with a domain name

controlled by the vendor, e.g. "example.com/customrel".

Vendors are strongly encouraged to register any new property values

or extensions that are useful to other systems as well, rather than

using a vendor-specific prefix.

1.4. Type Signatures

Type signatures are given for all JSON values in this document. The

following conventions are used:

* - The type is undefined (the value could be any type, although

permitted values may be constrained by the context of this

value).

String - The JSON string type.

Number - The JSON number type.

Boolean - The JSON boolean type.

A[B] - A JSON object where the keys are all of type A, and the

values are all of type B.

A[] - An array of values of type A.

A|B - The value is either of type A or of type B.

¶

¶

¶

¶

¶

¶

*

¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

1.5. Data types

In addition to the standard JSON data types, a couple of additional

data types are common to the definitions of JSContact objects and

properties.

1.5.1. Context

Contact information typically is associated with a context in which

it should be used. For example, someone might have distinct phone

numbers for work and private contexts. The Context data type

enumerates common contexts.

Common context values are:

private: The contact information may be used to contact the card

holder in a private context.

work: The contact information may be used to contact the card

holder in a professional context.

other: The contact information may be used to contact the card

holder in some other context. A label property MAY be defined to

identify its purpose.

Additional allowed values may be defined in the properties or data

types that make use of the Context data type, registered in a future

RFC, or a vendor-specific value.

1.5.2. Id

Where Id is given as a data type, it means a String of at least 1

and a maximum of 255 octets in size, and it MUST only contain

characters from the URL and Filename Safe base64url alphabet, as

defined in Section 5 of [RFC4648], excluding the pad character (=).

This means the allowed characters are the ASCII alphanumeric

characters (A-Za-z0-9), hyphen (-), and underscore (_).

In many places in JSContact a JSON map is used where the map keys

are of type Id and the map values are all the same type of object.

This construction represents an unordered set of objects, with the

added advantage that each entry has a name (the corresponding map

key). This allows for more concise patching of objects, and, when

applicable, for the objects in question to be referenced from other

objects within the JSContact object.

Unless otherwise specified for a particular property, there are no

uniqueness constraints on an Id value (other than, of course, the

requirement that you cannot have two values with the same key within

a single JSON map). For example, two Card objects might use the same

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

Ids in their respective photos properties. Or within the same Card

object the same Id could appear in the emails and phones properties.

These situations do not imply any semantic connections among the

objects.

1.5.3. LocalizedString

The purpose of LocalizedString is to allow for internationalisation

of string values. In its simplest form it is just a string value.

Optionally, the human language of this value may be specified, as

well as localized variants in additional languages. A

LocalizedString has the following properties:

value: String (mandatory). The property value.

language: String (optional). The [RFC5646] language tag of this

value, if any.

localizations: String[String] (optional). A map from [RFC5646]

language tags to the value localized in that language.

1.5.4. Preference

This data type allows to define a preference order on same-typed

contact information. For example, a card holder may have two email

addresses and prefer to be contacted with one of them.

A preference value MUST be an integer number in the range 1 and 100.

Lower values correspond to a higher level of preference, with 1

being most preferred. If no preference is set, then the contact

information MUST be interpreted as being least preferred.

Note that the preference only is defined in relation to contact

information of the same type. For example, the preference orders

within emails and phone numbers are indendepent of each other. Also

note that the preferredContactMethod property allows to define a

preferred contact method across method types.

1.5.5. UTCDateTime

This is a string in [RFC3339] date-time format, with the further

restrictions that any letters MUST be in uppercase, and the time

offset MUST be the character Z. Fractional second values MUST NOT be

included unless non-zero and MUST NOT have trailing zeros, to ensure

there is only a single representation for each date-time.

For example, 2010-10-10T10:10:10.003Z is conformant, but

2010-10-10T10:10:10.000Z is invalid and is correctly encoded as

2010-10-10T10:10:10Z.

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

¶

2. Card

MIME type: application/jscontact+json;type=card

A Card object stores information about a person, organization or

company.

2.1. Metadata properties

2.1.1. uid

Type: String (mandatory).

An identifier, used to associate the object as the same across

different systems, addressbooks and views. [RFC4122] describes a

range of established algorithms to generate universally unique

identifiers (UUID), and the random or pseudo-random version is

recommended. For compatibility with [RFC6350] UIDs, implementations

MUST accept both URI and free-form text.

2.1.2. prodId

Type: String (optional).

The identifier for the product that created the Card object.

2.1.3. created

Type: UTCDateTime (optional).

The date and time when this Card object was created.

2.1.4. updated

Type: UTCDateTime (optional).

The date and time when the data in this Card object was last

modified.

2.1.5. kind

Type: String (optional). The kind of the entity the Card represents.

The value MUST be either one of the following values, registered in

a future RFC, or a vendor-specific value:

individual: a single person

org: an organization

location: a named location

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

device: a device, such as appliances, computers, or network

elements

application: a software application

2.1.6. relatedTo

Type: String[Relation] (optional).

Relates the object to other Card objects. This is represented as a

map of the URI (or single text value) of the related objects to a

possibly empty set of relation types. The Relation object has the

following properties:

relation: String[Boolean] (optional, default: empty Object)

Describes how the linked object is related to the linking object.

The relation is defined as a set of relation types. If empty, the

relationship between the two objects is unspecified. Keys in the

set MUST be one of the RELATED property [RFC6350] type parameter

values, or an IANA-registered value, or a vendor-specific value.

The value for each key in the set MUST be true.

Note, the Relation object only has one property; it is specified as

an object with a single property to allow for extension in the

future.

2.2. Name and Organization properties

2.2.1. name

Type: NameComponent[] (optional).

The name components of the name of the entity represented by this

Card. Name components SHOULD be ordered such that their values

joined by whitespace produce a valid full name of this entity. Doing

so, implementations MAY ignore any separator components.

A NameComponent has the following properties:

value: String (mandatory). The value of this name component.

type: String (mandatory). The type of this name component. The

value MUST be either one of the following values, registered in a

future RFC, or a vendor-specific value:

prefix. The value is a honorific title(s), e.g. "Mr", "Ms",

"Dr".

personal. The value is a personal name(s), also known as

"first name", "given name".

*

¶

* ¶

¶

¶

*

¶

¶

¶

¶

¶

* ¶

*

¶

-

¶

-

¶

surname. The value is a surname, also known as "last name",

"family name".

additional. The value is an additional name, also known as

"middle name".

suffix. The value is a honorific suffix, e.g. "B.A.", "Esq.".

separator. A separator for two name components. The value

property of the component includes the verbatim separator, for

example a newline character.

2.2.2. fullName

Type: LocalizedString (optional).

The full name (e.g. the personal name and surname of an individual,

the name of an organization) of the entity represented by this card.

The purpose of this property is to define a name, even if the

individual name components are not known. In addition, it is meant

to provide alternative versions of the name for

internationalisation. Implementations SHOULD prefer using the name

property over this one and SHOULD NOT store the concatenated name

component values in this property.

2.2.3. nickNames

Type: LocalizedString[] (optional).

The nick names of the entity represented by this card.

2.2.4. organizations

Type: Id[Organization] (optional).

The companies or organization names and units associated with this

card. An Organization object has the following properties:

name: LocalizedString (mandatory). The name of this organization.

units: LocalizedString[] (optional). Additional levels of

organizational unit names.

2.2.5. titles

Type : Id[Title] (optional).

-

¶

-

¶

- ¶

-

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

¶

The job titles or functional positions of the entity represented by

this card. A Title has object the following properties:

title: LocalizedString (mandatory). The title of the entity

represented by this card.

organization: Id (optional). The id of the organization in which

this title is held.

2.3. Contact and Resource properties

2.3.1. emails

Type: Id[EmailAddress] (optional).

The email addresses to contact the entity represented by this card.

An EmailAddress object has the following properties:

email: String (mandatory). The email address. This MUST be an

addr-spec value as defined in Section 3.4.1 of [RFC5322].

contexts: Context[Boolean] (optional) The contexts in which to

use this email address. The value for each key in the object MUST

be true.

pref: Preference (optional) The preference of this email address

in relation to other email addresses.

2.3.2. phones

Type: Id[Phone] (optional).

The phone numbers to contact the entity represented by this card. A

phone object has the following properties:

phone: String (mandatory). The phone value, as either a URI or a

free-text phone number. Typical URI schemes are the [RFC3966] tel

or [RFC3261] sip schemes, but any URI scheme is allowed.

features: String[Boolean] (optional). The set of contact features

that this phone number may be used for. The set is represented as

an object, with each key being a method type. The value for each

key in the object MUST be true. The method type MUST be either

one of the following values, registered in a future RFC, or a

vendor-specific value:

voice The number is for calling by voice.

fax The number is for sending faxes.

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

- ¶

- ¶

pager The number is for a pager or beeper.

text The number supports text messages (SMS).

cell The number is for a cell phone.

textphone The number is for a device for people with hearing

or speech difficulties.

video The number supports video conferencing.

other The number is for some other purpose. The label property

MAY be included to display next to the number to help the user

identify its purpose.

contexts: Context[Boolean] (optional) The contexts in which to

use this number. The value for each key in the object MUST be

true.

label: String (optional). A label describing the value in more

detail, especially if the type property has value other (but MAY

be included with any type).

pref: Preference (optional) The preference of this number in

relation to other numbers.

2.3.3. online

Type: Id[Resource] (optional).

The online resources and services that are associated with the

entity represented by this card. A Resource object has the following

properties:

resource: String (mandatory). The resource value, where the

allowed value form is defined by the the type property. In any

case the value MUST NOT be empty.

type: String (optional, default: other). The type of the resource

value. Allowed values are:

uri The resource value is a URI, e.g. a website link. This

MUST be a valid URI as defined in Section 3 of [RFC3986] and

updates.

username The resource value is a username associated with the

entity represented by this card (e.g. for social media, or an

IM client). The label property SHOULD be included to identify

what service this is for. For compatibility between clients,

this label SHOULD be the canonical service name, including

- ¶

- ¶

- ¶

-

¶

- ¶

-

¶

*

¶

*

¶

*

¶

¶

¶

*

¶

*

¶

-

¶

-

capitalisation. e.g. Twitter, Facebook, Skype, GitHub, XMPP.

The resource value may be any non-empty free text.

other The resource value is something else not covered by the

above categories. A label property MAY be included to display

next to the number to help the user identify its purpose. The

resource value may be any non-empty free text.

mediaType: String (optional). Used for URI resource values.

Provides the media type [RFC2046] of the resource identified by

the URI.

contexts: Context[Boolean] (optional) The contexts in which to

use this resource. The value for each key in the object MUST be

true.

label: String (optional). A label describing the value in more

detail, especially if the type property has value other (but MAY

be included with any type).

pref: Preference (optional) The preference of this resource in

relation to other resources.

2.3.4. photos

Type: Id[File] (optional).

A map of photo ids to File objects that contain photographs or

images associated with this card. A typical use case is to include

an avatar for display along the contact name.

A File object has the following properties:

href: String (mandatory). A URI where to fetch the data of this

file.

mediaType: String (optional). The content-type of the file, if

known.

size: UnsignedInt (optional). The size, in octets, of the file

when fully decoded (i.e., the number of octets in the file the

user would download), if known.

pref: Preference (optional) The preference of this photo in

relation to other photos.

2.3.5. preferredContactMethod

Type : String (optional)

¶

-

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

Defines the preferred method to contact the holder of this card. The

value MUST be the property names: emails, phones, online.

2.3.6. preferredContactLanguages

Type : String[ContactLanguage[]] (optional)

Defines the preferred languages for contacting the entity associated

with this card. The keys in the object MUST be [RFC5646] language

tags. The values are a (possibly empty) list of contact language

preferences for this language. A valid ContactLanguage object MUST

have at least one of its properties set.

A ContactLanguage object has the following properties:

context: Context (optional). Defines the context in which to use

this language.

pref: Preference (optional). Defines the preference of this

language in relation to other languages of the same context.

Also see the definition of the VCARD LANG property (Section 6.4.4.,

[RFC6350]).

2.4. Address and Location properties

2.4.1. addresses

Type: Id[Address] (optional).

A map of address ids to Address objects, containing physical

locations. An Address object has the following properties:

fullAddress: LocalizedString (optional). The complete address,

excluding type and label. This property is mainly useful to

represent addresses of which the individual address components

are unknown, or to provide localized representations.

street: StreetComponent[] (optional). The street address. The

concatenation of the component values, separated by whitespace,

SHOULD result in a valid street address for the address locale.

Doing so, implementations MAY ignore any separator components.

The StreetComponent object type is defined in the paragraph

below.

locality: String (optional). The city, town, village, post town,

or other locality within which the street address may be found.

region: String (optional). The province, such as a state, county,

or canton within which the locality may be found.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

country: String (optional). The country name.

postcode: String (optional). The postal code, post code, ZIP code

or other short code associated with the address by the relevant

country's postal system.

countryCode: String (optional). The ISO-3166-1 country code.

coordinates: String (optional) A [RFC5870] "geo:" URI for the

address.

timeZone: String (optional) Identifies the time zone this address

is located in. This either MUST be a time zone name registered in

the IANA Time Zone Database, or it MUST be a valid TimeZoneId as

defined in FIXME . For the latter, a corresponding time zone MUST

be defined in the timeZones property.

contexts: Context[Boolean] (optional). The contexts of the

address information. In addition to the common contexts, allowed

values are:

billing An address to be used for billing.

postal An address to be used for delivering physical items.

The value for each key in the object MUST be true.

label: String (optional). A label describing the value in more

detail.

pref: Preference (optional) The preference of this address in

relation to other addresses.

A StreetComponent object has the following properties:

type: String (mandatory). The type of this street component. The

value MUST be either one of the following values, registered in a

future RFC, or a vendor-specific value:

name. The street name.

number. The street number.

apartment. The apartment number or identifier.

room. The room number or identifier.

extension. The extension designation or box number.

direction. The cardinal direction, e.g. "North".

* ¶

*

¶

* ¶

*

¶

*

¶

*

¶

- ¶

-

¶

*

¶

*

¶

¶

*

¶

- ¶

- ¶

- ¶

- ¶

- ¶

- ¶

https://www.iana.org/time-zones

building. The building or building part this address is

located in.

floor. The floor this address is located on.

postOfficeBox. The post office box number or identifier.

separator. A separator for two street components. The value

property of the component includes the verbatim separator, for

example a newline character.

unknown. A name component value for which no type is known.

value: String (mandatory). The value of this street component.

2.5. Additional properties

2.5.1. anniversaries

Type : Id[Anniversary] (optional).

These are memorable dates and events for the entity represented by

this card. An Anniversary object has the following properties:

type: String (mandatory). Specifies the type of the anniversary.

This RFC predefines the following types, but implementations MAY

use additional values:

birth: a birth day anniversary

death: a death day anniversary

other: an anniversary not covered by any of the known types.

label: String (optional). A label describing the value in more

detail, especially if the type property has value other (but MAY

be included with any type).

date: String (mandatory). The date of this anniversary, in the

form "YYYY-MM-DD" (any part may be all 0s for unknown) or a

[RFC3339] timestamp.

place: Address (optional). An address associated with this

anniversary, e.g. the place of birth or death.

2.5.2. personalInfo

Type: Id[PersonalInformation] (optional).

-

¶

- ¶

- ¶

-

¶

- ¶

* ¶

¶

¶

*

¶

- ¶

- ¶

- ¶

*

¶

*

¶

*

¶

¶

Defines personal information about the entity represented by this

card. A PersonalInformation object has the following properties:

type: String (mandatory). Specifies the type for this personal

information. Allowed values are:

expertise: a field of expertise or credential

hobby: a hobby

interest: an interest

other: an information not covered by the above categories

value: String (mandatory). The actual information. This generally

is free-text, but future specifications MAY restrict allowed

values depending on the type of this PersonalInformation.

level: String (optional) Indicates the level of expertise, or

engagement in hobby or interest. Allowed values are: high, medium

and low.

2.5.3. notes

Type: LocalizedString (optional).

Arbitrary notes about the entity represented by this card.

2.5.4. categories

Type: String[Boolean] (optional). The set of free-text or URI

categories that relate to the card. The set is represented as an

object, with each key being a category. The value for each key in

the object MUST be true.

2.5.5. timeZones

Type: String[TimeZone] (optional). Maps identifiers of custom time

zones to their time zone definitions. For a description of this

property see the timeZones property definition in FIXME .

3. CardGroup

MIME type: application/jscontact+json;type=cardgroup

A CardGroup object represents a group of cards. Its members may be

Cards or CardGroups.

¶

*

¶

- ¶

- ¶

- ¶

- ¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

3.1. Group properties

3.1.1. uid

Type: String (mandatory). The uid of this group. Both CardGroup and

Card share the same namespace for the uid property.

3.1.2. members

Type: String[Boolean] (mandatory). The members of this group.

The set is represented as an object, with each key being the uid of

another Card or CardGroup. The value for each key in the object MUST

be true.

3.1.3. name

Type: String (optional). The user-visible name for the group, e.g.

"Friends". This may be any UTF-8 string of at least 1 character in

length and maximum 255 octets in size. The same name may be used by

two different groups.

3.1.4. card

Type: Card (optional). The card that represents this group.

4. Implementation Status

NOTE: Please remove this section and the reference to [RFC7942]

prior to publication as an RFC. This section records the status of

known implementations of the protocol defined by this specification

at the time of posting of this Internet-Draft, and is based on a

proposal described in [RFC7942]. The description of implementations

in this section is intended to assist the IETF in its decision

processes in progressing drafts to RFCs. Please note that the

listing of any individual implementation here does not imply

endorsement by the IETF. Furthermore, no effort has been spent to

verify the information presented here that was supplied by IETF

contributors. This is not intended as, and must not be construed to

be, a catalog of available implementations or their features.

Readers are advised to note that other implementations may exist.

According to [RFC7942], "this will allow reviewers and working

groups to assign due consideration to documents that have the

benefit of running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

¶

¶

¶

¶

¶

¶

[RFC2046]

[RFC2119]

[RFC4122]

4.1. IIT-CNR/Registro.it

Responsible Organization: Institute of Informatics and Telematics

of National Research Council (IIT-CNR)/Registro.it

Location: https://rdap.pubtest.nic.it/

Description: This implementation includes support for RDAP

queries using data from the public test environment of .it ccTLD.

The RDAP server does not implement any security policy because

data returned by this server are only for experimental testing

purposes. The RDAP server returns responses including Card in

place of jCard when queries contain the parameter jscard=1.

Level of Maturity: This is a "proof of concept" research

implementation.

Coverage: This implementation includes all of the features

described in this specification.

Contact Information: Mario Loffredo, mario.loffredo@iit.cnr.it

5. IANA Considerations

TBD

6. Security Considerations

TBD

7. References

7.1. Normative References

Freed, N. and N. Borenstein, "Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types", RFC 2046, DOI

10.17487/RFC2046, November 1996, <https://www.rfc-

editor.org/info/rfc2046>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leach, P., Mealling, M., and R. Salz, "A Universally

Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

https://rdap.pubtest.nic.it/
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119

[RFC5646]

[RFC5870]

[RFC6350]

[RFC6351]

[RFC7095]

[RFC7493]

[RFC7942]

[RFC8174]

[RFC8259]

[RFC3261]

10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/

info/rfc4122>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Mayrhofer, A. and C. Spanring, "A Uniform Resource

Identifier for Geographic Locations ('geo' URI)", RFC

5870, DOI 10.17487/RFC5870, June 2010, <https://www.rfc-

editor.org/info/rfc5870>.

Perreault, S., "vCard Format Specification", RFC 6350,

DOI 10.17487/RFC6350, August 2011, <https://www.rfc-

editor.org/info/rfc6350>.

Perreault, S., "xCard: vCard XML Representation", RFC

6351, DOI 10.17487/RFC6351, August 2011, <https://

www.rfc-editor.org/info/rfc6351>.

Kewisch, P., "jCard: The JSON Format for vCard", RFC

7095, DOI 10.17487/RFC7095, January 2014, <https://

www.rfc-editor.org/info/rfc7095>.

Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI

10.17487/RFC7493, March 2015, <https://www.rfc-

editor.org/info/rfc7493>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", BCP

205, RFC 7942, DOI 10.17487/RFC7942, July 2016, <https://

www.rfc-editor.org/info/rfc7942>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

7.2. Informative References

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston,

A., Peterson, J., Sparks, R., Handley, M., and E.

Schooler, "SIP: Session Initiation Protocol", RFC 3261,

https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc5870
https://www.rfc-editor.org/info/rfc6350
https://www.rfc-editor.org/info/rfc6350
https://www.rfc-editor.org/info/rfc6351
https://www.rfc-editor.org/info/rfc6351
https://www.rfc-editor.org/info/rfc7095
https://www.rfc-editor.org/info/rfc7095
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7493
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc7942
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[RFC3339]

[RFC3966]

[RFC3986]

[RFC4648]

[RFC5322]

[RFC6473]

[RFC6474]

[RFC6715]

[RFC6869]

[RFC8605]

DOI 10.17487/RFC3261, June 2002, <https://www.rfc-

editor.org/info/rfc3261>.

Klyne, G. and C. Newman, "Date and Time on the Internet:

Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,

<https://www.rfc-editor.org/info/rfc3339>.

Schulzrinne, H., "The tel URI for Telephone Numbers", RFC

3966, DOI 10.17487/RFC3966, December 2004, <https://

www.rfc-editor.org/info/rfc3966>.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005, <https://

www.rfc-editor.org/info/rfc3986>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Saint-Andre, P., "vCard KIND:application", RFC 6473, DOI

10.17487/RFC6473, December 2011, <https://www.rfc-

editor.org/info/rfc6473>.

Li, K. and B. Leiba, "vCard Format Extensions: Place of

Birth, Place and Date of Death", RFC 6474, DOI 10.17487/

RFC6474, December 2011, <https://www.rfc-editor.org/info/

rfc6474>.

Cauchie, D., Leiba, B., and K. Li, "vCard Format

Extensions: Representing vCard Extensions Defined by the

Open Mobile Alliance (OMA) Converged Address Book (CAB)

Group", RFC 6715, DOI 10.17487/RFC6715, August 2012,

<https://www.rfc-editor.org/info/rfc6715>.

Salgueiro, G., Clarke, J., and P. Saint-Andre, "vCard

KIND:device", RFC 6869, DOI 10.17487/RFC6869, February

2013, <https://www.rfc-editor.org/info/rfc6869>.

Hollenbeck, S. and R. Carney, "vCard Format Extensions:

ICANN Extensions for the Registration Data Access

Protocol (RDAP)", RFC 8605, DOI 10.17487/RFC8605, May

2019, <https://www.rfc-editor.org/info/rfc8605>.

https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3261
https://www.rfc-editor.org/info/rfc3339
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc6473
https://www.rfc-editor.org/info/rfc6473
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6474
https://www.rfc-editor.org/info/rfc6715
https://www.rfc-editor.org/info/rfc6869
https://www.rfc-editor.org/info/rfc8605

Authors' Addresses

Robert Stepanek

FastMail

PO Box 234, Collins St West

Melbourne VIC 8007

Australia

Email: rsto@fastmailteam.com

Mario Loffredo

IIT-CNR

Via Moruzzi,1

56124 Pisa

Italy

Email: mario.loffredo@iit.cnr.it

mailto:rsto@fastmailteam.com
mailto:mario.loffredo@iit.cnr.it

	JSContact: A JSON representation of contact data
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to the xCard and jCard formats
	1.2. Terminology
	1.3. Vendor-specific Property Extensions and Values
	1.4. Type Signatures
	1.5. Data types
	1.5.1. Context
	1.5.2. Id
	1.5.3. LocalizedString
	1.5.4. Preference
	1.5.5. UTCDateTime

	2. Card
	2.1. Metadata properties
	2.1.1. uid
	2.1.2. prodId
	2.1.3. created
	2.1.4. updated
	2.1.5. kind
	2.1.6. relatedTo

	2.2. Name and Organization properties
	2.2.1. name
	2.2.2. fullName
	2.2.3. nickNames
	2.2.4. organizations
	2.2.5. titles

	2.3. Contact and Resource properties
	2.3.1. emails
	2.3.2. phones
	2.3.3. online
	2.3.4. photos
	2.3.5. preferredContactMethod
	2.3.6. preferredContactLanguages

	2.4. Address and Location properties
	2.4.1. addresses

	2.5. Additional properties
	2.5.1. anniversaries
	2.5.2. personalInfo
	2.5.3. notes
	2.5.4. categories
	2.5.5. timeZones

	3. CardGroup
	3.1. Group properties
	3.1.1. uid
	3.1.2. members
	3.1.3. name
	3.1.4. card

	4. Implementation Status
	4.1. IIT-CNR/Registro.it

	5. IANA Considerations
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

